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Abstract

While the �nancial world is experiencing a crisis, the prices of most agricultural commodities have

remained high, although exhibiting extreme volatilidy. Motivated by evidence showing that volatility

trends are present in agricultural commodity prices, we analyze stochastic processes whose uncon-

ditional variance changes with time. This analysis suggests a semi-parametric model for capturing

the trending behavior of second moments, in which these moments are polynomial-like functions

of time. Based on this model, we formulate the portfolio problem faced by an investor when the

variances and the covariances of the returns of the available assets are trending. Then, we obtain

an approximate solution of the problem, which is based on the consistent estimation of the order of

variance-covariance growth and apply it for the construction of an optimal portfolio of agricultural

commodities. It is shown that the performance of this portfolio is superior to those of alternative

portfolios which are formed by employing methods not accounting for the presence of volatility trends

in commodity returns.
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1 Introduction

Recently the price behavior of major agricultural commodities has attracted a lot of interest, because it

has been displaying unusually high volatility. For example, the price of wheat increased sharply between

January 2007 and June 2008, then went down and has been rising again since April 2009. Whether

this rise in volatility has been driven by global supply and demand factors or is the result of excess

speculation in the futures markets for these commodities, is a source of current debate in the literature.

The intertemporal behavior of volatility of returns of several asset classes, such as stocks, bonds or

commodities, has been extensively investigated in the last twenty �ve years or so, by both the academic

and investment communities. Currently, there is widespread agreement among researchers that this

volatility has not remained constant over time. Various models for describing the time variation in

volatility have been proposed in the literature, such as the well known GARCH and stochastic volatility

models. These models treat the observed �volatility clustering�as non-linear dependence arising through

the conditional variance of returns. This interpretation permits the underlying stochastic process, fRtg;

generating the returns to be strictly, or even second-order stationary, since a time-varying conditional

variance can coexist with a time-invariant unconditional variance. In other words, the observed time

variation in the volatility of asset returns may be consistent with a stationary fRtg; which exhibits

second-order temporal dependence.

However, the aforementioned models are not capable of capturing all empirical characteristics of the

volatility of asset returns. For example, there are quite a few studies presenting evidence of variance

breaks in fRtg (see, for example, Lamoureux and Lastrapes (1990), Stµaricµa and Granger (2005)). In fact,

the high degree of persistence observed in the conditional variance process of returns may be the result

of shifts in the unconditional variance of an otherwise locally stationary fRtg; which (the shifts) have not

been taken into account in the estimation of the conditional variance. The presence of variance breaks in

fRtg implies that apart from conditional heteroscedasticity (non-linear dependence), the returns process

is also characterized by unconditional heteroscedasticity (local time heterogeneity).

Campbell et al. (2001) suggest that the type of non-stationarity displayed by the process generating

stock returns is more �global�than that implied by variance breaks. Speci�cally, these authors present

evidence showing that the idiosyncratic component of the unconditional variance of the returns of indi-

vidual �rms exhibits a large positive linear trend over a 35-year period. The presence of such a trend

is likely to dominate the behavior of the total �rm volatility, thus producing a returns process which

exhibits global non-stationarity. The latter is meant to imply that the marginal distributions of fRtg do
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not display intervals of time homogeneity (as in the case of local stationarity implied by variance breaks)

but instead are continuously changing. This change, however, is not patternless but is governed by a

systematic evolution of the variances of the marginal distributions of fRtg:

Apart from stock returns, commodity returns have been found to exhibit non-stationary volatilities

as well. One of the earliest studies that presents evidence on increasing volatilities is the classical

study of Kendall (1953) on the Chicago wheat series. Kendall�s conclusion is the following: �We have

here an interesting and rather unusual case of a time-series for which the mean remains constant but

the variance appears to be increasing� (1953, p. 15). Also, recent empirical literature suggests the

presence of volatility trends in commodity prices. Yang Haigh and Leatham (2001) present evidence

suggesting that the volatility of three major grain commodities, namely corn, soybeans and wheat has

increased over time as a result of radical changes in agricultural liberalization policy (see also Ray et. al.

1998). Focusing solely on wheat, Crain and Lee (1996) show that depending on the type of government

farm program, the volatility of wheat price changes might be either increasing or decreasing. Pindyck

(2001) reports evidence showing that once the major volatility spikes in 1986 and 1991 (caused by Saudi

Arabia�s over-supply and Iraqi invasion of Kuwait, respectively) are removed, the volatility series of crude

oil, heating oil and especially gasoline display trending behavior. Cuddington and Liang (2003) relate

the behavior of commodity price volatility to the type of the exchange rate regime that is in place. In

particular, they show that the volatility of returns of agricultural raw materials, beverages, food and

metals, is much higher after the collapse of the Bretton Woods �xed rate system in the early 1970s than

it was before. Moreover, closer inspection of their reported volatility graphs suggests the presence of

positive trends, even within the post-1973 period alone, especially for the case of beverages and metals.

In a very recent paper, Calvo-Gonzales Shankar and Trezzi (2010) study thoroughly the behavior of

volatility of 45 individual commodity prices, from the end of the 18th century until today and report

strong evidence on volatility breaks. Some of these breaks are followed by prolonged periods within

which the volatility displays trending behavior. The overall behavior of volatility (over the full sample)

for some important commodities such as copper, corn and wheat is clearly trending (see Chart 1 p. 10).

In line with the results of Cuddington and Liang (2003) discussed above, these authors �nd that one of

the subperiods during which the volatility for most commodities was increasing, is the period of �exible

exchange rates (see also Chu and Morisson 1984, Reinhart and Wicham 1994). The volatility rise of

dollar denominated commodity prices after 1970 is likely to re�ect the increasing volatility in nominal

exchange rates which in turn is the result of the presence of an increasing number of �oating-rate regimes
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in this period. Cashin and McDermott (2001) �nd that the amplitude of commodity price changes and

the frequency of large price changes have increased after the early 1900s and 1970, respectively. A

recent report of the American Gas Foundation by Henning, Sloan and de Leon (2003) �nds that natural

gas has exhibited huge increases in price volatility over the last �fteen years or so, which stems from

three primary causes namely supply and demand factors, e¤ects of commodity trading techniques and

market imperfections. On the other hand, Jacks et. al. (2009) and Moledina et. al. (2004) report

evidence supporting the alternative hypothesis, namely that the volatility in commodity prices displays

no consistent trending behavior across time. Apart from the academic literature, there seems to be a

consensus in the �nancial industry that the volatility of commodity prices has been increasing under the

growing in�uence of �nancial derivatives in commodity markets. Financial involvement in the futures

markets for agricultural products, which took the form of the so-called index trading, is likely to have

contributed signi�cantly to the rise in volatility. For example, in a recent report of the consulting

company �Accenture�we read that �the introduction of �nancial derivatives has fueled speculation in

global commodity prices, creating tremendous price volatility�.

The present paper focuses exclusively on agricultural commodities. The presence of volatility trends

in agricultural commodity prices a¤ects both production and investment decisions. For farmers, for

example, positive volatility trends make the cost of hedging, through options, increasingly higher (see

Calvo-Gonzales et. al 2010). Nonfarm investors interested in including agricultural commodities in their

portfolios (possibly through exchange traded funds - ETFs) are also a¤ected by volatility trends. More

speci�cally, their investment decisions are likely to be severely distorted if trends in the covariance matrix

of the commodity returns are not accounted for. Indeed, one of the main purposes of the present paper

is to analyze in detail how investors should construct optimal portfolios for cases in which the second

moments of asset returns display trending behavior.

The purpose of this paper is three-fold: First, we provide evidence showing that variance trends are

present in the returns series of major agricultural commodities. Second, motivated by this evidence,

we investigate plausible stochastic structures together with their properties that are likely to capture

adequately the trending behavior of volatility. We show that such structures arise quite naturally and are

simple to describe. Moreover, we show that similar structures have already been employed extensively

in the recent time series literature on unit roots. We also show that the presence of volatility trends

does not necessarily imply explosive asymptotic behavior of the underlying process, fRtg; but instead it

is consistent with convergence-in-law of fRtg to an in�nite-variance random variable with a well de�ned
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distribution. In fact, trending volatility may be thought of as providing a link between the bounded and

in�nite variance cases analyzed in the literature, since it permits the variances to be �nite for any t <1;

tending to in�nity (not necessarily monotonically) as t grows larger. These �rst two tasks, namely the

empirical and theoretical motivation of volatility trends are analyzed in Section 2. Third, we formulate

and solve the portfolio problem faced by an investor when the variances and the covariances of the returns

of the available assets are polynomial functions of time of order k. We derive a consistent estimator of k

and apply this estimator to construct an optimal portfolio consisting of four agricultural commodities,

namely corn, soybeans, sugar and wheat. Finally, we compare the performances of this portfolio with

the performances of portfolios constructed by alternative strategies, not accounting for volatility trends.

These issues are analyzed in Section 3. The last Section concludes the paper.

2 Motivation

2.1 Empirical Motivation

In this section, we show that the monthly percentage changes, Rit; in the price of four major agricultural

commodities, namely corn, soybeans, sugar and wheat, are characterized by trending variances1 . We

employ an index of the spot price for each of these commodities generated by Standard and Poors (S&P

GSCITM ) for the period 1990m1 to 2009m82 . Figures 1 and 2 report recursive and rolling estimates

respectively of the residual variance of an AR(1) model for Rit:

FIGURE 1 AROUND HERE

It can be seen that a clear upward, albeit non-monotonic trend is evident in all the four series under

consideration. It must be noted that although the overall long-run volatility behavior is upward trending

there are nevertheless periods in which this trend is disrupted. This in turn implies that modelling such

a behavior in terms of just including a linear trend in the variance equation is clearly inappropriate.

Instead, modelling such a complex behavior requires a parametric model which is �exible enough to

account not only the long run upward trend but the variations around this trend, as well.

1We assume that the investor holds the spot commodity in his portfolio, thus treating it as any other �nancial asset
(see Arthur, Carter and Abizadeh 1988, for a similar approach).

2Note that three alternative S&P GSCITM indices are published for each crop: excess return, total return and spot
indices. The excess return index measures the returns accrued from investing in uncollateralized nearby commodity futures,
the total return index measures the returns accrued from investing in fully-collateralized nearby commodity futures, and
the spot index measures the level of nearby commodity prices. All the three alternative de�nitions give similar results.
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FIGURE 2 AROUND HERE

This discussion suggests that a possible model for the unconditional variance of Rit might take the

polynomial-like form

Rit =
p
fi(t)�it (1)

fi(t) = tki + gi(t); ki � 0

where

gi(t) = o
�
tki
�

(2)

and �it are zero-mean, second-order stationary processes. The �exibility of this speci�cation arises from

the fact that it aims at capturing the long-run volatility trends, as determined by the values of ki, under a

wide range of possible functional forms for gi(t): For example, consider the second-order polynomial-like

function

fi(t) = ci;0 + ci;1t+ ci;2t
2 + ci;3(sin(

t

d
) + 1) + ci;4t(sin(

t

d
) + 1); d; ci;j > 0: (3)

This equation falls into the class of functions de�ned by (1) - (2). The two extra terms, (sin( td )+ 1) and

t(sin( td ) + 1) in (3) capture the potentially oscillating behavior of volatility around the long-run upward

trend as is empirically documented in the agricultural commodity series under consideration (see Figure

1). Note that the parameter, d; controls for the number of the sinusoidal cycles that are likely to be

present in a sample of T observations.

It must be noted that the speci�cation (1) assumes implicitly that Rit is a serially uncorrelated

process. In the case that Rit exhibits linear temporal dependence, the volatility trends may be introduced

via the error sequence driving Rit: For example, if Rit follows an AR(1) process with volatility trends,

model (1) should be replaced by

Rit = �Rit�1 + "it

where "it =
p
fi(t)�it:

2.2 Theoretical Motivation and Connection to Existing Literature

The preceding subsection has o¤ered evidence that crops returns exhibit volatility trends. In this sec-

tion, we describe plausible stochastic structures that display unconditional heteroscedasticity of the sort

introduced in (1). We begin by analyzing a stochastic structure that is quite familiar from the litera-
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ture on unit-root processes. More speci�cally, certain Gaussian processes have covariance matrices that

accommodate the simple symmetric random walk, as a special case. These processes can also give rise

to autoregressive models with trending error variances. For example, consider the process fYtgt�0 with

Y0 = 0 a.s., de�ned by:264 Yt

Yt�1

375 � N
0B@0;

264 �20t rt�
2
0

p
t(t� 1)

rt�
2
0

p
t(t� 1) �20(t� 1)

375
1CA ; rt � 0 (4)

where rt is the correlation coe¢ cient of Yt and Yt�1. Then

E[YtjYt�1] = rt
r

t

t� 1Yt�1 (5)

and

V ar(YtjYt�1) = (1� r2t )�20t (6)

Let us consider the case where

E[YtjYt�1] = �Yt�1, � 1 < � � 1 (7)

Taking into account (5), we have that

rt = �

r
t� 1
t

(8)

Therefore, 264 Yt

Yt�1

375 � N
0B@0;

264 �20t ��20(t� 1)

��20(t� 1) �20(t� 1)

375
1CA

Given that �1 = ��20; we have264 Yt

Yt�1

375 � N
0B@0;

264 �20t �1(t� 1)

�1(t� 1) �20(t� 1)

375
1CA : (9)

Note that since �1 � rt � 1 and (8) holds for every t; we conclude that j�j � 1. Therefore, j�1j � �20:

Moreover, from (6), (8) and the de�nition of �1 we have that

V ar(YtjYt�1) =
�40 � �21
�20

t+
�21
�20

(10)
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So the class of processes, described by (9), can be divided in two disjoint subclasses: the �rst representing

the case of j�1j = �20 (which corresponds to the case � = 1) and the second representing the case �1 < �20
(which corresponds to the case � < 1).

Let now the process futg be de�ned by

ut = Yt � E[YtjYt�1] (11)

Then, by virtue of (7), (11), (10) and (9) we have that

Yt = �Yt�1 + ut (12)

where

ut � NI
�
0;
�40 � �21
�20

t+
�21
�20

�
(13)

From (12) and (13), we conclude that the two disjoint subclasses that form the class described by (9)

correspond to:

i) 8><>: Yt = �Yt�1 + ut, � = 1

ut � NI
�
0; �20

�
9>=>; (14)

and

(ii) 8><>: Yt = �Yt�1 + ut, j�j < 1

ut � NI
�
0;
�
1� �2

�
t+ �2�20

�
9>=>; : (15)

It is obvious that the model (15) which is a stable AR(1) model with trending error variance can be

used to describe a stochastic process which exhibits linear temporal dependence and unconditional het-

eroscedasticity. Nevertheless, this model is restrictive in the sense that it allows only linear volatility

trends. More general trending behavior may be captured quite naturally by replacing the linear speci-

�cation with a more general one, such as (1) in which the error variance is a polynomial-like function

of time. To sum up, in this section we show that an autoregressive model with trending error variance

derives from a similar but more general econometric structure, than the one of a unit root model.
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2.3 Volatility Trends: Asymptotic Explosive Behavior or Convergence-in-

Law?

Model (15) is driven by a noise sequence, futg ; with a changing variance that tends to in�nity. This

might be regarded as an undesirable feature of the model, since it may be thought to imply that in the

long run the underlying process exhibits explosive behavior. Since such a behavior is not observed in

practice, the question arises whether model (15) is a reasonable model. However, this concern is not

well-founded since an in�nite variance does not necessarily imply explosive behavior. More speci�cally,

the assumption of in�nite limiting variance does not preclude the possibility that the sequence futg

converges in distribution to a well de�ned random variable. As an example, consider a random variable

Xc, c > 0 that takes values in the interval [�c; c], according to a truncated Cauchy distribution with

zero median and half width at half maximum equal to b3 . The probability measure, induced by Xc; is

de�ned as follows:

P [Xc = �c] = P [Xc = c] =
Z �c

�1
h(x)dx =

Z 1

c

h(x)dx =
1

2
� 1

�
arctan

�c
b

�

and for x 2 (�c; c)

P [Xc � x] = P [Xc = �c] +
Z x

�c
h(s)ds

Then

E[Xc] = 0

and

V ar(Xc) = c2
�
1� 2

�
arctan

�c
b

��
+
b

�

Z c

�c

x2

b2 + x2
dx

= c

�
c

�
1� 2

�
arctan

�c
b

���
+
b

�

Z c

�c
dx� b

2

�

Z c

�c

b

b2 + x2
dx

= c

�
c

�
1� 2

�
arctan

�c
b

���
+
2bc

�
� 2b

2

�
arctan

�c
b

�
= c

�
c

�
1� 2

�
arctan

�c
b

��
+
2b

�

�
� 2b

2

�
arctan

�c
b

�

Moreover,

3This random variable may be denoted as C (0; b) : Its density function is given by h(x) = 1
�

b
b2+x2

.
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lim
c�!1

c

�
1� 2

�
arctan

�c
b

��
= lim

c�!1

1� 2
� arctan

�
c
b

�
1
c

= lim
c�!1

� 2
�

b
b2+c2

� 1
c2

=
2b

�

Set now

Ac = c

�
1� 2

�
arctan

�c
b

��
+
2b

�
and Zc =

1p
Ac
Xc

Then,

lim
c�!1

p
Ac = 2

r
b

�

and the probability measure, corresponding to Zc, is given by

P [Zc � x] = P [Xc �
p
Acx] =

1

2
+
1

�
arctan

�p
Acx

b

�

for � 1p
Ac
c � x < 1p

Ac
c and

P

�
Zc �

1p
Ac
c

�
= 1 .

Therefore

Zc
L! C

�
0;

2p
b�

�
as c!1.

Since b is an arbitrary positive number, then for every random variable, Z, following a zero median

Cauchy distribution, we can construct a stochastic process Zc with V ar(Zc) < 1 that converges to Z.

The variance of Zc is given by

V ar(Zc) = r(c) = c�
2b2

� arctan
�
c
b

�
c
�
1� 2

� arctan
�
c
b

��
+ 2b

�

= c+ q(c) with q(c) = O(1) .

Next, let us assume that c is a function of t of the form, c � ct = tk, k > 0; and set ut � Zct ,

f(t) � r(ct) = tk + q(tk) and, vt = 1p
f(t)

ut. Observe that f(t) is a polynomial-like function. Moreover,

it is obvious that V ar(ut) = V ar(Zct) = r(ct) = f(t): In the context of this example, the order k

determines the rate at which the sequence futg converges in distribution to the Cauchy random variable.

These considerations will motivate the model proposed in the next section.
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3 Optimal Portfolios of Assets with Trending Volatilities

The next logical question concerns the implications of the trending variance hypothesis for optimal

portfolio construction. In particular, assume that fRtg denotes a n�dimensional vector stochastic

process of the returns, Rit; i = 1; 2; :::; n of n assets. The standard Markowitz procedure assumes that

fRtg is an independent and identically distributed (iid) process with mean vector, �; and covariance

matrix �: Based on the iid assumption, the portfolio w = [w1; w2; : : : ; wn]
0 that minimizes the risk for

a given level of expected return is time-invariant. The assumption of trending variances in stock returns

violates the iid assumption, thus requiring a re-formulation of the optimization problem in the new

framework. In the speci�cation that follows, we shall retain the assumption of independence of fRtg for

reasons of simplicity. Speci�cally, we have,

Rt = [R1t; R2t; : : : ; Rnt]
0
;

E [Rt] = � = [�1; �2; : : : ; �n]
0 .

and

Rt = �+ ut;

with ut = [u1t; u2t; : : : ; unt]
0
: The stochastic properties of fRtg are determined by those of futg. In

particular, we assume that futg is an independent process with E[ut] = 0. Moreover, we assume that

the covariance matrix, Qt; of ut changes with time according to

Qt = (qij;t)1�i;j�n = Ft � � , (16)

Ft = (fij(t))1�i;j�n , � = (�ij)1�i;j�n

where ���denotes the element-wise Hadamard product and fij(t); 1 � i; j � n are functions of time,

yet to be speci�ed. This means that

qij;t = fij(t)�ij , 1 � i; j � n.

Note that Qt is also the covariance matrix of Rt.

10



More speci�cally, we postulate the following model for the time-heterogeneity structure of ut:

ut = A(t)vt ;

A(t) = diag
np

f1(t);
p
f2(t); : : : ;

p
fn(t)

o
,

fi(t) = t
ki + o

�
tki
�
; ki � 0

vt � iid(0;�)

maxiE[jvitjr] � B <1 a.s., r > 2:

9>>>>>>>>>>=>>>>>>>>>>;
(17)

The model (17) implies that both the variances and the (absolute values of the) covariances of Rt

are, in general, increasing functions of time. As a result, the optimal portfolio weights will vary over

time as well. Speci�cally, assume that at period T; the typical investor wishes to determine the portfolio

wpT = [w1T ; w2T ; : : : ; wnT ]
0 that, for a given level of expected returns, minimizes the portfolio risk

for period T + 1: The solution of this optimization problem produces the following portfolio (vector of

weights):

wpT =

�
C�p �A
D

�
Q�1T+1�+

�
B �A�p
D

�
Q�1T+11 , (18)

where

A = 10Q�1T+1� ,

B = �0Q�1T+1� ,

C = 10Q�1T+11 ,

D = BC �A2 and

1 = [1; 1; : : : ; 1]
0 2 Rn .

For the practical implementation of solution (18), we need to obtain consistent estimates of � and

QT+1.To this end, note that the standard sample covariance matrix estimator 1
T

PT
t=1 ûtû

0
t diverges to

in�nity, where ût = Rt � �̂, and �̂ = 1
T

PT
t=1Rt. The �rst step towards solving the estimation problem

at hand, is to obtain a consistent estimator of ki, i = 1; 2; : : : ; n. Such an estimator is provided by the

following theorem:

Theorem 1: Under the speci�cation (17), the statistic k̂i given by

k̂i =
1

ln 2
ln

 PT
t=1 û

2
i;tP[T=2]

t=1 û2i;t

!
� 1 (19)
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is a strongly consistent estimator of k.

Proof : See Appendix A.

Next, we must obtain a consistent estimator of �. Let us denote by �P!�the convergence in probability.

Theorem 1 allows us to obtain the following estimator for the covariance matrix �:

Proposition 1: Under the speci�cation (17), and if ki � bki = op � 1
lnT

�
, i = 1; 2; : : : ; n,

ST �
TX
t=1

ûtû
0
t
P! � (20)

where

ST = (sij;T )1�i;j�n =

 
(bki+bkj)=2+1
T (

bki+bkj)=2+1
!
1�i;j�n

.

Proof : See Appendix A.

Proposition 1 allows us to estimate �, which in turn implies that a consistent estimate eQt of Qt is
feasible, in the sense that eQt � Qt P! 0, provided that the exact form of Ft were known. However, we

assume no a-priori knowledge of the exact functional forms fi, 1 � i � n, except from the fact that the

degree ki of the polynomial part, tki ; can be consistently estimated through (19). Since fi� tki = o(tki),

we are allowed to consider as an adequate approximation of f(t + 1) the value of (t + 1)bki . A direct

application of this approximation and Proposition 1 to (18) yields a feasible approximation of the optimal

portfolio based on the extrapolated covariance matrix bQT+1:
Corollary: The optimal portfolio, wpT , which minimizes the quantity

V ar(r) = w0
TQT+1wT (21)

subject to

E[r] = w0
T� = �p: (22)

and

10wT = 1

is approximated by

12



bwpT =  bC�p � bAbD
! bQ�1T+1b�+

 bB � bA�pbD
! bQ�1T+11 ,

where

bQT+1 = (q̂ij;T+1)1�i;j�n ,

with q̂ij;T+1 = �̂ij (T + 1)
(k̂i+k̂j)=2

=

�
1 +

1

T

�(k̂i+k̂j)=2 ��k̂i + k̂j� =2 + 1�
T

TX
t=1

ûitûjt

bA = 10 bQ�1T+1b� ,bB = �0 bQ�1T+1b� ,bC = 10 bQ�1T+11 ,bD = bB bC � bA2 and
1 = [1; 1; : : : ; 1]

0 2 Rn .

The optimization problem de�ned above yields the one-period ahead optimal portfolio for a speci�c level

of expected portfolio returns, thus determining the one-period ahead e¢ cient frontier. Estimating QT+1

by means of the sample covariance matrix eQT+1 produces misleading estimates of the second moments
of RT+1, since it ignores the presence of variance trends. In particular, if k > 0 then eQT ! 1. More

speci�cally, let us assume that the investor ignores the presence of unconditional heteroscedasticity and

decides to estimate the supposedly time-invariant covariance matrix by means of the standard sample

covariance matrix estimator, eQT+1 = (eqij;T+1)1�i;j�n with
eqij;T+1 = 1

T

TX
t=1

ûitûjt .

In such a case, the investor would have erroneously concluded that the optimal weights are given by

ewpT =

 bC�p � bAbD
! eQ�1T+1b�+

 bB � bA�pbD
! eQ�1T+11

= eQ�1T+1 bQT+1 bwpT
with bwpT being the truly optimal weights. The investor su¤ers zero loss only in the case that eQ�1T+1 bQT+1

13



is the identity matrix. However, this is not so, since for every 1 � i; j � n,

q̂ij;T+1eqij;T+1 =
�
1 +

1

T

�(k̂i+k̂j)=2 ��
k̂i + k̂j

�
=2 + 1

�
,

which tends to 1 only in the case where ki = kj = 0, i.e. when all the returns have constant variances.

These omitted trending variance e¤ects are likely to explain an undesirable feature of the implementation

of the standard optimization procedure often reported in the literature, namely that the estimated

weights vary wildly with the selected sample. As DeMiguel, Garlappi and Uppal (2009) note �...the

implementation of these portfolios with moments estimated via their sample analogues is notorious for

producing extreme weights that �uctuate substantially over time and perform poorly out of sample�

(2009, p. 1916).

Remarks:

1) The weights will not remain constant (and the optimal frontier too) due to time heterogeneity.

This fact implies the importance of the stepwise recalculation of optimal weights. Moreover, since in the

long run, the lower k(s) will yield signi�cantly lower variances, an optimal portfolio chosen at time T

with very long horizon, will consist only of the asset(s) that correspond to this lower k(s).

2) If fi(t) = tki + o(1), 1 � i � n, then from Proposition 1 we obtain bQT+1 � QT+1 P! 0, which in

turn implies that bwpT �wpT P! 0 as T !1.

It must be also noted that the presence of variance trends does not a¤ect the consistency of the

sample mean estimator �̂i of �i, when ki < 1. Indeed, we can see that

TX
t=1

V ar(uit)

t2
=

TX
t=1

�ii
fi(t)

t2
<1

only when ki < 1. Then, an application of Theorem 20.11 of Davidson (1994) yields

1

T

TX
t=1

ui;t
a:s:! 0,

and the strong consistency of �̂i is proved by considering that �̂i=
1
T

PT
t=1Rit = �+

1
T

PT
t=1 ui;t.
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4 An Empirical Application to Agricultural Commodities

In this section, we compare the out-of-sample performance of four alternative strategies of constructing

�optimal� crop portfolios. First, we consider a set of four assets, namely corn, soybean, sugar and

wheat whose returns have already been found to exhibit volatility trends. Second, at each point in

time, we construct four alternative portfolios of these assets: The �rst portfolio, referred to as the

�benchmark portfolio�(BP) is constructed by allocating 1/4 of wealth to each of these four assets that is

available for investment at each rebalancing period. The second portfolio, referred to as the �Markowitz

portfolio�(MP), is constructed by employing standard mean-variance optimization techniques, in which

the population moments are estimated by their corresponding sample analogues, �̂ and eQT+1: The
third portfolio, referred to as the Trending Volatility portfolio (TVP), is constructed as the Markowitz

portfolio but using the trending variance estimator bQT+1 instead of the static eQT+1: To fourth portfolio
is constructed by assuming that conditional instead of unconditional heteroscedasticity is present in

asset returns. More speci�cally, in this portfolio, referred to as the multivariate GARCH (MGARCH)

portfolio the covariance matrix, QGt ; of asset returns is assumed to follow a multivariate GARCH process.

This speci�cation assumes that heteroscedasticity is a manifestation of non linear temporal dependence

instead of time heterogeneity. It is well known that univariate GARCH type models are very popular

for modeling the diagonal elements of QGt , while multivariate GARCH models impose a GARCH type

stochastic equation to all elements of QGt (see, for example, Bauwens et. al. 2006). However these

models become very demanding in computational e¤ort for large dimensions. To overcome this problem,

new models have been proposed that maintain the GARCH type structure for all variances in QGt ;while

making additional assumptions on the dynamic behavior of correlation coe¢ cients. Bollerslev (1990)

suggested the Constant Conditional Correlation coe¢ cient model and imposed the following structure

for the o¤ diagonal elements of QGt :

QG(i;j);t = �i;j�i;t�j;t

where �i;t and �j;t are the roots of the GARCH type variances in the main diagonal of QGt , while

correlation coe¢ cients are kept constant. Engle (2002) introduced the Dynamic Conditional Correlation

coe¢ cient in which case:

QG(i;j);t = �(i;j);t�i;t�j;t

15



imposing a speci�c parameterization of the updating equation for �(i;j);t.

The out-of-sample performance of these portfolios is evaluated for the period 1996m1 - 2009m8 using

standard Sharpe ratios, whereas the period 1990m1-1995m12 serves as the initial estimation period. The

results may be summarised as follows:

(i) The estimates of k for both the full sample 1990m1-2009m8 and the estimation sample 1990m1-

1995m12 are positive for all the four commodities under consideration. More speci�cally, the full-sample

estimates, k̂; are equal to 0.55, 0.70, 0.41 and 0.32 for corn, soybeans, sugar and wheat respectively.

(ii) The presence of non zero k�s a¤ects heavily the estimates of the covariance matrix of returns

at each rebalancing period. For example, for the case of full sample, the standard sample covariance

estimates eQT+1 and the trending-covariance estimates bQT+1 are given by

eQT+1 =

corn soybeans sugar wheat

corn 52.99 37.59 4.22 28.50

soybeans 37.59 52.43 6.77 24.56

sugar 4.22 6.77 84.82 4.36

wheat 28.50 24.56 4.36 53.61

and

bQT+1 =

corn soybeans sugar wheat

corn 82.48 61.28 6.23 41.00

soybeans 61.29 89.35 10.51 36.15

sugar 6.23 10.51 118.75 5.93

wheat 41.00 36.15 5.93 70.84

.

The presence of volatility trends as documented by the positive estimates of k for all the four assets

under consideration results in an estimated covariance matrix bQT+1 which is dramatically di¤erent than
the standard eQT+1. Put it di¤erently the elements of eQT+1 are signi�cantly corrected to take into
account the presence of polynomial like trend in the second moments. This correction is not the same

for all the elements of the covariance matrix, but depends on the values of the estimated k. For example,

the corrected estimates for the variance of corn, soybeans, sugar and wheat are 55%, 71%, 40% and

32.1% larger than their corresponding uncorrected estimates, re�ecting the di¤erences in the estimates
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of k among these four commodities.

(iii) The out-of-sample performance of TVP is much higher than that of the other three portfolios. In

particular, the mean returns of TVP is 0.50, whereas the mean return of BP, MP and MGARCH is 0.28,

0.36 and 0.27 respectively. Moreover, the di¤erences in the standard deviations of these four portfolios

are negligible which together with the mean estimates produce Sharpe ratios equal to 0.080, 0.060, 0.048

and 0.044 for TVP, MP, BP and MGARCH, respectively.

5 Conclusions

In this paper we have focused on the volatility behavior of agricultural commodity prices. We have

provided empirical evidence showing that the returns on major agricultural commodities such as corn,

soybeans, sugar and wheat exhibit volatility trends. We have then shown analytically that: (a) the

emergence of such volatility trends can arise quite naturally within the same class of stochastic processes

that have been extensively analyzed in the unit root literature, and (b) such volatility trends are consistent

with the empirical evidence on that stochastic process of returns do not display explosive behavior.

These considerations led us to the development of a semi-parametric model of the behavior of the second

moments of the return generating process. These second moments are assumed to exhibit unbounded

heteroscedasticity in the form of polynomial-like functions of time, thus being asymptotically unbounded.

We then solved the portfolio problem. It is shown that the optimal solution is a function of time,

depending on the orders ki; i = 1; 2; :::; n at which the variances and covariances of asset returns grow

over time. A feasible approximation to the optimal solution is obtained, which is based on the consistent

estimator of ki, also derived in this paper. This approximate solution is then applied to construct a

portfolio consisting of the four agricultural commodities under consideration. The performance of this

portfolio was found to be superior to those of alternative portfolios in which the covariance matrix of

returns is estimated by traditional methods.

Appendix A: Proofs

Proof of Theorem 1: Let us de�ne the sequence Fit = u2it�fi(t)�ii = fi(t)(v2it��ii), 1 � t. Then, set

ait = t
ki+1. Then, since the process fuitgt�1 satis�es our initial assumptions, fFitgt�1 is a martingale

di¤erence process satisfying

E
h
jFitjr=2

i
� jfi(t)jr=2

�
B2=r + �ii

�r=2
= CB jfii(t)jr=2 <1 ,
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for some CB > 0. Therefore, from the de�nition of fii(�) we have that for some CB0 > 0,

1X
t=1

E
�
jFitjr=2

�
(tki+1)

r=2
� CB0

1X
t=1

tkir=2

(tki+1)
r=2

= CB0

1X
t=1

1

tr=2
<1,

since r=2 > 1. Therefore we can apply Theorem 20.11 of Davidson (1994) and conclude that

1

T ki+1

TX
t=1

fi(t)(v
2
it � �ii)

a:s:! 0 .

Then, we observe that

1

T ki+1

TX
t=1

�iifi(t)!
�ii
ki + 1

=) 1

T ki+1

TX
t=1

u2it
a:s:! �ii

ki + 1
, as T !1 . (A.1)

Next note that since buit = uit � 1
T

PT
l=1 uil, we can easily obtain

1

T ki+1

TX
t=1

bu2it = 1

T ki+1

TX
t=1

u2it �
1

T ki+2

 
TX
t=1

uit

!2
. (A.2)

Since
TX
t=1

V ar(uit)

tki+2
=

TX
t=1

�iifi(t)

tki+2
<1,

we can apply again Theorem 20.11 of Davidson (1994) and obtain

1

T ki=2+1

TX
t=1

uit
a:s:! 0, as T !1 .

This, in turn, along with (A.1) and (A.2), implies that

1

T ki+1

TX
t=1

bu2it a:s:! �ii
ki + 1

, as T !1 .

The same holds if we include only the �rst half of the sample, i.e.

1

(T=2)ki+1

[T=2]X
t=1

bu2it a:s:! �ii
ki + 1

:
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Dividing these limits by parts we obtain

1

2ki+1

PT
t=1 bu2itP[T=2]
t=1 bu2it a:s:! 1 =) ln

 PT
t=1 bu2itP[T=2]
t=1 bu2it

!
a:s:! ln 2ki+1 = (ki + 1) ln 2

=) 1

ln 2
ln

 PT
t=1 bu2itP[T=2]
t=1 bu2it

!
� 1 a:s:! ki as T !1:

Proof of Proposition 1: Since

qij;t = t
(ki+kj)=2�ij + o(t

(ki+kj)=2) , 1 � i; j � n ,

As in the �rst part of Theorem 1, we set Fijt = uitujt�
p
fi(t)fj(t)�ij =

p
fi(t)fj(t)(vitvjt��ij), 1 � t.

Then, following the same procedure we obtain

1

T (ki+kj)=2+1

TX
t=1

uitujt
a:s:! �ij

(ki + kj) =2 + 1
, as T !1 .

Again, as in the proof of Theorem 1, we can easily derive that

1

T (ki+kj)=2+1

TX
t=1

buitbujt = 1

T (ki+kj)=2+1

TX
t=1

uitujt �
1

T (ki+kj)=2+2

 
TX
t=1

uit

! 
TX
t=1

ujt

!
, (A.3)

and conclude in
1

T (ki+kj)=2+1

TX
t=1

buitbujt a:s:! �ij
(ki + kj) =2 + 1

, 1 � i; j � n .

Since, now, for every i, ki is consistently estimated by bki, if ki � bki = op � 1
lnT

�
, then T (

bki+bkj)=2+1
T (ki+kj)=2+1

P! 1

1

T (
bki+bkj)=2+1

TX
t=1

buitbujt P! �ij
(ki + kj) =2 + 1

, 1 � i; j � n ,

which directly yields (20).
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APPENDIX B: Figures
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Fig. 1: Recursive Estimation of Residuals Variance from an AR(1) Model (Starting Period 1990M1-1995M12

(72 Obs)). Source: Bloomberg - S&P GS commodity indices - spot prices.
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Fig. 2: Rolling Estimation of Residuals Variance from an AR(1) Model. Starting Period 1990M1-1995M12 (72

Obs). Source: Bloomberg - S&P GS commodity indices - spot prices.
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