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Statistical Modeling of Stock Returns: A Historical

Survey with Some Methodological Re�ections

Phoebe Koundouri,� Nikolaos Kourogenis,y Nikitas Pittisz

Abstract

This paper aims at identifying the motivating forces that gave birth to the statistical models

of asset returns since the beginning of the twentieth century. The major question addressed is:

Where do statistical models of asset returns come from?" This central question encompasses a

number of secondary ones: What do these models do? Do they explain or simply describe the

empirical regularities of asset returns, identi�ed at di¤erent historical periods? If explanation

provides �something�, over and above description, then how can it be de�ned? Moreover, how

is this re�ected on explanatory versus descriptive models of asset returns? In the context of the

models identi�ed as explanatory, do these models o¤er an actual explanation for the regularities

of interest or merely a potential explanation? Related to the last question, does the realism

of the assumptions underlying the explanatory models matter? Has the literature adopted a

realist or an instrumentalist attitude towards the explanatory models of asset returns? Our

answers to these questions are being informed by our attempts to draw some analogies between

the main issues concerning the statistical modelling of asset prices and those concerning the

theoretical modelling of the Brownian motion in Physics.
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1 Introduction

In a series of papers, Box and his co-authors classi�ed statistical models in two broad

categories, the �rst including the so-called empirical or interpolatory models, and the

second the explanatory or mechanistic ones (see Box and Hunter 1965, and Box and

Draper 1987). Lehmann (1990) summarises the main di¤erences between these two types

as follows: �Empirical models are used as a guide to action, often based on forecasts

of what to expect from future observations. In contrast, explanatory models embody

the search for the basic mechanism underlying the process being studied; they constitute

an e¤ort to achieve understanding�(Lehmann 1990, p. 163). This classi�cation, though

intuitively appealing, leaves one fundamental question unanswered: under what objective

conditions �understanding�is considered to be achieved? In other words, in the context

of a statistical model what are the criteria that a purported explanation has to satisfy in

order to be deemed as scienti�cally or formally (rather than subjectively) adequate?

Since 1948, year in which the Hempel and Oppenheim seminal paper on the nature of

explanation was published, scienti�c explanation has been at the centre of a heated de-

bate in the philosophy of science. Hempel and Oppenheim�s paper makes the distinction

between explanation of a single event and explanation of an empirical regularity. It also

distinguishes between deterministic versus non-deterministic events, as well as between

universal versus statistical regularities. Central to this paper is the thesis that explanation

is an argument, either a deductive one, in the case of deterministic events and regularities

(universal or statistical), or an inductive one, in the case of non-deterministic events. In

either case, the explanation is achieved by rendering the explanandum (event or regu-

larity) expected (either with certainty or with high inductive probability) by means of

empirical laws and initial conditions (the explanans). This model of explanation, usually

referred to as the �covering law�model, has been criticized by various authors during the

last sixty years or so, but it still remains the starting point of any serious discussion on

the nature of explanation.

The statistical modelling of returns of �nancial assets has attracted a great deal of

research interest for more than a century. All the statistical models of asset returns that

have been advanced so far, aim at either describing or explaining the empirical regularities

exhibited by asset returns. The method by which a particular model is produced is heavily

a¤ected by whether description or explanation is the aim of the model. However, before

the statistician develops a statistical model to either describe or explain an empirical

regularity, she must �rst de�ne clearly what this regularity is. This is not an easy task,

especially in view of the fact that de�ning a regularity contains a great deal of subjective

judgement. This judgement depends on the statistician�s theoretical perceptions, as they
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are formed by the probabilistic concepts available while the regularity is being examined.

In other words, an empirical regularity is not a purely objective property of the data, but

it is partly de�ned by the manner in which the observer interprets the patterns in the

data that she was able to discern. This subjectivity results in the empirical regularities

being contingent, that is, the same regularity or the same pattern of behavior may be

interpreted in radically di¤erent ways at di¤erent points in time.

The preceding discussion has identi�ed two factors a¤ecting the emergence of statis-

tical models of asset returns: whether the model aspires to be explanatory or descriptive

and how the empirical regularities that motivate the model have been identi�ed and in-

terpreted. The e¤ects of these two factors on the statistical modelling of asset returns

over time are the central theme of the present paper. Speci�cally, this paper aims at

answering the following questions: Which factors motivated the birth of the various sta-

tistical models of asset returns over time? Or more simply, where have these models

come from? What do these models do? Do they explain or simply describe the empirical

regularities of asset returns that have been identi�ed as such at each particular historical

period? If explanation provides �something�, over and above description, then how can

this be de�ned? Moreover, how is this re�ected on explanatory versus descriptive models

of asset returns? If the probabilistic properties/assumptions that make up an explanatory

statistical model are the explanandum in a �covering-law�type of explanation, then what

is the nature of the �laws�that are allowed to participate as premises in such arguments?

Can these laws be of purely empirical origins or should they also be interpretable as

�assumptions�of an empirically relevant theorem, with the latter being produced within

a formal mathematical system? In the context of the models identi�ed as explanatory,

do these models o¤er an actual explanation for the regularities of interest or merely a

potential explanation? Related to the last question, does the realism of the assumptions

(explanans) underlying the explanatory models matter? To this end, has the literature

adopted a realist or an instrumentalist attitude towards the explanatory models of as-

set returns? Apart from regularities, are the statistical models of asset returns capable

of providing a formal explanation for singular events? For example, can these models

explain why on 22/02/11 the price of Citigroup stock fell by more than 4%?

Our answers to these questions are being informed by our attempts to draw some

analogies between the main issues concerning the statistical modelling of asset prices

and those concerning the theoretical modelling of the Brownian motion in Physics. In

particular, we show that despite the obvious di¤erences of the subject matters, the two

phenomena share some striking similarities concerning the underlying causal mechanisms

that generate their observed behaviors. These similarities by being subjected to common

probabilistic interpretations, give rise to models sharing the same theoretical structure.
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The analysis of the origins and the nature of statistical models of stock returns can be

conveniently organised around two basic hypothesis, namely the Independence hypoth-

esis (IN) and the Normality hypothesis (N). In a nutshell, the Independence/Normality

hypothesis states that the returns of any asset across time can be thought of as reali-

sations of time-independent/normal random variables. It is no exaggeration to say that

the question of whether or not asset returns exhibit Independence and/or Normality has

motivated the production of almost the totality of asset returns models that have been

suggested in the literature since the beginning of the twentieth century. The questions

revolving around the Independence and Normality hypotheses, that will be dealt with

in the sequel, include the following: To begin with, why IN and N were deemed to be

interesting hypotheses to test? Was IN consistent with the view that prices are deter-

mined by means of economic laws? Related to this, what kind of economic theory was

consistent with IN? Did the acceptance of IN result in a radical change in the theoretical

paradigm? How was IN thought to be related to the so-called E¢ cient Market Hypothesis

(EMH)? Were IN and N related in some way? More speci�cally, did IN imply to some

extent N? What was the role of the central limit theorem (CLT) for the emergence of

N as a property deducible from IN? In view of the empirical evidence against N, and in

favor of leptokurtic distributions that has been accumulating since the early 1960s, what

were the potential explanations for leptokurtosis? Related to this, what kind of limit

theorems predicted non-normal limiting distributions? What were the implications of

the alternative explanations for leptokurtosis for the theoretical paradigm existed at the

time, and especially for the de�nition and measurement of �nancial risk? Put di¤erently,

was leptokurtosis interpreted as evidence of excess (compared to normal) instability of

the economic system itself or was it simply viewed as a manifestation of our inability

to conduct controlled experiments, namely to keep the experimental condition constant

in repeated trials? Within the time span under study, can we identify a speci�c period

in which the search for explanatory models was succeeded by that for descriptive ones,

whose sole task was to capture the empirical properties of stock returns as perceived and

interpreted at that time? Did the weaning of EMH from IN contribute to the switch from

explanatory to descriptive statistical modelling?

This paper is organised as follows: Sections 2 and 3 analyze the origins and impli-

cations of IN and N, respectively in the �eld of economics and compare them with the

corresponding ones for the case of Brownian Motion in the �eld of physics. Section 4

surveys the main theories of "explanation of empirical regularities" that have been ad-

vanced in the philosophy of science since the mid of the twentieth century. In view of

these theories, it asks the question of how a statistical model explains an empirical reg-

ularity, or in what sense a statistical model can be explanatory? This section focuses
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on potential explanations of "normality of stock returns". It also examines the extent

to which the proposed statistical models can explain the occurence of a single event, for

example that on a particular date the daily returns of a speci�c stock were less that -4%.

Section 5 surveys the empirical evidence against the normality hypothesis that started to

accumulate in the early 1960s. It also compares the two main competing "explanations"

for the presence of non-normal lepetokurtic return distributions, namely the "in�nite-

variance" and "�nite-variance" ones that were put forward in the early 1960s and early

1970s, respectively. The anatomy of these explanations together with the origins and

realism of their assumptions are also examined and their implications for the existing

theoretical paradigm are discussed. Section 6 focuses on the relationship between the

probabilistic properties of stock returns process and market e¢ ciency. In particular, it

presents the arguments that led to the abandonment of IN as a necessary condition for

EMH and its replacement by the weaker condition of "martingale di¤erence". It also ana-

lyzes the e¤ects of this replacement on the validity of the two alternative explanations for

leptokurtosis mentioned above. Section 7 analyzes the recent develpments in statistical

modelling of asset returns which center around the interpretation of volatility clustring as

second-order temporal dependence. This interpretation led to the birth of the so-called

GARCH models that have dominated the �nance literature for the last thirty years. The

explanatory status of these models is also analyzed in detail. Section 8 concludes the

paper.

2 Independence

In this section, we examine the origins and implications of the assumption of Indepen-

dence for the returns process. As will be discussed below, the introduction of IN to

�nancial economics was made by a non economist and initially caused embarassement

and confusion to the profession. Soon afterwards, however, IN was interpreted in a rad-

ically di¤erent way and eventually became the �agship of the new theoretical paradigm

in �nancial economics.

2.1 Empirical Motivation and Theoretical Justi�cation

The period during which stock returns data was mainly interpreted as realizations from an

Independent and Identically Distributed (IID) process covered approximately the period

1953-1982. This interpretation stemmed from the following two main sources. First,

the publication of the �rst systematic study on the statistical properties of stock returns

data by the eminent statistician Maurice Kendall, in 1953. The second source was of

theoretical nature and had to do with the increasing awareness of the economic profession
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on the anticipatory nature of asset prices and the proper de�nition of economic rationality

associated with it. Let us analyze these two sources in detail.

Kendall (1953) analyzed a set of 22 asset price series, observed at a weekly frequency,

which included both commodity and stock prices. One of his major objectives was to

determine whether these prices exhibited systematic versus random behavior over time.

It must be noted that in Kendall�s era, the concept of probabilistic independence was

implicitly equated to that of serial non-correlation. By failing to produce evidence against

non-zero serial correlation coe¢ cients, Kendall concludes that �the price series was much

less systematic than is generally believed�. In fact he went so far as to declare that �The

series looks like a �wandering�one, almost as if once a week the Demon of Chance drew

a random number from a symmetrical population of �xed dispersion and added it to the

current price to determine next week�s price�(1953, p. 13).

Kendall�s results appeared to be rather surprising at the time. The independence of

successive commodity price changes was rather di¢ cult to be meaningfully interpreted

within the existing theoretical paradigm, since it seemed to defy fundamental economic

�laws�. Samuelson (1973) describes the situation as follows: �...there are the �funda-

mentalists�and economists who think that the future algebraic rise in the price of wheat

will have something to do with possibly discernible patterns of what is going to happen

to the weather in the plains states, the price of nitrogen fertilizer, the plantings of corn,

and the fad for reducing diets.� (1973, p. 5). And also: �The economists who served

as discussants for Kendall�s 1953 paper were outraged, as he expected them to be, at

the notion that there is no economic law governing the wanderings of price, but rather

only blind chance. Such nihilism seemed to strike at the very heart of economic science.�

(1973, p. 18). Kendall�s results seemed to echo in the �eld of economic theory Bertrand�s

(1889) famous question �is not chance the antithesis of all laws?�

However, soon after the publication of Kendall�s paper, the attitude of the economics

profession towards the concept of independence of successive price changes changed dra-

matically. This was mainly due to the theoretical developments that took place in eco-

nomic theory. In particular, the economic science experienced a radical switch from a

state in which �independence� was inconsistent with the existing background theory,

to a new state in which �independence� was dictated by the new theory. Samuelson

(1965) o¤ered a formal proof of the statement that �properly anticipated prices �uctu-

ate randomly�. This new theoretical developments, under the guidance and in�uence

of economists such as Samuelson and Fama, were eventually developed to a brand new

theoretical paradigm which became known under the rubric of E¢ cient Market Hypoth-

esis (EMH). At the heart of EMH was the �anticipatory� nature of speculative prices

and the assumption that investors process available information rapidly and accurately.
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Speci�cally, assume that at time t a piece of information, �t, relevant for the price Pt of a

particular asset becomes available. According to EMH, investors will instantaneously and

accurately process �t, thus correctly extracting its full implications for the future price

Pt+1. Consequently, they form rational expectations, E(Pt+1 j �t) for Pt+1. Based on this
expectation, the investors (assumed, for simplicity, to be risk-neutral) will act now, that

is, at period t, bringing the current price Pt equal to E(Pt+1 j �t). Moreover, investors
will act this way not only for the particular piece of information �t, but for any piece of

marginal information contained in the information set �t. At period t+ 1, new informa-

tion, �t+1; becomes available, and the new expectations E(Pt+2 j �t+1) are formed, which
in turn determine the price Pt+1. The price change Pt+1 � Pt is thus determined only by
the new information �t+1 since the full e¤ect of �t was already fully re�ected in Pt. Since

new information is by its very nature random, meaning that the events �t+1 and �t are

probabilistically independent, the successive stock price changes Pt+1 � Pt will also be
independent.

Moreover, the subjective expectations E(Pt+1 j �t) are assumed to be rational, in the
Muthian sense, that is, they coincide with the true objective expectation E(Pt+1 j �t)
(see Muth 1961). The initial argument in favour of rationality had the structure of a

�reductio ad absurdum�argument. Speci�cally, it shows that non-rationality cannot last

for long since this would imply unexploited pro�t opportunities. Roberts (1959, p. 7)

justi�es rationality through the independence of price changes as follows: �If the stock

market behaved like a mechanically imperfect roulette wheel, people would notice the

imperfections and, by acting on them, remove them�. The assumption of rationality

in the sense that E(Pt+1 j �t) = E(Pt+1 j �t) is crusial for the independence property
of stock returns. In fact it is easy to show that non-rationality is su¢ cient for non-

independence. As will be discussed below, Bachelier (1900) was the �rst to follow this

line of reasoning, which eventually led him to conclude that stock prices follow an absolute

Brownian motion1.

An interesting question is �why did Kendall choose to test for independence in price

changes?�Or this question may be reformulated as follows: �why did a statistician choose

to systematically test for independence in economic price changes while no economist had

done so until then?�This question brings us to the realm of the philosophy of science

literature and speci�cally to the relation between observation and theory. Popper ap-

1His analysis, however, despite its brilliance, failed to account for a fundamental asymmetry in asset
prices. Namely, the fact that given limited liability the price of an asset can never become negative
although is unbounded from above. Osborne (1959) and Samuelson (1965) recti�ed this problem by
recasting the previous arguments in terms of the logarithms pt = log(Pt) of prices, thus giving rise to the
so-called relative or geometric Brownian motion for stock prices. Because the logarithmic price change
is just a continuous transformation of Rt, the geometric Brownian motion also implies that the stock
returns process fRtg is independent.
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proaches this relation as follows: �In science it is observation rather than perception

which plays the decisive part. But observation is a process in which we play an intensely

active part. An observation is a perception, but one which is planned and prepared.

We do not �have��an observation but we �make� an observation. An observation is

always preceded by a particular interest, a question, or a problem - in short, by some-

thing theoretical.�(1972, p. 342). He also states explicitly that �An observation always

presupposes the existence of some system of expectations�(1972, p. 344). As far as the

sate of economic theory before 1953 is concerned, the independence hypothesis did not

pose any particular interest. In other words, there existed no �system of expectations�

concerning the theoretical role of the independence hypothesis that would create some

interest for the econometricians to test this hypothesis. On the contrary, in the context of

the existing theory at the time, the independence hypothesis seemed to be meaningless if

not absurd. Economic theory could not and did not direct empirical testing (experiments)

towards this direction. On the other hand, Kendall, being a statistician did not face the

same restrictions. In fact, for a statistician the property of �independence�together with

�Gaussianity� examined below, were (and still are) a kind of �benchmark�properties,

that is, fundamental probabilistic properties de�ning �randomness�, against which any

�systematic�behavior is assessed and measured. Indeed, it seems plausible that Kendall

was guided to conduct the aforementioned tests for independence by a theory of a di¤er-

ent kind, namely from probability (instead of economic) theory. This assumption seems

to derive support by examining Kendall�s own reaction to his results. Instead of express-

ing discomfort, he appears to be rather �amuzed�by his evidence on independence and

the related property of Gaussianity: �To the statistician there is some pleasure in the

thought that the symmetrical distribution reared its graceful head undisturbed amid the

uproar of the Chicago wheat-pit�(1953, p. 13).

The radical change of the theoretical attitude towards IN, analyzed above, was ac-

companied by a similar change to the frequency and clarity of observational statements

concerning the detection of independence in empirical data. Indeed, under the guidance

of the new theory of e¢ cient markets, economists started a battery of statistical tests for

independence which were not limited to estimating serial correlation coe¢ cients (see, for

example, Alexander 1961, Moore 1962). Other studies tested the independence hypothe-
sis by equating the concept of independence with that of unpredictability, and examining

the extent to which professional fund managers suceed in generating systematically ab-

normal returns (see Jensen 1968). Relatively soon a solid body of evidence in favor of

the independence hypothesis was accumulated. Fama (1965) went so far as to declare �I

know of no study in which standard statistical tools have produced evidence of important

dependence in series of successive price changes�(1965, p. 57). This statement, however,
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seems to exaggerate on the level of aggreement that was achieved in the empirical liter-

ature with respect to the empirical validity of the independence hypothesis, since there

were quite a few studies in which the evidence for independence was at best mixed (see,

for example, Houthakker 1961, Cootner 1962, and Steiger 1964).

In concluding this section, it is of some historical interest to note that some studies

suggesting that the independence hypothesis was consistent with rationality, existed in

the literature even before 1953. Had the theoretical economists paid more attention to

the studies by Working (1934), Taussig (1921), and especially Bachelier (1900), they

would have been protected from the embarassement caused by Kendall�s results. To this

end, an important study on the anticipatory nature of asset prices, published in 1958

by Working, seems to have paved up the way for the emergence of the e¢ cient market

hypothesis.

2.2 Analogies with Brownian Motion in Physics: Part I.

The state of the economic theory during the period that lasted between the time of

publication of Kendall�s results and the time in which the e¢ cient market hypothesis was

su¢ cently articulated, that is, the period between 1953 and the early 1960s, was largely

reminiscent of the situation that prevailed in theoretical physics in the period covering

about �fteen years before and three years after Einstein�s formulation of a quantitative

theory for the Brownian motion in 1905. In both cases, an initial confusion concerning

the interpretation of a set of observed regularities was succeeded by a neat and elegant

explanation of them in the light of a newly arrived theory.

The phenomenon of Brownian movement or motion, that referred to the continuous

erratic movements of su¢ ciently small particles suspended in a �uid, was observed for

the �rst time in a systematic manner by Robert Brown in 1827. For a long period

after Brown�s discovery, Brownian motion attracted little attention by both theoretical

and experimenal physicists. Some tentative explanations for it, which were eventually

dismissed, included the one supporting the view that Brownian movement was analogous

to the one performed by dust particles under the in�uence of air currents or the one

suggesting that the movement is produced by forces external to the �uid, whithin which

the particle was suspended (see Perrin 1909 for a survey of such explanations).

There was also considerable confusion about the basic properties or characteristics of

the Brownian movement and the factors that are likely to a¤ect it. The main source of

the confusion was the lack of any guidance about what exactly was the object of obser-

vation. Granted, the facts should be objectively stated before any theorization of them

was attempted, but what exactly were the relevant facts? How was the design of any
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given experiment a¤ected by the theoretical dispositions of the experimenter? Would a

physicist believing that the Brownian motion was caused by external perturbative factors

observe and measure the same aspects of the motion with another physicist holding the

view that the observed motion was due to molecular agitation? Brush (1968) comments

on these issues as follows: �One can hardly �nd a better example in the theory of science

of the complete failure of experiments and observation, unguided (until 1905) by theory,

to unearth the simple laws governing a phenomenon�(1968, p. 23). In a similar tone,

Maiocchi (1990) remarks: �This muddle of irreconcilable assertions illustrates how di¢ -

cult it is to make a meaningful and conclusive scienti�c observation and, as a result, how

any inductive conception, which claims to start from an empirical base in order to then

construct theories of some importance, is unsustainable.�(1990, p. 260).

Perrin (1909) argues that the �rst who ascribed Brownian motion to molecular agita-

tion was Wiener in 1863. Similar explanations were put forward by Fathers Delsaulx and

Carbonnelle during the period 1877- 1880, which, like Wiener�s, remained largely unno-

ticed. On the contrary, Gouy�s research in 1888 aroused great interest on the subject.

As is well known, the decisive step in the theoretical explanation of Brownian motion

was made by Einstein (1905), (and independently by von Smoluchowski 1906) who de-

rived the mathematical laws governing the motion of a free particle on the grounds of

the kinetic-molecular theory. Einstein�s theoretical work had some important empirical

implications. Speci�cally, it made clear that the relevant aspect of the motion that had

to be measured was not the velocity of the particle but rather its displacement or more

accurately the mean square value of this displacement. Indeed, it was this change of

interest with respect to the object of observation that enabled Perrin in 1908 to o¤er

Brownian motion its de�nitive con�rmation. Maiocchi (1990) comments on this change

in the object of observation e¤ected by Einstein�s theory as follows: �While previously

the attempt had always been to estimate the length of the trajectory actually traversed

by a particle, Einstein�s theory deals with the displacement e¤ected in a given time, i.e.

the intervening distance between the points of departure and arrival, independently of the

path followed.�(1990, p. 263)

The keywords in the above statement are the italicized ones. Indeed, as in the case of

price changes, similarly in the case of particle displacements, the key underlying concept

is that of independence. As in the context of the e¢ cient market theory, independence

of price changes arises from the rational forward looking behaviour of economic agents,

similarly in the context of Einstein�s theory, independence of particle displacements arises

from speci�c governing laws on the displacement of molecules (the molecular nature

of matter). Perrin (1909) refers to independence of the displacements as �the most

striking feature of the Brownian movement� (1909, p. 5). Indeed, as surprising and
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counterintuitive the idea of independent price changes initially appeared to economists,

equally surprising the idea of independent displacements appeared to physicists. However,

in both cases, the initial surprise was eventually followed by the realization that the

independent price-changes/displacements were exactly what one should expect in the

context of the appropriate theories. In the case of economic random walk, asset prices

move over time because of their �continuous bombardement�with independent pieces of

new information that become available to the investors. In the case of physical Brownian

motion, particles suspended in a �uid move because of their �continuous bombardement�

with independent non-coordinated molecules in agitation. Fama (1963) remarks: �At

any point in time there will be many items of information available. Thus price changes

between transactions will re�ect the e¤ects of many di¤erent bits of information� (p.

425). In a similar manner, Perrin (1916) makes the following statement: �Every granule

suspended in a �uid [...] is being stuck continually by the molecules in its neighbourhood

and receives impulses from them that do not in general exactly counterbalance each other;

consequently it is tossed hither and thither in an irregular fashion�(1916, p. 86).

It must be noted that the similarities between the two theoretical developments in

economics and physics discussed above, do not end in the fundamental role of the in-

dependence hypothesis ascribed to by both these theories. More striking similarities

characterizing these two apparently quite diverse phenomena will be identi�ed and ana-

lyzed below. For the moment, it su¢ ces to add that as Einstein�s theory made clear that

the basic object for observation were the successive displacements of particles, similarly

the e¢ cient market theory suggested that the central object of observation must be the

successive changes of prices.

3 Normality

In this section, we �rst examine the origins and implications of the assumption of Nor-

mality for the returns process and second, we compare them with the corresponding ones

for the case of physical Brownian motion. We also analyze the connections of N with IN

in both the economics and the physics cases.

3.1 Empirical Motivation and Theoretical Justi�cation

Once the independence of asset returns was recognized to be a consequence of economic

rationality, the property of Gaussianity of the distribution of returns immediately fol-

lowed. This in turn was due to the probabilistic background theory available at that

period, which was dominated by the Central Limit Theorem (CLT). More speci�cally, a

consequence of the idea that an asset price is continuously bombarded by independent
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news is that (logarithmic) price change within a given interval, say a day, is the sum of the

elementary returns from transaction to transaction occured within this interval. To this

end Osborne (1959) argues as follows: �This nearly normal distribution in the changes of

logarithm of price changes suggests that it may be a consequence of many independent

random variables contributing to the changes in values. The normal distribution arises

in many stochastic processes involving large numbers of independent variables, and cer-

tainly the market place should ful�ll this condition, at least� (Osborne 1959, p. 151).

Formally, the random variable Rt, denoting the returns of day t, may be thought of as

the sum of the elementary rates of return �tj in that day:

Rt =
nP
j=1

�tj (1)

where n denotes the number of transactions in day t. The assumption of independence of

the random variables �tj together with some additional moment conditions, such as those

in Feller (1935), allowed the application of the Central Limit Theorem (CLT), according

to which the limiting distribution ofRt is the normal. Fama (1963) states this reasoning as

follows: �If the price changes from transaction to transaction are independent, identically

distributed random variables with �nite variance and if transactions are fairly uniformly

spaced through time, the central-limit theorem leads us to believe that price changes

across di¤erencing intervals such as a day, a week, or a month will be normally distributed

since they are simple sums of the changes from transaction to transaction�(1963, p. 420).

Normality was formally proved (in continuous time) by Osborne (1959) and Bachellier

(1900).

Studies supporting the normality (or approximate normality) hypothesis for stock re-

turns include Osborne (1959) and Larson (1960). Kendall�s (1953) results were also sup-

portive for the normality hypothesis in the price, rather than logarithmic price, changes.

However, all these authors expressed with one way or another some reservations con-

cerning the extent to which the normal distribution does in fact adequately �t the data.

Osborne refers to the empirical distributions as �nearly normal�(1959, p. 129). Larson

expressed more serious doubts by arguing: �The distribution ...has mean near zero, and

is symmetrical and very nearly normally distributed for the central 80 per cent of the

data, but there is an excessive number of extreme values. Also, some of these are quite

extreme, being 8 or 9 standard deviations from the mean� (1960, p. 318). Although

Kendall himself stated clearly that distributions look �very much like a normal form�

(1953, p. 23), he nevertheless identi�ed cases in which �The distributions are accordingly

rather leptokurtic�(1953, p. 13).
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3.2 Empirical Puzzles, Evidence of Non-Normality and the Role of Central

Limit Theorem

Apart from the aforementioned comments on the approximate character of the normal dis-

tribution as a model for asset returns, there were studies whose results were substantially

more negative for the normality hypothesis. For example, in commenting on Osborne�s

(1959) results, Alexander (1961) argues as follows: �But Osborne did not rigorously test

the normality of the distribution. A rigorous test, for example the application of the

chi-square test to some of the data used by Osborne, would lead us strongly to dismiss

the hypothesis of normality� (1961, p. 16). This type of non-favorable results for the

��normality hypothesis�caused some confusion to the newly established e¢ cient market

paradigm.

Such confusion was completely absent in the period following Perrin�s experimental

results on the physical Brownian motion. Indeed, in the case of Physics, the normality

hypothesis derived the strongest possible empirical support. What are the reasons for the

presence of such a di¤erent level of empirical support between the normality hypothesis

for the case of asset returns and the same hypothesis for the case of displacements of a

particle under Brownian motion? In order to identify the origins of this di¤erence we must

�rst analyze in some detail the reasoning by which the normality hypothesis emerged in

each of the two cases under consideration. Put di¤erently, in order to explain why the

normality hypothesis enjoyed su¢ cient empirical support in the case of the displacements

of Brownian particles but not in the case of asset reurns, we must follow the assumptions

that led to this hypothesis in each of the aforementioned cases, and identify which one(s)

are likely to have failed in the case of asset returns.

First it must be noted that in the case of the displacements of a Brownian particle,

normality can be obtained by using CLT arguments exactly as in the case of asset returns.

Once independence of displacements is assumed, the normal distribution emerges quite

naturally as the relevant probabilistic description of displacements. More speci�cally,

in a discrete-time setting, assume that �j denotes instead of the elementary returns in

transaction j, the �elementary displacement�of a particle at step j, projected onto the

horizontal axis. Then, Sn =
Pn

j=1 �j is the displacement of the particle from its starting

point to its present state. As in the case of stock returns, the independence of the �j�s,

together with some additional �moment conditions�on the �j�s allows for the application

of CLT, which in turn implies that Sn, properly standardized, converges to N(0; 1). Kac

(1947) has developed a discrete-time approach to Brownian motion, with the latter being

treated as a �discrete random walk�.

However, it is of some historical interest to note that in the beginning of the twen-
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tieth century, when Bachelier (1900) and Einstein (1905) independently arrived at the

normality hypothesis, the central limit theorem was in its infancy. In fact, the relevant

theorem was not even called �central� at the time. This name was given by Polya in

1924 to emphasize the central role of this theorem in the probability theory. At the be-

ginning of the twentieth century, the most widely known version of CLT was that of De

Moivre - Laplace, which could apply only to Bernoulli IID random variables. Although,

the so-called �St Petersburg School�had already begun since 1887 with Chebyshev to

extend CLT in various directions, including the case of general random variables, �j,

with in�nite support, these results were not widely known at the time, especially among

researchers outside the �eld of probability theory. Indeed in 1901, that is, one year after

the publication of Bachelier�s thesis and four years before the publication of Einstein�s

paper, Lyapounov (1901) had succeeded in producing a precise set of su¢ cient moment

conditions under which CLT holds, as well as identifying the exact rate of convergence

to normality. In the absence of knowledge of these results, however, both Einstein and

Bachelier arrived at the normality hypothesis through di¤erent routes. Nevertheless, as

will be shown below, the structure of their arguments largely resembles that of CLT.

3.3 Analogies with Brownian Motion in Physics, Part II: Einstein�s Derivation

of Normality.

In his analysis, Einstein (1905) introduces explicitly the independence hypothesis right

from the start: �Evidently it must be assumed that each single particle executes a
movement which is independent of the movement of all other particles; the movements of

one and the same particle after di¤erent intervals of time must be considered as mutually

independent processes, so long as we think of these intervals of time as being chosen not

too small.�(1905, p, 556, english translation: pp. 12-13)

The �rst thing to note in the above statement is Einstein�s convinction that in order

for the independence hypothesis to be empirically valid, the time interval, � , between

any two successive observations of the movements of the particle should not be too small.

Why did Einstein impose sush a requirement, especially in view of the fact that he had

no immediate or indirect experimental observations on that matter? It is well known

that Einstein�s ability in conducting �thought experiments�was unsurpassed. The above

mentioned requirement seems to be another manifestation of this ability. More speci�-

cally, Einstein imposes the condition of � being not too small in order to eliminate the

possibility that the observed particle displacements exhibit any kind of memory. Put dif-

ferently, if � were extremely small, then the current position of the particle may be partly

determined by its previously observed position, or in other words its current displacement
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may be probabilistically dependent on its previous one.

In what follows, we adopt Einstein�s notation, namely � denotes a very small (but not

too small) time interval, n denotes the total number of particles suspended in the liquid

and � denotes the change in the x-coordinates of the single particle that occurs within

the interval � . Einstein is interested in deriving the probability law for �. As a �rst step

towards this direction, he assumes that the number dn of the particles which experience

a displacement which lies between � and �+d� within the time interval � is of the form

dn = n�(�)d�

where Z 1

�1
�(�)d� = 1.

Next, he makes some important assumptions on the density function �. Speci�cally, he
assumes that

E1a: �� only di¤ers from zero for very small values of ��(1905, p. 556).

This assumption seems to be motivated by Einstein�s physical considerations and espe-

cially by the belief that it is unlikely that the particles travel a long distance in a very

small time, or in other words, that the movement of the particles exhibits discontinuities.

E1a can be restated as follows:

E1b: Brownian paths are continuous.

Assumptions E1a and E1b imply that if � is not very small, the number of particles

which exhibit a change in their x-coordinate larger than � within the time interval � is

practically zero. This fact, when translated to frequencies, implies that when � is not

very small � is almost zero. In modern probability language E1a may be interpreted as

representing some kind of moment conditions on the random variable �. For example, it

could be taken to imply that:

E1c: The random variable � has �nite moments of any order.

This is a rather strict assumption. The following weaker assumption may ensure the

continuity of Brownian paths:
E1d: The random variable � has �nite variance.

It must be noted that all the four assumptions mentioned above may be thought of as the

mathematical counterparts of the empirical hypothesis E1: �particle displacements can-

not be arbitrarily large�. It must also be noted that not many years after the publication

of Einstein�s paper, assumption E1d was found to be su¢ cient (under independence) to

produce CLT. Moreover, as will be discussed in length below, the equivalent of E1d for
asset returns was found to be at the center of a heated debate among economists during

the 1960s. Finally, Einstein assumes � (�) = � (��), that is � is symmetric.
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Next, Einstein de�nes f(x; t) to be the density of particles at time t with coordinate of

the x-axis equal to x. This de�nition implies that for n = 1, and for t = � , the functions
f(�; �) and �(�) coincide. In general, for n = 1, the quantity

R y
x
f(z; t)dz corresponds to

the probability that the change in the x-coordinate of a particle, from time t0 to time

t0 + t, lies in [x; y], for every t0. Moreover, this means that f(x; t)dx is the number of

particles whose x-coordinate has increased between t = 0 and t = t by a quantity, which

lies between x and x+ dx. Therefore,

f(x; 0) = 0 and
Z 1

�1
f(x; t)dx = n (2)

At this point Einstein is ready to ask the important question: What is the distribution

of particles at time t + � given the distribution at time t? By using assumption E1a,

Einstein obtains the following equation:

@f

@t
= D

@2f

@x2
, (3)

which is known as �the heat equation in one dimension�or �the di¤usion equation�. The

solution of (3) under conditions (2) is

f(x; t) =
np
4�Dt

e�
x2

4Dt . (4)

Note that for n = 1 the above solution refers to the case of a single particle. Using physical

arguments, Einstein showed that the coe¤cient D, known as the �di¤usion coe¢ cient�,

which enters the expression for the second moment of f(x; t) is related to a set, �, of

some measurable physical magnitudes, as well as to the so-called Avogadro�s number, N

(the mean number of molecules per gram molecule), that is

D = g(N;�): (5)

From (4), Einstein concluded that the mean squared displacement s2 (the second moment)

of the particle is given by

s2 = 2Dt: (6)

The last equation, which is a consequence of the normality result (4), has some important

empirical implications: (i) The average distance, s, that a Brownian particle travelled

along the x-axis is proportional to the square root of time. (ii) By replacing D in (6)

with (5) and solving for N , Einstein derived an expression for N in terms of s, � and t.

This speci�c implication of normality, namely the possibility to determine N by means of
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s, � and t, formed the basis of Perrin�s experimental results. These results demonstrated a

close agreement between the experimental values of N and those predicted by the theory,

which in turn rendered very strong support for the normality hypothesis. In fact this

support was so impressive that automatically led to an almost universal agreement, not

only about the empirical relevance of the normality hypothesis but, more importantly, on

the basic hypothesis that produced this property, namely the molecular nature of matter.

3.4 Bachelier and the Normality of Asset Returns

In 1900, L. Bachelier presented his famous thesis with title �Theory.of Speculation�. In

his thesis, Bachelier attempted to produce a probabilistic model for stock price changes.

He made the following initial assumptions:

B1: At any moment, the market does not believe that any stock price will go up or

down.

B2: The mathematical expectation of the speculator is zero.

B3: The real price is the one that the market thinks as the most probable.

Assumptions B1 and B2 imply that both the market and any spaculator cannot predict

the changes in the stock prices. These initial assumptions enable Bachelier to include in

his treatment the following assumption:
B4: Stock prices have independent and identically distributed increments: �The prob-

ability that a price at time t lies between x and x+ dx given that y is the price at time

s < t, is a function only of x� y and t� s.�
Bachelier de�nes by px;tdx the probability that the price at time t lies between x and

dx. Then, he explains what he aims at: �We are searching for the probability that price

z is reached at time t1 + t2 and the price was x at time t1.� Bachelier identi�es this

probability with the conditional probability,

px;t1dx � pz;t1+t2 j(x;t1)dz

By employing B4, Bachelier obtains

pz;t1+t2 j(x;t1)dz = pz�x;t2dz

Hence the wanted probability he seeks equals to

px;t1dx � pz�x;t2dz
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Integrating over R, he �nally obtains the probability that price z is reached at time t1+t2:

pz;t1+t2dz =

1Z
�1

px;t1pz�x;t2dxdz

Last equation describes a required property of densities, namely

pz;t1+t2 =

1Z
�1

px;t1pz�x;t2dx (7)

The derivation of a general expression that can describe any function satisfying (7),

appears to be very di¢ cult. One property that such a solution should satisfy is that

of �stability under addition�. The task of solving (7) would become much easier if one

were willing to assume some moment-like conditions, such as E1a or E1b, assumed by

Einstein. However, Bachelier did not realize the need for imposing such conditions. On

the contrary, he proceeds with the solution of (7) by simply observing that this condition

is satis�ed by a very speci�c function of the form

p = Ae�B
2x2 (8)

where A and B are functions of t and

1Z
�1

pdx = 1,

therefore B = A
p
�. The last relationship between the parameters B and A makes clear

that (8) represents the normal density function.

The preceding analysis implies that Bachelier, as opposed to Einstein, arrives at the

normality hypothesis in a rather arbitrary way. Indeed, he failed to diagnose the need

for making an empirical assumption similar to E1 that would have led to its theoretical

counterparts E1c or E1d. Such an assumption should have stated that �stock prices

are unlikely to change too much in a very short time�. In the absense of any moment-

like conditions, such as E1c or E1d, equation (7), is satis�ed not only by (8) but by a

whole class of density functions. As Paul Levy showed, almost twenty �ve years after

Bachelier�s results, the members of this class, usually referred to as the Levy-Pareto

stable additive class, do not have �nite second moments. The only member in this

class which possesses �nite variance is the normal. As a result all the members in the

Paretian class, with the exception of the normal, do not produce continuous paths (see
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Samuelson 1973, for similar arguments against Bachelier�s solution). Nevertheless, despite

the aforementioned limitation, Bachelier�s thesis is full of pioneering results. In them

we �nd a derivation of the di¤usion equation (3). To obtain equation (3), Bachelier

explicitly applies the technique used for the derivation of the equation of heat di¤usion

to the relevant probabilities.

As shown above, the methods by which Einstein and Bachelier arrived at the normality

hypothesis are quite di¤erent than those developed later in the �eld of probability theory,

under the rubric �central limit theory�. However, the su¢ cient conditions imposed by

Einstein, namely, independence of the summands together with some implicit conditions

on their moments, are similar in nature to those obtained by Lyapounov (1901) in the

context of the �rst CLT of the modern times. This type of direct CLT-related arguments

for establishing the normality hypothesis for asset returns were employed for the �rst time

by Osborne (1959). Moreover, Bachelier�s failure to realise that (7) has a multiplicity of

solutions, all of which - with the notable exception of the normal - have in�nite variance,

will persist in the economics literature until 1963, year at which Mandelbrot made known

to the economics literature the non-Gaussian limit theorems obtained by Paul Levy in

the mid 1920s (see below).

4 Explanation of Normality: What does it amount to?

As analyzed above, the Normality hypothesis of returns was a major pillar of the Brownian

Motion model for the logarithm of asset prices. This model in its discrete time version

may be referred to as the NIID model for asset returns. The question which arises at this

point is the following: How does the NIID model explain the regularity or the stylized

fact (perceived at the time) that the empirical distributions of asset returns are usually

normal? More generally, how a statistical model explains an empirical regularity or in

what sense a statistical model can be explanatory?

4.1 Deductive Nomological, Deductive Statistical and Inductive Statistical

Explanations

As mentioned above, our central question in this section is "what constitutes an explana-

tion of an empirical regularity?". In their widely known model of Deductive-Nomological

(DN) explanation, Hempel and Oppenheim (1948) argue that an explanation of an em-

pirical regularity is achieved by showing that it can be deduced (or follows with necessity)

from a broader regularity or, in other words from one or more universal/statistical laws

(and initial conditions in some cases). This means that an explanation of an empirical
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regularity is an argument to the e¤ect that the regularity to be explained (the explanan-

dum) was to be expected by reason of certain explanatory facts (the explanans) which

include at least one more general regularity. Put it slightly di¤erently, the explanation

of the regularity of interest amounts to sub-suming it under a broader empirical law (or

laws), which is usually referred to as the covering law(s). In the context of the DN model,

the characteristic feature of explanation is that the explanadum is deducible from the ex-

planans. Hempel draws the distinction between "actual" and "potential" explantion in

an attempt to distinguish between "the logical structure of explanatory arguments" and

the empirical validity of the explanans (see Hempel, 1965). In other words, a potential

explanation is "a valid argument such that if it were also sound, it would explain the

explanandum." (Psillos 2002, p. 221). On the other hand, an actual explanation is a

valid sound (empirically adequate) argument that does explain the explanandum.

In the case under study, let us �rst de�ne precisely the empirical regularity to be

explained. First, consider the following statement, UN: "The empirical distributions of

stock returns are Normal". This is a universal statement since it states that for every

stock the empirical distribution of data (R1; R2; :::; RT ) on returns of this stock is normal.

UN may be contrasted with the following statistical statement, SN1: "The empirical

distributions of stock returns are usually Normal". SN1 implies that for most stocks q,

their empirical distributions are normal. SN1 di¤ers from UN in that it allows for cases

in which stocks have non-normal empirical distributions. SN1 may become more precise

by stating the probability for a randomly selected empirical distribution to be normal.

For example consider, SN2: "The probability for the empirical distribution of returns of

a (randomly selected) stock to be Normal is p". In the context of the covering-law model,

an explanation of UN is of the DN type, that is such an explanation is achieved when UN

is deduced from one or more universal laws. On the other hand, an explanation of either

SN1 or SN2 is usually referred to as Deductive-Statistical (DS) explanation and amounts

to deducing SN1 or SN2 from one or more statistical laws (see also Hempel 1965).

Let us start with the universal regularity UN. The structure of a DN explanation of

UN may be schematized in terms of the following scheme, S1:

L1: For all Rt and all t, if Rt were the returns of a �nancial asset at t, then Rt is the

sum of nt elementary returns �tj that occured at t, that is Rt =
ntP
j=1

�tj:

L2: For all nt and all t, if nt were the number of elementary returns that occured at

t, then nt does not di¤er "substantially" from a large but �xed number n:

L3: For all
�
�tj
	
t
and all t, if

�
�tj
	
t
were the set of elementary returns at t, then each

member of this set does not a¤ect and is not a¤ected by any other member of either this

set
�
�tj
	
t
or of any other set

�
�sj
	
s
, t 6= s, that is all the �tj�s are "independent".

L4: For all
�
�tj
	
t
and all t, if

�
�tj
	
t
were the set of elementary returns at t, then each
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member of this set may be thought of as a random draw from a common distribution,

that is all the �tj�s are "identically distributed".

L5: For all
�
�tj
	
t
and all t, if

�
�tj
	
t
were the set of elementary returns at t, then each

member of this set cannot be arbitrarily large.

� � � � � � � � � � � � � � � � � � � � � � � � �

UE1: "For all Rt and all t, if Rt were the returns of a �nancial asset at t, then Rt
may be thought of as a random draw from a normal distribution.

Remarks:
(i) The formulation of the laws L1-L5 intentionally uses only empirical concepts.

This is why the terms "independent" and "identically distributed" were put in inverted

commas, to be distinguished from the theoretical concepts of independent and identically

distributed random variables that will be employed at a later stage.

(ii) The empirical concept of "identically distributed" is di¢ cult to visualise. One

di¤erent way to describe this is that under any random reordering of the elementary

returns, at any sub-interval, produces the same relative frequencies as n goes to 1.
(iii) L1, L2 and L5 can be thought of as universal generalizations referring to events

occuring at the same point in time t. On the other hand, L3 and L4 are universal

generalisations referring to both events occuring at the same t and events occuring at

di¤erent points in time (t and s). Of course, the term "successive" in the aforementioned

"successive price changes" imply a further discretization of time within t, in which case

L3 and L4 refer solely to events occuring at di¤erent points in time.

(iv) Apart from UE1, L1-L5 also entail the "independence" of Rt with any other

return Rs occuring at s; with s 6= t: It also implies that all the Rt�s are "identically

distributed" in the sense de�ned above, given that for each t the number of elementary

returns is about the same.

The �ve laws, L1-L5 produce deductively UE1. However UE1 is not equivalent to UN

- the universal regularity to be explained. Indeed, a data set (R1; R2; :::; RT ) in which

each Ri; i = 1; 2; :::; T is a random draw from a common normal distribution does not

always yield a normal empirical distribution (histogram), especially when T is small. As

a result UN cannot be explained by L1-L5. On the other hand, SN1 and SN2 can be

deductively produced by L1-L5. More precisely UE1, which states that the returns Rt
of every �nancial asset can be thought of as "independent" realisations from a common

normal distribution, implies that any data set (R1; R2; :::; RT ) of returns on a �nancial

asset can be thought of as a data set of independent realisations from a common normal

distribution. This in turn implies the following statistical law, SN2a: "The probability

for the empirical distribution of a set of returns (R1; R2; :::; RT ) of a �nancial asset to

be Normal is pT ; with pT ! 1 as T ! 1", where by "Normal" we mean that the
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corresponding relative frequencies satisfy an empirical/statistical criterion which con�rms

that a sample is being drawn from the Normal distribution. More speci�cally, SN2a is

the explanandum in the following DS argument:

SL6: The probability for the empirical distribution of a set (x1; x2; :::; xT ) of indepen-

dent realisations from a common normal distribution to be normal is pT ; with pT ! 1 as

T !1:
UE1a: For all (R1; R2; :::; RT ) ; if (R1; R2; :::; RT ) were a set of returns on a �nancial

asset, then (R1; R2; :::; RT ) may be thought of as a set of independent realisations from a

common normal distribution.

� � � � � � � � � � � � � � � � � � � � � � � � � [pT ]

SN2a: The probability for the empirical distribution of a set of returns (R1; R2; :::; RT )

of a �nancial asset to be Normal is pT ; with pT ! 1 as T !1.
Remark
SN2a can play the role of a covering statistical law for the explanation of the spe-

ci�c event E2: "The empirical distribution Fq of returns (Rq1; Rq2; :::; RqT ) of stock q is

Normal". This explanation has the structure of the so-called Inductive-Statistical (IS)

explanation of a particular non-deterministic event put forward by Hempel (1965). An IS

explantion is still an argument (albeit not a deductive one) that makes the occurence of

the event highly probable (although not certain). For the present case, the IS explanation

of E2 takes the following form:

SN2a: "The probability for the empirical distribution of returns (R1; R2; :::; RT ) of a

�nancial asset to be Normal is pT ; with pT ! 1 as T !1"
IC: Fq is the empirical distribution of returns (Rq1; Rq2; :::; RqT ) of stock q:

� � � � � � � � � � � � � � � � � � � � � � � � � [pT ]

E2: The empirical distribution Fq is Normal.

Note that [pT ] is not a statistical probability but the inductive probability confered

to the conclusion by the explanans, or in other words, the degree of inductive support.

In the explanatory scheme outlined above, we claim that the explanandum statement,

UE1, is produced deductively from the �ve laws, L1 - L5. This claim calls for an expla-

nation. More speci�cally, in view of the fact that it is far from obvious how L1-L5 entail

UE1, the question which naturally arises is "how has the alleged deduction been achieved?

The answer to this question, as it might have been clear from the analysis of the previous

sections, is "via the central limit theorem". In order to exploit the deductive power of

CLT, however, we must �rst make a transition from the "empirical concepts" present in

the above scheme to probabilistic concepts present in CLT. In other words, an empirically

interpreted theoretical probabilistic system has to be adopted. As a �rst step towards

this direction, the elementary returns �tj are interpreted as random variables de�ned on
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an abstract probability space (
;F ; P ), which in turn allows for relative frequencies or
"limiting" relative frequencies to be interpreted as probabilities de�ned on F2: Next, the

hypothesized or observed empirical properties characterizing the elementary returns, are

translated in terms of probabilistic properties of the random variables �tj. For example,

the empirical assumption/observation that price changes from transaction to transaction

are caused by "independent" factors, is translated into the probabilistic assumption of

independence of the random variables �tj. The empirical assumption/observation that

elementary returns are not arbitrarily large is translated into the probabilistic assumption

that the random variables �tj have �nite variances. The mapping between empirical and

probabilistic concepts is completed, when all the laws, L1-L5 have been re-stated in terms

of their probabilistic counterparts. Once this transformation is �nished, we are ready to

exploit the mathematical structure of our probabilistic system in order to produce the-

orems, such as CLT. These theorems, when re-interpreted back to the empirical world,

take the form of new empirical statements, such as UE1, that may be thought of as being

derived from the original ones.

An interesting question, which has attracted a lot of attention in the philosophy of

science literature is whether the deduction of UE1 from its empirical premises L1-L5

can be achieved without the mediation of CLT. The relevant debate revolves around the

so-called "indispensability argument" (see, for example, Melia 2000).

In order to appreciate further the explanatory power of the CLT-based explanation of

normality of stock returns, hereafter referred to as CLT-EX, let us consider the following

hypothetical situation: There is a person, P, who has just examined the histogram, HA,

of daily returns of stock A (over a su¢ ciently long period of time) and found convincing

evidence of normality. This person seeks an explanation for this empirical pattern exhib-

ited by stock A. He consults a rather experienced econometrician who replies to him by

saying that �It comes as no surprise to me, histograms of daily stock returns are usually

normal�. Or in a more precise form: "...,the probability that a histogram of daily stock

returns is normal is p (with p su¢ ciently large)" Has P received a satisfactory explanation

for the normality of HA? Consider the following IS explanation for the normality of HA,

hereafter referred to as N-EX:

EL1A: �The probability that a histogram of daily stock returns is normal is p�.

IC1: HA is a histogram of daily stock returns

� � � � � � � � � � � � � � � � � � � � � � � � � [p]

EXP: HA is normal.
2Whether relative frequencies satisfy the conditions of Kolmogorov�s axiomatic system in order to

be called "probabilities" is a debatable isue. For example Van Fraassen (1979) shows that relative
frequencies do not satisfy countable additivity.
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The questions to be discussed are the following: Should P be satis�ed with the N-

EX explanation for the normality of HA? How does N-EX compare with CLT-EX? The

answers to these questions largely depend on what the origins of EL1A in N-EX are.

If EL1A has emerged out of "inductive enumeration", then N-EX although satis�es the

Hempelian criteria for an adequate IS explanation it cannot be regarded as a satisfactory

scienti�c explanation of the normality of HA. In other words, the fact that N-EX renders

EXP expectable with high probability is irrelevant for the scienti�c adequacy of this

explanation. Woodward (2003) argues that explanations such as N-EX are not regarded

by anyone, with the exception of philosophers, as serious scienti�c explanations �or at

least they are not advanced as such in scienti�c textbooks and monographs� (2003, p.

190). Therefore, the inferiority of N-EX relative to CLT-EX lies in the fact that in the

former as opposed to the latter explanation, the covering statistical law is inductively

produced by simply enumerating the instances of observed normal histograms. In other

words, in N-EX the covering law itself is left unexplained. On the other hand, in CLT-EX

the covering law SN2a is the explanandum of a DS explanation whose explanans are SL6

and UE1a. Furthermore, UE1a is the explanandum of a DN explanation whose explanans

are L1-L5.

4.2 Deductive-Nomological-Probabilistic Explanations

The superiority of CLT-EX can be further appreciated within the context of the Deductive-

Nomological-Probabilistic (D-N-P) model proposed by Railton (1978, 1981). Railton

rejects the basic thesis of the I-S model, namely that the explanadum event must be

expectable with high probability. Instead, he puts forward the idea that a probabilistic

event (or an empirical regularity) can only be explained in terms of the mechanism that

produced this event (or regularity). "The goal of understanding the world is a theoretical

goal, and if the world is a machine - a vast arrangement of nomic connections - then our

theory ought to give us some insight into the structure and workings of the mechanism,

above and beyond the capability of predicting and controlling its outcomes." (1978, p.

208). In other words, an IS explanation which employs a statistical law such as EL1A

is unsatisfactory (even if EL1A is true) unless the statistical law is backed up with "an

account of the mechanism(s) at work". In other words, the statistical law in itself cannot

form the basis for a satisfactory explanation of the explanadum event, unless L is "deriv-

able from our theory without appeal to particular facts." (1978, p. 215). As Railton

puts it, D-N-P explanations "subsume a fact in the sense of giving a D-N account of the

chance mechanism responsible for it, and showing that our theory implies the existence

of some physical probability, however small, that this mechanism will produce the ex-
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planandum in the circumstances given." (1978, p. 209, emphasis added). In this respect

Railton seems to follow Je¤rey (1969) who in his criticism of the IS explanation argues:

"... in the statistical case I �nd it strained to speak of knowledge why the outcome is

such-and-such. I would rather speak of understanding the process, for the explanation

is the same no matter what the outcome: it consists of a statement that the process is

a stochastic one, following such-and-such a law." (1969, p. 109). It is evident that in

Je¤rey�s as well as in Railton�s views, the burden of explanation lies in "understanding

the process" or "providing an account of the chance mechanism at work", respectively.

It must be noted that Railton�s account of probabilistic explanation allows partial or

incomplete explanations to qualify as adequate. For example, CLT-EX may be thought

of as an incomplete explanation of the normality of HA since the origins of some of the

laws L1-L5 are not speci�ed. For example, one may ask why the elementary stock returns

are independent or why cannot be arbitrarily large? What parts of the mechanism at

work are responsible for L3 or L5? If these questions are left unanswered, then the

o¤ered CLT-EX explanation does not illuminate all the explanatory text but only parts

of it , that is it furnishes explanatory information. In the limiting case, in which all the

explanatory information is taken into account, the corresponding explanation is called

"ideal" explanation.

Remark
Concerning, the origins of L3, we may appeal to the e¢ cient market hypothesis which

explains why elementary returns are independent. Put di¤erently, EMH may be used to

�ll parts of the ideal explanatory text for the explanation of the normality of HA.

4.3 Counterfactual Dependencies

Another feature of CLT-EX that contributes to its superiority over N-EX is that it allows

for "counterfactual dependencies". Woodward (2003) argues that explanations such as

CLT-EX possess a distinctive explanatory feature that is missing from the N-EX variety.

He identi�es this feature by comparing two alternative types of explanation: the �rst one,

referred to as (5.1.3)-(5.1.4) in Woodward�s text, is the type of theoretical explanation

which is typically found in scienti�c disciplines such as physics or economics; it largely

corresponds to our CLT-EX. The second type of explanation, referred to as (5.1.1)-

(5.1.2) in Woodward�s text, has a structure identical to that of N-EX. His arguments

on the explanatory superiority of CLT-EX over N-EX are summarised as follows (the

reader may replace �(5.1.3)-(5.1.4)�with �CLT-EX�and �(5.1.1)-(5.1.2)�with �N-EX�

in the following paragraph): �Explanation is a matter of exhibiting systematic patterns

of counterfactual dependence. Not only can the generalizations cited in (5.1.3)-(5.1.4) be
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used to show that the explananda of (5.1.3)-(5.1.4) were to be expected, given the initial

and boundary conditions that actually obtained, but they also can be used to show how

these explananda would change if these initial and boundary conditions had changed

in various ways. (5.1.3)-(5.1.4) locate their explananda within a space of alternative

possibilities and show us how which of these alternatives is realized systematically depends

on the conditions cited in their explanans. They do this by enabling us to see how, if

these initial conditions had been di¤erent or had changed in various ways, various of

these alternative possibilities would have been realized instead. Put slightly di¤erently,

the generalizations cited in (5.1.3)-(5.1.4) are such that they can be used to answer a

range of counterfactuals questions about the conditions under which their explananda

would have been di¤erent (what�if�things-had-been-di¤erent or w-questions, for short).

In this way, (5.1.3) �(5.1.4) give us a sense of the range of conditions under which their

explananda hold and of how, if at all, those explananda would have been di¤erent if

the conditions in (5.1.3) �(5.1.4) had been di¤erent. It is this sort of information that

enables us to see that (and how) the conditions cited in the explanans of (5.1.3) �(5.1.4)

are explanatorily relevant to these explananda.�(p. 191, 2003).

The distinctive explanatory feature that characterizes CLT-EX is exactly its ability

to answer counterfactual or w-questions. For example, what would have been the distri-

bution of stock returns if elementary transactions were allowed to be arbitrarily large?

Also what would happen to the same distribution if the number of transactions over

time exhibited substantial variation? The structure of the CLT-EX type of explanation

can indeed answer such questions. This is because the counterfactual questions raised

above correspond to di¤erent assumptions on the random variables �tj and the number

of transactions nt: As will be discussed in the following sections, these alternative sets

of assumptions formed the basis on which the statistical modelling of stock returns was

developed in the period between early 1960s and late 1970s.

4.4 Explanations of Single Events

So far the analysis was mainly centered on explaining empirical regularities3. Let us now

examine how the aforementioned explanatory accounts work in the case of single events.

More speci�cally, we shall investigate whether and how the NIID model, as derived above,

explains the occurence of a single event E, with special emphasis on the case in which E

is a low-probability event. For example, consider the event E :"The returns of the stock q

at t = t1 were lower than -4%" or in an equivalent form, E :"Rq;t1 < �0:04". UE1 implies
3We have also discussed indirectly expanations of a single event, for the case in which the event refers

to the observation of a regularity in a singular dataset. For example, consider the event E: The histogram
of this speci�c dataset was found to be (approximately) normal.
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the following statistical law: UE1*: "The probability of the returns Rt of a �nancial asset

at time t to be less than x, x 2 R, is given by the normal law with mean and variance
equal to � and �2; respectively." Let us �rst try the following IS explanation, using UE1*

as the statistical covering law:

UE1*: "The probability of the returns Rt of a �nancial asset at time t to be less

than x, x 2 R, is given by the normal law with mean and variance equal to � and �2;
respectively." Put di¤erently, P(�;�2)(Rt < x) = px
IC2: Rq;t1 is the returns of the �nancial asset at t1:

IC3: The mean �q and variance �
2
q of the distribution of Rq;t1 are equal to b�q and b�2q,

respectively, where b�q and b�2q are consistent estimates of �q and �2q; respectively.
� � � � � � � � � � � � � � � � � � � � � � � � � [p�0:04]

E : "Rq;t1 < �0:04"
Does this argument satisfy the conditions for an adequate IS explanation of E? The

answer is no. For any sensible values of �q and �
2
q, the inductive probability p�0:04

is prohibitively small. In other words, the probability confered to the conclusion by

the explanans or the degree of inductive support of E is too small. Nonetheless, the

event E, expectable or not, has actually occured and has equal rights to enjoy some

kind of explanation with any high-probability event that has also occured. To this end,

Salmon (1998) raises the following question: "Can events whose probabilities are low be

explained?" (1998, p. 97). In particular, he puts the question as follows: "If some events

are probable, without being certain, others are improbable. If a coin has a strong bias for

heads, say 0:9, then tails has a nonvanishing probability, and a small percentage of the

tosses will in fact result in tails. It seems strange to say that the results of tosses in which

the coin lands heads-up can be explained, while the results of those tosses of the very same

coin in which tails show are inexplicable. To be sure, the head-outcomes far outnumber

the tail-outcomes, but is it not an eccentric prejudice that leads us to discriminate against

the minority, condemning its members to the realm of inexplicable?"

The preceding discussion suggests that an explanation of E cannot be of the IS variety.

However, an explanation of E may be achieved by Railton�s D-N-P model. As already

mentioned, D-N-P does not view a high inductive probability as a necessary condition

for a satisfactory explanation of a chance event. As mentioned above, the D-N-P model

of explanation includes the following ingredients: (i) A statistical law governing the

behavior of the explanandum event. In the case under study, the statistical law and the

explanandum event are UE1* and E, respectively. (ii) A set of initial conditions, which

in our case are IC2 and IC3. (iii) Derivation of the statistical law from our theoretical

account of the mechanism at work,. In the case under study, the derivation of UE1* has

been achieved in terms of L1-L5, that is [(L1� L5) =) UE1�] :
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Remark
To be precise, the three elements mentioned above costitute an explanatory account

for the probability of the explanadum event, in our case for P(�q ;�2q)(Rq;t1 < �0:04) but not
for the explanadum event itself. To allow for the explanation of the event we must supply

the following: (iv) A parenthetic addendum, PA, to the e¤ect that the explanadum event

did occur.

According to the D-N-P explanation of E, outlined above, the explanatory account

EA=(UE1�,(IC2,IC3),[(L1� L5) =) UE1�] ;PA) does not explain why E had to take

place, nor does it explain why E could be expected to take place (see Railton 1978, p.

216). All that EA does is to explain why the low-probability event E actually took place.

In concluding this section, it is worth comparing the explanation of E discussed above

with the following more pragmatic explanation, PE, of E given by a typical market ana-

lyst: "E occured because the level of the industrial production index that was announced

at t1 was much lower than expected". In other words, the price of asset q fell by more

than 4% because of a large negative surprise in the industrial production index. How does

the D-N-P explanation of E compare to PE? Put it di¤erently, does D-N-P accomodate

in any way PE? The answer is that D-N-P accomodates only partially and indirectly

PE, through the EMH-based explanatory account of why the elementary returns are in-

dependent. More speci�cally, in the context of our example, the industrial production

index may be thought of as a "fundamentals" variable, Xt, the current value of which

a¤ects the expectations for next period�s stock price, thus determining the current price

by the mechanism described in Section 2. In order to achieve an explanation of E which

utilizes directly information about other variables (such as the industrial production in-

dex) we must employ models di¤erent than the NIID model. Such models have been

put forward in the literature under the rubric "factor models for stock returns" (see,

for example, Ross, 1977). Investigating how these models explain E is tantamount to

analyzing how linear regression models can, in general, be explanatory. Such an analysis

will take us outside the scope of the present paper4. In the present context, su¢ ce it

to say that the explanatory nature of these models depends on whether the employed

factors are probabilistically causally relevant for the explanandum event. To this end,

the Statistical-Relevance model for explanation, SR, suggested by Salmon (1971) may

serve as a good starting point for developing the relevant arguments. More speci�cally,

in the context of SR, an explanation of an event is no longer an argument but rather "an

assemblage of factors relevant to the occurrence or nonoccurence of the event to be ex-

plained, along with the associated probability values" (Salmon, 1998, p.108). This model

suggests that an explantion of E has been achieved when the probability of E conditional

4The explanatory status of this class of models is analyzed in detail in Koundouri et. al. 2012.
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on all the relevant factors for E (industrial production, for example) has been obtained,

regardless of whether this probability is high or low. This probability is interpreted as

the relative frequency of E within the "broadest homogeneous" reference class, that is

the reference class which is generated by partitioning the initial class (the one in terms of

which the aforementioned low probability p�0:04 is de�ned) solely by relevant conditions.

5 Non-Normal Distributions

As already mentioned in the beginning of the previous section, the empirical adequacy of

the normality hypothesis for asset returns at the early 1960s did not enjoy the same degree

of support with the normality hypothesis for the displacements of Brownian particles at

the late 1900s. The situation prevailed at the time may be summarized as follows: A new

theory for economic rationality, namely the e¢ cient market theory, entailed the indepen-

dence hypothesis of stock returns. This hypothesis, in turn, implied the Gaussianity of

stock returns, via CLT. On the empirical front, researchers faced a rather embarassing

situation in which the basic hypothesis, namely independence, enjoyed su¢ cient empir-

ical support, but its immediate consequence, namely Gaussianity, was clearly lacking in

this respect.

These thoughts lead us quite naturally to ask the following questions: In view of

the fact that returns, Rt, are sums of independent random variables as indicated by (1)

why does the CLT not work? One possible answer to this question might be that the

number of summands, nt, is not su¢ ciently large to ensure a close approximation of the

distribution of Rt to the normal. This argument might have been convincing in the case

that the object of observation was not the daily or weekly returns but rather �ve or ten

minute returns. In fact, within a day, let alone a week, the number nt of transactions (at

least for highly liquid assets) is so large that the aforementioned argument completely

lacks any empirical relevance.

5.1 Empirical Motivation and Theoretical Justi�cation

It must be noted that the issue of the �small number of summands� raised above be-

comes quite important for the case of the physical Brownian motion when the time t,

elapsed between the beginning of the motion and the current state of the particle is small.

This issue was �rst raised by Einstein himself, and was dealt with in a de�nitive way by

Ornstein (1917) and independently by Furth (1920). These authors derived a generalisa-

tion of (6) for all times, which states that the mean square displacement is in general a

non-linear function of time, reducing to (6) when t is large.
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The preceding discussion suggests that if the much desired reconcilation of indepen-

dence with non-normality of asset returns were to be achieved, the reasons that caused

failure of CLT (in the presence of independence) had to be identi�ed. This identi�cation

depended on the following two questions: (i) Did the state of the art in probability theory

at the beginning of the 1960s provide results showing the conditions under which a sum

of independent random variables converges to a non-normal distribution? (ii) Were the

econometricians at the time aware of such results? As will be shown below, the answer

to the �rst question is a¢ rmative whereas that of the second question is negative. In

fact, probability theory had already identi�ed at least two cases in which the limiting

distribution of a sum of independent random variables is a non-normal distribution. The

�rst of these cases is the one developed by Levy (1925) and, as already mentioned, is

the main reason why Bachelier�s solution of (7) was incomplete. This case was adopted

in 1963 by Benoit Mandelbrot. However, the reconcilation between independence and

non-normality put forward by Mandelbrot, did not come without a price for the existing

theoretical paradigm.

5.2 Mandelbrot�s Stable Paretian Hypothesis

In 1963, Benoit Mandelbrot expressed forcefully and without any reservations the argu-

ment that the distribution of stock returns was not Gaussian. Moreover, Mandelbrot

o¤ered an elegant explanation of the observed leptokurtosis of Rt, which - importantly-

was consistent with the theoretically desirable independence hypothesis. However, as will

be discussed below, Mandelbrot�s interpretation did not come without any cost for the

existing theoretical paradigm. Speci�cally, Mandelbrot argued that the only assumption

that had to be made in order to obtain leptokurtosis is that (the independent) �tjs have

in�nite variance. Mandelbrot was aware of the probability theory results of Levy (1925)

according to which a sequence of independent and identically distributed sequence of

random variables converges-in-law to the so-called Stable Paretian family with charac-

teristic exponent �, a prominent member of which is the Gaussian distribution for which

� = 2. Quite importantly, the normal is the only distribution in this family with a �nite

variance (see also Khintchine 1933). The extent to which this sequence converges to the

Gaussian or some other member of the Stable Paretian family, depends on whether the

random variables of this sequence possess �nite second moments. Consequently, in order

for Mandelbrot to derive the desired result (convergence to a non-Gaussian leptokurtic

Stable distribution) he had to abandon the assumption that the �tjs have �nite variances.

More speci�cally, the limit theorem employed by Mandelbrot refers to a sequence of

independent random variables, in the case under study �t1; �t2; :::, for which (i) V ar(�tj) =
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1 and (ii) the so-called Pareto-Doebkin-Gnedenko conditions on the tail behaviour of

the �tjs hold. These conditions require that for x > 0, FX(x) = 1 � (1 + e1(x))
�
x
x1

��a
,

where e1(x)! 0 as x!1, and for x < 0, FX(x) = (1+ e2(x))
�
x
x2

��a
, where e2(x)! 0

as x ! �1. Conditions (i) and (ii) are necessary and su¢ cient for the validity of the
stable central limit theorem, that is, for the distribution function of the random variables

�t1; �t2; ::: to belong to the domain of attraction (DA) of a stable law, Ga.

The preceding discussion implies that the probability theory available at the time

had already produced the necessary theoretical results for a potential explanation of the

observed leptokurtosis. More importantly, this explanation did not have to sacri�ce the

independence hypothesis. The only change in the set of the existing assumptions that

had to be made is to replace the �nite variance assumption of the elementary stock

returns with the in�nite-variance one. To this end, Cootner (1964) speaks apologetically

on behalf of the �nancial economists of the time about �... our guilt at our failure to

appreciate the possibility of non-Gaussian central limit theorems ...�(p. 413).

Mandelbrot�s explanation of the leptokurtosis of stock returns had a structure identical

to the CLT-EX explanation of normality analyzed above. In fact, Mandelbrot maintained

the laws L1-L4 and replaced only L5 with the following:

L5M: For all
�
�tj
	
t
and all t, if

�
�tj
	
t
were the set of elementary returns at t, then

each member of this set can be arbitrarily large.

The replacement of L5 by L5M resulted in a drastic change in the explanandum.

Instead of UE1, L1-L4 plus L5M deductively produce the following UE1M.

UE1M: "For all Rt and all t, if Rt were the returns of a �nancial asset at t, then Rt
may be thought of as a random draw from a stable Paretian distribution.

Remark:
The case analyzed above may be thought of as an instance of how a satisfactory

scienti�c explanation exhibits the virtue of "counterfactual dependencies".

How inoccuous was this change for the existing theoretical paradigm? What were the

implications of the in�nite-variance assumption for the concept and measures of �nancial

risk? These questions will be dealt with in detail in subsequent sections. For the moment,

su¢ ces to say that economists did not rush to embrace Mandelbrot�s interpretation, de-

spite the fact that this interpetation left the independence assumption intact. Cootner

(1964) summarises the discomfort that the in�nite-variance assumption caused to the

academic community as follows: �Mandelbrot, like Prime Minister Churchill before him,

promises us not utopia but blood, sweat, toil and tears. If he is right, almost all of our

statistical tools are obsolete - least squares, spectral analysis, workable maximum likeli-

hood solutions, all our established sample theory, closed distribution functions. Almost
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without exceptions, past econometric work is meaningless�(Cootner, 1964, p. 337). Al-

though Mandelbrot had succeeded in producing an empirically adequate model for stock

returns, his model was not fully compatible with the emerging paradigm of �e¢ cient

markets with controllable risk�and its adoption would have meant the collapse of a sub-

stantial part of the paradigm itself. This was a rather unwelcome outcome as �surely,

before consigning centuries of work to the ash pile, we should like to have some assurance

that all our work is truly useless. If we have permitted ourselves to be fooled as long as

this into believing that the Gaussian assumption is a workable one, is it not possible that

the Paretian revolution is similarly illusory?�(Cootner 1964, p. 337).

It is worth noting that apart from leptokurtosis Mandelbrot was the �rst to detect

another empirical regularity of asset returns, namely that �large changes tend to be

followed by large changes, of either sign, and small changes tend to be followed by small

changes.�(Mandelbrot, 1963, p. 418). This regularity, usually referred to as �volatility

clustering�went largely unnoticed for almost two decades, that is, between the early 1960s

and early 1980s. This e¤ect was usually referred to as �curious behaviour of volatility�and

was thought of as another manifestation of the �in�nite variance�e¤ect or, alternatively,

as a symptom of the non-uniformity of transactions over time (see below). As will be

discussed in the last section of the paper, a re-interpretation of this regularity formed the

basis for the emergence of a new statistical paradigm for describing asset returns, at the

heart of which was the concept of �conditional heteroscedasticity�.

5.2.1 The "Silent" Decade: 1963-1973

Despite Cootner�s objections mentioned above, Mandelbrot�s clear statement on the pres-

ence of leptokurtosis in the empirical distributions of stock returns, along with his inter-

pretation of this leptokurtosis delivered a severe blow against the �approximate normal-

ity� view, which prevailed in the literature up to 1963. His analysis forced the econo-

metricians to look the naked truth about leptokurtosis and recognise it as a clear and

distinct empirical regularity of stock returns. In his comment on Mandelbrot�s paper,

Cootner (1964) describes the situation as follows: �Dr Mandelbrot�s series of papers on

the application of Paretian distributions to economic phenomena has forced us to face

up in a substantive way to those uncomfortable empirical observations that there is lit-

tle doubt most of us have had to sweep under the carpet up to now.� (1964, p. 333).

As a result, econometricians chose to remain silent on this issue until they were able

to come up with an explanation of this leptokurtosis that does not have to abolish the

�nite-variance hypothesis. In fact, between 1963 and 1973, the only published papers

on the type of stock returns distribution were by Fama (1965), Fama and Blume (1966),

Teichmoeller (1971) and O¢ cer (1972), all of which advancing further either theoretically
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or empirically the Stable Paretian hypothesis.

The situation described above seems to suggest that the majority of the economists

at the time chose to remain silent on the issue of distribution of asset returns, hoping

that a �nite-variance explanation of leptokurtosis is �out there� waiting to be found.

Methodologically, this situation seems to conform to what Stanford (2006) termed as

�the problem of unconceived alternatives�. According to this view, at the current stage of

scienti�c progress, in which an existing theory is endorsed by the majority of the scienti�c

community, there are radically di¤erent theories that remain unconceived, which are at

least as well-supported by the empirical evidence as the current theory. Eventually, one

or more of these alternative theories are formulated, found empirically adequate and gain

the acceptance of (some parts of) the scienti�c community. As a result, the old theory

becomes obsolete despite the fact that once had enjoyed empirical support. This in turn

implies that every theory or hypothesis, including the in�nite-variance one, is in principle

�underdetermined�by any kind of �nite empirical evidence. As will be discussed below,

such a radically alternative theory of leptokurtosis was eventually �conceived�almost ten

years after Mandelbrot�s in�nite-variance theory.

5.3 A �Finite-Variance�Explanation of Leptokurtosis

The long awaited ��nite-variance� explanation of leptokurtosis �nally came in the be-

ginning of 1970s with the works of Praetz (1972) and Clark (1973) although the roots of

the basic idea can be traced in Press (1968). These authors followed a line of reasoning

similar to that of Mandelbrot. In particular, they also recognised the fact that since Rt
is the sum of independent random variables �tj, the non-normality of the distribution

of Rt implies failure of CLT. But instead of assuming that the CLT failure was due to

the non-�niteness of the variance of �tj, they put forward the hypothesis that CLT fail-

ure was due to the randomness of the number of summands, n. Let us analyze Clark�s

ideas in slightly more detail: As Mandelbrot employed non-standard limit theorem re-

sults to interpret the observed leptokurtosis, so did Clark. However, instead of employing

Paretian limit theorems, Clark employed limit theorems for random sums of random vari-

ables, that had appeared in the probability literature since 1948. More speci�cally, for

each t, let f�t;jgi�1 be an iid sequence of random variables with �nite E(�t;j) = �� and

V ar(�t;j) = �
2
� > 0. Moreover, let fNngn�1 be a sequence of non-negative, integer-valued

random variables. The random sum process is de�ned as

Rt;Nn =

NnX
j=1

�t;j: (9)
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The question that was raised in the relevant probability theory was the following: Un-

der what conditions does the properly normed and centered random sum, Rt;Nn, converge

in law to some random variable, Z, and, further, under what additional conditions is Z

distributed as N(0; 1). Robbins (1948) obtained su¢ cient conditions for the convergence

in law of the properly centered and normed sequence, Rt;Nn, to the normal distribution,

under the assumption that Nn is independent of the summands, �t;1, �t;2; :::. Renyi (1960)

and Blum, Hanson and Rosenblatt (1963) derived su¢ cient conditions that are similar

to those of Robbins (1948) without the assumption of independence between Nn and the

summands. Whether the properly centered and normed sequence, Rt;Nn converges to the

N(0; 1) or not depends on the variability of Nn around n as n increases. Speci�cally, if

Nn exhibits a �substantial rate of variation�around n; in the sense that the condition

p lim
n�!1

Nn
n
= 1 (10)

is violated, then the limiting distribution of the properly centered and normed sequence,

Rt;Nn is not the standard normal and depends on the distribution of Nn: Clark assumes

that Nn = [Zn] where Z is a random variable with mean 1 and variance � > 0 and []

denoting �the largest integer less than�. It is easy to show that under the aforementioned

assumptions on the random variables �t;j, and for any given realization of Z, we have

that
1

��
p
n
Rt;Nn =

r
[nZ]

n

1

��
p
[nZ]

[nZ]X
j=1

�t;j
L! N(0; Z).

We observe that the variance of the limit distribution is the random variable Z, hence the

unconditional limiting distribution is a mixture of normals. Such a distribution may well

be leptokurtic. Clark (1973) justi�ed the appeal to random limit theory on the grounds

that transactions are not spread uniformly across time but instead display substantial

variation.

The concept of �substantial variation� is central in delivering non-normal limiting

distributions. Put di¤erently, randomness of Nn per se does not ensure convergence to

a non-normal distribution. As mentioned above, if (10) is satis�ed then the limiting

distribution of the properly centered and normed sequence, Rt;Nn is N(0; 1). The impor-

tance of (10) calls for a further ellaboration of the concept of substantial variation. More

speci�cally, condition (10) imposes restrictions on the variability of Nn around n, as n

increases. This property, referred to as �theoretical variation�refers to the relationship,

g(n), between the variance of Nn and n; that is V ar(Nn) = g(n). It is the functional form

of g(n) that a¤ects the convergence properties of the random sum sequence. Koundouri
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and Kourogenis (2011) assume that Nn is de�ned by

Nn = n
rU + n, for some 0 � r � 1

2
(11)

where U is a random variable with E(U) = 0 and V ar(U) = c > 0: This assumption

implies the following function g():

g(n) = V ar(Nn) = cn
2r . (12)

It can be shown that for 0 � r < 1
2
, that is, when theoretical variation is moderate, the

properly centered and normed sequence RNn converges to N(0; 1). On the other hand,

for r = 1
2
, that is, when theoretical variation is substantial, the limiting distribution is a

mixture of normals.

Once a ��nite-variance� explanation of leptokurtosis was available in terms of sub-

stantial variation in the number of elementary transactions across days, the empirical

literature on the type of stock returns distribution took o¤. Blattberg and Gonedes

(1974) assume that Z�1 follows a gamma-2 distribution which implies that the resulting

limiting distribution of 1
��
p
n
Rt;Nn is the student. Kon (1984) o¤ers evidence in favor of

the assumption that the stock returns distribution is a discrete mixture of normals.

As was the case with Mandelbrot�s, Clark�s explanation of the leptokurtosis also had

a structure identical to CLT-EX. Speci�cally, Clark maintained L1, L3, L4 and L5 but

replaced only L2 with the following:

L2C: For all nt and all t, if nt were the number of elementary returns that occured at

t, then nt may exhibit substantially variation across t:

Substituting L2 for L2C while maintaining L1, L3, L4 and L5 results in,

UE1C: "For all Rt and all t, if Rt were the returns of a �nancial asset at t, then Rt
may be thought of as a random draw from a Mixed Normal distribution.

5.4 Realism of the Assumptions: Methodological Implications, Theoretical

Consequences and Empirical Testing

The main di¤erence between Mandelbrot�s and Clark�s models concerns the questions of

how "large" elementary returns and how "volatile" the number of transactions over time

can be. Mandelbrot�s main assumption is the following: M1: �elementary returns can

be arbitrarily large�. He also makes an implicit assumption claiming that the number of

transactions is constant over time. On the other hand, Clark�s fundamental assumption

can take the following form: C1: �the number of transactions varies substantially across

time�, while his maintained assumption is that elementary returns cannot be arbitrarily
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large.

In this section we will be concerned with the following �ve issues/questions, that aim

at comparing various aspects of Mandelbrot and Clark�s explanations of leptokurtosis:

(i) The �rst issue that needs to be addressed at the outset is that Mandelbrot�s ex-

planation of leptokurtosis, as opposed to that of Clark, seems to be somewhat circular.

Speci�cally, by assuming M1, Mandelbrot in fact assumes that the elementary returns �tj
(being arbitrarily large) are leptokurtic. This means that Mandelbrot assumes leptokur-

tosis while aiming at explaining it. This feature is absent in Clark�s explanation since

he does not make any moment or distributional assumptions, implicit or explicit, on the

elementary returns.

(ii) Are the assumptions M1 and C1, introduced in the previous section, directly

testable? One may argue that both M1 and C1 are not su¢ ciently precise conditions so

that can be tested empirically, because of the presence of the vague terms �arbitrarily�

and �substantially�in M1 and C1 respectively. However, the probabilistic interpretations

of M1 and C1, namely, M1P: �the random variables �tj are Stable Paretian with char-

acteristic exponent � < 2�and C1P: �Condition (10) fails�, respectively, are clear and

unambiguous mathematical statements. As a result, M1P and C1P can be used in order

to develop formal tests for M1 and C1, conditional on the assumption that M1 and C1

are adequately represented by M1P and C1P, respectively. For example, if data on ele-

mentary returns, �tj, were available, one could design a statistical test for the hypothesis

that the characteristic exponent � of �tj is equal to 2, against the alternative hypothesis

� < 2. Similarly, if time series data on the number of transactions were available, one

could use equation (11) in order to develop a test for the hypothesis r = 1
2
against the

alternative r < 1
2
.

(iii) Can we distinguish between M1 and C1 not by direct testing procedures, as the

ones described above, but by means of their implications? Leptokurtosis alone does not

o¤er much help towards this direction since both the aforementioned properties entail

leptokurtosis. Additional empirical implications for each of the two competing assump-

tions should be identi�ed, thus enabling an indirect comparison between M1 and C1.

More speci�cally, if we were able to obtain that M1 entails leptokurtosis plus �property

A�whereas C1 entails leptokurtosis plus �property B�with A being distinctly di¤erent

(incompatible) with B, then a comparison between M1 and C1 would have been possible.

This type of indirect testing between M1 and C1 has been attempted in the literature.

Speci�cally, apart from leptokurtosis, M1 and C1 entail the properties of �stability under

addition� and �Aggregational Gaussianity�, (AG) respectively. The empirical implica-

tions of these properties are quite di¤erent. Stability under addition implies that the

returns distributions for various frequencies of observation (daily, weekly, monthly etc)
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must exhibit the same degree of leptokurtosis. On the other hand, AG implies that the

returns distribution comes closer to the normal as the frequency of observation decreases.

The evidence from these tests seem to support the AG property, which in turn lends

support to C1 over M1.

(iv) Is the aforementioned task, namely, examining the realism of M1 or C1 a useful

or even meaningful endeavor at all? For example, a proponent of the �instrumentalist�

view of the goals of science may protest against this project by saying that the realism

of a given assumption is not important so long as this assumption contributes in making

correct and useful predictions for the phenomenon of interest. In the �eld of economics,

this view was forcefully put forward by Milton Friedman (1953) in his defense against the

accusation that the fundamental assumptions of neoclassical economic theory were clearly

�unrealistic�. Friedman�s view may be roughly summarized in the following paragraph:

�Truly important and signi�cant hypotheses will be found to have �assumptions� that

are wildly inaccurate descriptive representations of reality, and, in general, the more

signi�cant the theory, the more unrealistic the assumptions (in this sense).The reason is

simple. A hypothesis is important if it �explains�much by little, that is, if it abstracts

the common and crucial elements from the mass of complex and detailed circumstances

surrounding the phenomena to be explained and permits valid predictions on the basis

of them alone. To be important, therefore, a hypothesis must be descriptively false in

its assumptions�(Friedman, 1953, p. 14). By transferring Friedman�s arguments to the

case at hand, one could say that it is indi¤erent whether M1 or C1 are true, since they

both predict a leptokurtic distribution for asset returns. To the extent that leptokurtosis

is all that matters, both M1 and C1 are equally useful no matter how �unrealistic�or

�vague�they might be. If one insists on deciding which of the two, possibly unrealistic,

assumptions to adopt, she will have to rely on criteria that do not assess the realism of

the aforementioned assumptions- for example, criteria of "simplicity�. In any case, the

instrumentalist may strengthen her case by appealing to the �problem of unconceived

alternatives�mentioned in a previous section. More speci�cally, according to this view

there is no point in trying to establish which of M1 or C1 is true because, most likely,

neither of them is. The fundamental problem of �recurrent theory underdetermination�,

analyzed by Stanford (2006), means that neither M1 nor C1 are entitled to claim the role

of the accurate description of the deep structure of reality, since in due course a hitherto

unconceived alternative, A1, will be put forward, which will be found to be at least as

empirically adequate as M1 or C1, and which will eventually replace both of them. This

alternative will be such that �A1 plus not-M1 plus not-C1�entails leptokurtosis. Hence,

we should not put any special epistemic weight on the distinction between M1 and C1.

This negative attitude towards examining the realism of the premises that led to a
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speci�c conclusion (in the present case leptokurtosis) is translated into a negative attitude

towards the concept of explanation itself. Indeed, Friedman has stated clearly that econo-

mists should not seek explanations but only useful predictions. This attitude means that

the whole idea of �nding an explanatory model for asset returns is futile and therefore we

should focus our e¤orts towards specifying a descriptive (or in Box�s terms an empirical)

model instead. In such a case the asset returns data should be interpreted as realizations

of a �nameless stochastic process� (Spanos, 2006) while the econometrician�s objective

should be con�ned to selecting the statistical model solely in terms of �goodness-of-�t�

criteria5.

(v) Were M1 and C1 empirically motivated? Did M1 and C1 come �rst and then

were translated into their probabilistic countrparts M1P and C1P, respectively, or the

other way round? In other words, it seems quite possible that M1P and C1P were

conceived before M1 and C1, respectively, since these probabilistic assumptions are all

that was required for non classical limit theorems to work. For example, without claiming

that we can read anyone�s mind, it seems quite likely that Mandelbrot �rst realised

that what was required to produce leptokurtosis was M1P. Once he realised that, he

adopted M1P simply because �it worked mathematically�, and then translated M1P into

its nominalistic counterpart M1 at a later time. In other words, he developed a �theory�

out of a �theorem�by simply translating the conditions of the mathematical theorem

into empirical laws. In doing this, he chose among alternative �realities�the one that �t

his (unique) model rather than among alternative models the one that �t the (unique)

reality. As Nagel (1929) puts it �The history of thought is replete with attempts to lay the

universe on the procrustean bed of one of several elements of analysis" (1929, p. 169).

These considerations further support the view that both M1 and C1 emerged simply

as �assumptions that work� in accounting for leptokurtosis and as such they raise no

serious claims to realism. Of course similar criticisms may apply to Einstein�s motivation

of assumptions E1a-E1d. Were these assumptions motivated by the mathematical need to

eliminate the higher-order terms from (3)? Or did the empirical condition E1 emerge �rst

out of physical considerations which rendered �arbitrarily large particle displacements�

impossible and then E1a-E1d emerged simply as the mathematical counterparts of E1?

It must be noted that at least until the begininning of the 1980s the literature did not

adopt the aforementioned instrumentalist or neo-instrumentalist views. On the contrary,

there was a considerable e¤ort in the literature to empirically document the realism of

5To this end, Spanos (2006) de�nes a statistical model as �an internally consistent set of probabilistic
assumptions aiming to provide an idealized probabilistic description of the stochastic mechanism that
gave rise to the observed data� (2006, p. 98). In a similar vein, Lehmann (1990) suggests that the
speci�cation of a statistical model should make no use of substantive subject-matter information if a
general approach to statistical modelling is to be attained.
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C1 over M1. The reason behind this movement lies in the unfavorable or, in some cases,

detrimental implications of M1 for the theoretical paradigm prevailing at the time. Fama

(1963) identi�es the following implications: (i) EMH implies that any price changes is

the result of the reaction of rational investors to the arrival of new information. As a

result, the arbitrarily large price changes implied by M1 are caused (under EMH) by

arbitrarily large changes in the economic factors a¤ecting prices. This, in turn, implies

that under M1 economy as a whole is a much more volatile system than would be the

case under a �nite-variance alternative (such as C1). (ii) Asset markets under M1 are

inherently more risky than under a �nite-variance alternative. Fama argues that this is

the reason behind the apparent reluctance of investors to invest a larger proportion of

their wealth in speculative assets than the proportion which is actually observed. (iii)

The in�nite-variance implication of M1 means that the measures of risk that had been

adopted by the literature, which are de�ned in terms of the second moments of the returns

distribution, were clearly inappropriate and had to be replaced by new ones. This in turn

implies that the landmarks of �nance theory at the time, such as the portfolio theory

developed by Markowitz (1952) and the Capital Asset Pricing Model (CAPM) developed

by Treynor (1962), Sharpe (1964), Lintner (1965a and 1965b), Mossin (1966), etc., had

to be reformulated in terms of the new measures of risk. Moreover, the robustness

of their theoretical predictions with respect to these new measures of risk had to be

examined. In short, the implications of M1 appeared to be pervasive to almost all the

major theoretical concepts and models of the �nance theory that had been developed up to

that point. To this end, Fama (1965b) shows that under M1 one of the main implications

of portfolio theory, namely that diversi�cation reduces portfolio risk, is weakened or even

reversed. Indeed, in a Stable Paretian market with the characteristic exponent � being

less than unity, increasing diversi�cation causes the portfolio risk (as measured by the

scale parameter of the Stable Paretian distribution) to increase.

The preceding discussion suggests that if taken on face value, M1 and C1 are radically

di¤erent assumptions describing diametrically di¤erent economic systems. M1 implies

that economy as a whole is inherently riskier than it would be under the �nite-variance

alternative. In other words, M1 strikes directly to the DNA of the free economy, thus

having far-reaching ontological and epistemological consequences. On the contrary, C1

is a rather inauccuous assumption which may be thought of as expressing our inability

to conduct �controlled experiments�with �xed experimental conditions. Indeed, if the

econometrician could control the uniformity of transactions the same way as the physicist

can control the uniformity of the surrounding �uid (by keeping, for example, the temper-

ature and the viscosity of the �uid constant across her measurements) then the normality

of the returns distribution would have been obtained. To this end, it is interesting to note
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that Einstein�s result on the normality of the distribution of particle displacements no

longer holds in the case of a non-uniform �uid. Chapman (1928) demonstrates that if the

temperature, composition or any other property a¤ecting the di¤usion coe¢ cient D are

not uniform then the emerging probability density function P (x0 j x; t) is not Gaussian.
In fact, this distribution contains additional terms which in certain cases imply leptokur-

tosis.

6 Market E¢ ciency does not Require Independence: Martingale

Di¤erence

On the �nance theory front, a major contribution took place around the mid 1960s,

regarding the probabilistic properties of the returns generating process that are required

for market e¢ ciency. In particular, Samuelson (1965) and Fama (1965) advanced the

idea that independence is too strong a property for market e¢ ciency; instead, the much

weaker concept of martingale di¤erence for stock returns is all that is required for market

to be e¢ cient. As Samuelson (1973) puts it, the random walk model should be generalized

to �an unbiased pro�tless-in-the-mean fair game�(1973, p. 12). It is worth noting that

Mandelbrot (1966) expressed the same view. As already explained in some detail above,

market e¢ ciency means that prices at any time t fully re�ect all information available

at t. If some new information appears in the market at time t, then this information is

processed by the market instantaneously and accurately so that this particular piece of

information is incorporated into the (logarithm of) current price, pt, without delay. As

a result, since all the available information, �t, has already been incorporated in pt, the

best forecast, E(pt+1 j �t), for tomorrow�s price pt+1 is the current price pt itself, that is,

E(pt+1 j �t) = pt. (13)

Equation (13) constitutes the de�nition of a martingale sequence. From this, it follows

that

E(Rt+1 j �t) = E(pt+1 j �t)� pt = 0 (14)

which in turn implies that the returns form a martingale di¤erence sequence, put dif-

ferently, a fair game. Since a martingale di¤erence may exhibit temporal dependence

arising through higher moments, it is obvious that market e¢ ciency does not require

independence of the returns process, although of course, is consistent with it.

It must be noted that (14) de�nes e¢ cient markets with risk-neutral investors. If the

investors are risk averse, they would require compensations, rt and �t for the time value
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of money and the (systematic) risk, respectively. In the case that rt and �t are both

constant over time, i.e. rt = r > 0 and �t = � > 0, then (14) becomes

E(Rt+1 j �t) = r + � (15)

which in turn implies that the returns process is a submartingale di¤erence sequence.

However, if the time-invariance of rt or �t does not hold then the martingale (or sub-

martingale) di¤erence property of stock returns may also fail to hold. For example when

the risk premium, �t, is time-varying and serially correlated, then E(Rt+1 j �t) depends
on �t in a systematic way thus violating the martingale-di¤erence property of fRtg re-
gardless of whether market is e¢ cient or not. This in turn implies that the martingale-

di¤erence property is not necessary for market e¢ ciency. This is the point of departure

between the concepts of �martingale di¤erence�and �market e¢ ciency�. In other words,

the martingale di¤erence is a joint hypothesis consisting of two individual hypotheses,

namely, market e¢ ciency and a speci�c form of risk aversion. Campbell, Lo and MacKin-

lay (1997) state this problem as follows: �First, any test of e¢ ciency must assume an

equilibrium model that de�nes normal security returns. If e¢ ciency is rejected, this could

be because the market is truly ine¢ cient or because an incorrect equilibrium model has

been assumed. This joint hypothesis problem means that market e¢ ciency as such can

never be rejected.�(1997, p.24).

6.1 Distributional Implications of Non-Independence

The replacement of the concept of independence with that of martingale di¤erence in

the de�nition of market e¢ ciency had some important consequences for the future de-

velopment of the empirical modelling of stock returns. Independence was no longer a

theoretical pre-requisite for market e¢ ciency; an e¢ cient market may well be character-

ized by non-independent returns. As a result, econometricians turned their attention to

examining this possibility, namely the extent to which non-linear dependence is present

in stock returns series. Speci�cally, a martingale di¤erence sequence may well be de-

pendent, with dependence arising via higher moments. Mandelbrot as far back as 1966

had anticipated these developments by saying: �It should also be stressed that the dis-

tribution of Z(t+ T ) (future price), conditioned by known values of Z(t) (current price)

and of the Z(t0i ) (past prices), may very well depend upon the past values Z(t
0
i ): the

expectation alone is una¤ected by the Z(t0i ).� (1966, p. 244). As will become clear in

the next section, Mandelbrot�s intuition took the form of �conditional heteroscedastic�

models whose various formulations have dominated the �nancial econometrics literature

since the early 1980s.
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However, the abandonment of independence for the shake of maringale di¤erence pre-

sented some issues with respect to the distribution of stock returns. The three major sets

of results on the limiting distribution of stock returns presented above, namely Gaussian,

Stable Paretian and Mixture-of-Normals, relied on the assumption of independence of the

elementary price increments process
�
�tj
	
j�1. The question which naturally arises at this

point is whether these results are still valid when
�
�tj
	
j�1 is not independent but merely

martingale di¤erence. Despite its obvious signi�cance, this question was not dealt with

by any of the major advocates of the aforementioned three schools of thought. This is

not surprising since results on limit theorems for dependent sequences started to appear

in the probability literature only around the mid 1950s. Marsaglia (1954) proved a CLT

for m-dependent sequences with bounded variances. Billingsley (1961) proved a CLT,

tailor-made for the new �martingale�view of market e¢ ciency, for stationary and ergodic

martingale di¤erence sequences (see also Brown 1971). Ibragimov (1962) launched a new

era for CLTs, those concerning asymptotically independent stochastic sequences usually

referred to as �mixing sequences� (see, for example, Ibragimov 1975, Hall and Hayde

1980, Herrndorf 1984). These limit theorems allow
�
�tj
	
j�1 to exhibit various forms of

(weak) dependence as long as it is asymptoticly independent. The amount of dependence

in
�
�tj
	
j�1 that these limit theorems allow, depends on the moment conditions imposed

on the �tj�s. The higher the order of the required moment conditions is the �more de-

pendent��the sequence
�
�tj
	
j�1 is allowed to be. However, the extention of these CLT

results to the case of in�nite variance sequences belonging to the domain of attraction

of a stable non-Gaussian law (the Mandelbrot case) proved to be a substantially more

di¢ cult problem (see Bartkiewicz et. al. 2011).

Overall, both the theoretical considerations concerning market e¢ ciency and the prob-

ability theory results concerning convergence-in-law of dependent sequences, paved the

way for the current probabilistic interpretations of stock returns data. These interpreta-

tions view stock returns as realizations of non-linearly dependent stochastic sequences,

with this temporal dependence arising through higher conditional moments.

7 The New Era: Conditional Heteroscedasticity and Non-Linear

Dependence

The 1980s witnessed the birth of a new class of statistical models for asset returns which

were motivated by the realisation that asset return series exhibit non-linear temporal

dependence. More speci�cally, the major breakthrough of this decade was a probabilistic

re-interpretation of the volatility clustering e¤ect, �rst observed by Mandelbrot as far
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back as 1963. In this decade, the "curious behaviour of volatility" observed by previous

authors was re-interpreted in a fundamentally di¤erent way. Instead of seeing it as a

manifestation of "in�nite-variance" or "non uniformity of transactions over time", the

new view interpreted the "volatility clustering" e¤ect as temporal non-linear dependence

arising from the conditional variance. In other words, the observed data could have

been produced by a strictly (or even second-order) stationary process which exhibits

conditional heteroscedasticity. The ARCH model of Engle (1982) and its extentions (see

the GARCH(p,q) model of Bollerslev 1986, etc.) o¤ered a convenient way for describing

such processes. More speci�cally, the well-known MD-GARCH(1,1) model takes the

following form:

Rt = c+ "t (16)

"t = ht�t

h2t = a0 + a1h
2
t�1 + a2"

2
t�1; a0 > 0; a1 � 0; a2 � 0

�t � IID(0; �2�)

The process fRt � cg where fRtg is described by (16) is martingale di¤erence. Early
attempts to investigate the probabilistic properties of the process de�ned by (16) focused

mainly on (i) showing that a GARCH process is leptokurtic and (ii) establishing the

conditions under which this process is covariance stationary. The �rst results showed

that fRtg is second-order stationary if a1 + a2 < 1; in which case the unconditional

variance of Rt exists and is equal to a0=(a1 + a2): However, the estimates of these para-

meters were found to be in the viscinity of the unit root area, that is they point towards

that a1 + a2 ' 1: These estimates gave rise to the so-called Integrated GARCH process
(IGARCH), that is a process described by (16) with a1 + a2 = 1: This process is clearly

not covariance stationary since the unconditional variance is in�nite although it is still

strictly stationary and ergodic (see Nelson 1990). The near to unit root estimates of

the conditional variance revived the debate on the "in�nite-variance" issue. In fact, the

"in�nite-variance" problem, which came out of the front door with Clark�s explanation

re-emerged in the context of the IGARCH model from the rear window. Was Mandelbrot

right? Should the presence of a unit root in the conditional variance be interpreted as

supporting evidence - obtained from a brand new statistical method - for the Mandel-

brotian in�nite variance hypothesis. The answer to this question is a de�nitive "no".

Using an intermediate result of Nelson (1990), Kourogenis and Pittis (2008) showed that

the unconditional variance of an IGARCH process is "barely in�nite", meaning that all

the moments with order less than two exist! In the context of (16) with a1 + a2 = 1 the
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barely in�nite variance hypothesis is stated as E jRtj� < 1 for every 0 � � < 2: The

di¤erence between the "barely in�nite variance" IGARCH process de�ned by (16) with

a1+a2 = 1 and the independent Stable Paretian process proposed by Mandelbrot is huge

as far as their asymptotic properties are concerned. More speci�cally, as will be discussed

below, in spite of having (barely) in�nite variance, an IGARCH process is in the domain

of the attraction of the normal law.

It is worth noticing that the "objective" regularities exhibited by stock returns do

not seem to have changed in any fundamental way from the beginning of the twenti-

eth century until today. In other words, the fundamental empirical regularities namely,

leptokurtosis of empirical distributions (histograms), very low or zero sample autocor-

relation coe¢ cients, and volatility clustering seem to characterise high-frequency asset

returns data for any (su¢ ciently long) sub-sample of this period. What changed dras-

tically, was the probabilistic interpretation of these regularities. From the Paretian IID

interpetation of Mandelbrot or the Mixed-Normal IID interpretation of Clark the liter-

ature took a sharp turn in adopting the Martingale-Di¤erence GARCH (MD-GARCH)

interpretation of Engle and Bollerslev. The implications of this change for the ability of

MD-GARCH to explain (in a formal sense) the observed regularities are analyzed below.

7.1 The Explanatory Status of the MD-GARCH Model

As analyzed in the previous section, the main explanatory virtue of both Mandelbrot

and Clark�s models stems from the fact that the empirical regularities of observed asset

returns, Rt, were deduced from fundamental laws (assumptions) governing the behaviour

of the elementary returns �tj: In other words, the covering law dictating the behaviour of

Rt did not emerge inductively, that is they were not inferred from the observed properties

of Rt, but rather deductively from "�rst principles" concerning the properties of the

constituent parts of the chance mechanism at work. This is the reason why these models

were found to (partly) satisfy the conditions of the Deductive-Nomological-Probabilistic

model of explanation. On the contrary, MD-GARCH emerged from the probabilistic

interpretation of the regularities exhibited by the Rt�s themselves, without any attempt

to account for the chance mechanism at work. In other words, the birth of MD-GARCH

conforms to the "narrowly inductivist view" according to which hypotheses should be

inductively inferred from the available evidence (see, Hempel 1965 for a critique of this

view). More speci�cally, we may distinguish two questions in the context of the MD-

GARCH model, whose answers will determine the explanatory value of this model. These

are the following:

(i) What are the probabilistic assumptions, G1P, for the random variables �tj; repre-
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senting elementary returns, on the basis of which it can be deduced that the daily stock

returns process, fRtgt�1 ; where Rt =
Pnt

j=1 �tj and nt is the number of transactions for

day t, is MD-GARCH?

(ii) What are the empirical regularities, G1, exhibited by the elementary returns,

whose probabilistic interpretation may take the form of G1P?

A tentative (although circular) answer to (i) is to assume that the process
�
�tj
	
j�1

is itself GARCH. For example G1P:
�
�tj
	
j�1 � GARCH(1; 1). Concerning (ii), the

obvious empirical counterpart, G1 of G1P is: G1: "elementary returns exhibit volatility

clustering". This type of argument reminds that of Mandelbrot who demonstrated thatRt
is leptokurtic (Stable Paretian with in�nite variance) by assuming that the �tj�s are Stable

Paretian with in�nite-variance (leptokurtic). In the case of Mandelbrot, the argument

worked mainly due to the "stability-under-addition" property analyzed above. Does a

similar property hold for the case of GARCH processes? In other words, are GARCH

processes stable under addition? The answer to this question is, in general, negative

under the de�nition of a strong GARCH process. Nevertheless, under the less demanding

de�nition of a �weak GARCH�process, Drost and Nijman (1993) proved closedness under

addition. Note, however, that the results of Drost and Nijman do not cover the IGARCH

case.

The preceding discussion leads to the following conclusions:

(i) The MD-GARCHmodel may be thought of as a representation of the empirical reg-

ularity of volatility clustring observed in asset returns. This regularity entails a narrower

regularity, namely leptokurtosis of asset returns. As a result, a Deductive-Statistical

explanation of leptokurtosis is obtained in the context of MD-GARCH.

(ii) The origins of MD-GARCH are blurred. The fathers of this model did not deduce

it from some more fundamental laws concerning the behaviour of the elementary returns,

�tj: To this end, MD-GARCH lacks an account for the chance mechanism at work and

therefore it cannot provide a D-N-P explanation of leptokurtosis.

Can MD-GARCH provide D-S explanations for other empirical regularities of Rt such

as Aggregational Gaussianity and Aggregational Independence (AI), with the latter being

the tendency of returns to become time-independent as we move from higher to lower

frequencies of observation? To this end, we may distinguish the following two cases:

(i) Assume �rst that Rt represents the daily returns of a speci�c asset and fRtgt�1 is
indeed a second-order stationary process with �nite variance. In such a case the monthly

returns, R� ; being the sum of the daily returns of the corresponding month are likely

to be approximately normally distributed provided that fRtgt�1 satis�es some memory
conditions describing asymptotic independence, such as mixing conditions. To this end,

Carrasco and Chen (2002) and Francq and Zakoian (2006) showed that a second-order
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stationary GARCH process is ��mixing with exponential mixing rate. Since ��mixing
implies ��mixing, we may appeal to the CLT for strong mixing processes, �rst proved
by Ibragimov (1962), to conclude that the Rt�s are in the domain of attraction of the

normal law; hence R� is approximately normally distributed.

(ii) The case of IGARCH is substantially di¤erent. This is due to the fact that when

the unconditional variance of fRtgt�1 is in�nite, this sequence may not belong to the
domain of attraction of the normal law. As analyzed above, the in�nite-variance prob-

lem has been analyzed by Mandelbrot (1963) in the context of independent sequences.

However, Mandelbrot does not assume that the in�nite variance arises from intensive

second-order temporal dependence, such as IGARCH. Instead, he assumes that the ele-

mentary returns process belongs to the domain of attraction of a stable law with index

a; 0 < a < 2; thus excluding the normal distribution from the class of potential limit

distributions: Under IGARCH, however, we face a completely di¤erent situation: If the

sequence fRtgt�1 has �nite second moments of order �; 0 � � < 2, then the normal dis-
tribution may well be the limit of the (properly standardized) partial sums of fRtgt�1 :
This assertion stems from a limit theorem due to Bradley (1988) which states that under

some weak conditions, ��mixing sequences with barely in�nite variance belong to the
(non-normal) domain of attraction of the normal distribution. Peligrad (1990) obtains a

similar result for ��mixing processes. These results suggest that an IGARCH process
may obey the CLT. A �nal answer to this question was given very recently by Zhang

and Lin (2012). Speci�cally, Zhang and Lin proved that for a general class of GARCH

models, that covers the case of IGARCH, the central limit theorem holds.

Let us now turn our attention to Asymptotic Independence. The preceding discussion

suggests that starting with the assumption that fRtgt�1 is either a GARCH(1,1) or even
an IGARCH(1,1) process we are led to the conclusion that R� is approximately normal.

This property (AG) also has implications for the dependence properties of the sequence

fR�g��1 : More speci�cally, if leptokurtosis is a manifestation of GARCH e¤ects, then

the decrease of leptokurtosis, implied by AG, means that the GARCH e¤ects are dimin-

ishing as we move from higher to lower frequencies. Hence, Aggregational Independence

emerges. This heuristic argument was formally proved by Diebold (1988), who showed

that GARCH e¤ects dissapear as the sampling interval tends to in�nity.

To sum-up: MD-GARCH can o¤er D-S explanations for the empirical regularities

of leptokurtosis, Aggregational Gaussianity and Aggregational Independence of asset re-

turns (see also Koundouri et. al. 2012 for an extentive discussion). However, due to

the absence of any theoretical derivation of MD-GARCH from assumptions concerning

the elementary returns �tj, that is, due to the failure of this model to give any insight

into the structure and workings of the chance mechanism at work, MD-GARCH fails to
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provide explanations of the D-N-P type for the above mentioned regularities. Indeed, in

order for MD-GARCH to satisfy the conditions of D-N-P model of explanation, it should

have been derived from some kind of theory about the properties of elementary returns,

"without appeal to particular facts". Only then, an "understanding of the process" by

which returns are generated would have been achieved.

8 Conclusions

One of the most interesting problems in the philosophy of science is that of �nding

criteria that de�ne adequate statistical explanations (either of single events or empirical

regularities). In this paper we critically reviewed and analyzed the extensive literature on

asset returns, since the beginning of the twentieth century, with the aim of distinguishing

between explanatory and descriptive asset returns models. In particular, we identi�ed

those models that satisfy the criteria of explanatory adequacy, set forth by alternative

theories of scienti�c explanation. We focused primarily on explanations of empirical

regularities, rather than those of single events, since this type of explanation seems to

motivate all the statistical models of asset returns that aspire to be explanatory.

The statistical modelling of asset returns between the late 1950s and the early 1980s

was revolving around three interconnected axes. First, an empirical regularity, R, was
detected. Second, R was given a probabilistic intepretation in terms of a set, P, of
properties of a sequence fRtgt�1 of random variables, Note that during the aforementioned
period, the same empirical regularity was given alternative probabilistic interpretations.

Third, a statistical model, M; that accounts for P was suggested. Whether or not

M explains R depends on the way by which M is produced. Speci�cally, if M is

derived from a theoretical account of the chance mechanism at work, thenM satis�es the

conditions for explanatory adequacy imposed by the Deductive-Nomological-Probabilistic

model of explanation. In such a case, M is deemed to be explanatory. On the other

hand, ifM is inductively inferred from the available data, without having any theoretical

underpinnings, M is deemed to be descriptive. Nevertheless, M can still play the role

of a covering law in a D-S explanation of an empirical regularity R0, provided that R0 is

narrower than R:
Our critical examination of the origins of the statistical models of stock returns dur-

ing the aforementioned period, showed that these models, with their leading examples

being Osborne�s NIID (1959), Mandelbrot�s Stable-Paretian (1963) and Clark�s mixture-

of-normals (1973), enjoy a su¢ ciently high D-N-P explanatory status. In addition, the

explanatory value of these models is further enhanced by their ability to answer coun-

terfactual questions, that is questions about the conditions under which the empirical
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regularities (explananda) generated by these models would have been di¤erent.

A common characteristic of all the aforementioned authors - on which the explanatory

feature of their models was based - was their insistence on deriving their models for ob-

servable returns from alternative sets of primitive assumptions concerning the behaviour

of elementary returns �tj. In other words, each of these authors derived his corresponding

model from his own theoretical account of the returns generating mechanism. The main

di¤erences among the aforementioned theoretical accounts center around the properties of

elementary transactions �tj:Osborne assumed that �tj cannot be arbitrarily large and that

the number of transactions across time is constant. Mandelbrot retained the constancy of

transactions over time but he took the radical view that elementary transactions can be

arbitrarily large, a direct implication of which is that the variance of stock returns is in-

�nite. Finally, Clark in his attempt to salvage the �nite-variance hypothesis, he elevated

the hypothesis of "the substantial temporal variation of the number of transactions" as

the most fundamental one concerning the generation of stock returns. Osborne�s expla-

nation - being in the spirit of the original explanation of Bachelier - aimed at explaining

the empirical regularities of asset returns identi�ed at the time, namely "independence"

and "normality". On the other hand, both Mandelbrot and Clark focused on explaining

the "new" empirical regularity identi�ed by the beginning of the 1960s, namely leptokur-

tosis of the asset return distributions. The deductive power in all the aforementioned

explanations stemmed from limit theorems. Osborne employed the classic central limit

theorem, Mandelbrot used the limit theorems for sequences of random variables with

in�nite variance and Clark utilized limit theorems for random sums of random variables.

The realism of the aforementioned assumptions was the subject of heated debate

between the few economists who supported Mandelbrot�s explanation and those (the

majority) who supported Clark�s. The reason is that Mandelbrot�s interpretation had

unpleasant implications for almost all the major theoretical concepts and models of the

�nance theory that existed at that time. On the other hand, Clark�s interpretation

identi�ed the origins of leptokurtosis with the inability of the experimenter to conduct

controlled experiments, that is to keep the number of transactions approximately constant

over time.

The paper maps interesting analogies, developing over time, between the central issues

in the statistical modelling of asset prices and those concerning the theoretical modelling

of the Brownian motion in Physics. Our arguments focus on the fundamental works

of Bachelier (1900) and Einstein (1905) and identify, for both disciplines, how Brown-

ian motion was introduced from the corresponding sets of initial assumptions. We have

shown that despite the obvious di¤erences of the subject matters, the development of the

respective literatures share some striking similarities concerning the underlying causal
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mechanisms that generate their observed behaviors. Because these similarities were sub-

jected to common probabilistic interpretations, they gave rise to models with the same

theoretical structure.

The arrival of the 1980s witnessed new developments in the statistical modelling of

asset returns. The recognition that the E¢ cient Market Hypothesis requires returns to

be just a martingale di¤erence process, led to removal of the need for independence in

returns. In the early 1980�s, the assumption of martingale di¤erence combined with the

empirical evidence of non-constant volatility, gave rise to the conditionally heteroskedastic

models (GARCH) by Engle and Bollerslev. These models were motivated mostly by

an attempt to describe the stylized facts of assets returns, rather than an attempt to

explain their generating mechanism. The rise of GARCH models marks the prevalence of

the statistical-inductive approach over the explanatory-deductive one. Nevertheless, the

GARCH literature has made important progress towards studying theoretical properties

of these models, such as closeness under temporal aggregation and in�nite divisibility.

The introduction of the so-called �weak�GARCH models and continuous time processes

GARCH models, are examples of such progress.

In this paper we have presented and explained the motivating forces and dynamic

evolution of the scienti�c formalization of asset returns processes, since the beginning of

the 20th century. We have provided an in-depth analysis of the similarities and di¤erences,

as well as the strengths and weaknesses, between the various modelling approaches of asset

returns, both explanatory and descriptive ones. Of course, the evolution of the modelling

of asset returns does not end; the hunt for a model which comes closer to Railton�s ideal

explanatory text is indeed unended! Our detailed analysis of the history of this evolution

seems to uncover at least one source of inspiration for the newcoming models: the need for

the joint exploitation of both substantive and statistical information in the speci�cation

of these models. As Wold had insightfully remarked forty years ago, "the construction

process (of models) alternates several times between the empirical and theoretical sides,

building up the model by layer after layer of empirical and theoretical knowledge." (1969

pp. 437).
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