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Abstract 
 

In this paper, I explore how fiscal policy decisions relate to the business cycle and, building on 

that, how the effects of policy interventions may vary depending on when policy is conducted in 

the business cycle. To assess this, I estimate a small to medium-sized DSGE model with expressive 

non-linear fiscal and monetary rules using a higher-order approximation.  

The estimation procedure employed in this paper combines several existing approaches developed 

by Herbst and Schorfheide (2016), Jasra et al. (2010), Buchholz, Chopin and Jacob (2021) and 

Amisano and Tristani (2010) to trade off computation time and inference quality. The model is 

estimated using Sequential Monte Carlo techniques to estimate the posterior parameter 

distribution and particle filter techniques to estimate the likelihood. Together, the estimation 

procedure reduces the estimation from weeks to days by up to 94%, depending on the comparison 

basis.  

To assess the behaviour of the effects of fiscal policy interventions, I sample impulse responses 

conducted along the historical data. The results present time-varying policy rules in which the 

effects of fiscal shocks go through deep cycles depending on the initial conditions of the economy. 

Among the set of fiscal instruments, government consumption goes through the most persistent 

cycles in its effectiveness in stimulating output. In particular, the effects of government 

consumption stimulus are estimated to be more effective during the financial crisis and, later, the 

Covid crisis, while being less effective in periods of above steady state output like the early 2000s.  

Relating the effects of specific stimulating shocks to the initial conditions using regression 

techniques, I show that fiscal policy is more effective at stimulating output if the interest rate 

and debt are low. Furthermore, the effects of government consumption are estimated to be 

increasing in output while tax cuts are decreasing.  

As a last contribution, I explore how the behaviour of the central bank and government varies 

depending on the business cycle by analysing sampled policy rule gradients constructed on 

historical data. For the central bank, the results show that in phases of high output growth, the 

central bank puts more emphasis on controlling inflation and less on output. As the economy 

shifts into crisis, the central bank reduces its focus on inflation and shifts towards bringing output 
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growth back to target. For the fiscal side, the behaviour is heavily governed by the current debt 

level, and, for example, during the high debt periods of the 1990s, labour taxation became 

increasingly responsive to debt to stabilize the budget. This paper forms the second chapter of 

my PhD thesis completed in 2024 at Royal Holloway, University of London, which can be found 

here: https://pure.royalholloway.ac.uk/en/publications/essays-on-fiscal-rule-design-and-its-

implications 
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Fiscal policy and the business cycle: An argument for 
non-linear policy rules 
 

 

1.1  Introduction 
 

The Great Recession and, especially, the Covid crisis have led to a revitalization of the interest 

in fiscal policy. Unlike its sibling, monetary policy, the fiscal policy tool repertoire offers various 

ways of interacting with households and the economy in a way that is only constrained by the 

government's budget constraint and the government’s will to legislate. As such, policymakers 

have started increasingly stepping in during economic crises by releasing unprecedented stimuli 

packages, namely the American Recovery and Reinvestment (ARRA) in late 2009 and, recently, 

the Coronavirus Aid, Relief, and Economic Security Act (CARES Act) in 2020 in the US. At the 

same time, fiscal policy interactions are not limited to economic crises but are also frequently 

deployed during economic upturns, as in the Tax Cuts and Jobs Act in 2017. This begs the 

questions, “How effective is fiscal policy in stimulating the economy?”, “Is stimulus more or less 

effective in deep recessions?” and “How do fiscal stimulus packages affect the economy in 

upturns?”. This paper aims to study these questions by exploring the dependency of fiscal policy 

effectiveness across the business cycle in a New Keynesian framework. 

One of the main issues that arise when trying to estimate the effectiveness of fiscal policy is its 

endogeneity to the business cycle. The empirical Vector Autoregressive (VAR) literature has 

proposed various solutions from short-run restrictions and sign restrictions to the proxy structural 

VAR (SVAR) approach (see, for example, Blanchard and Perotti (2002), Mountford and Uhlig 

(2009), Mertens and Ravn (2014)). The findings in this literature differ greatly depending on the 

identification strategies, sample selection, and other factors.  

More importantly, the standard approach relies on linear models due to a variety of reasons. 

Standard linear models estimate the average effect of fiscal policy across the business cycle. 

However, it seems reasonable that the effect of a given policy intervention can vary depending on 
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the state of the economy and its participants. To illustrate this, one scenario where one would 

expect fiscal policy to be more effective than normal is the situation that caused the revival of 

interest in fiscal policy in the first place: the Zero Lower Bound (ZLB). While the ZLB is the 

most prominent case of state-dependent fiscal policy effects, others arguably exist. For example, 

other variables may include credit market imperfections such as liquidity-constrained households, 

a high public debt level, the degree of economic slack, the state of the labour market, and more.  

Studying any type of business cycle dependency requires economists to rethink the use of fully 

linear models. In essence, the conclusions that can be drawn from linear models are restricted to 

the average effect across the business cycle and do not necessarily give a full picture on the 

question: “Is stimulus more or less effective in deep recessions?”. Parker (2011, p. 708) puts this 

concisely:  

In the linearised model, the study of optimal fiscal policy is based on the answer to the 

question 'can the government raise model-based utility by conditioning government 

spending linearly on the state of the economy given that its effects are always the same?' 

and not 'can the government raise output or consumption more by increasing government 

spending in a recession than a boom and so should it?’  

To explore this question, one must move away from linear models, which are unable to capture 

these higher-order, state-dependent dynamics. In fact, both the VAR literature (see, for example, 

Auerbach and Gorodnichenko (2012), Baum and Koster (2011), Ramey and Zubairy (2018), 

among others) and the DSGE literature have started exploring how fiscal policy actions may vary 

across time and economic scenarios.  In the latter group, some of the notable studies that estimate 

state-dependent fiscal multipliers in different ways are Davig and Leeper (2010), Gomes et al. 

(2015), Sims and Wolff (2013), Sims and Wolff (2018a) and Sims and Wolff (2018b).  

To shed light on how the effects of fiscal policy depend on the business cycle I follow the non-

linear DSGE approach as in Sims and Wolff (2018a) and Amisano and Tristani (2010) and 

estimate the model on US data from 1984Q1 to 2021Q4. The core idea in Sims and Wolff (2018a) 

is that the structural equations of the DSGE entail useful information about how the effects of 

fiscal policy and fiscal policy itself relate to the measurements that characterize the business 

cycle. These types of effects cannot be captured by a first-order linearization, and therefore, I 
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rely on a higher-order approximation. I develop a New Keynesian model with a rich fiscal and 

monetary ruleset that is closely related to Christiano et al. (2005) and Sims and Wolff (2018a) 

and shares significant similarities with Smets and Wouters (2007).  

The fiscal ruleset includes several instruments such as consumption taxation, labour taxation, 

government consumption and transfers. The design of the fiscal instruments and their rules is 

based on Leeper, Plante and Traum (2010). Based on evidence for general non-linearity in the 

fiscal mechanism, as shown by Fernández-Villaverde et al. (2015), I include an alternative, non-

linear component in the fiscal rules in the form of a restricted second-order Taylor approximation. 

The final rules can transmit state dependency but also generate business cycle dependency by 

themselves. This allows the government to vary its responses to the business cycle based on the 

current economic circumstances. Choosing a particularly general ruleset allows the data to speak 

expressively about the dynamics. For example, the government consumption variable may act 

differently depending on the state of the government’s financial situation. If government debt is 

particularly high, it may be the case that government consumption expenditures have to be 

financed by relying more on tax hikes as opposed to raising debt. If the way the government acts 

changes based on the economic circumstances, then arguably, the effects of fiscal policy are likely 

to change, too. To illustrate this point, Leeper, Plante and Traum (2010) have shown that the 

adjustment speed to government debt is a fundamental determinant of the impact of fiscal policy. 

The model developed for this paper can capture endogenous changes to the adjustment speed to 

debt and thus is able to predict a much wider range of possible effects for fiscal policy.  

Furthermore, I include similar non-linearities in the monetary policy rule to partially capture the 

ZLB mechanics. Standard interest rate rules designed to capture the Zero Lower Bound mechanics 

feature a kink design, in which the interest rate is driven by a standard Taylor rule if the rate is 

above the ZLB and fixed at some low constant at the ZLB. Instead, I use a ruleset in which the 

Central Bank may vary its responsiveness to inflation and output growth in accordance with a 

second-order Taylor approximation. With the financial crisis in mind, it seems reasonable that 

the crisis caused a shift in the emphasis of the central banks from controlling inflation towards 

controlling output.  
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I estimate the model and show how the following two things depend on the initial conditions of 

the economy: the behaviour implied by fiscal policy rules and the impact of fiscal policy 

interventions on output.  

Starting off with the effects of policy interventions, allowing impulse response functions to vary 

across business cycle conditions substantially increases the uncertainty about the effects of fiscal 

policy. This may explain why the empirical VAR literature generates such a broad range of 

results. I also find that all fiscal instruments are more expansionary in low-interest rate periods 

and, overall, less expansionary in periods of high debt, similar to Fotiou et al. (2020). The effects 

of government consumption are estimated to be countercyclical to output, while tax cuts are 

procyclical. 

Combining the results on business cycle dependency of the effect of policy interventions with 

estimated business cycle conditions across US history from 1984Q1 to 2021Q4 allows me to trace 

out a timeline of the effectiveness of fiscal shocks. I find that government consumption goes 

through deep cycles, and it was substantially more effective during the financial crisis and the 

Covid crisis. 

Moving on to how fiscal policy responds to the economy, I trace out how the responsiveness of 

fiscal variables output and debt changes across the sample. I show that most gradients respond 

to the debt level and adjust to ensure financial stability. For example, during the high debt 

period, which begins in the early 1990s, transfers and labour taxation start becoming more 

responsive to debt and act more strongly to reduce the deficit. 

In a similar fashion to fiscal policy, the monetary policy rule is also allowed to vary across the 

business cycle. I show that the central bank changes its behaviour based on current output growth 

and shifts its focus in economic downturns from controlling inflation to controlling output and 

vice versa.  

The final contribution comes in the form of the empirical methods used. I estimate the higher-

order DSGE model based on particle filter techniques to capture as much of the non-linear 

dynamics as possible. Estimating non-linear DSGE models is a computationally intensive exercise 

that is the main barrier preventing economists from using these models more regularly. Therefore, 

this paper makes a particular effort to construct a sound methodology that trades off computation 
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time and the quality of inference. Overall, the estimation time is reduced from weeks to days and 

depending on the comparison basis, computation time can be reduced by up to 94%. Moreover, 

I provide detailed guidelines for potential ways to cut down estimation time that I hope will be 

useful for others and will lead to wider use of the non-linear DSGE models. 

This paper is structured as follows. Section 1.2 presents a literature review. Section 1.3 sets up 

the model and presents the dynamic equations. Section 1.4 presents the estimation procedures 

employed to estimate the model, a detailed discussion on the construction of the data series with 

a particular focus on fiscal instruments, and an overview of the computational methodology I 

used for the estimation and posterior estimates. Section 1.5 presents the results on state 

dependency. The appendix includes more detail on the second-order pruned system, estimation 

diagnostics, posterior density plots, re-estimation results for Amisano and Tristani (2010) and 

more detail on the code implementation.  

 

1.2  Literature review 
 

1.2.1  VAR and linear DSGE models 
 

Identifying and estimating the effects of fiscal policy intervention presents a series of complicated 

issues that have spawned a significant and diverse literature in macroeconomics. One of the main 

difficulties is the endogeneity problem of fiscal policy. Fiscal policy movements, as we can observe 

them, are typically not thought of as being purely exogenous.1 Instead, fiscal policy action may, 

in part, be motivated by the business cycle at the time of intervention. This poses a problem 

because it becomes difficult to disentangle the effect of a policy intervention on output from the 

effects of automatic responses of fiscal policy to the business cycle.  

The empirical VAR literature has produced a number of solution strategies to the identification 

problem, from imposing short-run restrictions, sign restrictions to the proxy SVAR approach. 

The canonical paper of Blanchard and Perotti (2002) imposes a mixture of short-run restrictions 

and outside calibration to identify exogenous movements. The key assumption is that fiscal policy 

 
1 Though it is argued that specific tax changes may be exogenous as for example in Romer and Romer (2010). 
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lags behind in its response to the business cycle. Their results show underwhelming effects of tax 

interventions, which are small on impact and fail to produce multipliers above one. Using a 

different approach, namely, sign restrictions, Mountford and Uhlig (2009) find that fiscal policy 

intervention can be highly effective with multipliers of up to three over a longer horizon. Similarly, 

Mertens and Ravn (2014) find higher fiscal multipliers in the short and medium run using a proxy 

SVAR approach that combines short-run restrictions with the narrative approach to identify 

effects.  

The VAR literature explores fiscal multipliers in linear models, which also encompass the linear 

DSGE model category. Linear models assume that the effect of policy interventions is independent 

of the state of the economy and is identical in all economic circumstances. In other words, it is 

based on a study of the average effect. To account for the fact that policy intervention can have 

varying effects depending on the state of the economy (e.g. as a result of more binding credit 

constraints) and can itself be a function of the state of the economy (e.g. fiscal policy rules that 

depend on output or debt in a non-linear fashion), the literature has moved towards more flexible 

models.  

On the VAR side, Auerbach and Gorodnichenko (2012) pioneered the use of regime-switching 

VAR models with smooth transitions. Regime-switching VAR models divide the business cycle 

into phases, and transitioning between phases may be induced by a set of economic circumstances. 

In each phase, the economy behaves according to a standard linear VAR model and is 

conditionally linear. The consequence is that fiscal policy effectiveness can vary from phase to 

phase. The results of Auerbach and Gorodnichenko (2012) established two key ideas. Firstly, they 

find that fiscal policy effectiveness does indeed vary across the phases. Secondly, they find strong 

evidence that fiscal policy behaves in the classical Keynesian sense. For expansionary phases, 

they find that the government spending multipliers are between 0 and 0.5 and in depressions or 

recessions, the multiplier is between 1 and 1.5.  

Auerbach and Gorodnichenko (2012) spawned an entire literature on state-dependent effects of 

fiscal policy in VAR models. Baum and Koster (2011), Ferraresi, Roventini and Fagiolo (2014) 

and Fazzari, Morley and Panovska (2015) all find results consistent with the classical Keynesian 

worldview in that fiscal policy seems to be more effective in phases of negative output gaps, tight 
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credit regimes and considerable economic slack, which are typically associated with economic 

downturns. However, there is also somewhat contradictive evidence provided by Ramey and 

Zubairy (2018) and Owyang, Ramey and Zubairy (2013). Both papers suggest that fiscal 

multipliers may not be as dependent on economic slack and do not generally deliver multipliers 

larger than unity.  Ramey and Zubairy (2018) argue that the difference arises from different 

assumptions in the construction of the impulse responses. In particular, for the construction of 

the impulse responses, Auerbach and Gorodnichenko (2012) assume that the economy will stay 

in the initial state for 20 quarters, while Ramey and Zubairy (2018) aim to take into account the 

average duration of each phase. The uncertainty in state-dependent effects goes even further, as 

Arin et al. (2015) suggest that tax multipliers may even be procyclical.  

More recently, in a Panel Vector Auto Regression model, Huidrom et al. (2020) find that there is 

a relationship between fiscal multipliers and fiscal positions. Their results show that fiscal 

multipliers are smaller when the fiscal positions are weak. Fotiou et al. (2020) find that the output 

effect of capital income tax cuts is dependent on government debt. Output multipliers become 

expansionary when debt is low and decrease in effectiveness when debt is high. Similarly, in a 

study focusing on debt stabilization, Fotiou (2022) finds that the initial conditions of government 

debt are determinants of the effects of fiscal policy interventions on output growth. They find 

that if government debt is low, then tax-based shocks are more productive on output growth in 

expansions than in recessions. Demirel (2021) shows that the effects of tax changes are more 

muted in periods of high unemployment.  

Similar to the VAR literature, the fiscal DSGE literature has also emphasized business cycle 

dependency of the effects of interventions. The main focus so far has been on introducing specific 

mechanisms that allow fiscal policy effects to vary. In a seminal paper, Woodford (2011) explores 

how the effectiveness of government purchases varies with the type of monetary accommodation 

by the central bank in analytically tractable New Keynesian models. The central finding of 

Woodford (2011) is that when the central bank follows its targeting rule for the interest rate, 

then fiscal policy is less effective and can only offer multipliers of up to one. However, if monetary 

policy is constrained, fiscal multipliers become significantly more effective. Similar ideas were 

developed in Christiano, Eichenbaum and Rebelo (2011). Drautzburg and Uhlig (2015) and 
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Boubaker, Khuong Nguyen and Paltalidis (2018) provide empirical evidence by estimating DSGE 

models with Zero Lower Bound constraints, and they find consistent results.  

A different mechanism that has been explored is the role of fiscal policy in heterogeneous agent 

models. While the representative household of an economy may not experience hard constraints 

in a crisis, sub-sets of the population may, for example, be credit-constrained. By definition, 

credit-constrained households are limited in their ability to borrow. What that means is that in 

a crisis, these households will not be able to borrow against future income to smooth consumption 

today in the same way as their Ricardian counterparts. Transfers, government consumption 

expenditures or tax cuts allow these households to avoid the hard credit constraints and to 

directly raise their consumption closer to the level of the Ricardian agents. Roeger and in’t Veld 

(2009) show that an increased share of non-Ricardian households can increase the effectiveness 

of fiscal policy measures drastically. Furthermore, the introduction of Ricardian and non-

Ricardian households introduces a natural source of variation for fiscal policy effectiveness across 

the business cycle, as explored in Krajewski and Szymansk (2019). They show that recessions 

can increase the share of non-Ricardian households, and as this share rises, fiscal policy becomes 

more effective. Other papers that focus on heterogenous agent models with credit constraint 

agents include Galí et al. (2007) and Kaplan and Violante (2014).  

 

1.2.2  Non-linear DSGE models 
 

Modern DSGE models are defined by a set of linear and non-linear equations. Typically, these 

models are not solvable in their general form, with the exception of simplistic models. In practice, 

one often resorts to varying levels of Taylor approximations or conditionally linear models.2 

Naturally, if one approximates a model, some of the original characteristics of the model may be 

lost. The key question here relates to how non-linear DSGE models are. As DSGE models feature 

 
2 Note that first-order Taylor approximations are the perfectly appropriate in many scenarios depending on the model, 
data and modelling framework. Further, they can have huge computational advantages when it comes to inference. On 
the question of how appropriate first-order Taylor approximations, the answer seems to be: it depends. In many smaller 
modelling frameworks there is evidence that linear models can have negligible approximations errors. However, there 
is also conflicting evidence that even in those cases. Fernández-Villaverde and Rubio-Ramirez (2005) and An and 
Schorfheide (2007) show that in small, typically, nearly linear models the effect of including higher-order terms can 
improve the fit of the models, change posterior distributions, and deliver different moment estimates.  
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linear or nearly linear equations, like the capital accumulation law, some subcomponents will 

necessarily behave approximately, if not exactly, linear. But frequently, economists introduce 

simple mechanics like multiplicative shocks and scale-dependent decision-making that can push 

a model to be more non-linear. To illustrate this, take a simple non-stochastic Euler Equation in 

a model with log utility: 

1
𝐶𝐶𝑡𝑡

= 𝛽𝛽𝑅𝑅𝑡𝑡
1

𝐶𝐶𝑡𝑡+1
. 

Euler equations define a trade-off between current, 𝐶𝐶𝑡𝑡, and future consumption, 𝐶𝐶𝑡𝑡+1, as governed 

by the real interest rate, 𝑅𝑅𝑡𝑡, and the discounting factor 𝛽𝛽. A standard question to ask would be, 

“What is the household’s response to a change in the interest rate?” Here, I focus on the partial 

equilibrium case to build intuition on the problem of curvature. The answer to this question is it 

depends. The gradient of current consumption to interest rates reveals two things: 

𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝑅𝑅𝑡𝑡

= (−1)𝛽𝛽𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡+1
. 

Firstly, the partial equilibrium effect of an increase in interest rates implies a reduction in current 

consumption as all variables are positively valued. Secondly, the size of the reduction depends on 

the level of current and future consumption. For example, if future consumption is higher, then 

the gradient is smaller. If the Agent expects to be well-off in the future, there is less of an 

advantage to save, and thus, the Euler equation implies a smaller response to changes in the 

interest rate. Further, if the Agent is well-off today, it responds much stronger to changes in the 

interest rate and reduces consumption by more than if it was not well-off. Hence, even in this 

simple model, the consumption response to the changes in the interest rate is non-linear in the 

levels of both current and future consumption.  

Sometimes, state dependency may be solved by a change of variable. For example, if one looks 

at the log of consumption and interest rate as the measure of interest, then the equation can be 

simplified as follows: 

𝜕𝜕ln (𝐶𝐶𝑡𝑡)
𝜕𝜕ln (𝑅𝑅𝑡𝑡)

= (−1). 
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However, other popular changes of variables like relative steady state deviations may not get rid 

of the state dependency without approximations: 

 𝜕𝜕𝐶𝐶�̃�𝑡

𝜕𝜕𝑅𝑅�𝑡𝑡
= (−1)𝛽𝛽𝑅𝑅�1 + 𝐶𝐶�̃�𝑡�

�1 + 𝐶𝐶�̃�𝑡�

�1 + 𝐶𝐶�̃�𝑡+1�
, 

where non-index variables correspond to steady state values and 𝑥𝑥�̃�𝑡 corresponds to the percentage 

deviation from the steady state for the variable 𝑥𝑥𝑡𝑡. So, while in some incidences, state dependency 

can be solved, in general, it cannot be solved for all variable formulations and types of non-linear 

equations. For example, considering a more complex utility function with habit persistence would 

complicate things significantly. Consequently, by including higher-order approximation terms, we 

can learn about how the representative household may vary its response to economic variables 

depending on its circumstances.  

Sims and Wolff (2018a) explore how fiscal policy effects of tax cuts may vary with business cycle 

conditions in a more general sense, where the properties of a higher-order Taylor approximation 

of the fiscal model are explored using parameter draws coming from a linear estimation of the 

same model. Sims and Wolff (2018a) focus on the co-movement between tax multipliers and the 

level of output in the business cycle. For a small and analytical example, they illustrate that 

labour tax cuts are state-dependent and, in particular, covary with the level of output and the 

level of taxation. In particular, they show that tax rate multipliers are larger when the level of 

output is higher, in contrast to classical Keynesian model predictions. For government spending, 

Sims and Wolff (2013) and Sims and Wolff (2018b) observe some variation but to a lesser degree.  

I follow the approach by Sims and Wolff (2018a) by estimating a higher-order DSGE model with 

rich fiscal and monetary policy rules. Using the estimated model, I explore how the effects of 

fiscal policy interventions relate to the business cycle conditions and how the behaviour of the 

fiscal government, as implied by the fiscal rule functions, changes depending on the business 

cycle.  

 

 



16 
 

1.3  Model description  
 

The following section describes the New Keynesian model developed in this paper. The model is 

closely related to Amisano and Tristani (2010) but also features significant similarities with Smets 

and Wouters (2007) and Leeper, Plante and Traum (2010). The section is divided into four parts. 

Sections 1.3.1 and 1.3.2 describe the federal government and how the federal government rules 

change over the business cycle. Sections 1.3.3 and 1.3.4 do the same for the monetary rule set 

included in this model. Sections 1.3.5 , 1.3.6 and 1.3.7 complete the model setup by describing 

the household and firm problem followed by closing conditions. Lastly, section 1.3.8 describes the 

prior distribution of the model parameters. 

 

1.3.1  Fiscal Policy 
 

The key component of this model is its fiscal policy mechanism. Fiscal policy has become an 

increasingly important addition to the policy toolbox in crises. This is highlighted by large 

stimulus packages during the financial crisis of 2008 and during the Covid-19 crisis. As such, 

questions like “Is fiscal policy effective in economic crises?” or “How does the current state of the 

economy (in crisis or boom) affect the utility of fiscal policy?” are crucial and ought to be 

answered.  

It is worth to note that even if the fiscal rules are linear, fiscal variables might respond to other 

variables such as consumption, output or federal debt, which in turn exhibit non-linear dynamics 

in the economy.  However, I argue that allowing for non-linear fiscal policy rules significantly 

enriches the model for several reasons. First, it is reasonable to assume that governments follow 

different rulesets in financial crises than at and around the steady state. Second, it provides for 

more flexible response options for the fiscal variables than the standard model. To explore how 

the behaviour of fiscal policy changes, I later explore how the gradients of the fiscal policy rules 

change across the observed time period. The gradients in turn tell us something about the inner 

workings of the government and how it shifts the way it responds to the economy based on the 

state of the business cycle.  
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To illustrate the usefulness of rulesets that can vary across economic conditions, I will now delve 

into some scenarios where such rules may be advantageous. The standard way to model fiscal 

response functions is to constrain the debt and output response parameters in such a way that 

the government always responds to changes in debt and GDP to stabilize the budget. In practice, 

that implies government spending that is countercyclical to output and debt. In an economic 

downturn, the government is encouraged to start spending to bring the economy back on track 

and in upturns, it reduces spending to bring debt back to the steady state. For tax rates, the 

opposite applies. While mechanically a reasonable and desirable modelling property, there is 

evidence that government spending can, at times, be procyclical to output. Ideally, a ruleset 

would be able to represent both aspects of government spending. In addition, it can be argued 

that in severe economic crises, the government may choose to ignore or soften budgetary rules to 

stimulate the economy effectively. This can more easily explain how large financial packages like 

the American Recovery and Reinvestment Act or recent Covid measures are consistent with 

stable government dynamics.  

To sum up, in order to capture the full potential range of business cycle dependency that fiscal 

policy offers, the ruleset is required to be flexible enough to vary across the cycle. In order to 

comply with this, I focus on the canonical fiscal rules design as in Leeper, Plante and Traum 

(2010). Their approach is to think about fiscal policy purely as a reaction function to its past 

values and the economy. Let 𝑧𝑧𝑡𝑡 be a vector of fiscal variables and let 𝑥𝑥𝑡𝑡be a set of variables that 

fiscal policy responds to. This may include its past values, shocks, and other economic variables. 

The way fiscal policy responds is governed by a vector-valued function 𝑓𝑓 that ought to be 

recovered. Together, fiscal policy can be defined as: 

𝑧𝑧𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡). 

In practice, the functional form of 𝑓𝑓 is unknown. Leeper, Plante and Traum (2010), for example, 

assume that 𝑓𝑓 is linear and fiscal instruments respond to past values of themselves, government 

debt and output. However, there are various ways to construct 𝑓𝑓 depending on the a priori beliefs 

of the economist. To capture the two components of state dependency, I rely on a second-order 

Taylor approximation of 𝑓𝑓 . This approximation is then restricted based on economic a-priori 

beliefs to build the final fiscal rules. Using Taylor approximations as fiscal rulesets has some 
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advantages in the DSGE application. Firstly, the higher-order terms can allow the gradients of 

the response function to change across the business cycle and, thus, capture some of the desired 

dynamics. Secondly, as the Taylor approximation is smooth and unbounded, it easily integrates 

into the DSGE solution strategies.3 A second-order Taylor approximation of 𝑓𝑓 around the steady 

state, 𝑥𝑥,̅ can be constructed as follows: 

𝑧𝑧𝑡𝑡 ≈  𝑓𝑓(𝑥𝑥)̅ + 𝐷𝐷𝑓𝑓(𝑥𝑥)̅(𝑥𝑥𝑡𝑡 − 𝑥𝑥)̅ + 1
2
𝐻𝐻𝑓𝑓(𝑥𝑥)̅ ∗ [(𝑥𝑥𝑡𝑡 − 𝑥𝑥)̅⨂(𝑥𝑥𝑡𝑡 − 𝑥𝑥)̅], 

where 𝐷𝐷𝑓𝑓(𝑥𝑥)̅ is a matrix of first-order derivatives and 𝐻𝐻𝑓𝑓(𝑥𝑥)̅ can be constructed based on the 

Hessian matrices of the individual equations. The remaining task is to restrict the different 

components of this approximation in a sensible way. Most common strategies rely on 𝐻𝐻𝑓𝑓(𝑥𝑥)̅ = 0 

in linear models and focus on 𝐷𝐷 𝑓𝑓(𝑥𝑥)̅ and 𝑓𝑓(𝑥𝑥)̅. The main feature is the option to parameterize 

𝐻𝐻𝑓𝑓(𝑥𝑥)̅ directly as it could deliver useful insights.  

The model includes the following fiscal variables in the vector 𝑧𝑧𝑡𝑡 at time 𝑡𝑡: consumption tax rate, 

𝜏𝜏𝑡𝑡
𝑐𝑐, labour tax rate, 𝜏𝜏𝑡𝑡

𝐿𝐿, government consumption, 𝐺𝐺𝑡𝑡, and transfers, 𝑍𝑍𝑡𝑡. This model excludes 

capital and, hence, capital taxation for the reason that computation time grows in a super-linear 

fashion with the number of states. The main restriction is that they respond linearly to their 

past values and shocks but may depend linearly and non-linearly on the economic variables of 

output, 𝑌𝑌𝑡𝑡,  inflation, 𝜋𝜋𝑡𝑡, productivity, 𝐴𝐴𝑡𝑡, and debt, 𝐵𝐵𝑡𝑡. The Taylor approximation can then be 

restricted to: 

𝑧𝑧𝑡𝑡 =  𝐴𝐴 + 𝐵𝐵(𝑧𝑧𝑡𝑡−1 − 𝑧𝑧)̅ + 𝐶𝐶(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅ + 1
2
𝐷𝐷 ∗ [(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅⨂(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅] + 𝐸𝐸𝑣𝑣𝑡𝑡,   𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼),  

where in this application: 

𝑧𝑧𝑡𝑡 = [𝜏𝜏�̃�𝑡
𝑐𝑐, 𝜏𝜏�̃�𝑡

𝑙𝑙, 𝑍𝑍�̃�𝑡,𝐺𝐺�̃�𝑡]′ and 𝑦𝑦𝑡𝑡 = �𝑌𝑌�̃�𝑡, 𝜋𝜋�̃�𝑡, 𝐴𝐴�̃�𝑡, 𝐵𝐵�𝑡𝑡�
′
. 

All variables are expressed in terms of steady state deviations, as indicated by the tilde. The 

matrix 𝐴𝐴 of the approximation is set to 0, and 𝑧𝑧 ̅and 𝑦𝑦 ̅can be dropped because they are zero at 

the steady state. 𝑣𝑣𝑡𝑡 is the vector of fiscal shocks. For this application, I set 𝐵𝐵 and 𝐸𝐸 to diagonal 

 
3 To illustrate this, an alternative could be a piecewise linear approach. Arguably, one could divide the fiscal system 
into two subsystems: one that is active in crisis and a standard reference system. However, this brings other 
challenges with it, like estimating which system is active when. 
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matrices with parameters along the diagonal. 𝐶𝐶 and 𝐷𝐷 are fully parameterized to capture the 

potential non-linearity of fiscal policy for all instruments but 𝜏𝜏𝑡𝑡
𝑐𝑐. Based on Leeper, Plante and 

Traum (2010), the federal consumption tax rate in the US focuses mainly on taxes for specific 

goods like gasoline or cigarettes. Because of this, the process for 𝜏𝜏𝑡𝑡
𝑐𝑐 is restricted to be linear, 

exogenous and expressed in log steady state deviations: 

𝜏𝜏�̃�𝑡
𝑐𝑐 = 𝑝𝑝𝜏𝜏𝑐𝑐𝜏𝜏�̃�𝑡−1

𝑐𝑐 + 𝜎𝜎𝜏𝜏𝑐𝑐𝑣𝑣𝑡𝑡
𝜏𝜏𝑐𝑐,     𝑣𝑣𝑡𝑡

𝜏𝜏𝑐𝑐~𝑁𝑁(0,1). 

Here, 𝑝𝑝𝜏𝜏𝑐𝑐  is an autoregressive parameter with 𝑝𝑝𝜏𝜏𝑐𝑐 ∈ (0,1) and 𝜎𝜎𝜏𝜏𝑐𝑐 is the standard deviation of 

the structural consumption taxation shock 𝑣𝑣𝑡𝑡
𝜏𝜏𝑐𝑐 . For the remaining fiscal variables, the law of 

motion can be rewritten as follows for a fiscal instrument 𝑥𝑥�̃�𝑡: 

𝑥𝑥�̃�𝑡 = 𝑝𝑝𝑥𝑥𝑥𝑥�̃�𝑡−1 + (1 − 𝑝𝑝𝑥𝑥)�𝑘𝑘𝜇𝜇𝑥𝑥,𝑌𝑌 𝑌𝑌�̃�𝑡 + 𝜇𝜇𝑥𝑥,𝜋𝜋𝜋𝜋�̃�𝑡 + 𝑘𝑘𝜇𝜇𝑥𝑥,𝐵𝐵𝐵𝐵�𝑡𝑡 + 𝜇𝜇𝑥𝑥,𝐴𝐴𝐴𝐴�̃�𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝑌𝑌 ,𝑌𝑌 𝑌𝑌�̃�𝑡
2 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝑌𝑌 𝜋𝜋�̃�𝑡𝑌𝑌�̃�𝑡 +

𝜑𝜑𝑥𝑥,𝐴𝐴,𝑌𝑌 𝑌𝑌�̃�𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝐵𝐵,𝑌𝑌 𝑌𝑌�̃�𝑡𝐵𝐵�𝑡𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝜋𝜋,𝜋𝜋𝜋𝜋2̃
𝑡𝑡 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝐴𝐴𝜋𝜋�̃�𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝐵𝐵𝜋𝜋�̃�𝑡𝐵𝐵�𝑡𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡

2 +

𝜑𝜑𝑥𝑥,𝐵𝐵,𝐴𝐴𝐵𝐵�𝑡𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝐴𝐴,𝐴𝐴𝐴𝐴𝑡𝑡
2� + 𝜎𝜎𝑥𝑥𝑣𝑣𝑡𝑡

𝑥𝑥,   𝑣𝑣𝑡𝑡
𝑥𝑥~𝑁𝑁(0,1), 𝑘𝑘 = 1 𝑖𝑖𝑓𝑓 𝑥𝑥�̃�𝑡 = 𝜏𝜏�̃�𝑡

𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = −1,    

where 𝑝𝑝𝑥𝑥 ∈ (0,1), 𝜇𝜇𝑥𝑥,𝑌𝑌 > 0 and 𝜇𝜇𝑥𝑥,𝐵𝐵 > 0. 𝜎𝜎𝑥𝑥 corresponds to the standard deviation of the 

structural fiscal shock 𝑣𝑣𝑡𝑡
𝑥𝑥. The remaining parameters are unbounded. Thus, the fiscal instruments 

are allowed to respond to the changes in economic circumstances based on a particularly rich 

ruleset. The linear response terms govern the behaviour of the fiscal rule at the steady state of 

the economy, while state dependency is introduced via the inclusion of higher-order terms. As 

the economy moves away from the steady state, the second-order terms become active and may 

change the standard behaviour of the rules implied at the steady state. 

To ensure the solvency of the federal government, it has to follow the budget constraint below. 

Based on the labour and consumption tax rates, it receives tax income on the corresponding tax 

bases of consumption expenditures, 𝐶𝐶𝑡𝑡, and total labour income, ∫ 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖1
0

. Here 𝑊𝑊𝑡𝑡(𝑖𝑖) 

corresponds to the wage received by the household from firm 𝑖𝑖  in a continuum of firms with a 

labour supply of 𝐿𝐿𝑡𝑡(𝑖𝑖). The government has expenditures in the form of transfers to households, 

𝑍𝑍𝑡𝑡, and government consumption expenditures, 𝐺𝐺𝑡𝑡. Lastly, the government gives out one-period 

bonds, 𝐵𝐵𝑡𝑡, to finance operations.  

𝜏𝜏𝑡𝑡
𝐶𝐶

1 + 𝜏𝜏𝑡𝑡
𝐶𝐶 𝐶𝐶𝑡𝑡 + 𝜏𝜏𝑡𝑡

𝐿𝐿

1 + 𝜏𝜏𝑡𝑡
𝐿𝐿

1
𝑃𝑃𝑡𝑡

� 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖
1

0
+ 𝐵𝐵𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝐺𝐺𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐵𝐵𝑡𝑡−1

𝜋𝜋𝑡𝑡
. 
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1.3.2  State dependency of the fiscal rule set 
 

To explore how fiscal policy may respond to the economy, I will now show how government 

consumption, 𝐺𝐺�̃�𝑡, responds to changes in federal debt in this ruleset as a representative case for 

the remaining variables. Differentiating the fiscal response function with respect to output, we 

get: 

𝜕𝜕𝐺𝐺�̃�𝑡

𝜕𝜕𝐵𝐵�𝑡𝑡
= (1 − 𝑝𝑝𝐺𝐺)�−𝜇𝜇𝐺𝐺,𝐵𝐵 + 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 + 𝜑𝜑𝐺𝐺,𝐴𝐴,𝐵𝐵𝐴𝐴�̃�𝑡 + 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝐵𝐵𝑌𝑌�̃�𝑡 + 𝜑𝜑𝐺𝐺,𝜋𝜋,𝐵𝐵𝜋𝜋�̃�𝑡�. 

If the economy is at its steady state, then marginal changes in the federal debt level, 𝐵𝐵�𝑡𝑡, have a 

fixed effect on 𝐺𝐺�̃�𝑡 as all other state variables are equal to zero and drop out. At the steady state, 

the responsiveness is governed by (1 − 𝑝𝑝𝐺𝐺)�−𝜇𝜇𝐺𝐺,𝐵𝐵� with 𝜇𝜇𝐺𝐺,𝐵𝐵 > 0 and 𝑝𝑝𝐺𝐺 ∈ (0,1).   That means 

that as government debt goes up, government consumption goes down to stabilize the budget. 

So, for a given set of parameters, a linear ruleset and a second-order ruleset observed at the 

steady state are indistinguishable. However, as the economy moves away from the steady state, 

the gradient 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 may change linearly in inflation, output, productivity and government debt. 

Assuming 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵 < 0 as an example, then the gradient 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is decreasing in the debt variable. As 

the federal debt level rises above the steady state, 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 becomes negative and reduces the 

overall gradient of government consumption to debt. This would, for example, be the case for a 

government that favours austerity policies. As the federal debt level increases, the government 

becomes more concerned with stabilizing the debt level and the responsiveness to debt increases 

in absolute terms. However, in low debt periods, 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 is positive and increases the gradient. 

In absolute terms, in low debt periods, government spending is then potentially less responsive 

to debt and may even become procyclical. The consequence is that the responsiveness of 

government consumption to federal debt is asymmetric. 

 

 

 



21 
 

1.3.3  Monetary policy  
 

Next to the federal government, this model also features a central bank. The central bank operates 

based on a Taylor-like rule. Like the federal government, the central bank rule also features 

second-order terms: 

𝑖𝑖𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)�𝜋𝜋̅ − 𝑒𝑒𝑎𝑎(𝛽𝛽) + 𝜓𝜓𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) + 0.5𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)2

+ 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) + 0.5𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)2� + 𝜌𝜌𝐼𝐼𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑡𝑡
𝑖𝑖,     𝑣𝑣𝑡𝑡

𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝑖𝑖
2). 

The log interest rate today, 𝑖𝑖𝑡𝑡, responds autoregressively to last quarter's log interest rate 𝑖𝑖𝑡𝑡−1 as 

governed by the AR(1) coefficient 𝜌𝜌𝐼𝐼 ∈ (0,1). Further, the rate responds to current output growth 

constructed as the difference between log output today and lagged log output, (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1), and 

the difference between log inflation, 𝜋𝜋𝑡𝑡, and the log inflation target, 𝜋𝜋𝑡𝑡
∗. To ensure stable inflation 

dynamics,  𝜓𝜓𝜋𝜋 is larger than one and 𝜓𝜓𝑦𝑦 is assumed to be larger than zero. 𝑣𝑣𝑡𝑡
𝑖𝑖 is the monetary 

policy shock. The higher-order parameters are unbounded. The log inflation target, 𝜋𝜋𝑡𝑡
∗, follows a 

simple AR(1) process: 

𝜋𝜋𝑡𝑡
∗ = (1 − 𝜌𝜌𝜋𝜋)𝜋𝜋̅ + 𝜌𝜌𝜋𝜋𝜋𝜋𝑡𝑡−1

∗ +𝑣𝑣𝑡𝑡
𝜋𝜋,     𝑣𝑣𝑡𝑡

𝜋𝜋~𝑁𝑁(0, 𝜎𝜎𝜋𝜋
2). 

Letting the inflation target vary across time gives the central bank some wiggle room with the 

way it responds to inflation. For example, if the economy faces inflationary pressure, then a 

Taylor rule dictates a rise in the interest rate. Here, the central bank may choose to relax the 

inflation target. As the inflation target increases, the overall response to inflation decreases, and 

the Taylor rule supports a slower return to the steady state. Vice versa, the central bank may 

choose to tighten its inflation target, forcing a quicker return to the steady state.  

 

1.3.4  State dependency of the Monetary rule set 
 

Similarly to the fiscal rule, the above Taylor rule behaves as a linear rule at the steady state: 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

�
𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠

= (1 − 𝜌𝜌𝐼𝐼)𝜓𝜓𝑦𝑦, 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
�
𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠

= (1 − 𝜌𝜌𝐼𝐼)𝜓𝜓𝜋𝜋. 
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However, as the economy moves away from the steady state, the second-order terms begin to 
bite: 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

= (1 − 𝜌𝜌𝐼𝐼) �𝜓𝜓𝑦𝑦 + 𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)�, 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
= (1 − 𝜌𝜌𝐼𝐼) �𝜓𝜓𝜋𝜋 + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)�. 

Both gradients respond to both output growth and inflation above target. The parameter 𝜓𝜓𝑦𝑦,𝜋𝜋 is 

shared by both gradients and, for example, governs the relationship of the gradient of the log 

interest rate to output growth with inflation above target. For example, assuming 𝜓𝜓𝑦𝑦,𝜋𝜋 > 0 

implies that the focus on inflation, as implied by the gradient 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡−𝜋𝜋𝑡𝑡

∗), increases if the output 

growth rate is above zero. That implies that the central bank reacts stronger to the inflation rate 

being above target if the economy is in a boom phase. At the same time, the responsiveness to 

output growth may increase or decrease depending on whether inflation is above or below target, 

respectively. The two parameters 𝜓𝜓𝑦𝑦,𝑦𝑦 and 𝜓𝜓𝜋𝜋,𝜋𝜋 are not shared and, hence, describe one-sided 

effects. To illustrate, if 𝜓𝜓𝑦𝑦,𝑦𝑦 > 0, then the responsiveness of the interest rate to output growth is 

increasing in output growth or vice versa. 

 

1.3.5  Household problem 
 

This model features a very standard new Keynesian household problem, which builds on the 

Amisano and Tristani (2010) model. Here, the representative household optimizes the sum of 

discounted utility subject to a budget constraint as governed by the discount factor 𝛽𝛽 ∈ (0,1). 

The target function includes both consumption utility and labour disutility in an additively 

separable form. The agent derives utility from consumption, 𝐶𝐶𝑡𝑡, which is weighted against habit-

adjusted lagged consumption, ℎ𝐶𝐶𝑡𝑡−1. The habit persistence is governed by the parameter ℎ ∈

(0,1), which is included to generate positive autocorrelation in consumption observed in the data. 

The deviation of consumption to last periods habit stock is weighted to the power of 1 − 𝛾𝛾, where 

𝛾𝛾 > 1 is a risk aversion parameter. Consequently, the utility function features diminishing 

marginal utility of consumption. The household also derives disutility from supplying labour to 

a continuum of firms. The household supplies labour, 𝐿𝐿𝑡𝑡(𝑖𝑖), in period 𝑡𝑡 to firm 𝑖𝑖. The labour 
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supply is differentiated to allow for Calvo pricing in the firm problem. In return for the labour 

supplied, the household receives a wage rate form firm 𝑖𝑖 in the form of 𝑊𝑊𝑡𝑡(𝑖𝑖). As labour is 

supplied, the household receives disutility governed by parameters 𝜒𝜒 and 𝜙𝜙. The agent integrates 

over the individual disutilities received from supplying work to all firms. The maximization 

problem is as follows: 

max
𝐶𝐶𝑡𝑡,𝐿𝐿𝑡𝑡(𝑖𝑖),𝐵𝐵𝑡𝑡

𝐸𝐸0 �𝛽𝛽𝑡𝑡
∞

𝑡𝑡=0
𝑈𝑈�𝐶𝐶𝑡𝑡,𝐶𝐶𝑡𝑡−1, 𝐿𝐿𝑡𝑡(𝑖𝑖)� , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

𝑈𝑈�𝐶𝐶𝑡𝑡,𝐶𝐶𝑡𝑡−1, 𝐿𝐿𝑡𝑡(𝑖𝑖)� = (𝐶𝐶𝑡𝑡 − ℎ𝐶𝐶𝑡𝑡−1)1−𝛾𝛾

1 − 𝛾𝛾
− � 𝜒𝜒𝐿𝐿𝑡𝑡(𝑖𝑖)𝜙𝜙

1

0
𝑎𝑎𝑖𝑖 

𝑒𝑒. 𝑡𝑡. �1 + 𝜏𝜏𝑡𝑡
𝐶𝐶

1 + 𝜏𝜏𝑡𝑡
𝐶𝐶�𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡 + 𝑃𝑃𝑡𝑡𝐵𝐵𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑍𝑍𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝑃𝑃𝑡𝑡−1𝐵𝐵𝑡𝑡−1 

+�1 − 𝜏𝜏𝑡𝑡
𝐿𝐿

1 + 𝜏𝜏𝑡𝑡
𝐿𝐿�� 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖

1

0
+ � 𝛯𝛯𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖

1

0
. 

In the maximization problem, the household faces a budget constraint. The household receives 

funds in the form of labour income from the differentiated firms, 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖), which are taxed by 

the federal government based on the labour taxation rate, 𝜏𝜏𝑡𝑡
𝐿𝐿. Further, the household receives 

government transfers, 𝑍𝑍𝑡𝑡, and residual firm profits, 𝛯𝛯𝑡𝑡(𝑖𝑖). At the same time, the agent has 

expenditures in the shape of nominal consumption expenditures, 𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡, where 𝑃𝑃𝑡𝑡 is the current 

price level. The consumption expenditures are taxed based on the consumption tax rate, 𝜏𝜏𝑡𝑡
𝐶𝐶 . 

Furthermore, the household has the ability to smooth consumption by purchasing government 

bonds, 𝑃𝑃𝑡𝑡𝐵𝐵𝑡𝑡, today. At the same time, it pays interest on last periods bond holding, 𝐼𝐼𝑡𝑡−1𝑃𝑃𝑡𝑡−1𝐵𝐵𝑡𝑡−1, 

where 𝐼𝐼𝑡𝑡−1 is last period’s interest rate. The optimization problem leads to the following first-

order conditions: 

1
1 + 𝜏𝜏𝑡𝑡

𝑙𝑙
𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)

𝑃𝑃𝑡𝑡
= 𝜒𝜒𝜙𝜙𝐿𝐿𝑡𝑡(𝑖𝑖)𝜙𝜙

𝛬𝛬𝑡𝑡
, 

𝛬𝛬𝑡𝑡 �1 + 𝜏𝜏𝑡𝑡
𝑐𝑐

1 + 𝜏𝜏𝑡𝑡
𝑐𝑐� = (𝐶𝐶𝑡𝑡 − ℎ𝐶𝐶𝑡𝑡−1)−𝛾𝛾 − 𝛽𝛽ℎ𝐸𝐸𝑡𝑡[(𝐶𝐶𝑡𝑡+1 − ℎ𝐶𝐶𝑡𝑡)−𝛾𝛾], 

1
𝐼𝐼𝑡𝑡

= 𝛽𝛽𝐸𝐸𝑡𝑡 �
𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

�. 

The first equation defines the trade-off between labour income and labour disutility, which is 

distorted by the labour taxation rate. The second equation is a standard consumption Euler 



24 
 

equation. As such, it governs the trade-off between current and future consumption. However, 

here the key statistic is habit-adjusted consumption. The equation is distorted by the 

consumption tax rate. 𝛬𝛬𝑡𝑡 corresponds to the nominally valued Lagrange multiplier of the 

constrained optimization problem. The last equation is the saving equation derived based on the 

preference for government bonds.  

 

1.3.6  Firm problem 
 

The following section lays out the firm sector of the model, which is comparable to Smets and 

Wouters (2007), Amisano and Tristani (2010) and Christiano et al. (2011). The firm sector 

includes two main components: a competitive final good firm and a continuum of intermediate 

good firms. The competitive final good firm bundles the differentiated output, 𝑌𝑌𝑡𝑡(𝑖𝑖), of all 

individual firms 𝑖𝑖 ∈ (0,1) into a single product of the economy, 𝑌𝑌𝑡𝑡. The intermediate outputs, 

𝑌𝑌𝑡𝑡(𝑖𝑖), are purchased from the continuum of intermediate firms. To do so, the final good firm uses 

a CES aggregator of the following design: 

𝑌𝑌𝑡𝑡 = �� 𝑌𝑌𝑡𝑡(𝑖𝑖)
𝜃𝜃−1

𝜃𝜃 𝑎𝑎𝑖𝑖
1

0
�

𝜃𝜃
𝜃𝜃−1

. 

𝜃𝜃 is the goods elasticity of substitution with 𝜃𝜃 > 1. Each differentiated output, 𝑌𝑌𝑡𝑡(𝑖𝑖), has a 

corresponding purchase price, 𝑃𝑃𝑡𝑡(𝑖𝑖), which the final firm takes as given. Based on this, the final 

good producers solve the following profit maximization problem: 

max
𝑌𝑌𝑡𝑡,𝑌𝑌𝑡𝑡(𝑖𝑖)

𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡 − �𝑃𝑃𝑡𝑡(𝑖𝑖)𝑌𝑌𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖
1

0

    𝑒𝑒. 𝑡𝑡.  𝑌𝑌𝑡𝑡 = �� 𝑌𝑌𝑡𝑡(𝑖𝑖)
𝜃𝜃−1

𝜃𝜃 𝑎𝑎𝑖𝑖
1

0
�

𝜃𝜃
𝜃𝜃−1

. 

Solving the first-order conditions delivers the following demand schedule for each individual good 

𝑖𝑖: 

𝑌𝑌𝑡𝑡(𝑖𝑖) = �𝑃𝑃𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

�
−𝜃𝜃

𝑌𝑌𝑡𝑡   𝑓𝑓𝑓𝑓𝑒𝑒 𝑎𝑎𝑒𝑒𝑒𝑒 𝑖𝑖. 

The demand for each good produced by firm 𝑖𝑖 is proportional to the overall market output, 𝑌𝑌𝑡𝑡, 

but individually depends on a relative price rating comparing the individual product price, 𝑃𝑃𝑡𝑡(𝑖𝑖), 
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the market price level, 𝑃𝑃𝑡𝑡, which is reweighted to the power of minus the good elasticity of 

substitution. As the individual price increases relative to the average market price, the demand 

for good 𝑖𝑖 decreases. 

The intermediate continuum of firms faces two types of problems: a basic production problem 

and a sequential pricing problem. For the production problem, the individual firms have the 

following production technology: 

𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼, 

𝑒𝑒𝑓𝑓𝑙𝑙(𝐴𝐴𝑡𝑡) = 𝜌𝜌𝐴𝐴 𝑒𝑒𝑓𝑓𝑙𝑙(𝐴𝐴𝑡𝑡−1) + 𝑣𝑣𝑡𝑡
𝐴𝐴,     𝑣𝑣𝑡𝑡

𝐴𝐴~𝑁𝑁(0, 𝜎𝜎𝐴𝐴
2 ). 

Each firm 𝑖𝑖 transforms its labour supply, 𝐿𝐿𝑡𝑡(𝑖𝑖), into to the intermediate output, 𝑌𝑌𝑡𝑡(𝑖𝑖). The 

production function features diminishing returns to labour with 𝛼𝛼 < 1. 𝐴𝐴𝑡𝑡 is a common 

production technology that is governed by an AR(1) process in log terms with 𝜌𝜌𝐴𝐴 ∈ (0,1). 𝑣𝑣𝑡𝑡
𝐴𝐴 

corresponds to the common structural technology shock. Based on this production technology, 

the individual intermediate firms choose their utilization of the labour supply by minimizing 

labour costs subject to meeting the market demand for the individual goods, 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖): 

min
𝐿𝐿𝑡𝑡(𝑖𝑖)

𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)  𝑒𝑒. 𝑡𝑡.  𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 ≥ 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖), 

with the corresponding Lagrangian set up: 

max
𝐿𝐿𝑡𝑡(𝑖𝑖)

ℒ = −𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖) + 𝜆𝜆𝑡𝑡(𝑖𝑖)(𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 − 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖)), 

where 𝜆𝜆𝑡𝑡(𝑖𝑖) is the Lagrangian multiplier. Solving the above optimization problem delivers the 

following identity: 

𝜆𝜆𝑡𝑡(𝑖𝑖) = 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)
𝛼𝛼𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 . 

In this, the Lagrangian multiplier, 𝜆𝜆𝑡𝑡(𝑖𝑖), also represents the marginal cost of increasing 

production by one unit, 𝑀𝑀𝐶𝐶𝑡𝑡(𝑖𝑖), functioning as a shadow price. After pinning down the labour 

demand of firm 𝑖𝑖, the individual firms are faced with a pricing problem. The pricing problem 

features the canonical Calvo pricing mechanism in order to introduce price stickiness. The idea 

is that not all firms are fully able to adjust prices in a given period. Instead, firms may be in a 

situation where they cannot adjust prices based on a probability, 𝜁𝜁 ∈ (0,1). As that is the case, 
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optimal pricing requires firms to look forward and figure out what the consequence of choosing a 

price today is for today and the future. As such, firms choose a price by optimizing profits across 

the expected lifetime of that price. Like in Amisano and Tristani (2010), firms are not 

permanently stuck with a given price but receive a sub-optimal price update. The chosen price 

in period 𝑡𝑡, 𝑃𝑃𝑡𝑡(𝑖𝑖), is updated using steady state inflation, 𝜋𝜋̅, and aggregate inflation, 𝑃𝑃𝑡𝑡+𝑠𝑠−1
𝑃𝑃𝑡𝑡−1

, to 

obtain a period 𝑡𝑡 + 𝑒𝑒 price. Arguably, this ensures that individual prices are updated in a 

reasonable way, even if firms are not able to update prices for significant periods of time. The 

design of the indexed prices is as follows: 

𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖) = 𝑃𝑃𝑡𝑡(𝑖𝑖)(𝜋𝜋̅)1−𝑙𝑙 �
𝑃𝑃𝑡𝑡+𝑠𝑠−1
𝑃𝑃𝑡𝑡−1

�
𝑙𝑙
, 

where 𝑒𝑒 ∈ (0,1) is an indexation parameter. The firms reoptimize the following Lagrangian to 

solve for an optimal reset price: 

𝑚𝑚𝑎𝑎𝑥𝑥
𝑃𝑃𝑡𝑡(𝑖𝑖)

ℒ = 𝐸𝐸𝑡𝑡 �𝜁𝜁𝑠𝑠𝛽𝛽𝑠𝑠
∞

𝑠𝑠=0

𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑠𝑠

𝛬𝛬𝑡𝑡+𝑠𝑠
𝛬𝛬𝑡𝑡

(𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖)𝑌𝑌𝑡𝑡+𝑠𝑠(𝑖𝑖) − 𝑇𝑇𝐶𝐶𝑡𝑡+𝑠𝑠(𝑖𝑖)). 

In 𝑒𝑒 periods from the starting point of the optimization problem, firms have a probability of 𝜁𝜁𝑠𝑠 

to be still stuck with the update reset price. In every period, firms receive a profit stream, 

𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖)𝑌𝑌𝑡𝑡+𝑠𝑠(𝑖𝑖) − 𝑇𝑇𝐶𝐶𝑡𝑡+𝑠𝑠(𝑖𝑖), where the marginal cost function is generated based on the labour 

supply choice problem above. Firms discount these future profit streams using the common 

stochastic discount factor 𝑄𝑄𝑡𝑡,𝑡𝑡+𝑠𝑠 = 𝛽𝛽𝑠𝑠 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑠𝑠

𝛬𝛬𝑡𝑡+𝑠𝑠
𝛬𝛬𝑡𝑡

. It is assumed that all firms are identical except 

for their choice of price. As that is the case, all firms set the same optimal price. Solving the 

Lagrangian first-order system and substituting in the household labour supply condition delivers 

the following set of equations as in Amisano and Tristani (2010): 

Υ2,𝑡𝑡 = 𝛼𝛼(𝜃𝜃 − 1)
𝜙𝜙𝜒𝜒𝜃𝜃

⎝
⎜⎜
⎜⎜
⎛1 − 𝜁𝜁 �𝛱𝛱����1−𝑙𝑙 𝛱𝛱𝑡𝑡−1

𝑙𝑙

𝛱𝛱𝑡𝑡
�

1−𝜃𝜃

1 − 𝜁𝜁
⎠
⎟⎟
⎟⎟
⎞

1+ 𝜃𝜃
1−𝜃𝜃

𝜙𝜙
𝑠𝑠

Υ1,𝑡𝑡, 

Υ2,𝑡𝑡 = (1 + 𝜏𝜏𝑡𝑡
𝑙𝑙)

𝐴𝐴𝑡𝑡
−𝜙𝜙

𝑠𝑠

𝛬𝛬𝑡𝑡
𝑌𝑌𝑡𝑡

𝜙𝜙
𝑠𝑠 + 𝐸𝐸𝑡𝑡𝜁𝜁𝛽𝛽

1
𝛱𝛱𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

Υ2,𝑡𝑡+1𝛱𝛱����−(1−𝑙𝑙)𝜃𝜃𝜙𝜙
𝑠𝑠𝛱𝛱𝑡𝑡

−𝜃𝜃𝜙𝜙
𝑠𝑠𝑙𝑙𝛱𝛱𝑡𝑡+1

1+𝜃𝜃𝜙𝜙
𝑠𝑠, 

Υ1,𝑡𝑡 = 𝑌𝑌𝑡𝑡 + 𝐸𝐸𝑡𝑡𝜁𝜁𝛽𝛽
1

𝜋𝜋𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

Υ1,𝑡𝑡+1𝛱𝛱����(1−𝑙𝑙)(1−𝜃𝜃)𝛱𝛱𝑡𝑡
𝑙𝑙(1−𝜃𝜃)𝛱𝛱𝑡𝑡+1

𝜃𝜃 . 
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Together these equations govern the dynamics of the Philips curve. Current inflation, 𝛱𝛱𝑡𝑡 = P𝑡𝑡
P𝑡𝑡−1

, 

is implicitly defined as a function of past and future inflation, the markup, and the marginal cost 

function. The variables Υ1,𝑡𝑡 and Υ2,𝑡𝑡 are convenient summary variables in the representation of 

the Philips curve but do not carry their own easily interpretable meaning. It is important to note 

that the equation system above is a generalization of the standard linear New Keynesian Philips 

curve. If one was to construct a first-order approximation, the canonical curve could be recovered. 

However, the system above features a more elaborate dynamic for inflation. As is the case for the 

fiscal equations, the scale of the inflation response implied by this Philips curve system depends 

on the exact business cycle conditions and may vary across the cycle.  

 

1.3.7  Model solution and set up 
 

The equations above govern the main dynamics of the DSGE together with a simple market 

clearing condition: 

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡. 

However, the market closing condition is used to substitute out consumption to avoid keeping 

track of additional variables. The model features seven purely exogenous processes for seven data 

series: 𝐴𝐴�̃�𝑡, 𝜏𝜏�̃�𝑡
𝑐𝑐, 𝜋𝜋�̃�𝑡

∗, 𝑣𝑣𝑡𝑡
𝑖𝑖, 𝑣𝑣𝑡𝑡

𝑡𝑡𝑙𝑙, 𝑣𝑣𝑡𝑡
𝑍𝑍 and 𝑣𝑣𝑡𝑡

𝐺𝐺 where variables with a tilde are measured in log steady state 

deviations. The shock processes for the interest rate and fiscal variables do not depend on other 

variables. To complete the model, identity equations are added for variables that can be both 

pre-determined and endogenous depending on the lag (for example, government debt in the last 

quarter is pre-determined today, while government debt today is endogenous today). The 

resulting state vector, 𝑥𝑥𝑡𝑡, and the endogenous vector, 𝑦𝑦𝑡𝑡, then govern the system: 

𝑥𝑥𝑡𝑡 = �𝜋𝜋�̃�𝑡−1, 𝑌𝑌�̃�𝑡−1, 𝚤𝚤�̃�𝑡−1,𝐵𝐵�𝑡𝑡−1, 𝜏𝜏�̃�𝑡
𝑙𝑙, 𝑍𝑍�̃�𝑡, 𝐺𝐺�̃�𝑡, 𝐴𝐴�̃�𝑡, 𝜏𝜏�̃�𝑡

𝑐𝑐, 𝜋𝜋�̃�𝑡
∗, 𝑣𝑣𝑡𝑡

𝑖𝑖, 𝑣𝑣𝑡𝑡
𝑡𝑡𝑙𝑙, 𝑣𝑣𝑡𝑡

𝑍𝑍, 𝑣𝑣𝑡𝑡
𝐺𝐺�

′
, 

𝑦𝑦𝑡𝑡 = � Υ�1,𝑡𝑡, Υ�2,𝑡𝑡, 𝜋𝜋�̃�𝑡, 𝚤𝚤�̃�𝑡, 𝑌𝑌�̃�𝑡,𝛬𝛬�̃�𝑡,𝐵𝐵�𝑡𝑡, 𝜏𝜏�̃�𝑡
𝑙𝑙, 𝑍𝑍�̃�𝑡, 𝐺𝐺�̃�𝑡�

′
. 
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1.3.8  Prior  
 

The following section describes the prior distribution setup for the above-described model. As 

the model is closely related to the Amisano and Tristani (2010) model, a lot of parameters, in 

particular the core economic parameters, receive similar or related priors. However, some prior 

were adjusted for empirical performance to adjust to US data and to create similarities with 

other implementations. For a full summary of the priors, see Table 1.1 and Table 1.2.  

The discount factor, 𝛽𝛽, receives a 𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎 prior with a mean of 0.995. This corresponds to an annual 

real rate of two per cent. In comparison to other papers,  𝛽𝛽 is slightly higher, reflecting a 

significant share of post-2000s observations. For the following parameters, including the coefficient 

of relative risk aversion, habit persistence, disutility of labour and goods elasticity of substitution, 

the priors are as in Amisano and Tristani (2010). The price indexation and Calvo pricing 

parameters have received adjusted 𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎 priors with a mean of 0.5 and a standard deviation of 

0.1 to be more in line with Sims and Wolff (2018a) and Smets and Wouters (2007). Further, the 

linear output growth coefficient in the interest rule receives a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.125 

and standard deviation of 0.035. In comparison to Amisano and Tristani (2010), the mean is 

slightly higher and closer to Sims and Wolff (2018a) and Smets and Wouters (2007).  

Table 1.1: Prior distributions for core model parameters 

 

para prior mean sd. para prior mean sd. 
                

 𝛽𝛽 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  0.99500 0.00100 𝑝𝑝𝜋𝜋  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000 
 𝛾𝛾 − 1   𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 1.00000 0.70000 𝜎𝜎𝜏𝜏𝑙𝑙  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.04000 0.01000 

 ℎ  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.70000 0.13800 𝜎𝜎𝜏𝜏𝑐𝑐  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.04000 0.01000 
 𝜙𝜙 − 1  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 3.00000 1.00000 𝜎𝜎𝑍𝑍  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.04000 0.01000 
 𝜃𝜃 − 1  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 7.00000 2.64500 𝜎𝜎𝐺𝐺  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.04000 0.01000 
𝜁𝜁   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.50000 0.10000 𝜎𝜎𝐵𝐵  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.04000 0.01000 
𝑙𝑙   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.50000 0.10000 𝜎𝜎𝑖𝑖  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.00400 0.00100 

 𝜓𝜓𝜋𝜋 − 1   𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 1.00000 0.18200 𝜎𝜎𝜋𝜋  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.00125 0.00056 
 𝜓𝜓𝑦𝑦   𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.12500 0.03500 𝜏𝜏𝑙𝑙  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.23000 0.00100 
𝑝𝑝𝜏𝜏𝑙𝑙    𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000 𝜏𝜏𝑐𝑐  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.01500 0.00100 
𝑝𝑝𝜏𝜏𝑐𝑐   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000 𝑠𝑠𝑔𝑔  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.06000 0.00100 
𝑝𝑝𝑍𝑍   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000 𝑠𝑠𝑏𝑏  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.50000 0.01000 
𝑝𝑝𝐺𝐺   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000 𝜋𝜋 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.00560 0.00020 
𝑝𝑝𝐵𝐵   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0.90000 0.09000         
𝑝𝑝𝑖𝑖    𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.80000 0.10000         
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Notes: The table presents the prior distributions for the core model parameters, autoregressive, shock and steady 

state parameters.  

Moving on from the core economic parameters, almost all autoregressive coefficients receive a 

standard 𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎 prior with a mean of 0.9 and standard deviation of 0.09. The choice of 𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎 prior 

ensures that the autoregressive coefficients remain lower than one, and consequently, this ensures 

sufficiently stable eigenvalues. The only exception is the interest rate rule parameter, 𝑝𝑝𝑖𝑖, which 

receives a normal prior with a mean of 0.8. The shock standard deviation parameters almost all 

receive a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.04. Two exceptions are the standard deviation for the 

interest rate and the inflation target shock, which are adjusted downwards for empirical 

performance. 

The model features several parameters that define steady state relationships. These priors are 

constructed using frequentist, long-run sample estimates. For example, priors for 𝜏𝜏𝑙𝑙 and 𝜏𝜏𝑐𝑐 are 

calibrated using the average tax rates over the sample. Further, the debt and government 

consumption to output ratios receive the same treatment. Lastly, the steady inflation rate receives 

a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.0056. 

The linear fiscal parameters govern the mechanics of the federal government at the steady state. 

At the steady state, it is assumed that fiscal rules focus on debt sustainability. That is, if the 

debt rises, then expenditures are reduced, and taxes are raised. At the same time, if output rises, 

taxes are increased, and expenditures are reduced. Therefore, the respective parameters receive 

𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 priors which, in combination with the signs in the fiscal rules, create the above-described 

behaviour. For the inflation and productivity response parameters, the choice of prior fell on an 

unassuming 𝑁𝑁𝑓𝑓𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒 prior with a mean of zero and a standard deviation of 0.1. Once the economy 

starts moving away from the steady state, the non-linear terms become active and start 

influencing the fiscal policy rules. All non-linear fiscal policy parameters receive a 𝑁𝑁𝑓𝑓𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒 priors 

with a mean of zero and a standard deviation of 0.2. The prior reflects agnostic believes about 

the interaction terms but is comparatively diffuse and can allow the data to speak for itself. The 

last group of parameters are the non-linear interest rate rule parameters, which receive a similar 

𝑁𝑁𝑓𝑓𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒 prior with a mean of zero and a standard deviation of one.  

Two parameters are fixed as in Amisano and Tristani (2010): 
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𝛼𝛼 = 0.76 𝑎𝑎𝑎𝑎𝑎𝑎 𝜒𝜒 = 0.273. 

To ensure convergence of the particle filter, the measurement equation includes measurement 

errors. Measurement errors need to be included in particle filter applications as they are used to 

smooth the likelihood and can help prevent particle impoverishment. In this application, I 

dogmatically set the measurement error to 20% of the standard deviation of the data series, as 

in Herbst and Schorfheide (2016).4 The 20% threshold is somewhat ad-hoc and based on an 

empirical necessity for the estimation to run smoothly. Directly estimating the measurement 

errors using a full covariance matrix would be a more sophisticated approach. However, the model 

estimated already features a large number of parameters and requires a significant amount of 

computational resources. 

 
4 Both linear and non-linear filters typically compare actual observations to predicted observations in 
some fashion. In the linear Kalman filter, the main requirement for this comparison to work is that the 
1-step-ahead error is non-degenerate which is typically the case if there are more structural shocks than 
data series. However, roughly speaking, as particle filters compare observations and predicted 
observations conditioned on the particles themselves, any state uncertainty that may be present in the 
Kalman filter disappears in the particle filter. Without further adjustments, the comparison between 
observations and predicted observations becomes degenerate: There may only be one particle that can 
predict the observations exactly, but it is unlikely for this particle to ever be sampled. Therefore, it is 
common practice to include measurement error as a band-aid in models estimated using particle filters. 
The measurement error ensures that there is residual uncertainty between observations and predictions 
and that the “relative fit” density is well defined.  
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Table 1.2: Response function priors 

 

Notes: This presents the prior distribution set up for the linear and non-linear fiscal rule parameters. In addition, it 

also includes the non-linear interest rate parameters. 

 

 

 

 

1.4  Estimation procedure 
 

1.4.1  Likelihood construction 
 

As the model is to be taken to the data, the likelihood of the model needs to be constructed for 

the data set. This requires constructing the different posterior model state distributions across 

time, and based on these distributions, the likelihood can be evaluated. In linear Gaussian state 

space models, the construction is comparatively straightforward as one can construct the sequence 

of distributions analytically using the Kalman filter recursions. The existence of analytical 

expressions for the individual distributions provides several advantages: fast likelihood 

evaluations, relatively robust simulations and the Kalman filter recursions are straightforward to 

para prior mean sd. 
        
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝑌𝑌 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐵𝐵 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝑍𝑍,𝑌𝑌  𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝑍𝑍,𝐵𝐵 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝑍𝑍,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝑍𝑍,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝐺𝐺 ,𝑌𝑌 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝐺𝐺 ,𝐵𝐵 𝐺𝐺𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵 0.15000 0.10000 
𝜇𝜇𝐺𝐺 ,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝐺𝐺 ,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.10000 
𝜑𝜑𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 0.20000 
𝜓𝜓𝑖𝑖,𝑗𝑗  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙 0.00000 1.00000 
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implement. The model to be estimated is non-linear as it features the second-order terms of the 

Taylor approximation of the DSGE. Therefore, likelihood evaluations using the Kalman filter are 

not appropriate as they would not inform the sampler about the contributions of the higher-order 

terms on the fit of the model. An alternative is provided by using simulation-based filters, also 

called particle filters.  

Particle filters approximate the posterior state densities using a set of sampled measurement 

points called particles. Roughly speaking, in any time period, one starts with an initial 

distribution of particles. Within the time period, the set of particles is propagated forwards using 

some transition density. The propagated particles and the implied observational vector are 

compared to actual data. This is followed by a resampling step, in which ill-fitting particles are 

discarded, and better-fitting particles are used to repopulate the set of particles. 

A variety of particle filters have been proposed with varying success depending on the exercise 

at hand. The crucial choice in particle filtering is the mechanism by which the particles are 

propagated forward. If the proposal mechanism is well-tailored, then particles are sampled, which 

explain the data well. In that case, fewer particles have to be discarded. If, however, the proposal 

mechanism struggles to produce well-fitting particles, this can lead to ill-fitting approximations 

of the likelihood via particle impoverishment. In the canonical particle filter, the bootstrap 

particle filter, the position of new particles is proposed via forwards iterating the model equations. 

As observed by Herbst and Schorfheide (2016), this can be quite inefficient depending on the 

application and can require increasingly large sample sizes to ensure accurate likelihood 

evaluations.  

One way to combat this comes by adapting the proposal distribution to current observations. If 

one can find a well-adapted density, then particles can be sampled that explain the data well, 

and consequently, a smaller share of particles has to be discarded. In this application, I rely on 

the particle filter proposed by Amisano and Tristani (2010): the conditional particle filter. The 

filter linearizes the measurement equations of the DSGE. Based on the linearized measurement 

equation, one can sample particles using a conditional Gaussian density, just like in the Kalman 

filter. Based on testing for this paper, the particles are sampled from well-adapted densities that 

only struggle with highly unlikely events like the Covid crisis. As a downside, the conditional 
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particle filter abstracts away the non-linearity generated in the measurement equation. If the 

measurement equation happens to be very non-linear, then the approximation may be quite 

inaccurate. In terms of general performance, an analysis by Yang and Wang (2015) shows that 

the conditional particle filter outperforms the canonical filter by a wide margin and consequently 

requires significantly fewer particles (40 or more times fewer particles).  

In the following, I first describe the Gomme and Klein (2011) DSGE solution system around 

which the conditional particle filter is built around. Based on this, I explore the main components 

of the Amisano and Tristani (2010) filter. The second-order approximation in the Gomme and 

Klein (2011) sense contains two transition systems: one system for the predetermined state 

variables and one system for the non-predetermined, endogenous variables. For the state variable 

vector, 𝑥𝑥𝑡𝑡+1, the system is governed by the following law of motion: 

𝑥𝑥𝑡𝑡+1 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡⨂𝑥𝑥𝑡𝑡) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼), 

where 𝑥𝑥𝑡𝑡+1 is a vector of size (𝑎𝑎𝑥𝑥 × 1). ℎ𝜎𝜎𝜎𝜎, 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑥𝑥𝑥𝑥 are matrices of sizes (𝑎𝑎𝑥𝑥 × 1), (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑥𝑥) 

and (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑥𝑥
2), respectively. 𝑣𝑣𝑡𝑡+1 is a vector of size (𝑎𝑎𝑣𝑣 × 1) and corresponds to the structural, 

identified shock vector. 𝜎𝜎  is a (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑣𝑣) matrix that governs the within-period impact of the 

structural shocks on the state vector. 𝜎𝜎 is the perturbation scalar and is typically set to one. The 

main dynamics of the DSGE are generated and propagated by the above system. The behaviour 

of the non-predetermined and endogenous variables stacked into a �𝑎𝑎𝑦𝑦 × 1� vector, 𝑦𝑦𝑡𝑡+1, is 

governed by the following system: 

𝑦𝑦𝑡𝑡+1 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑥𝑥𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡+1⨂𝑥𝑥𝑡𝑡+1), 

where 𝑙𝑙𝜎𝜎𝜎𝜎, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑥𝑥𝑥𝑥 are matrices of sizes �𝑎𝑎𝑦𝑦 × 1�, �𝑎𝑎𝑦𝑦 × 𝑎𝑎𝑦𝑦� and �𝑎𝑎𝑦𝑦 × 𝑎𝑎𝑦𝑦
2�. Notably, the 

system for 𝑦𝑦𝑡𝑡+1 does not include autoregressive components and purely depends on the 

distribution of 𝑥𝑥𝑡𝑡+1. Furthermore, one may connect the variables contained in 𝑦𝑦𝑡𝑡+1 to observables 

using a measurement equation of the following design: 

𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 = 𝐴𝐴 + 𝐵𝐵𝑦𝑦𝑡𝑡+1 + 𝑒𝑒𝑡𝑡+1,          𝑒𝑒𝑡𝑡+1~𝑁𝑁(0, Σ). 

𝐴𝐴 and 𝐵𝐵 are (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 1) and (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠) sized matrices, where 𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 is the number of observables 

and the row dimension of the vector 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 .  Further, the model includes a measurement error, 

𝑒𝑒𝑡𝑡+1, assumed to be of size (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 1). The measurement error is normally distributed with 
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covariance matrix, Σ. A convenient thing to do is to only keep track of the vector 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 , and not 

of  𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠  and 𝑦𝑦𝑡𝑡+1. The advantage of doing so comes in the form of a system reduction because 

typically 𝑎𝑎𝑦𝑦 > 𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠. This can cut down the simulation time. To do so, one can substitute out 

𝑦𝑦𝑡𝑡+1 in the following way: 

𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 = 𝐴𝐴 + 𝐵𝐵�0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑥𝑥𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡+1⨂𝑥𝑥𝑡𝑡+1)� + 𝑒𝑒𝑡𝑡+1,        

𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎

𝑜𝑜𝑜𝑜𝑠𝑠 + 𝐺𝐺𝑥𝑥
𝑜𝑜𝑜𝑜𝑠𝑠𝑥𝑥𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥

𝑜𝑜𝑜𝑜𝑠𝑠(𝑥𝑥𝑡𝑡+1⨂𝑥𝑥𝑡𝑡+1)) + 𝑒𝑒𝑡𝑡+1,       

where the new matrices 𝑙𝑙𝜎𝜎𝜎𝜎
𝑜𝑜𝑜𝑜𝑠𝑠, 𝐺𝐺𝑥𝑥

𝑜𝑜𝑜𝑜𝑠𝑠 and 𝐺𝐺𝑥𝑥𝑥𝑥
𝑜𝑜𝑜𝑜𝑠𝑠 are of sizes (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 1), (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 𝑎𝑎𝑥𝑥) and (𝑎𝑎𝑜𝑜𝑜𝑜𝑠𝑠 × 𝑎𝑎𝑥𝑥

2). 

The equation of the state vector, in addition to this new observational equation above, governs 

the system dynamics. This concludes the system description, and now I will provide a quick and 

condensed overview of the conditional particle filter as in Amisano and Tristani (2010). 

Suppose one has a particle system of 𝑁𝑁  draws from the time 𝑡𝑡 distribution of the model states 

𝑥𝑥𝑡𝑡 for a given structural parameter vector of the DSGE, 𝜃𝜃. Each particle is indexed using 𝑖𝑖 as 

𝑥𝑥𝑖𝑖,𝑡𝑡. Then, the conditional particle filter relies on the following recursion to construct the 

likelihood: 

1. Propagation step  

1.1. 𝑥𝑥𝑖𝑖,𝑡𝑡+1~𝑝𝑝(𝑥𝑥𝑡𝑡+1|𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 , 𝑥𝑥𝑖𝑖,𝑡𝑡, 𝜃𝜃) 𝑓𝑓𝑓𝑓𝑒𝑒 𝑎𝑎𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2, . . , 𝑁𝑁  

2. Weight update step 

2.1. 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1� = 𝑝𝑝(𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 |𝑥𝑥𝑖𝑖,𝑡𝑡, 𝜃𝜃) 

3. Resampling step 

3.1. Resample the draws 𝑥𝑥𝑖𝑖,𝑡𝑡+1 based on the importance weights 𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1�
∑ 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1�𝑁𝑁

𝑖𝑖=1
 

In the first step, the particles, 𝑥𝑥𝑖𝑖,𝑡𝑡, are propagated forwards using a density 𝑝𝑝 that is adapted to 

the current observational vector, 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 . In the second step, weights are constructed using a 

measurement equation and based on those weights, the particles are resampled in the last step.  

At its core, for the propagation step, the Amisano and Tristani (2010) filter relies on a 

linearization of the measurement equation around the expected value of 𝑥𝑥𝑡𝑡+1. Based on a linear 

measurement equation, one can construct a Gaussian density for 𝑥𝑥𝑡𝑡+1 conditioned on the current 

observational vector. The first step lies in the construction of the expected value of 𝑥𝑥𝑡𝑡+1: 
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𝑥𝑥�̅�𝑡+1|𝑡𝑡 ≈ �𝐸𝐸�𝑥𝑥𝑖𝑖,𝑡𝑡+1|𝑥𝑥𝑖𝑖,𝑡𝑡�
𝑁𝑁

𝑖𝑖=1
= �𝑥𝑥𝑖𝑖,𝑡𝑡+1|𝑡𝑡

𝑁𝑁

𝑖𝑖=1
= �0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝜎𝜎𝑥𝑥𝑖𝑖,𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝜎𝜎𝜎𝜎�𝑥𝑥𝑖𝑖,𝑡𝑡⨂𝑥𝑥𝑖𝑖,𝑡𝑡�

𝑁𝑁

𝑖𝑖=1
. 

The expectation 𝑥𝑥�̅�𝑡+1|𝑡𝑡 can be approximated via forwards iterating the individual particles 𝑥𝑥𝑖𝑖,𝑡𝑡 

for all 𝑁𝑁  draws and setting the structural shocks to zero. The result is individual one-step-ahead 

predictions for the individual particles,𝐸𝐸�𝑥𝑥𝑖𝑖,𝑡𝑡+1|𝑥𝑥𝑖𝑖,𝑡𝑡�. 𝑥𝑥�̅�𝑡+1|𝑡𝑡 is obtained via averaging across the 

particle swarm. The second step is to generate a linearization of the measurement equation 

around 𝑥𝑥�̅�𝑡+1|𝑡𝑡 using the vector 𝑥𝑥𝑡𝑡+1|𝑡𝑡. The linearization is of the format: 

𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 ≈ 𝑦𝑦𝑡𝑡+1|𝑡𝑡

𝑜𝑜𝑜𝑜𝑠𝑠 + 𝑤𝑤𝑡𝑡+1|𝑡𝑡, 

where the actual observable vector, 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 , is approximately equal to some mean component, 𝑦𝑦𝑡𝑡+1|𝑡𝑡

𝑜𝑜𝑜𝑜𝑠𝑠 , 

and a new adapted measurement error, 𝑤𝑤𝑡𝑡+1|𝑡𝑡. The component 𝑦𝑦𝑡𝑡+1|𝑡𝑡
𝑜𝑜𝑜𝑜𝑠𝑠  is constructed as follows: 

𝑦𝑦𝑡𝑡+1|𝑡𝑡
𝑜𝑜𝑜𝑜𝑠𝑠 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎

𝑜𝑜𝑜𝑜𝑠𝑠 + (𝐺𝐺𝑥𝑥
𝑜𝑜𝑜𝑜𝑠𝑠 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥

𝑜𝑜𝑜𝑜𝑠𝑠𝐷𝐷�����𝑘𝑘) 𝑥𝑥𝑡𝑡+1|𝑡𝑡 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥
𝑜𝑜𝑜𝑜𝑠𝑠(�𝑥𝑥𝑡𝑡+1|𝑡𝑡⨂𝑥𝑥𝑡𝑡+1|𝑡𝑡� − 𝐷𝐷�����𝑘𝑘𝑥𝑥�̅�𝑡+1|𝑡𝑡),

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝐷𝐷�����𝑘𝑘 = �𝜕𝜕(𝑥𝑥𝑡𝑡+1⨂𝑥𝑥𝑡𝑡+1)
𝜕𝜕𝑥𝑥𝑡𝑡+1

�
𝑥𝑥𝑡𝑡+1=𝑥𝑥����𝑡𝑡+1|𝑡𝑡

. 

Furthermore, 𝑤𝑤𝑡𝑡+1|𝑡𝑡 is constructed as:  

𝑤𝑤𝑡𝑡+1|𝑡𝑡 = 𝜎𝜎𝐺𝐺�̅�𝑥𝜎𝜎𝑣𝑣𝑡𝑡+1 + 𝑤𝑤𝑡𝑡+1,

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑡𝑡+1|𝑡𝑡~𝑁𝑁�0, 𝜎𝜎2𝐺𝐺�̅�𝑥𝜎𝜎𝜎𝜎′𝐺𝐺�̅�𝑥′ +  Σ� 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺�̅�𝑥 = 𝐺𝐺𝑥𝑥 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥
𝑛𝑛 𝐷𝐷�����𝑘𝑘. 

The approximated measurement equation has two important features: linearity and normality. 

Based on these two properties, one can construct a density for  𝑥𝑥𝑡𝑡+1 conditioned on 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 : 

𝑝𝑝(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 , 𝜃𝜃) ≈ 𝑁𝑁(𝐸𝐸(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡+1

𝑜𝑜𝑜𝑜𝑠𝑠 , 𝜃𝜃), 𝑉𝑉 (𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡+1
𝑜𝑜𝑜𝑜𝑠𝑠 , 𝜃𝜃)) 

This density can be used to effectively sample particles for 𝑥𝑥𝑡𝑡+1 for the propagation step of the 

filter. In an approximate step, the weights, 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1�, are constructed using the linearized 

measurement equation. This concludes the summary of the main components of the filter. 

However, there are some nuances for which I refer the reader to Amisano and Tristani (2010) for 

a more detailed and complete discussion. For the simulation, I utilize an initialization strategy 

based on Guerrieri and Iacoviello (2015). They use the first 20 observations as burn-in using a 

simpler filter to ensure that their non-linear filter starts from a well-adapted initial distribution. 

I follow this approach and use the Kalman filter for the first 20 observations. The number of 

particles for the conditional particle filter is set to 10,000. 
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1.4.2  Posterior simulation 
 

Particle filters belong to a more general category of Sequential Monte Carlo (SMC) sampler. To 

be precise, particle filters are SMC samplers that are designed for state filtering and estimation. 

However, SMC samplers may also be applied to the estimation of Bayesian posterior distributions 

in the Del Moral, Doucet and Jasra (2006) sense. The following section first details why SMC 

samplers were chosen for this estimation and then describes the specific sampler used in this 

paper.  

SMC samplers have several advantages over other Bayesian simulation strategies typically used 

in the DSGE literature, specifically Markov Chain Monte Carlo techniques. Firstly, unlike Markov 

Chain samplers like the Random Walk Metropolis Hasting algorithm, basic SMC samplers can 

make effective use of multi-core CPUs. In the basic Random Walk Metropolis Hasting algorithm, 

every single likelihood has to be evaluated in sequence, while for SMC samplers, all likelihoods 

in the current particle system can be evaluated at the same time. For a fixed number of likelihood 

evaluations, this can provide immense computational gains inversely proportional to the number 

of cores in a CPU. Secondly, SMC samplers can be designed in a very adaptive manner and can, 

therefore, face a difficult trade-off between estimation accuracy and estimation time in an effective 

way. For a brilliant implementation of adaptive SMC samplers, see Buchholz, Chopin and Jacob 

(2021), which has significantly informed the SMC design. 

Moving on to the design of the SMC algorithm, SMC procedures divide the posterior estimation 

problem into a sequence of individually simpler estimation problems. To do so, one constructs a 

series that starts at an initial target density 𝜋𝜋1(𝜃𝜃) for the structural parameter vector 𝜃𝜃. The 

main quality of  𝜋𝜋1(𝜃𝜃) is that it can be well approximated using importance sampling based on 

some initial proposal distribution, 𝜂𝜂1(𝜃𝜃),  used to populate the particle system. Once 𝜋𝜋1(𝜃𝜃) has 

been approximated, the current sample can be used to approximate the next density in the series, 

𝜋𝜋2(𝜃𝜃). Ideally, if 𝜋𝜋1(𝜃𝜃) and 𝜋𝜋2(𝜃𝜃) can be chosen in such a way that they represent fairly similar 

densities, then the second approximation may also succeed. After the approximation, one can 

apply Markov Chain Monte Carlo steps to the individual particles to adapt them to 𝜋𝜋2(𝜃𝜃) and 
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to reintroduce variation lost in the sampling step. Iterating the two steps of importance sampling 

and adaptation allows for the construction of a series of distributions, {𝜋𝜋𝑖𝑖(𝜃𝜃)}𝑖𝑖=1
𝑝𝑝 , from 𝜋𝜋1(𝜃𝜃) to 

𝜋𝜋𝑝𝑝(𝜃𝜃) where 𝜋𝜋𝑝𝑝(𝜃𝜃) is the distribution of interest. In DSGE modelling, 𝜋𝜋𝑝𝑝(𝜃𝜃) that would be the 

posterior parameter distribution. SMC sampling has been utilized widely for parameter 

estimation in various models but has also been previously used in the DSGE literature in Herbst 

and Schorfheide (2016) and Creal (2007). 

To construct an SMC algorithm, the crucial choice is the sequence of distributions. Based on the 

proposal in Del Moral, Doucet and Jasra (2006), I choose the following type of path: 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ 𝜋𝜋(𝜃𝜃)𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛, 

with 0 ≤ 𝜙𝜙1 < ⋯ < 𝜙𝜙𝑝𝑝 = 1. In the initial period one, the 𝑁𝑁  particles {𝜃𝜃1
𝑗𝑗} are initialized based 

on some analytically tractable density 𝜇𝜇1(𝜃𝜃) so that 𝜂𝜂1(𝜃𝜃) = 𝜇𝜇1(𝜃𝜃). Further, for 𝜙𝜙1 = 0 the initial 

target density is just 𝜇𝜇1(𝜃𝜃). As 𝜙𝜙 increases, the sampler moves from the convenient 𝜇𝜇1(𝜃𝜃) to the 

posterior, 𝜋𝜋(𝜃𝜃), as the weight of the initial proposal distribution decreases. This type of approach 

includes the Herbst and Schorfheide (2016) approach, which set 𝜇𝜇1(𝜃𝜃) to the prior distribution 

of 𝜃𝜃, 𝑝𝑝(𝜃𝜃). In that case: 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝑝𝑝(𝜃𝜃)1−𝜙𝜙𝑛𝑛 = 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝜙𝜙𝑛𝑛𝑝𝑝(𝜃𝜃), 

where information about the likelihood, 𝑝𝑝(𝑦𝑦|𝜃𝜃), is added slowly to the prior. In this application, 

I follow the approach in Creal (2007) to use an initial distribution that approximates the target 

density, 𝜋𝜋(𝜃𝜃): 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛. 

This type of strategy is frequently applied to Random Walk Metropolis-Hastings samplers, which 

use an approximated posterior as the proposal distribution. Furthermore, it has some convincing 

advantages. While priors for structural economic parameters are informative about coverage of 

the parameters, in a lot of applications, one may find that prior and posterior beliefs for 

parameters differ substantially. In that case, the sampler spends significant time transversing vast 

low-density areas until it reaches an area of high likelihood. This is inconvenient both from a 

computational perspective and from an inference perspective. If one has an approximation of the 

posterior available, one can ensure that most of the likelihood evaluations take place in high-
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density areas. Ideally, if the approximation was perfect, 𝜇𝜇1(𝜃𝜃) = 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃), then one could 

directly sample from the posterior. In reality, the sampler will correct a mismatch between the 

approximated posterior and the actual posterior. In this application, 𝜇𝜇1(𝜃𝜃) is constructed by 

conducting 20 mode searches on an approximated posterior based on an estimation using the 

unscented Kalman filter. Likelihood evaluations using the unscented Kalman filter cost a fraction 

of the time and, therefore, are a convenient choice for the construction of 𝜇𝜇1(𝜃𝜃). 𝜇𝜇1(𝜃𝜃) is then 

constructed as a Gaussian centred at the mode with a diagonal approximation of the inverse 

Hessian scaled by factor two. The rescaling is done to ensure sufficient coverage.  

The incremental weights of the SMC sampler can be defined as follows:  

�̃�𝑤𝑛𝑛
𝑗𝑗 �𝜃𝜃𝑛𝑛

𝑗𝑗 , 𝜃𝜃𝑛𝑛−1
𝑗𝑗 � = (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑛𝑛−1

𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑛𝑛−1
𝑗𝑗 �)𝜙𝜙𝑛𝑛−𝜙𝜙𝑛𝑛−1𝜇𝜇1(𝜃𝜃𝑛𝑛−1

𝑗𝑗 )𝜙𝜙𝑛𝑛−1−𝜙𝜙𝑛𝑛 ∝
𝜋𝜋𝑛𝑛�𝜃𝜃𝑛𝑛−1

𝑗𝑗 �
𝜋𝜋𝑛𝑛−1�𝜃𝜃𝑛𝑛−1

𝑗𝑗 �
, 

where 𝜃𝜃𝑛𝑛−1
𝑗𝑗  is the draw 𝑗𝑗 of 𝜃𝜃 in iteration 𝑎𝑎 − 1 and �̃�𝑤𝑛𝑛

𝑗𝑗  is the incremental weight in period 𝑎𝑎. 

The incremental weights can be defined as above due to the choice of target densities and as I 

utilize invariant MCMC steps for the mutation step. Furthermore, based on the incremental 

weights, the normalized importance weights can be constructed as follows: 

𝑊𝑊𝑛𝑛
𝑗𝑗 =

𝑊𝑊𝑛𝑛−1
𝑗𝑗 �̃�𝑤𝑛𝑛

𝑗𝑗

∑ 𝑊𝑊𝑛𝑛−1
𝑗𝑗 �̃�𝑤𝑛𝑛

𝑗𝑗𝑁𝑁
𝑗𝑗=1

 ,   

where 𝑊𝑊𝑛𝑛
𝑗𝑗 is the normalized importance weights for particle 𝑗𝑗 in iteration 𝑎𝑎. To finalise the 

sequence of distribution, one has to choose the sequence of temperatures governed by 𝜙𝜙𝑛𝑛. A good 

tempering schedule ensures that all bridge distributions are always close enough to provide 

effective approximations. However, equally important is that the bridge distributions are not too 

close to each other. If they are too similar, the algorithm will spend significant time 

approximating perhaps virtually indistinguishable densities. Designing a good schedule is not a 

trivial problem and could require expensive test runs to get the tempering schedule right. For 

this application, I developed code for an adaptive tempering procedure created by Jasra et al. 

(2010). Jasra et al. (2010) rely on the effective sample size (𝐸𝐸𝐸𝐸𝐸𝐸) to adaptively construct the 

tempering schedule for the coming temperature. The 𝐸𝐸𝐸𝐸𝐸𝐸 criterion is a measure of the current 

diversity and approximation accuracy of the particle system. Over time, as the SMC algorithm 

generates samples from one bridge density to the next, the effective sample size typically decreases 
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as some particles may have degenerating weights. For example, some draws of the prior may be 

located in areas of the parameter space that hold little weight in the intermediate density 𝜋𝜋𝑛𝑛(𝜃𝜃). 

As a result, without resampling, one expects the 𝐸𝐸𝐸𝐸𝐸𝐸 to decrease over the iterations. Jasra et al. 

(2010) propose to control the decay of the 𝐸𝐸𝐸𝐸𝐸𝐸 based on some user-chosen rate. To implement 

this, the 𝐸𝐸𝐸𝐸𝐸𝐸 is calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊𝑛𝑛

𝑗𝑗(𝜙𝜙𝑛𝑛)�
2
 𝑁𝑁

𝑗𝑗=1

. 

Crucially, the 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) in iteration 𝑎𝑎 varies only by 𝜙𝜙𝑛𝑛 as previous weights and log-likelihood 

values are fixed in the calculation. Based on this, a decay criterion can be chosen and minimized: 

𝑎𝑎𝑎𝑎𝑒𝑒(𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) − 𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛−1) = 0. 

Conceptually, the above criterion satisfies that the current effective sample size in iteration 𝑎𝑎 

does not decay too much or too little from 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛−1 as governed by 𝛼𝛼. Appropriate choices of 𝛼𝛼 

can ensure a gradual, consistent and plannable decay of the 𝐸𝐸𝐸𝐸𝐸𝐸. To ensure that the 𝐸𝐸𝐸𝐸𝐸𝐸 does 

not decay to zero and accurate approximations are maintained, the particle system is resampled 

using systematic resampling whenever the 𝐸𝐸𝐸𝐸𝐸𝐸 is less than half of the total sample size, 𝑁𝑁 . As 

a result, the 𝐸𝐸𝐸𝐸𝐸𝐸 goes through a repeated pattern of decay governed by 𝛼𝛼, which is followed by 

upward jumps close to the total sample size. The path of 𝜙𝜙𝑛𝑛 going from zero to one arguably 

depends on the complexity of the density. Within a given decay phase, the path is typically linear. 

To conclude, the crucial advantage of Jasra et al. (2010) is that the tempering schedule is neither 

too fast nor too slow and avoids manual calibration based on expensive test runs. Algorithm 1 

summarizes the adaptive tempering procedure in a quasi-code format. 



40 
 

Algorithm 1: Quasi Code for the Jasra et al. (2010) adaptive tempering strategy applied to SMC sampling. 

The last component of the SMC sampler is the mutation step. While the prior draws might offer 

sufficient coverage over the posterior, it is beneficial to adapt the particle system to the current 

density, 𝜋𝜋𝑛𝑛(𝜃𝜃), to reintroduce variation that is lost during the resampling steps. Following Herbst 

and Schorfheide (2016), I implement a blocked Metropolis-Hastings sampler using a mixture 

proposal density. The Metropolis-Hastings algorithm is a particularly important choice because 

the sampler leaves the particles invariant. However, Metropolis-Hastings samplers do not scale 

well with increasing parameter numbers. As the number of parameters increases, the rate of 

exploration through the posterior decreases (e.g., see Neal (2012)). If one relies on blocking and 

mutates a sub-vector of 𝜃𝜃, this implies considerably higher acceptance rates. The blocked mixture 

proposals, 𝑣𝑣𝑛𝑛,𝑜𝑜
𝑗𝑗 , for block, 𝑎𝑎, of particle 𝑗𝑗 in iteration 𝑎𝑎 of the SMC sampler then comes from the 

following density: 

𝑣𝑣𝑛𝑛,𝑜𝑜
𝑗𝑗 |(𝜃𝜃𝑛𝑛,𝑜𝑜

𝑗𝑗 , 𝜃𝜃�̅�𝑛,𝑜𝑜,𝛴𝛴𝑛𝑛,𝑜𝑜)~𝑤𝑤𝑁𝑁(𝜃𝜃𝑛𝑛,𝑜𝑜
𝑗𝑗 , 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑜𝑜) + 1 − 𝑤𝑤

2
𝑁𝑁(𝜃𝜃𝑛𝑛,𝑜𝑜

𝑗𝑗 , 𝑐𝑐2𝑎𝑎𝑖𝑖𝑎𝑎𝑙𝑙(𝛴𝛴𝑛𝑛,𝑜𝑜)) 

+ 1 − 𝑤𝑤
2

𝑁𝑁�𝜃𝜃�̅�𝑛,𝑜𝑜, 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑜𝑜�, 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: 𝐵𝐵𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝑡𝑡𝑁𝑁𝐵𝐵 𝐵𝐵𝑎𝑎𝐵𝐵𝑝𝑝𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝑔𝑔() 

1. 𝐼𝐼𝑎𝑎𝑝𝑝𝑡𝑡𝐵𝐵: 
 𝜙𝜙𝑎𝑎−1 =  𝐵𝐵𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝑡𝑡𝑁𝑁𝐵𝐵 𝐵𝐵𝐵𝐵 𝑎𝑎 − 1 
 𝑊𝑊𝑎𝑎−1

𝑖𝑖 = 𝑎𝑎𝑁𝑁𝑁𝑁𝐺𝐺𝐵𝐵𝑙𝑙𝑖𝑖𝑛𝑛𝐵𝐵𝑎𝑎 𝑤𝑤𝐵𝐵𝑖𝑖𝑔𝑔ℎ𝐵𝐵𝑠𝑠 𝐵𝐵𝐵𝐵 𝑎𝑎 − 1 
 𝑝𝑝�𝑌𝑌�𝜃𝜃𝑎𝑎−1

𝑖𝑖 � = 𝑙𝑙𝑁𝑁𝑔𝑔𝑙𝑙𝑖𝑖𝑘𝑘𝐵𝐵𝑙𝑙𝑖𝑖ℎ𝑁𝑁𝑁𝑁𝑎𝑎 𝑣𝑣𝐵𝐵𝑙𝑙𝑡𝑡𝐵𝐵𝑠𝑠 
 𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 � = 𝑝𝑝𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁 𝑙𝑙𝑖𝑖𝑘𝑘𝐵𝐵𝑙𝑙𝑖𝑖ℎ𝑁𝑁𝑁𝑁𝑎𝑎 
 𝜇𝜇1�𝜃𝜃𝑎𝑎−1

𝑗𝑗 � = 𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑠𝑠𝐵𝐵𝑙𝑙 𝑎𝑎𝐵𝐵𝑎𝑎𝑠𝑠𝑖𝑖𝐵𝐵𝑦𝑦 𝑣𝑣𝐵𝐵𝑙𝑙𝑡𝑡𝐵𝐵𝑠𝑠 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝑐𝑐𝐵𝐵𝑖𝑖𝑣𝑣𝐵𝐵 𝑠𝑠𝐵𝐵𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵 𝑠𝑠𝑖𝑖𝑛𝑛𝐵𝐵 𝐵𝐵𝐵𝐵 𝑎𝑎 − 1  
 𝛼𝛼 = 𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁 𝑐𝑐𝑁𝑁𝑎𝑎𝐵𝐵𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑔𝑔 𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵 𝑎𝑎𝐵𝐵𝑔𝑔𝐵𝐵𝑎𝑎𝐵𝐵𝑁𝑁𝐵𝐵𝑐𝑐𝑦𝑦 

2. 𝐼𝐼𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖𝐵𝐵𝑙𝑙𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎: 

 𝑎𝑎𝐵𝐵𝐸𝐸𝑖𝑖𝑎𝑎𝐵𝐵 𝑤𝑤𝑎𝑎𝑖𝑖 =  (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑎𝑎−1
𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 �)𝜙𝜙𝑎𝑎−𝜙𝜙𝑎𝑎−1𝜇𝜇1(𝜃𝜃𝑎𝑎−1
𝑗𝑗 )𝜙𝜙𝑎𝑎−1−𝜙𝜙𝑎𝑎  𝐵𝐵𝑎𝑎𝑎𝑎 𝑊𝑊𝑎𝑎

𝑖𝑖 = 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖

∑ 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

 𝑎𝑎𝐵𝐵𝐸𝐸𝑖𝑖𝑎𝑎𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(𝜙𝜙𝑎𝑎) = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊𝑎𝑎

𝑖𝑖 �
2

 𝑁𝑁
𝑖𝑖=1

  

3. 𝑞𝑞𝑡𝑡𝐵𝐵𝑠𝑠𝑖𝑖 𝑐𝑐𝑁𝑁𝑎𝑎𝐵𝐵: 
 𝑖𝑖𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(1) ≥ 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1 

 𝜙𝜙𝑎𝑎 = 1 
 𝐵𝐵𝑙𝑙𝑠𝑠𝐵𝐵 

 𝑠𝑠𝑁𝑁𝑙𝑙𝑣𝑣𝐵𝐵 𝐵𝐵𝑏𝑏𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(𝜙𝜙𝑎𝑎) − 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1) = 0  

𝐵𝐵𝑎𝑎𝑎𝑎 
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where 𝛴𝛴𝑛𝑛,𝑜𝑜 is the particle approximation of the covariance matrix of 𝜃𝜃𝑛𝑛,𝑜𝑜, 𝜃𝜃�̅�𝑛,𝑜𝑜 is the mean of the 

sub-vector, and 𝑐𝑐 is the scaling factor of the proposal. The scaling factor is chosen based on a 

targeting function of the Herbst and Schorfheide (2016) design. This density has three mixture 

components. Firstly, it offers a standard random walk proposal 𝑁𝑁(𝜃𝜃𝑛𝑛,𝑜𝑜
𝑗𝑗 , 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑜𝑜) using the full 

covariance matrix with probability 𝑤𝑤. Secondly, it has a further random walk proposal 

𝑁𝑁(𝜃𝜃𝑛𝑛,𝑜𝑜
𝑗𝑗 , 𝑐𝑐2𝑎𝑎𝑖𝑖𝑎𝑎𝑙𝑙(𝛴𝛴𝑛𝑛,𝑜𝑜)) with probability 1−𝑤𝑤

2 , where correlations between parameters are ignored. 

Lastly, it features an independent proposal 𝑁𝑁(𝜃𝜃�̅�𝑛,𝑜𝑜, 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑜𝑜) with 𝑝𝑝 = 1−𝑤𝑤
2  where samples are 

generated at the mean. In practice, for DSGE models, it is typically the case that parameters in 

𝜃𝜃 are constrained. In this case, a normal approximation as above working with 𝜃𝜃 may generate 

proposals out of bounds that will be rejected immediately. Here, I implement a strategy based 

on Amisano and Tristani (2010) based on working on a transformed parameter vector in an 

unconstrained space. For gamma-distributed parameters, the 𝑒𝑒𝑓𝑓𝑙𝑙 transformation is applied. For 

Beta distributed parameters, an inverse sigmoid transformation is selected, and normal 

parameters are not transformed. To ensure that the sampler still works, the acceptance step of 

the Metropolis-Hastings algorithm is adjusted using the determinant of the Jacobian of the 

transformation. 

The above described algorithm requires a number of tuning parameters in order to run. The 

number of particles, 𝑁𝑁 , is set to 3000 and the particle degeneration parameter, 𝛼𝛼, is set to 0.9. 

For the mixture distribution the number of blocks is set to 5, the mixture weight, 𝑤𝑤, is equal to 

0.9 and the initial scale parameter, 𝑐𝑐, is set to 0.5.  

For the code implementation, I rely heavily on the initial implementation of their SMC published 

by Herbst and Schorfheide (2016). However, I adjust the code to include the individual changes 

listed above. Algorithm 2 provides a summary of the SMC strategy employed here. 
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Algorithm 2: Summary of the SMC algorithm 

 

1.4.3  Data  
 

The following section gives a detailed description of the construction of the observable variables. 

For the likelihood construction, the model uses seven observable variables over a sample from 

1984Q1 to 2021Q4. The sample purposefully excludes the early 1980s to avoid including periods 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐: 𝐸𝐸𝑆𝑆𝑆𝑆 𝑠𝑠𝐵𝐵𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵𝑁𝑁 𝑤𝑤𝑖𝑖𝐵𝐵ℎ 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑘𝑘𝐵𝐵𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝𝑠𝑠 

1. 𝐼𝐼𝑎𝑎𝑝𝑝𝑡𝑡𝐵𝐵𝑠𝑠: 
 𝑁𝑁 = 𝑎𝑎𝑡𝑡𝐺𝐺𝑏𝑏𝐵𝐵𝑁𝑁 𝑁𝑁𝐸𝐸 𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵𝑠𝑠 
 𝑔𝑔  = 𝐸𝐸𝑡𝑡𝑎𝑎𝑐𝑐𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝐵𝐵𝑁𝑁 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑎𝑎𝐵𝐵𝑛𝑛𝐵𝐵 𝐵𝐵𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝑡𝑡𝑁𝑁𝐵𝐵  
 𝐾𝐾  = 𝑆𝑆𝐵𝐵𝑁𝑁𝑘𝑘𝑁𝑁𝑣𝑣 𝐾𝐾𝐵𝐵𝑁𝑁𝑎𝑎𝐵𝐵𝑙𝑙 𝐸𝐸𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝𝑠𝑠 
 𝑁𝑁𝑏𝑏 = 𝑎𝑎𝑡𝑡𝐺𝐺𝑏𝑏𝐵𝐵𝑁𝑁 𝑁𝑁𝐸𝐸 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑘𝑘𝑠𝑠 
 𝐸𝐸  = 𝐸𝐸𝑡𝑡𝑎𝑎𝑐𝑐𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝐵𝐵𝑁𝑁 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑎𝑎𝐵𝐵𝑛𝑛𝐵𝐵 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝 𝑠𝑠𝑖𝑖𝑛𝑛𝐵𝐵  

2. 𝐼𝐼𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖𝐵𝐵𝑙𝑙𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎: 
 𝑠𝑠𝐵𝐵𝐵𝐵 𝑎𝑎 = 1 𝐵𝐵𝑎𝑎𝑎𝑎 𝜙𝜙1 = 0 
 𝑠𝑠𝐵𝐵𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵 𝜃𝜃1

𝑖𝑖~𝜋𝜋1(𝜃𝜃) = 𝜇𝜇1(𝜃𝜃) 
 𝑠𝑠𝐵𝐵𝐵𝐵 𝑊𝑊1

𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ {1, … ,𝑁𝑁} 
3. 𝐼𝐼𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎: 

 𝑤𝑤ℎ𝑖𝑖𝑙𝑙𝐵𝐵 𝜙𝜙𝑎𝑎 < 1 
 𝑠𝑠𝐵𝐵𝐵𝐵 𝑎𝑎 = 𝑎𝑎 + 1 and choose  𝜙𝜙𝑎𝑎 = 𝑔𝑔() 
  
 𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝑐𝑐𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝: 

 𝑊𝑊𝑎𝑎
𝑖𝑖 = 𝑊𝑊𝑎𝑎−1

𝑖𝑖 𝑤𝑤𝑎𝑎
𝑖𝑖

∑ 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖𝑁𝑁
𝑖𝑖=1

   𝐵𝐵𝑎𝑎𝑎𝑎  𝑤𝑤𝑎𝑎𝑖𝑖 =

 (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑎𝑎−1
𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 �)𝜙𝜙𝑎𝑎−𝜙𝜙𝑎𝑎−1𝜇𝜇1(𝜃𝜃𝑎𝑎−1
𝑗𝑗 )𝜙𝜙𝑎𝑎−1−𝜙𝜙𝑎𝑎   ∀ 𝑖𝑖 

  
 𝑠𝑠𝐵𝐵𝑙𝑙𝐵𝐵𝑐𝑐𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎 = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊�𝑎𝑎𝑖𝑖 �

2
 𝑁𝑁

𝑖𝑖=1
 

 𝑖𝑖𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎 ≥ 0.5 × 𝑁𝑁 
 𝑊𝑊𝑎𝑎

𝑖𝑖 = 𝑊𝑊𝑎𝑎
𝑖𝑖   𝐵𝐵𝑎𝑎𝑎𝑎 𝜃𝜃𝑎𝑎𝑖𝑖 = 𝜃𝜃𝑎𝑎−1

𝑖𝑖  ∀ 𝑖𝑖 ∈ {1, … ,𝑁𝑁}   
 𝐵𝐵𝑙𝑙𝑠𝑠𝐵𝐵 

 𝑡𝑡𝑠𝑠𝐵𝐵 𝑠𝑠𝑦𝑦𝑠𝑠𝐵𝐵𝐵𝐵𝐺𝐺𝐵𝐵𝐵𝐵𝑖𝑖𝑐𝑐 𝑁𝑁𝐵𝐵𝑠𝑠𝐵𝐵𝐺𝐺𝑝𝑝𝑙𝑙𝑖𝑖𝑎𝑎𝑔𝑔 𝑤𝑤𝑖𝑖𝐵𝐵ℎ {𝜃𝜃𝑎𝑎−1
𝑖𝑖 ,𝑊𝑊𝑎𝑎

𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 𝑔𝑔𝐵𝐵𝑎𝑎𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝐵𝐵𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵  �𝜃𝜃𝑎𝑎𝑖𝑖 �𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖𝐵𝐵ℎ 𝑊𝑊𝑎𝑎

𝑖𝑖 = 1 
 𝐵𝐵𝑎𝑎𝑎𝑎 
  

 𝐺𝐺𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝐵𝐵𝐵𝐵𝑝𝑝: 
 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑐𝑐𝑎𝑎 = 𝐸𝐸(𝑐𝑐𝑎𝑎−1,𝐵𝐵𝑐𝑐𝑐𝑐𝐵𝐵𝑝𝑝𝐵𝐵𝐵𝐵𝑎𝑎𝑐𝑐𝐵𝐵 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵)  
 𝐺𝐺𝑁𝑁𝑣𝑣𝐵𝐵 𝑝𝑝𝐵𝐵𝑁𝑁𝐵𝐵𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵 𝜃𝜃𝑎𝑎𝑖𝑖 ~𝐾𝐾() 𝑡𝑡𝑠𝑠𝑖𝑖𝑎𝑎𝑔𝑔 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑘𝑘𝐵𝐵𝑎𝑎 𝑆𝑆𝑀𝑀 𝑤𝑤𝑖𝑖𝐵𝐵ℎ 𝑁𝑁𝑏𝑏  

 𝐵𝐵𝑎𝑎𝑎𝑎 
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of output volatility, similar to Sims and Wolff (2018a). The end date was the latest date for which 

the data set could be fully constructed. The data includes measurements for the following 

variables: federal consumption tax rate, 𝜏𝜏𝑡𝑡
𝐶𝐶 , federal labour taxation rate,  𝜏𝜏𝑡𝑡

𝑙𝑙, federal government 

consumption, 𝐺𝐺𝑡𝑡, federal government debt, 𝐵𝐵𝑡𝑡, GDP, 𝑌𝑌𝑡𝑡, Inflation, 𝜋𝜋𝑡𝑡 and interest rates, 𝑖𝑖𝑡𝑡. Out 

of convenience, I drop the index 𝑡𝑡 below, but variables still refer to their measurements in period 

𝑡𝑡. 

Starting with the fiscal variables, this paper heavily orientates itself on the design of taxation 

rates developed in Jones (2002) and later used in Leeper, Plante and Traum (2010). To construct 

𝜏𝜏𝑐𝑐 and 𝜏𝜏𝑙𝑙, a few intermediate steps are needed, and all data is taken from the Bureau of Economic 

Analysis (BEA) and the Federal Reserve Economic Data database (FRED). To construct the 

consumption tax rate, overall and local consumption tax revenues and, in addition, the level of 

consumption are needed. Firstly, consumption tax revenues, 𝑇𝑇 𝑐𝑐, are the taxes on production and 

imports. 𝑇𝑇 𝑐𝑐 Includes both excise taxes and customs duties. Consumption, 𝐶𝐶, is defined as the 

sum of personal consumption expenditures on nondurable goods and services. 

Based on 𝑇𝑇 𝑐𝑐, 𝑇𝑇𝑠𝑠
𝑐𝑐 and 𝐶𝐶, the marginal consumption tax rate can be constructed as follows: 

𝜏𝜏𝑐𝑐 = 𝑇𝑇 𝑐𝑐

𝐶𝐶 − 𝑇𝑇 𝑐𝑐  − 𝑇𝑇𝑠𝑠
𝑐𝑐. 

To construct the average labour income tax rate, one first needs to construct the average 

personal income tax rate following the methodology presented in Jones (2002).  

𝜏𝜏𝑝𝑝 =
𝐼𝐼𝑇𝑇

𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼
2 + 𝐶𝐶𝐼𝐼

. 

Capital income, 𝐶𝐶𝐼𝐼 , is defined as the sum of rental income, corporate profits and interest. The 

variable 𝑊𝑊  represents wage and salary accruals, and 𝑃𝑃𝑅𝑅𝐼𝐼 corresponds to the proprietor's income.  

Based on 𝜏𝜏𝑝𝑝, one can construct the average labour income tax rate as:  

𝜏𝜏 𝑙𝑙 =
𝜏𝜏𝑝𝑝(𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼/2) + 𝐶𝐶𝐸𝐸𝐼𝐼

𝐸𝐸𝐶𝐶 + 𝑃𝑃𝑅𝑅𝐼𝐼/2
, 

where CSI are contributions to government social insurance, and 𝐸𝐸𝐶𝐶 are compensations to 

employees. Within the model, the tax rates enter under the following transformation: 𝜏𝜏𝑡𝑡
1+𝜏𝜏𝑡𝑡

. In 

practical terms, this ensures that the rate is contained in the closed interval from zero to one. To 
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match the data to the model variables, the opposite transformation is applied to the tax rate 

observations.  

𝜏𝜏𝑡𝑡
𝑜𝑜𝑜𝑜𝑠𝑠 = 𝜏𝜏𝑡𝑡

1 − 𝜏𝜏𝑡𝑡
. 

This means that the corresponding model variables can be directly matched as opposed to 

matching a non-linear transformation of the model variables, 𝜏𝜏𝑡𝑡
1+𝜏𝜏𝑡𝑡

, to the data. In practical terms, 

the difference between 𝜏𝜏𝑡𝑡 and 𝜏𝜏𝑡𝑡
1−𝜏𝜏𝑡𝑡

 tends to be fairly small away from the boundary. 

Government consumption, 𝐺𝐺, is set as the sum of federal government consumption and 

government net purchases of non-produced assets minus government consumption of fixed capital. 

Government Debt, 𝐵𝐵, is collected as market value US federal debt from the Dallas federal reserved 

database.  

Departing from the government side, the data construction requires three more series. Firstly, 

GDP is collected as seasonally adjusted gross domestic product from the FRED database. 

Secondly, inflation is constructed using the implicit price deflator of GDP, and thirdly, interest 

rates are defined as 3-Month market rates of treasury bills. Both series were collected from the 

FRED database as well. To construct model variables, government consumption, 𝐺𝐺𝑡𝑡, gross 

domestic product, 𝑌𝑌𝑡𝑡, and government debt, 𝐵𝐵𝑡𝑡, are first deflated using the GDP deflator to 

obtain real-valued variables. 

In a further step, some variables need to be detrended. Macroeconomic variables often include 

trends, and it is important to account for this in either the data construction or the modelling. 

In practice, the choice of procedure determines some of the features of the data and, as such, 

needs to be carefully evaluated. Pfeifer (2018) explores the current and popular approaches to 

account for trend mechanics in DSGE models. One approach comes in the form of including a 

growth rate transformation of trending variables. For a lot of data sets like GDP data, growth 

rates are typically approximately stable across time. This approach is, for example, followed in 

the canonical paper by Smets and Wouters (2007). An alternative approach is to linearly detrend 

the log of the nominal variables. The resulting data can be interpreted as steady state deviations 

from a trend and is used in Leeper, Plante and Traum (2010). The detrending options are not 
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limited to these two but also include the Hodrick-Prescot filter, directly modelling the trend and 

others.  

In relation to this, Pfeifer (2018) argues two things. Firstly, detrending data is meant to filter 

out business cycle mechanics that are not reflected in the model and preserve features that are. 

Therefore, the various detrending options remove related features in the data that are arguably 

generated by the business cycle. However, the removed features may vary in design across the 

detrending strategies. Secondly, Pfeifer (2018) argues that the difference in detrending strategies 

mostly reflects a priori preferences of the economist designing the model. In particular, it relates 

to which features of the data are assumed to be related to the business cycle and which are not. 

In this application, I utilized linear detrending of the log variables. This approach presents several 

advantages. Firstly, the model of fiscal policy is closely based on Leeper, Plante and Traum 

(2010). For comparison purposes, it seems advantageous to include the data in a similar fashion. 

Secondly, linear detrending typically leads to deeper business cycles in comparison to growth 

rates. This is consistent with the prior belief that fiscal policy goes through long and persistent 

policy cycles, and similarly, output business cycles are assumed to be fairly deep. The last 

advantage is computational. Linear detrending produces variables that have the interpretation of 

percentage steady state deviations. These variables are directly measured by DSGE models. In 

comparison, growth rates are typically not directly measured and can be constructed by 

subtracting steady deviations from two periods. For the simulation, the latter approach requires 

keeping track of redundant variables and can increase simulation time.  

Based on this, all data series but inflation and interest data are detrended using a linear trend 

on the log values. The resulting interpretation of the model variables is as log deviations from 

their steady state. For inflation and the interest rate, it is assumed that the data comes from a 

stationary, non-trending distribution. Further, inflation and interest rates are transformed using 

a log transformation. 
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1.4.4  Code implementation 
 

Estimating higher-order DSGE models can be very time-consuming, computationally complex 

and can require a lot of code development as in-built libraries may not always be suitable for all 

individual projects. Classical inference strategies with sequential sampling steps, like the random 

walk Metropolis-Hastings algorithm, can require estimation time in the magnitude of weeks to 

months depending on the individual researchers computational set up and number of sampling 

steps. Together, this makes these types of projects, which are already difficult to implement, 

prohibitive from a time cost perspective unless the researcher has access to state-of-the-art 

computing systems. To make the estimation feasible, I attempt to improve on the standard 

estimation techniques by combining different empirical and technical approaches. 

A feature of modern computational developments is that CPUs or GPUs are not getting much 

faster on a per core basis, but parallel computations are where most improvements are being 

made. In order to exploit this, I focus on the use of Sequential Monte Carlo as proposed by 

Herbst and Schorfheide (2016) for the use in economics. I propose a specific Sequential Monte 

Carlo sampler heavily inspired by Buchholz, Chopin and Jacob (2021) and Jasra et al. (2010). 

The sampler attempts to make use of the computationally efficient parallelism of Sequential 

Monte Carlo sampler, while avoiding spending effort into exploring irrelevant areas of the 

posterior or already well explored tempered distributions. 

Parallelism aside, another crucial factor is the time per likelihood evaluations. Unlike Kalman 

filter based likelihood evaluations, particle filters rely on large array operations and are quite 

time consuming. To improve the computation time, I pass the main time consuming, large array 

operations to a GPU similar to neural network application for gradient backpropagation. Lastly, 

I attempt to make use of good coding practices by focusing on utilizing the LAPACK libraries 

whenever possible or utilizing MATLABs symbolic toolbox for the model creation. 

Together, the estimation time is cut down to around 5 days, which implies a reduction of up to 

94% depending on the chosen comparison basis. The main influences in this process are provided 

by Gomme and Klein (2011), Schmitt-Grohe and Uribe (2004), Herbst and Schorfheide (2016), 

Buchholz, Chopin and Jacob (2021), Jasra et al. (2010) and neural network applications. 
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I begin the code development with a replication exercise on the Amisano and Tristani (2010) 

model on its original data set. During the replication process, I was greatly aided by Amisano 

and Tristani (2010) sharing their code with me, which allowed me to double-check my work and 

improve on it. The main estimation in this paper features more model states than the original 

model, which increases the estimation time quite drastically. To combat this, a substantial part 

of the work went into finding strategies to reduce the estimation time, and I utilize three main 

improvements: adaptive Sequential Monte Carlo estimation, parallelization and GPU use for large 

array operations. The three approaches aim to reduce computation time by reducing the required 

number of likelihood evaluations to a minimum, evaluating likelihoods in parallel and optimizing 

speed per likelihood evaluation.  

The first two improvements go hand in hand. Traditionally, the Metropolis-Hastings algorithm is 

employed to estimate DSGE models. The algorithm is very useful, and the implementation is 

straightforward. However, the estimation time tends to be large as it can require a large number 

of likelihood evaluations to explore the posterior, and the algorithm works in a sequential fashion. 

That means it scales roughly linearly to the number likelihood evaluation and estimation time is 

approximately equal to 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠𝑙𝑙 ∗ 𝑡𝑡𝑙𝑙𝑖𝑖𝑘𝑘𝑠𝑠𝑙𝑙𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑠𝑠 𝑠𝑠𝑣𝑣𝑠𝑠𝑙𝑙..  

SMC algorithms, as proposed by Herbst and Schorfheide (2016) for the use in economics, can be 

used to bring down the estimation time. Firstly, the adaptive SMC algorithm here implicitly 

chooses the number of likelihood evaluations required for the estimation based on the adaptive 

tempering schedule proposed in Jasra et al. (2010). Based on my testing, the overall number of 

likelihood evaluations tends to be lower than in typical Metropolis-Hastings applications in the 

literature, and it avoids expensive test runs. Secondly, unlike the Metropolis-Hastings algorithm, 

the SMC algorithm can be run in parallel, which brings the estimation time down to 
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒×𝑡𝑡𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛𝑐𝑐𝑜𝑜𝑐𝑐𝑒𝑒𝑠𝑠
.5 

The last main point of improvement focuses on reducing the time per likelihood evaluation. 

Unlike linear estimations using the Kalman filter, non-linear estimations using particle filter 

methods require large array operations due to the second-order terms. Large array operations are 

 
5 That figure is approximate and ignores communication overheads, and other factors. However, in most applications 
the gain is still substantial. 
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most conveniently and efficiently done on GPUs, and this strategy is also frequently employed in 

other fields like neural network estimations. Based on the GPU setup, I reduce the likelihood 

evaluation time by 58%.  

While the previous points delivered the most significant increases in performance, the following 

aspects help to improve code performance further: focus on writing code optimized for the inbuilt 

LAPACK libraries, symbolic differentiation of model files, faster model solution strategies and 

others. Overall, the techniques described above and, in the appendix, reduce the estimation from 

weeks to days. Additionally, the estimation time can be reduced by up to 94% depending on the 

selected comparison basis. 

For a more detailed description of the individual improvement strategies, see the appendix. I also 

provide re-estimation results for the Amisano and Tristani (2010) model. That includes 

estimations of the Amisano and Tristani (2010) model in its linear and non-linear form using the 

Metropolis-Hastings approach employed by Amisano and Tristani (2010) and an SMC estimation 

of the non-linear model version.  

 

1.4.5  Posterior estimates 
 

The following section presents posterior estimates for the model parameters. The results are 

summarised in Table 1.3, Table 1.4 and Table 1.5.  

To start off, the habit formation parameter is estimated to be around 0.45, which is a bit lower 

than typical estimates of around 0.7. However, it is fairly close to the Leeper, Plante and Traum 

(2010) estimate of 0.5. Price indexation, 𝑒𝑒, is estimated to be quite a bit higher than in the 

Amisano and Tristani (2010) model at around 0.58 and much closer to estimates in Sims and 

Wolff (2018a). The Calvo pricing parameter is similar to Sims and Wolff (2018a) and Smets and 

Wouters (2007). The Taylor rule features a strong response to inflation deviations from the target 

as governed by 𝜓𝜓𝜋𝜋 with a posterior mean of 1.9. Output growth responses are smaller by 

comparison. The autoregressive parameters all show estimates with fairly high persistence over 

0.9. The autoregressive parameter for productivity is fairly close to a unit root process. Highly 

persistent shocks are not unusual, though this one is particularly persistent. The origin for the 
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high estimate seems to be in the original Amisano and Tristani (2010) paper, who estimate 𝑝𝑝𝑠𝑠 

identically in their non-linear estimation.  

Table 1.3: Posterior estimates for core model parameters 

 

The linear fiscal parameters show quite standard posterior estimates for the debt and output 

responses. The labour tax debt coefficient, 𝜇𝜇𝜏𝜏𝑒𝑒,𝐵𝐵,  is estimated to be somewhat higher than in 

Leeper, Plante and Traum (2010) at 0.21, while in turn, the transfer debt coefficient, 𝜇𝜇𝑍𝑍,𝐵𝐵, is 

estimated to be lower at 0.09. The parameters that govern productivity and inflation responses 

overall do not deviate far from zero relative to the prior standard deviation. But specific responses 

like transfers to productivity, 𝜇𝜇𝑍𝑍,𝐴𝐴, estimated at 0.04 and government consumption to inflation, 

𝜇𝜇𝐺𝐺,𝜋𝜋, estimated at 0.02, may prove to improve dynamics.  

para mean sd. para mean sd. 
            
𝛽𝛽 0.99611 0.00091 𝑝𝑝𝜋𝜋  0.96910 0.02319 

𝛾𝛾 − 1 2.88668 1.24617 𝜎𝜎𝜏𝜏𝑙𝑙  0.01904 0.00241 
ℎ 0.45076 0.15845 𝜎𝜎𝜏𝜏𝑐𝑐  0.03001 0.00383 

𝜙𝜙 − 1 0.94969 0.36675 𝜎𝜎𝑇𝑇 0.05297 0.01142 
𝜃𝜃 − 1 7.46023 3.58253 𝜎𝜎𝐺𝐺  0.02339 0.00220 
𝜁𝜁 0.72244 0.08651 𝜎𝜎𝐵𝐵  0.02533 0.00492 
𝑙𝑙 0.57743 0.11304 𝜎𝜎𝑖𝑖  0.00143 0.00034 

𝜓𝜓𝜋𝜋 − 1 0.90019 0.22510 𝜎𝜎𝜋𝜋  0.00156 0.00028 
𝜓𝜓𝑦𝑦  0.12943 0.04407 𝜏𝜏𝑙𝑙  0.23014 0.00113 
𝑝𝑝𝜏𝜏𝑙𝑙  0.95814 0.02456 𝜏𝜏𝑐𝑐  0.01556 0.00139 
𝑝𝑝𝜏𝜏𝑐𝑐  0.97063 0.02592 𝑠𝑠𝑔𝑔  0.05984 0.00117 
𝑝𝑝𝑍𝑍  0.93096 0.03765 𝑠𝑠𝑏𝑏  0.49469 0.01114 
𝑝𝑝𝐺𝐺  0.95531 0.02423 𝜋𝜋 0.00564 0.00027 
𝑝𝑝𝐵𝐵  0.99948 0.00123       
𝑝𝑝𝑖𝑖  0.91657 0.02164       
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Table 1.4: Posterior estimates for linear fiscal parameters 

 

Moving on to the non-linear fiscal parameters, about a third of the parameters deviate from the 

prior mean by at least around half a standard deviation. However, that also includes some 

parameters that deviate quite substantially. For labour taxation, the interaction terms between 

output and inflation, 𝜑𝜑𝜏𝜏𝑒𝑒,𝑌𝑌 ,𝜋𝜋, and debt with itself, 𝜑𝜑𝜏𝜏𝑒𝑒,𝐵𝐵,𝐵𝐵, are particularly pronounced in their 

deviation from the prior with a posterior mean of 0.19 and 0.48, respectively. For transfers, the 

interactions between output and productivity seem to be of particular importance, with a 

posterior mean of -0.32. For government consumption, there are a few parameters of moderate 

importance: 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝑌𝑌 , 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝐵𝐵, 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝜋𝜋 and  𝜑𝜑𝐺𝐺,𝐵𝐵,𝐴𝐴. All of these deviate from zero by about half a 

prior standard deviation. Based on this, it seems to be the case that the data provides evidence 

in favour of non-linear fiscal rules, and, specifically, it shows that standard linear rules can be 

improved upon by capturing business cycle dependency. To explore the overall influence of the 

non-linear fiscal parameters on the gradients of the fiscal response functions, section 1.5.5 traces 

out the gradients across time to interpret the parameters in a joint fashion.  

para mean sd. 
      

𝜇𝜇𝜏𝜏𝑙𝑙 ,𝑌𝑌 0.18121 0.12679 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐵𝐵 0.21419 0.07318 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐴𝐴 0.00492 0.11651 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝜋𝜋  0.00706 0.16307 
𝜇𝜇𝑍𝑍,𝑌𝑌  0.20610 0.14094 
𝜇𝜇𝑍𝑍,𝐵𝐵 0.08613 0.09510 
𝜇𝜇𝑍𝑍,𝐴𝐴 0.04356 0.10380 
𝜇𝜇𝑍𝑍,𝜋𝜋  -0.01633 0.14512 
𝜇𝜇𝐺𝐺 ,𝑌𝑌 0.05127 0.08664 
𝜇𝜇𝐺𝐺 ,𝐵𝐵 0.34541 0.12567 
𝜇𝜇𝐺𝐺 ,𝐴𝐴 -0.01468 0.09610 
𝜇𝜇𝐺𝐺 ,𝜋𝜋  0.02190 0.10908 
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Table 1.5: Posterior estimates for non-linear interaction parameters 

 

The last category of non-linear parameters is the non-linear parameters in the interest rate rule.  

𝜓𝜓𝜋𝜋,𝜋𝜋, 𝜓𝜓𝜋𝜋,𝑌𝑌  and 𝜓𝜓𝑌𝑌 ,𝑌𝑌  all deviate more than half a prior standard deviation from zero. 𝜓𝜓𝜋𝜋,𝜋𝜋 is 

estimated to be negative at -0.61796. That means that the responsiveness to inflation deviations 

from the target, (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗), is decreasing in (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). In practice, that paints a picture of a 

government that always increases the interest rate in response to inflationary pressure. But, as 

the pressure keeps building up, interest responses become smaller and smaller, indicating limits 

to interest rate policy. The same holds for the responsiveness of interest rates to output growth 

governed by 𝜓𝜓𝑌𝑌 ,𝑌𝑌 . 𝜓𝜓𝑌𝑌 ,𝑌𝑌  is estimated to be negative at -0.63064. As output growth increases, the 

gradient of the interest rate with respect to output growth decreases. Curiously, the interaction 

term 𝜓𝜓𝜋𝜋,𝑌𝑌  is estimated at 1.20370, meaning that the interaction effects are positive.  

The appendix presents estimation diagnostics.  

 

 

para mean sd. para mean sd. 
            

𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝑌𝑌  -0.00672 0.22839 𝜑𝜑𝑍𝑍,𝐴𝐴,𝐴𝐴  0.13796 0.22957 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝐵𝐵  0.06161 0.23894 𝜑𝜑𝑍𝑍,𝐴𝐴,𝜋𝜋  -0.08409 0.26127 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝐴𝐴  -0.02342 0.30735 𝜑𝜑𝑍𝑍,𝜋𝜋 ,𝜋𝜋  -0.05243 0.29616 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝜋𝜋  0.19194 0.30617 𝜑𝜑𝐺𝐺,𝑌𝑌,𝑌𝑌  0.11031 0.25147 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝐵𝐵  0.47587 0.10874 𝜑𝜑𝐺𝐺,𝑌𝑌,𝐵𝐵  0.14026 0.32830 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝐴𝐴  -0.07431 0.30192 𝜑𝜑𝐺𝐺,𝑌𝑌,𝐴𝐴  -0.04014 0.23953 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝜋𝜋  0.01719 0.16656 𝜑𝜑𝐺𝐺,𝑌𝑌,𝜋𝜋  0.10777 0.30804 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐴𝐴,𝐴𝐴 -0.01476 0.20969 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵  0.04411 0.25756 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐴𝐴,𝜋𝜋  0.03715 0.22585 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐴𝐴  -0.13786 0.23030 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝜋𝜋 ,𝜋𝜋  -0.05738 0.20750 𝜑𝜑𝐺𝐺,𝐵𝐵,𝜋𝜋  -0.01568 0.21275 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝑌𝑌  -0.07245 0.27824 𝜑𝜑𝐺𝐺 ,𝐴𝐴,𝐴𝐴 0.07878 0.29301 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝐵𝐵  -0.08677 0.20179 𝜑𝜑𝐺𝐺,𝐴𝐴,𝜋𝜋  -0.01862 0.25692 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝐴𝐴  -0.32708 0.29289 𝜑𝜑𝐺𝐺 ,𝜋𝜋 ,𝜋𝜋  -0.00060 0.21107 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝜋𝜋  0.08429 0.31447 𝜓𝜓𝜋𝜋 ,𝜋𝜋  -0.61796 1.11443 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝐵𝐵  -0.09492 0.12617 𝜓𝜓𝜋𝜋 ,𝑌𝑌  1.20370 1.29728 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝐴𝐴  -0.03489 0.28670 𝜓𝜓𝑌𝑌,𝑌𝑌  -0.63064 1.71219 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝜋𝜋  0.04353 0.27273       
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1.5  Fiscal policy effectiveness 
 

1.5.1  Mechanics of state dependency 
 

In the following, I explore the dynamics of impulse responses in second-order pruned systems and 

show how they relate to the business cycle. To start off, I establish a comparison basis using the 

first-order DSGE approximation. The canonical linear system is defined as follows: 

𝑥𝑥𝑡𝑡
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡−1

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼),   

where 𝑥𝑥𝑡𝑡
𝐿𝐿 is a (𝑎𝑎𝑥𝑥 × 1) vector of model states and 𝐻𝐻𝑥𝑥 is a (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑥𝑥) matrices that governs the 

system dynamics. 𝑣𝑣𝑡𝑡 is the structural shock vector of size (𝑎𝑎𝑣𝑣 × 1), which is normally distributed 

with mean zero and an identity covariance matrix. The impact of 𝑣𝑣𝑡𝑡 on 𝑥𝑥𝑡𝑡
𝐿𝐿 is governed by 𝜎𝜎 and 

𝜎𝜎  where 𝜎𝜎 is a perturbation scalar typically set to one and 𝜎𝜎  is a (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑣𝑣) matrix. If a shock 𝑣𝑣𝑡𝑡 

occurs today, then it has an immediate impact on 𝑥𝑥𝑡𝑡
𝐿𝐿 today, but the impact also transitions 

through the system as governed by 𝐻𝐻𝑥𝑥 and can influence future linear states. To be precise, the 

expectation of 𝑥𝑥𝑡𝑡+ℎ
𝐿𝐿  can be constructed as: 

𝐸𝐸(𝑥𝑥𝑡𝑡+ℎ
𝐿𝐿 |𝑥𝑥𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡) = 𝐻𝐻𝑥𝑥
ℎ+1𝑥𝑥𝑡𝑡−1

𝐿𝐿 + 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡.   

The expectation of 𝑥𝑥𝑡𝑡+ℎ
𝐿𝐿  depends linearly on both the initial conditions of the economy, 𝑥𝑥𝑡𝑡−1

𝐿𝐿 , and 

the shock, 𝑣𝑣𝑡𝑡, to which the economy is subjected. To construct the impulse response in the linear 

system, one compares a world in which the shock happened to one where It did not: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐸𝐸(𝑥𝑥𝑡𝑡+ℎ
𝐿𝐿 |𝑥𝑥𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡) − 𝐸𝐸(𝑥𝑥𝑡𝑡+ℎ
𝐿𝐿 |𝑥𝑥𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡 = 0) = 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡 

The above equation can be interpreted as the difference between the expected state of the 

economy at time h when the shock happened and the economy where it did not. For linear 

models, the initial conditions of the economy cancel out, and the only important factors are 𝑣𝑣𝑡𝑡 

and the horizon ℎ. Consequently, the difference between the two paths is independent of when 

the shock occurs. For this reason, it is common practice in economics to view impulse responses 

as conducted at the steady state of the economy. At the steady state, 𝐻𝐻𝑥𝑥
ℎ+1𝑥𝑥𝑡𝑡−1

𝐿𝐿  is always equal 

to zero, and one only has to construct 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡. Furthermore, this approach can improve the 

interpretation as the impulse response can be viewed as the steady state deviation of the model 
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states caused by the shock. However, it also retains the difference between the expected paths 

for some initial state 𝑥𝑥𝑡𝑡−1
𝐿𝐿 . 

For non-linear models, the situation becomes more complicated, and I rely on the pruned second-

order approximation as in Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017) or 

Amisano and Tristani (2010). Using the pruned system has several advantages. Firstly, higher-

order approximations are almost always pruned as the pruning can ease simulation problems and 

preserves a lot of the original dynamics. Secondly, it simplifies the impulse responses analysis and 

pinning down the relationship to the business cycle becomes easier. The main change in the 

pruned second-order system is that the impact of the second-order terms on the quadratic states, 

𝑥𝑥𝑡𝑡
𝑄𝑄, is governed by an auxiliary linear system: 

𝑥𝑥𝑡𝑡
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡−1

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼), 

𝑥𝑥𝑡𝑡
𝑄𝑄 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡−1

𝑄𝑄 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡−1
𝐿𝐿 ⨂𝑥𝑥𝑡𝑡−1

𝐿𝐿 ) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼).   

where ℎ𝜎𝜎𝜎𝜎 is a vector of dimension (𝑎𝑎𝑥𝑥 × 1) and 𝐻𝐻𝑥𝑥𝑥𝑥 is a (𝑎𝑎𝑥𝑥 × 𝑎𝑎𝑥𝑥
2) matrix. The pruned second-

order system can be rewritten into a linear system using an augmented state vector, 𝑧𝑧𝑡𝑡 =

[𝑥𝑥𝑡𝑡
𝐿𝐿′, 𝑥𝑥𝑡𝑡

𝑄𝑄′, (𝑥𝑥𝑡𝑡
𝐿𝐿⨂𝑥𝑥𝑡𝑡

𝐿𝐿)′]’  and shock vector, 𝜁𝜁𝑡𝑡: 

𝑧𝑧𝑡𝑡 = 𝑐𝑐2 + 𝐴𝐴2𝑧𝑧𝑡𝑡−1 + 𝐵𝐵2𝜁𝜁𝑡𝑡. 

Here, 𝑐𝑐2 is a ((2𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑥𝑥
2) × 1) constant vector, 𝐴𝐴2 is a matrix of size ((2𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑥𝑥

2) × (2𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑥𝑥
2)) 

and 𝐵𝐵2 is of size ((2𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑥𝑥
2) × (𝑎𝑎𝑣𝑣 + 𝑎𝑎𝑣𝑣

2 + 2 ∗ 𝑎𝑎𝑥𝑥𝑎𝑎𝑣𝑣)). For the exact design of the matrices, see 

Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017) or appendix. The shock vector 𝜁𝜁𝑡𝑡 is 

designed as follows: 

𝜁𝜁𝑡𝑡 = 

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑥𝑥𝑡𝑡−1
𝐿𝐿 )

(𝑥𝑥𝑡𝑡−1
𝐿𝐿 ⨂𝑣𝑣𝑡𝑡) ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑥𝑥𝑡𝑡−1
𝐿𝐿 )

𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑥𝑥𝑡𝑡−1
𝐿𝐿 )𝑄𝑄 ⎦

⎥
⎥
⎤
, 

where P and Q are permutation matrices. As the new augmented second-order system is linear, 

the impulse response can be constructed identically as:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐸𝐸𝑡𝑡(𝑧𝑧𝑡𝑡+ℎ|𝑧𝑧𝑡𝑡−1, 𝜁𝜁𝑡𝑡) − 𝐸𝐸𝑡𝑡(𝑧𝑧𝑡𝑡+ℎ|𝑧𝑧𝑡𝑡−1, 𝜁𝜁𝑡𝑡 = 0) = 𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡.   
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The main difference here is that unlike in the first-order system, the shock vector, 𝜁𝜁𝑡𝑡, depends on 

the initial linear conditions. The key feature of the second-order system is that it matters for the 

effects of policy interventions when the shock is conducted. This is, for example, what Sims and 

Wolff (2018a) exploit in their paper. For a given 𝑣𝑣𝑡𝑡 and forecasting horizon, the impulse response 

of state 𝑖𝑖 is linear in the linear initial conditions, 𝑥𝑥𝑡𝑡−1
𝐿𝐿 .  

Consider a state 𝑖𝑖, then the impulse response as a function of the linear states is defined as: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑥𝑥𝑡𝑡−1

𝐿𝐿 ) = 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡, 

where 𝛾𝛾 is a (1 × (2𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑥𝑥
2)) row vector with all elements equal to zero but entry 𝑖𝑖. 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ

𝑖𝑖 (𝑥𝑥𝑡𝑡−1
𝐿𝐿 ) 

is affine in 𝑥𝑥𝑡𝑡−1
𝐿𝐿  if and only if it is both convex and concave. Take two initial condition vectors 𝑥𝑥, 

𝑦𝑦 ∈ ℝ𝑛𝑛𝑥𝑥 and 𝜆𝜆 ∈ [0,1], then 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑥𝑥) is affine if and only if the following holds: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦) = 𝜆𝜆𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ

𝑖𝑖 (𝑥𝑥) + (1 − 𝜆𝜆)𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑦𝑦). 

The above may be rewritten as: 

𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2�𝜁𝜁𝑡𝑡(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦) − 𝜆𝜆𝜁𝜁𝑡𝑡(𝑥𝑥) − (1 − 𝜆𝜆)𝜁𝜁𝑡𝑡(𝑦𝑦)� = 0. 

Disregarding the trivial case of 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2 = 0 and making use of the additive properties of the 

Kronecker product, 𝜁𝜁𝑡𝑡(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦) may be rewritten as: 

𝜁𝜁𝑡𝑡(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦) =

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦))
𝑃𝑃 (𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦))𝑄𝑄⎦

⎥⎥
⎤

=

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑥𝑥)) + (𝑣𝑣𝑡𝑡⨂((1 − 𝜆𝜆)𝑦𝑦))
𝑃𝑃 ((𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑥𝑥)) + (𝑣𝑣𝑡𝑡⨂((1 − 𝜆𝜆)𝑦𝑦)))𝑄𝑄⎦

⎥⎥
⎤

= 𝜆𝜆

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑥𝑥)
𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑥𝑥)𝑄𝑄 ⎦

⎥⎥
⎤

+ (1 − 𝜆𝜆)

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑦𝑦)
𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑦𝑦)𝑄𝑄 ⎦

⎥⎥
⎤

= 𝜆𝜆𝜁𝜁𝑡𝑡(𝑥𝑥) + (1 − 𝜆𝜆)𝜁𝜁𝑡𝑡(𝑦𝑦). 

Thus, this leads us to conclude that 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is affine in the initial, linear conditions. This has an 

important consequence for the design of impulse responses. To illustrate this point, suppose that 

we are interested in the effects of government consumption shocks on output and assume it is 

known that the effects are negatively related to the interest rate (i.e., government shocks are 

more effective in low interest rate periods). If the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is of the above design, then 

mechanically, it is feasible for the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  of output to government consumption shocks to reverse 
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sign for sufficiently high interest rates. When and at what point this happens depends on the 

slope of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  with respect to the interest rate. However, while theoretically, this can happen, 

it does not mean it is likely from an empirical view. In a reasonable setting, interest rates may 

never get sufficiently large to reverse the sign in the impulse responses. 

Later in the paper, I use the fact the IRFs are affine transformations of the initial conditions to 

run linear regressions. In particular, I regress 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑥𝑥𝑡𝑡−1

𝐿𝐿 ) on 𝑥𝑥𝑡𝑡−1
𝐿𝐿  using sampled states to pin 

down the exact relationship. Using this technique, one can ask precise questions like “How is the 

impact of structural shocks on the economy governed by the initial conditions of that economy?” 

and “When do specific structural shocks become more or less effective at stimulating the 

economy?”. A question that remains is what happens if the shock is changed. Unfortunately, the 

interaction terms in (𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) create fundamental problems and 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is not affine in 𝑣𝑣𝑡𝑡 and 

𝑥𝑥𝑡𝑡−1
𝐿𝐿 . Consequently, for a new shock vector, the regression strategy has to be repeated. Andreasen, 

Fernández-Villaverde and Rubio-Ramírez (2017) also explore the mechanics of impulse responses 

but for the base system and not the augmented system. Their results confirm that shocks are not 

scalable because of the second-order shock terms. Further, they also show that the impulse 

responses depend on the linear states. I extend the analysis by explicitly proving that the way 

the impulse responses depend on the initial conditions is in a linear fashion.  

 

1.5.2  Impulse response functions at and around the steady state 
 

The section analyses the business cycle dependency of impulse responses to fiscal policy shocks. 

First, I look at the impulse responses of output in the linear states of the DSGE model, and I 

focus on labour taxation, consumption taxation, government consumption and transfer shocks. 

As a second step, I explore the impulse responses of output as a non-linear state but when fiscal 

policy is conducted at the steady state. In the third and last step, I conduct impulse response 

analysis of output as a non-linear variable over the business cycle by sampling states from the 

unconditional distribution. The goal of this section is to build intuition on which factors are of 

importance in conducting impulse responses in non-linear models and ascertain the relevance of 

the initial conditions for fiscal policy. 
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For impulse responses of the linear states, it does not matter when fiscal policy is constructed, 

as the difference in expected paths is a constant. The only crucial component is the type of shock, 

𝑣𝑣𝑡𝑡. In this application, fiscal policy is conducted as one standard deviation shock to the fiscal 

instruments. For tax variables, I only consider tax cuts as the main point of interest.6 For each 

impulse response, I simulate 500 paths to construct mean and highest posterior density intervals. 

The dynamics of the linear impulse responses are governed by the following equation:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡, 

which only depends on 𝑣𝑣𝑡𝑡. Fig. 1.1 presents the impulse responses for the linear states. The linear 

impulse responses can be interpreted in two ways. Firstly, they may be interpreted as percentage 

deviations from the steady state, and secondly, they can be understood as the percentage 

deviation from the path where the shock did not occur.   

Fig. 1.1: linear impulse responses of output to fiscal shocks 

 

Notes: Impulses responses of linear output to one standard deviation fiscal shocks. The solid line is the mean impulse 

response; the grey shaded is the 95% highest posterior density interval.  

 
6 The reason is that the non-linear impulse responses are not linear in the shock vector, and tax increases cannot 
simply be rescaled to tax cuts by multiplying by minus one. 
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Overall, the linear impulse responses are entirely standard and compare well to, for example, the 

Leeper, Plante and Traum (2010) results. Government consumption increases have their largest 

impact on output immediately and fade afterwards. On Impact, a government consumption shock 

raises output by roughly 0.14% relative to the path. In the medium to long run, the effects of a 

government consumption shock turn negative based on the financing rules. Transfer shocks do 

not have a stimulative impact on output and decrease output in the long run. Both labour and 

consumption taxation cuts stimulate output on impact by 0.02% and 0.005% relative to the path, 

respectively. In typical fashion, the impact of tax cuts peaks at about two to three years, decaying 

afterwards. Based on the financing rules, after about four to five years, the impact of tax cuts 

becomes negative and afterwards returns to the steady state. One key unifying factor between 

all of these is that the model predicts relatively tight highest posterior density intervals for the 

impulse responses. For example, the highest posterior density interval for government 

consumption shocks ranges from roughly 0.1% to 0.15%. In a sense, the model is highly confident 

in the range of effects that fiscal stimulus can have. 

For impulse responses of the non-linear states to fiscal policy conducted at the steady state, the 

mechanics change as follows. For the quadratic states, it is useful to invoke the pruned second-

order system representation of the impulse responses:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑥𝑥𝑡𝑡−1

𝐿𝐿 ) = 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡, 

𝜁𝜁𝑡𝑡 =  

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑥𝑥𝑡𝑡−1
𝐿𝐿 )

(𝑥𝑥𝑡𝑡−1
𝐿𝐿 ⨂𝑣𝑣𝑡𝑡) ⎦

⎥
⎥
⎤
. 

Fiscal policy conducted at the steady state implies that 𝑥𝑥𝑡𝑡−1
𝐿𝐿  is equal to 0(𝑛𝑛𝑥𝑥×1). The augmented 

shock vector reduces to the following: 

𝜁𝜁𝑡𝑡|𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠 =  

⎣
⎢⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

�𝑣𝑣𝑡𝑡⨂0(𝑛𝑛𝑥𝑥×1)�
�0(𝑛𝑛𝑥𝑥×1)⨂𝑣𝑣𝑡𝑡� ⎦

⎥⎥
⎥
⎤
. 

These impulse responses still do not feature any state dependency on the business cycle but 

feature the full non-linear dynamics of the DSGE model. As can be seen in Fig. 1.2, the key 
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result is that the impulses are, to all intents and purposes, indistinguishable from the linear 

impulse responses. Mechanically, this is exactly what is expected. The linear DSGE is an 

approximation of the non-linear set of equations that govern the full DSGE, and the equations 

are approximated around the steady state. At or around the steady state, linear and non-linear 

models will typically predict very similar dynamics. Only when the economy moves away from 

the steady state can the higher-order terms begin to bite. Andreasen, Fernández-Villaverde and 

Rubio-Ramírez (2017) show this analytically by proving that the first-order system is second-

order accurate at the steady state.  

Fig. 1.2: non-linear output impulse response to fiscal shocks at steady state 

 

Notes: Impulses responses of non-linear output to one standard deviation fiscal shocks evaluated at the steady state. 

The solid line is the mean impulse response; the grey shaded is the 95% highest posterior density interval.  

The last scenario for this section is based on the impulse responses of the non-linear states in 

response to fiscal shocks in various economic circumstances. Here, the economic circumstances 

are sampled from the unconditional state distribution and should generate reasonably realistic 

conditions as the model is fully estimated. The impulse responses are presented in Fig. 1.3. The 

mean response to fiscal shocks remains the same as before. However, the observable range of 

effects increases substantially. For example, for government consumption shocks, the mean 
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response in linear states was about 0.15% and ranged from 0.1% to 0.20% relative to the path. 

Here, the highest posterior density interval ranges from below zero to about 0.4%. The upper 

highest posterior density bound is almost twice as large. Unlike the highly confident linear impulse 

responses, the non-linear impulse responses over the business cycle exude uncertainty. This result 

supports several factors often found to be important in impulse response analysis. Firstly, sample 

selection is key to the scale of effects of fiscal policy, and secondly, the timing of fiscal policy can 

matter significantly (i.e., fiscal policy in recessions versus at the steady state). As such, the non-

linear impulse responses found here incorporate a much wider range of results found in the 

literature and relate them to the initial conditions of the economy.  

At first glance, the negative effects of government consumption shocks are surprising and highly 

unusual in DSGE models. The impulse responses are affine functions and linear in the initial 

conditions for a given shock, as shown in the previous section. Mechanically, it is, therefore, 

feasible for impulse responses to reverse signs given the right economic conditions. What is 

happening here is that the government rules for fiscal and monetary policy are exceptionally rich, 

and thus, fiscal and monetary policy do not occur in isolation. If one views the governmental 

mechanism in unity, then it is reasonable that for a specific policy mix under certain business 

cycle conditions, impulse responses may deliver unusual results.   
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Fig. 1.3: non-linear output impulse response to fiscal shocks around the cycle 

 

Notes: Impulses responses of non-linear output to one standard deviation fiscal shocks evaluated at randomly 

sampled states. The solid line is the mean impulse response; the grey shaded is the 95% highest posterior density 

interval.  

 

To sum up, the estimated model shows standard and relatively precise impulse responses to fiscal 

shocks in the linear framework. Changing to the non-linear framework but conducting fiscal 

policy at the steady state does not offer additional behaviour or conclusions. However, viewing 

impulse responses over the business cycle in the non-linear form offers additional insights. The 

key result is that impulse responses are much more diffuse in their effects and incorporate a much 

broader range of results, unlike the linear counterparts. Based on this, going forward, I will 

explore if it is possible to reduce some of this uncertainty by narrowing down the relationship 

between impulse responses and initial conditions.  
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1.5.3  Relationship between policy effectiveness and the initial conditions 
 

The previous section argued that accounting for the initial conditions can substantially increase 

the uncertainty in the effects of fiscal policy. In this section, I further explore the relationship via 

two avenues. The first avenue is based on a visualization strategy using 3D plots. However, while 

this approach provides useful intuition, it is limited in its applicability as there are other variables 

that are not controlled for. The second avenue aims to formalize the results by employing a linear 

regression strategy to pin down the exact relationship between the impulse responses at a given 

horizon to the initial conditions.  

To visualize the dynamics, I sample state vectors from the unconditional state distribution 

evaluated at sampled posterior parameter vectors. For each state vector, a fiscal intervention is 

conducted, and the impact of the policy intervention is recorded for the first quarter when the 

fiscal shocks start affecting the economy. In this case, as the type of shock matters and the 

impulses are not symmetric, I focus on policy interventions aimed at boosting output: tax cuts 

and spending increases. The size of the shock corresponds to a one standard deviation shock. The 

impulse responses at the given horizon are then plotted based on the initial conditions for output 

and debt, which are often used as the most relevant variables in the fiscal ruleset. To aid 

visualization, impulse responses are averaged and smoothed across a grid to create a surface, and 

further, highly unlikely events are omitted (𝑝𝑝𝑒𝑒𝑓𝑓𝑎𝑎 < 0.0003)̇. To complement the surface, the graph 

includes colour scaling, which includes the percentage frequency of the tile in the overall 

remaining sample.  



62 
 

Fig. 1.4: 3d slices of impulse responses of output to fiscal shocks 

  

Notes. 3D slices of impulse responses of output to fiscal stimulus shocks. For expenditure variables, a one standard 

deviation increase is considered, while for tax variables, a one standard deviation decrease is considered. The impulse 

responses are plotted over output (Y) and debt (B) as initial conditions. 

Fig. 1.4 allows for several conclusions to be drawn. Firstly, just like in the previous section, the 

3D graphs indicate a significantly larger variation of the effects of policy shocks in comparison to 

policy conducted at the steady state. For example, the slice of government consumption impulse 

responses, 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌 , varies from around zero to 0.4 depending on the initial conditions. As such, 

it matches the range of the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  observed in the previous section. Secondly, the impulse 

responses show a clear association with the initial condition for output and debt. For all fiscal 

interventions, it seems to be the case that scenarios of high output and low government debt are 

generally associated with more effective stimulus. However, this does not mean higher output 

and lower debt cause policy to be more effective, as other correlated and relevant variables ought 

to be considered.  
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To formalize the relationship, going forward, I utilize a linear regression approach. This is a useful 

approach as it allows for a quantification of the relationship because, based on section 1.5.1 , the 

impulse responses are linear functions in the initial conditions for a given shock. Therefore, a 

linear regression utilizes the correct functional form. Furthermore, unlike the graphical approach, 

this methodology allows me to control for all the relevant variables at the same time.  

For the regression, samples are created in an analogous fashion as for the graphs. Then, the 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  of output are regressed on variables in 𝑥𝑥𝑡𝑡−1

𝐿𝐿  for a given shock. I exclude the structural 

shocks for the fiscal rules as they do not offer an easily interpretable meaning. However, this will 

not affect the coefficient estimates for the remaining states.7 The results are presented in Table 

1.6 and Table 1.7. Further tables for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+4
𝑌𝑌  on initial conditions are provided in the appendix. 

Table 1.6: Regression of IRFs on impact of output to gov. consumption and transfer shocks on initial conditions 

 

 
7 While the structural, fiscal shocks in 𝑥𝑥𝑡𝑡−1

𝐿𝐿  may be relevant, they are also exogenous by design. Excluding exogenous 
variables should not affect other coefficients in this case. The structural shocks may be useful as controls. Though, as 
sample size and, thus, precision is not a limiting factor in this analysis I opt to omit as the share in variation 
explained by the structural shocks is fairly low.  

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+1
𝑌𝑌 |𝑣𝑣𝐺𝐺  𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+1

𝑌𝑌 |𝑣𝑣𝑍𝑍  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝐵𝐵−1 -0.0024 0.0002 -10.20 -0.0076 0.0006 -12.87 

𝑌𝑌�𝐵𝐵−1 -0.0009 6.89E-06 -132.93 0.0011 1.72E-05 66.18 
𝑖𝑖�̃�𝐵−1 -0.0025 0.0002 -12.73 -0.0066 0.0005 -13.71 

𝐵𝐵�𝐵𝐵−1 -6.57E-05 6.21E-07 -105.88 -0.0001 1.57E-06 -93.44 
�̃�𝜏𝐵𝐵−1
𝑙𝑙  0.0002 4.43E-06 36.64 0.0003 1.11E-05 24.25 

𝑍𝑍�𝐵𝐵−1 -6.81E-05 3.54E-06 -19.21 -0.0002 8.89E-06 -25.82 
𝐺𝐺�𝐵𝐵−1 0.0013 2.91E-06 451.00 5.14E-05 7.27E-06 7.08 
𝐵𝐵�𝐵𝐵−1 -0.0001 2.14E-06 -59.49 -0.0004 5.38E-06 -75.55 
�̃�𝜏𝐵𝐵−1
𝑐𝑐  2.73E-05 4.00E-06 6.83 4.38E-05 9.89E-06 4.42 
𝜋𝜋𝐵𝐵−1
∗  0.0005 0.0005 1.08 0.0037 0.0012 3.17 

Const. 0.1278 0.0001 1187.34 -0.0023 0.0003 -8.44 
              
              
𝐼𝐼2 0.9305   0.6973   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0264     0.0660     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝐵𝐵𝑎𝑎  0.1000     0.1200     
obs. 60000     60000     
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Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to government 

consumption and transfers, respectively. Initial conditions are phrased as percentage steady state deviations as per 

the model set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 is the 

RMSE for a mean model. 

 

 

Table 1.7: Regression of IRFs on impact of output to consumption and labour tax shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to consumption and 

labour taxation, respectively. Initial conditions are phrased as percentage steady state deviations as per the model 

set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 is the RMSE for 

a mean model. 

The first question is, “How relevant are the initial conditions in determining the effects of fiscal 

policy?”. To assess this, I utilize a root mean square error comparison for in-sample predictions 

for the full linear model, 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛, and a version that only includes a constant term, 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛, 

which is equivalent to the steady state. Across both horizons and all fiscal shocks considered, the 

error of the full linear model is substantially lower than its constant counterpart. At the minimum, 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+1
𝑌𝑌 |𝑣𝑣𝜏𝜏𝑐𝑐  𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+1

𝑌𝑌 |𝑣𝑣𝜏𝜏𝑙𝑙  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝐵𝐵−1 -0.0012 7.47E-05 -16.69 -0.0036 0.0002 -15.87 

𝑌𝑌�𝐵𝐵−1 0.0001 2.15E-06 47.31 0.0003 6.52E-06 44.88 
𝑖𝑖�̃�𝐵−1 -0.0008 6.17E-05 -13.32 -0.0026 0.0002 -13.85 
𝐵𝐵�𝐵𝐵−1 -2.35E-05 1.99E-07 -118.19 -7.78E-05 5.96E-07 -130.64 
�̃�𝜏𝐵𝐵−1
𝑙𝑙  4.44E-05 1.41E-06 31.38 0.0003 4.26E-06 67.69 

𝑍𝑍�𝐵𝐵−1 -2.34E-05 1.12E-06 -20.94 -6.50E-05 3.40E-06 -19.10 
𝐺𝐺�𝐵𝐵−1 3.65E-06 9.29E-07 3.93 2.29E-05 2.78E-06 8.25 
𝐵𝐵�𝐵𝐵−1 -3.15E-05 6.62E-07 -47.51 -8.54E-05 2.05E-06 -41.69 
�̃�𝜏𝐵𝐵−1
𝑐𝑐  5.53E-05 1.29E-06 42.73 1.48E-05 3.94E-06 3.77 
𝜋𝜋𝐵𝐵−1
∗  0.0013 0.0001 8.91 0.0038 0.0004 8.56 

Const. 0.0045 3.42E-05 132.20 0.0198 0.0001 190.99 
              
              
𝐼𝐼2 0.7271   0.6838   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0084     0.0254     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝐵𝐵𝑎𝑎  0.0160     0.0452     
obs. 60000     60000     
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the 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 is reduced by 32% for impulse responses to labour taxation shocks at four quarters. 

At the maximum, the 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 is reduced by 74% for government consumption shocks on impact. 

Based on this, in a non-linear model, the initial conditions can be highly useful in pinning down 

the effects of fiscal policy.  

The second, more general question is, “How do the effects of fiscal policy vary with the initial 

conditions?”. Across the board, the coefficients of the impulse responses on the initial inflation 

and interest rate are negative for fiscal stimuli. That means that if either variable, inflation or 

interest, is below the steady state, then policy interventions are more stimulative. In a sense, this 

mirrors results of the Zero Lower Bound theory as in Woodford (2011) and Christiano, 

Eichenbaum and Rebelo (2011) on the interest rate side. They show that in periods of zero 

interest rates, the effects of fiscal stimulus are heightened and can be substantially larger.  

Government consumption impulse responses on output are decreasing in output, while tax cuts 

and transfers are increasing. These results are in agreement with the analysis in Sims and Wolff 

(2013) and Sims and Wolff (2018a) on fiscal multipliers. In addition, it seems to be the case that 

all impulse responses to fiscal instruments are decreasing in debt. That implies that fiscal stimulus 

becomes more productive during periods when the government has low levels of debt and in the 

position to absorb the budgetary effects of stimulus. 

In terms of scale, impulse responses on impact to government consumption shocks depend on the 

initial condition less than the other fiscal instruments. To illustrate this, an initial interest rate 

that is 1% below the steady state increases the effects of government consumption on output at 

impact by around 2% (0.0025
0.1278 ∗ 100 = 1.96). For consumption and labour taxation cuts, the 

predicted increase lies at around 18% and 13%, respectively. Similarly, if output is 1% below the 

steady state, then government consumption shocks are about 0.7% more effective, while tax cuts 

are about 2.25% or 1.5% less effective for consumption and labour taxation shocks. Furthermore, 

if inflation is 1% below the steady state, then government consumption shocks are roughly 1.9% 

more effective on impact. Tax cuts become 27.6% (consumption) and 17.9% (labour) more 

effective. Overall, for government consumption expenditures, the initial conditions are less 

relevant than for tax variables. However, it is important to note that business cycle conditions 

are never observed in isolation, and thus, government consumption impulse responses may vary 
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across the cycle in a relevant way. For example, during the last 15 years, it is not atypical to 

observe periods of low interest rates combined with low inflation and low output. Based on this, 

the realized variation may be substantially larger.8 

To sum up, this section argues that the initial conditions are particularly useful in pinning down 

the variation of impulse responses to fiscal interventions and can explain a range of estimates 

found in the previous literature. Regressing output IRFs to fiscal shocks on initial conditions, I 

find that fiscal policy is more effective at stimulating output in low interest rate, inflation and 

debt environments. I also find the government consumption multiplier is larger in recessions, 

while tax cut multipliers are larger in booms.  

 

1.5.4  Historic path of policy effectiveness 
 

This section shows how the regression results presented above can be applied to the actual 

business cycle conditions estimated over the sample data from Q1 1984 to Q4 2021.  

To do so, I construct the posterior mean estimates of the state vectors across the sample based 

on the conditional particle filter using parameter draws from the posterior. That includes 

estimates for all state variables of the DSGE, including inflation, output, interest rate and more. 

These state vectors are multiplied with the coefficients found in the regression exercise and finally 

averaged. The result is approximated paths for the effectiveness of the impulse responses for a 

given horizon and shock. Fig. 1.5 and Fig. 1.6 present the results.  

Government consumption shows the clearest dynamic across the sample. In the mid to late 1980s, 

impulse responses of output to a one standard deviation government consumption shocks are 

most pronounced, climbing to above 0.15% at its peak on impact. After the start of the 1990s, 

 
8 A last note is on the relative importance of the initial conditions. In absolute terms, the coefficients of inflation and 

the interest rate are larger than for others variables like output and debt for all regressions. However, this does not 

mean that inflation and interest rates are more relevant in a typical business cycle situation. For example, the debt 

variable goes through very deep and protracted business cycles that may counteract smaller coefficients. To assess the 

realized impact of the initial conditions, one needs to consider both the scale of the coefficients and the spread of the 

variables.  
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government consumption stimulus becomes less and less effective, reaching its lowest values in 

and around 2000 at around 0.09%. After this period, the policy effectiveness almost doubles with 

the beginning of the financial crisis, reaching 0.16% in 2010. A similar increase, albeit lower in 

magnitude, is observed in 2020 during the pandemic.  

 

 

Notes: Constructed paths for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  in response to fiscal shocks for government consumption (upper left), transfers 

(upper right), consumption taxation (lower left) and labour taxation (lower right) 

 

The tax variables go through less pronounced cycles overall. In both cases, the early 1980s are 

associated with slightly more effective impulse responses on impact, which are followed by a 

period of low effectiveness during the early 2000s. After the financial crisis, both tax variables 

show periods of increased effectiveness. Though, the timing is slightly different, and the 

persistence of this effect differs. For consumption taxation, effectiveness increases after 2000 and 

reaches a maximum in and around 2012 and decays afterwards temporarily. Instead, labour 

Fig. 1.5: Paths of impact effect of fiscal policy around the cycle 
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taxation effectiveness begins to increase before the start of the 2010s and remains higher more 

persistently. Both taxation variables spike in effectiveness during the Covid crisis. For the four-

quarter impulse response, little changes for consumption taxation. For labour taxation, a trend 

to more effective policy arises over the whole sample. 

Typically, transfers affect the economy by raising consumption and, thus, output. As argued in 

Leeper, Plante and Traum (2010), transfers, by themselves, are non-distortionary, and the effects 

of a transfer shock are mostly governed by how the fiscal shock is financed. For example, if it is 

tax financed, then a transfer shock may be followed by a reduction in government consumption 

and an increase in taxes. In this case, the effects of a transfer shock become less clear because it 

depends on the exact policy mix. Fig. 1.5 predicts that during the financial crisis and during the 

Covid crisis, transfers end up raising output at the mean. This stays the same even at longer 

horizons. However, before the year 2005, the effects of a transfer shock are estimated to be 

negative. Looking at section 1.5.5 , this coincides with both labour taxation and transfers 

becoming much more responsive to debt to curb the deficit. In essence, this is a policy mix more 

focused on financing shocks via taxes and less on raising debt. 
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Fig. 1.6: Paths of effect of fiscal policy at four quarters around the cycle 

 

Notes: Constructed paths for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+4
𝑌𝑌  in response to fiscal shocks for government consumption (upper left), transfers 

(upper right), consumption taxation (lower left) and labour taxation (lower right) 

 

1.5.5  Policy gradients 
 

The policy rules for the federal government and the central bank include one novel feature: policy 

gradients may vary with business cycle conditions. This is the case as the rules are constructed 

as restricted, second-order Taylor approximation. Consequently, the gradients of the policy rules 

act as linear functions of the relevant business cycle conditions. In this section, I trace out the 

gradients of the fiscal rules with respect to output and debt across the sample. For the interest 

rate rule, I focus on constructing the time-varying estimates of the gradient of the interest rate 

to output growth and the percentage deviation of inflation to the inflation target.  

In this application, I utilize the gradient of the Taylor rule described in the model section above. 

I pre-multiply the gradients of the policy rule with (1 − 𝜌𝜌𝐼𝐼)−1. The reason for this choice is that 
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at the steady state, the two objects then have the familiar interpretation as being the two 

parameters 𝜓𝜓𝑦𝑦 and 𝜓𝜓𝜋𝜋 common to a lot of Taylor rules. Moving away from the steady state the 

second-order coefficients 𝜓𝜓𝑦𝑦,𝑦𝑦, 𝜓𝜓𝑦𝑦,𝜋𝜋 and 𝜓𝜓𝜋𝜋,𝜋𝜋 start to bite: 

𝜓𝜓𝑦𝑦,𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)−1 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

= �𝜓𝜓𝑦𝑦 + 𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)�, 

𝜓𝜓𝜋𝜋,𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)−1 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
= �𝜓𝜓𝜋𝜋 + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)�, 

where 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡 are the pre-multiplied time-varying gradients. In a sense, the two objects, 

𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡,  can be interpreted as the expanded definition for 𝜓𝜓𝑦𝑦 and 𝜓𝜓𝜋𝜋 which allows them 

to change over the cycle. As (1 − 𝜌𝜌𝐼𝐼)−1 is constant across time and positively valued, any 

conclusion drawn from the adjusted gradients about correlation also applies to the actual 

gradients.  

In order to implement this, I rely on the same sampling strategy as in the previous section. Based 

on posterior parameter draws, the mean state vectors are estimated across the sample. The state 

estimates are then multiplied with the corresponding elements of the posterior parameter vector 

to construct the gradient or objects of interest. Finally, the resulting estimates are averaged. The 

estimates for 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡  are presented in Fig. 1.7.  

Fig. 1.7: central bank policy rule gradients 

   

Notes: Constructed paths for 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡 in the central bank’s Taylor rule across the sample. 𝑙𝑙𝑡𝑡
𝑌𝑌  is the output 

growth rate otherwise also constructed as (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1). 

Firstly, both 𝜓𝜓𝜋𝜋,𝑡𝑡 and 𝜓𝜓𝑦𝑦,𝑡𝑡 show significant spikes around the time the US economy hits crisis. 

For example, at the beginning of the financial crisis, 𝜓𝜓𝜋𝜋,𝑡𝑡 falls from up to 1.91 to around 1.88. At 
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the same time, 𝜓𝜓𝑦𝑦,𝑡𝑡 increases substantially from around 0.127 to above 0.14. While these are 

individually not substantial shifts, they do, however, suggest a shift in preferences by the central 

banks. Overall, the central bank became less concerned with ensuring inflation stays on target 

while becoming much more troubled about output growth. This is consistent with the observed 

policy measures during the crisis. The central bank released an unprecedented policy mix 

combining a low-interest rate strategy with quantitative easing. This policy mix was highly 

focused on controlling output, while inflation was of secondary concern. A similar pattern, and 

larger in magnitude, was observed during the Covid crisis. In general, this behaviour of increased 

responsiveness to output and decreased responsiveness to inflation is shared by all crises in the 

sample. To illustrate, one can detect local spikes during the early 1990s and early 2000s 

corresponding to the comparatively minor crises during those time periods.  

However, the persistence, scale and recovery of the gradient changes seem to differ from crisis to 

crisis. Mechanically, the reason for this is that the gradients are highly correlated with output 

growth. 𝜓𝜓𝜋𝜋,𝑡𝑡 is positively correlated to output growth and 𝜓𝜓𝑦𝑦,𝑡𝑡 negatively. Consequently, in boom 

phases, the central bank cares about controlling inflation and focuses less so on growth. As the 

economy moves away from a boom phase to a crisis, the central bank “switches” focus away from 

inflation to controlling output. Depending on the design of the economic crisis and how that 

translates to growth rates, responses in the gradients will be stark versus muted or persistent 

versus temporary.  

In Fig. 1.7 the changes seemingly induced by crises seem to fade out comparatively quickly and 

introduce no long-term adjustments. The reason for this is that output growth, unlike output or 

output in terms of steady state deviations, features comparatively little persistence. So, while 

crises are easily recognizable in the data by large downward spikes, the spikes are usually 

temporary, followed by mildly negative or close to zero growth rates. Consequently, this explains 

why in this estimation, the changes in the gradient induced by economic crises are relatively 

short-lived.  

A second result that can be inferred from Fig. 1.7 is that both 𝜓𝜓𝜋𝜋,𝑡𝑡 and 𝜓𝜓𝑦𝑦,𝑡𝑡 go through a mild 

mean adjustment similar to the US inflation rate. Overall, coming from the 80s and 90s, the 

2000s and the financial crisis ushered in a period of persistently low inflation. This is reflected in 
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the policy gradients via 𝜓𝜓𝜋𝜋,𝑡𝑡 adjusting its mean downwards and 𝜓𝜓𝑦𝑦,𝑡𝑡 adjusting upwards. Arguably, 

that seems to indicate that an overall shift in the policy rule took place during the shift in the 

interest rate mean.  

Moving on to fiscal policy gradients, the gradients for the non-linear rules for government 

consumption, labour taxation and transfers are presented in Fig. 1.8. At the steady state, 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is 

negative by design which implies that government consumption falls when debt increases. Here, 

𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 increases during periods of economic distress and, thus, government consumption becomes 

less responsive to debt. Large reductions in responsiveness can be seen in 2007 with the beginning 

of the financial crisis and, afterwards, with Covid as well. More muted reductions can be seen 

during the early 2000s crisis and the early 1990s recession as well.  What this suggests is that in 

economic crises, the government’s decision-making process for government consumption becomes 

substantially less concerned with controlling debt and, as such, paves the way for debt-financed 

expenditures. 
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Fig. 1.8: Government policy gradients around the cycle 

       

Notes: Constructed paths for the rescaled gradients of the federal government rules across the sample.  

 

For the remaining gradients, the key factor is that they are heavily correlated with the 

government debt, positively or negatively. For example, while  𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝑌𝑌�̃�𝑡

 is negative across the sample, 

implying that government consumption increases in recessions as expected, the estimate gets 

close to zero in the 1990s when the debt level was very high. In practical terms, this implies that 

in economic downturns with high debt, the government consumption level will respond less to 

output than it would otherwise.  
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The labour taxation rate gradient to debt is also positively correlated with debt and changes 

quite substantially over time. Debt increasing in the 1990s coincides with the gradient of labour 

taxation to debt increasing in magnitude peaking in the late 1990s. In essence, as the debt level 

rises, labour taxation becomes more responsive to eventually force the budget back to the steady 

state. During the financial crisis, the labour taxation rate is in a period of relatively low 

responsiveness, making large stimulus packages possible. 𝜕𝜕𝜏𝜏�̃�𝑡
𝑒𝑒

𝜕𝜕𝑌𝑌�̃�𝑡
 is also positively correlated to debt. 

This suggests that the policy rule of the government in the 1990s implies much more stark 

increases in the labour taxation rate in response to above steady state output to balance the 

budget. In the early 2000s, the gradient begins to fall rapidly, and around the beginning of the 

financial crisis, the gradient is much smaller.  𝜕𝜕𝑍𝑍�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is negatively correlated to debt. Thus, transfers 

become more responsive to debt in the late 1990s to curb the deficit while being less responsive 

during the financial and Covid crisis. The same applies to  𝜕𝜕𝑍𝑍�̃�𝑡
𝜕𝜕𝑌𝑌�̃�𝑡

.  

 

1.6  Conclusion 
 

I propose a model that allows for the government and central bank to smoothly adjust their 

decision-making processes to the current state of the economy in a DSGE model. The model is 

estimated in its non-linear form using a fully Bayesian approach. Estimating DSGE models in 

their non-linear forms is a time-consuming effort even if vast computational resources are 

available. The research in this paper combines pre-existing empirical advances to significantly cut 

down on the estimation time. The empirical framework itself is constructed based on key advances 

by Herbst and Schorfheide (2016), Jasra et al. (2010) and heavily borrows from the work of 

Buchholz, Chopis and Jacob (2021) on SMC samplers. Further, particular care was put into 

designing a code implementation that can keep up with the performance needs of the estimation 

by focusing on parallelization and vectorization wherever possible. Together, the estimation 

procedure reduces the estimation time from weeks to days by up to 94%, depending on the 

comparison basis. As a consequence, this paperr provides useful information on how to estimate 

non-linear models in a reasonable timeframe even on smaller machines.  
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Using the fully estimated model, it can be shown that the effects of fiscal policy vary significantly 

with the initial conditions of the economy and uncertainty is increased across the board if one 

does not condition on the steady state. To aid policymakers, I explore how the effects of fiscal 

policy relate to the initial conditions. To pin down this relationship, I prove that the impulse 

responses to a given shock are affine functions of the initial linear conditions. Based on this, a 

simple regression strategy can be used to quantitively express the relationship. The results show 

that all fiscal instruments are more stimulative in low interest rate periods and less effective in 

phases of above steady state debt. Overall, output impulse responses to tax cut shocks are 

estimated to be procyclical to output, consistent with Sims and Wolff (2018a), and government 

consumption is countercyclical.  

I then combine the regression estimates with actual state estimates from historical US data from 

1984 to 2021 to construct a time series for the time-varying effects of fiscal policy. Among all 

included fiscal instruments, government consumption goes through the most persistent cycles in 

its effectiveness. The results show that government consumption is estimated to have been most 

effective during the Covid and financial crises. Other instruments show less clear patterns but 

still show at least temporarily increased effectiveness during the zero lower bound period and 

Covid crisis.  

The last contribution of this paper comes from exploring what the non-linear government and 

central bank rules imply for their behaviour across the business cycle. I find that the interest rate 

rule is heavily determined by output growth. In periods of high output growth, the central bank 

is more concerned with controlling inflation and less concerned with adjusting to output growth. 

As the economy shifts into crisis, the central bank reduces its focus on inflation and shifts towards 

bringing output back onto target. For the fiscal rules, the key behaviour seems to be that 

gradients respond to the debt level. During the high debt period of the 1990s, labour taxation 

and transfers became increasingly responsive to debt and, therefore, adjust to ensure the financial 

stability of the federal government.  

For future research, Gaussian process optimization seems promising. Gaussian process 

optimization is a Bayesian optimization technique typically applied to large-scale Machine 

Learning Systems and in non-linear model estimation. By design, Gaussian process optimization 
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tends to be very performative in comparison to standard methods and variations of Bayesian 

optimization techniques for systems with latent states exist and are under development.  
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Appendix A  
 
A.1 Second-order pruned system 
 

For the estimations in this paper, I rely on the canonical pruned second-order system as in 

Andreasen, Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017). The key idea of pruning 

comes from the shock transition in non-linear models. In linear models, no shock can push the 

linear model of a stable path. In non-linear modelling, this is not necessarily the case, even if the 

linear model is stable. The instability is introduced via the inclusion of the higher terms of the 

approximation. In order to ensure that the data generating process is stable, the system is pruned. 

The pruned second-order system can be summarized as follows: 

𝑥𝑥𝑡𝑡+1
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼),   

𝑥𝑥𝑡𝑡+1
𝑄𝑄 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎𝜎𝜎2 + 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡

𝑄𝑄 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡
𝐿𝐿⨂𝑥𝑥𝑡𝑡

𝐿𝐿) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼), 

𝑦𝑦𝑡𝑡+1 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑥𝑥𝑡𝑡+1
𝑄𝑄 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡+1

𝐿𝐿 ⨂𝑥𝑥𝑡𝑡+1
𝐿𝐿 ). 

Working with the pruned system may seem like an approximation of sorts. In practice, it is very 

convenient to prune unstable paths. In fact, most particle filter applications rely on it, and so 

does the conditional particle filter. In its basic form, the second-order DSGE system is non-linear 

in its states. However, the state vector can be augmented to linearize the system without 

additional assumptions. Using the state vector 𝑧𝑧𝑡𝑡 = [𝑥𝑥𝑡𝑡
𝐿𝐿′, 𝑥𝑥𝑡𝑡

𝑄𝑄′, (𝑥𝑥𝑡𝑡
𝐿𝐿⨂𝑥𝑥𝑡𝑡

𝐿𝐿)′] the system can be 

rewritten as such: 

𝑧𝑧𝑡𝑡+1 = 𝑐𝑐2 + 𝐴𝐴2𝑧𝑧𝑡𝑡 + 𝐵𝐵2𝜁𝜁𝑡𝑡+1, 

where the system can be stated in matrix form as: 
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⎣
⎢
⎡

𝑥𝑥𝑡𝑡+1
𝐿𝐿

𝑥𝑥𝑡𝑡+1
𝑄𝑄

(𝑥𝑥𝑡𝑡+1
𝐿𝐿 ⨂𝑥𝑥𝑡𝑡+1

𝐿𝐿 )⎦
⎥
⎤

=
⎣
⎢⎡

0
0.5 ∗ ℎ𝜎𝜎𝜎𝜎

𝜎𝜎2(𝜎𝜎⨂𝜎𝜎)𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�⎦
⎥⎤ +

⎣
⎢⎡
𝐻𝐻𝑥𝑥 0 0
0 𝐻𝐻𝑥𝑥 𝐻𝐻𝑥𝑥𝑥𝑥
0 0 (𝐻𝐻𝑥𝑥⨂𝐻𝐻𝑥𝑥)⎦

⎥⎤

⎣
⎢
⎡

𝑥𝑥𝑡𝑡
𝐿𝐿

𝑥𝑥𝑡𝑡
𝑄𝑄

(𝑥𝑥𝑡𝑡
𝐿𝐿⨂𝑥𝑥𝑡𝑡

𝐿𝐿)⎦
⎥
⎤

+ �
𝜎𝜎𝜎𝜎 0 0 0
𝜎𝜎𝜎𝜎 0 0 0
0 𝜎𝜎2(𝜎𝜎⨂𝜎𝜎) 𝜎𝜎2(𝜎𝜎⨂𝐻𝐻𝑥𝑥) 𝜎𝜎2(𝐻𝐻𝑥𝑥⨂𝜎𝜎)

� 

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡+1

(𝑣𝑣𝑡𝑡+1⨂𝑣𝑣𝑡𝑡+1) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡+1⨂𝑥𝑥𝑡𝑡
𝐿𝐿)

(𝑥𝑥𝑡𝑡
𝐿𝐿⨂𝑣𝑣𝑡𝑡+1) ⎦

⎥
⎥
⎤
,     

In this augmented form, 𝑧𝑧𝑡𝑡+1 depends linearly on 𝑧𝑧𝑡𝑡 and 𝜁𝜁𝑡𝑡+1. 𝜁𝜁𝑡𝑡+1 constitutes an uncorrelated, 

mean zero process with a finite covariance matrix under standard assumption. The covariance 

matrix of 𝜁𝜁𝑡𝑡+1 can be constructed exactly based on the unconditional covariance matrix of the 

linear states. The measurement equation can be rewritten as follows: 

𝑦𝑦𝑡𝑡+1 = 𝑎𝑎2 + 𝐶𝐶2𝑧𝑧𝑡𝑡+1, 

𝑦𝑦𝑡𝑡+1 = [0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎] + [0 𝐺𝐺𝑥𝑥 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥]
⎣
⎢
⎡

𝑥𝑥𝑡𝑡+1
𝐿𝐿

𝑥𝑥𝑡𝑡+1
𝑄𝑄

(𝑥𝑥𝑡𝑡+1
𝐿𝐿 ⨂𝑥𝑥𝑡𝑡+1

𝐿𝐿 )⎦
⎥
⎤
. 

Measurement errors for 𝑦𝑦𝑡𝑡+1 can be added on demand as in any DSGE. Finally, while the new 

state-space system for 𝑧𝑧𝑡𝑡+1is of the canonical linear form, it is technically not gaussian. This is 

because 𝜁𝜁𝑡𝑡+1 depends on higher-order products of 𝑣𝑣𝑡𝑡+1. 

 

A.2 Code implementation detail 
 

Solving and estimating higher-order DSGE models is a prohibitively time-consuming process that 

can require substantial code development and expensive hardware to become feasible. In the 

section below, I provide a detailed breakdown of the methods employed in this paper, and 

hopefully, the review is useful to others implementing similar projects. As mentioned before, this 

work is heavily influenced by Gomme and Klein (2011), Schmitt-Grohe and Uribe (2004), Herbst 

and Schorfheide (2016), Buchholz, Chopis and Jacob (2021) and neural network applications. 



84 
 

To start off, for this project, MATLAB was the choice of programming language as it offers 

several advantages other languages do not currently offer for economics to the same extent. 

MATLAB is heavily used in macroeconomics for DSGE models, and a lot of important programs 

are freely available (e.g. solab.m/solab2.m for model solving developed as a companion to Gomme 

and Klein (2011)). While MATLAB is generally thought of as a low-performative language, it 

has made significant strides during the last 15 years. With the introduction of the Linear Algebra 

Package (LAPACK) library and Basic Linear Algebra Subprograms (BLAS) to MATLAB in the 

earlier 2000s, MATLAB itself has become performative and provides a great compromise between 

performance and speed of implementation. While implementation directly in C or Fortran ought 

to be faster, the implementation also becomes more time-consuming. However, to fully make use 

of the advancement, a requirement is that code is developed centred around the idea of utilizing 

the optimized libraries whenever suitable (vectorizing, utilizing compiled functions wherever 

possible, etc.).  

For the code implementation, one component of particular importance is being able to adapt 

model files quickly and conveniently. Writing DSGE model files and the following debugging is a 

tricky and time-consuming process that requires frequent rewrites of sections and model matrices. 

At the moment, Dynare offers the best practice in the way it approaches model files. Dynare 

provides an incredibly convenient framework for writing models. The user can write the model 

equations directly using a convenient time-shift notation into a text file. Dynare then parses this 

file and creates estimation-relevant objects on the fly. The user does not have to manually supply 

any further objects like Jacobians, Hessians or linearized versions of the model. Adapting or 

changing a model is comparatively straightforward as only the model file has to be adjusted and 

requires no further input from the user. While I initially explored using Dynare, my experience 

was that it is based on a comparatively close-knitted ecosystem, and that makes it more difficult 

to, for example, replace estimation procedures or time series filters with non-Dynare options. 

Therefore, I re-engineered a basic version based on the Dynare philosophy for model files. I rely 

on the symbolic toolbox MATLAB provides, similar to Schmitt-Grohe and Uribe (2004). 

Symbolic variables are a data type, and the key idea is that it tells MATLAB that any calculations 

using these variables must be performed analytically. However, these symbolic variables can be 

evaluated as numerical variables. This provides significant freedom and convenience in their 



85 
 

application. Further, MATLAB supports a wide range of functions for symbolic variables making 

them an ideal choice for quick and convenient development of model files. For the code 

implementation, the main model file that includes the DSGE equations is written entirely using 

symbolic variables, and the equations are based on the original non-linear system of equations.  

Based on the symbolic variable implementation, several advantages come into play. Changing 

variables becomes much easier in this format. Instead of rewriting the system manually, the user 

only has to define a relation between the old and new variables. This relation can then be used 

to substitute the old variables out. As in Schmitt-Grohe and Uribe (2004), using the inbuilt 

symbolic functions allows the evaluation of estimation relevant objects for a specific DSGE model. 

Crucially, the Jacobian and Hessian of the model must be evaluated for every single likelihood 

evaluation. While the analytic form of both matrices does not change, numerical evaluations vary. 

I evaluate the Jacobian and Hessian analytically once, in the beginning, using the 𝑗𝑗𝑎𝑎𝑐𝑐𝑓𝑓𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎(𝑓𝑓, 𝑣𝑣) 

and ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑎𝑎𝑎𝑎(𝑓𝑓, 𝑣𝑣) functions based on the symbolic structural parameter vector. Next, the two 

objects are printed to a dynamically generated MATLAB function. During the simulation, the 

generated MATLAB function can then be used to evaluate the Jacobian and Hessian numerically 

using a numeric parameter vector. It requires no further use of the symbolic variables. This means 

that the evaluation only relies on a vector-valued matrix construction which is significantly more 

performative and convenient than other methods like numerical differentiation. Coming back to 

adaptability, model changes in the model files trickle down to this part. After making adjustments 

to the model files, a new file for evaluating the Jacobian/Hessian of the model can be generated 

without further adjustments to the code. Consequently, this type of implementation improves on 

the adaptability to model changes and adjustments in specification significantly while also being 

quite performative.  

Convenience and adaptability aside, the crucial component of this application is performance. 

Non-linear estimations are much more time-consuming than linear estimations because they 

require additional complex calculations: model solving and likelihood construction. 

Model solving has two main components that require significant time. The first component is 

generating the inputs for the model solver (i.e., the Jacobian and Hessian of the model evaluated 

at the steady state). As previously mentioned, I rely on printed analytical files for these objects, 
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which can be easily and quickly evaluated. This essentially removes the inputs as a significant 

computation time cost factor.  The second component is the solution strategy itself. For this, I 

rely on the alternative DSGE solution method offered by Gomme and Klein (2011) based on a 

generalized Sylvester equation approach and their code. Their implementation relies on calling 

LAPACK functions to solve the generalized Sylvester equation and offers substantial 

computational gains over all other tested implementations. Furthermore, it can be easily 

implemented.  

The other performance-critical aspect is filtering/likelihood evaluations. Filtering for non-linear 

models can be done using particle filters which use thousands of particles to approximate the 

likelihood. Particle filters require numerous forward iterations of the individual particles per 

likelihood evaluation of the solved model. Because the number of particles is in the thousands 

typically and estimations require thousands if not millions of likelihood evaluations, the time per 

forward iteration is important. The forward iteration of the predetermined variables for a specific 

particle, 𝑥𝑥𝑡𝑡, is defined in the equation below: 

𝑥𝑥𝑡𝑡+1 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑥𝑥𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡⨂𝑥𝑥𝑡𝑡) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼).   

Specifically, the operation 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡⨂𝑥𝑥𝑡𝑡) for a given (𝑥𝑥𝑡𝑡⨂𝑥𝑥𝑡𝑡) is costly and has a time complexity 

of 𝑂𝑂(𝑎𝑎𝑥𝑥
3) using Big-O notation where 𝑎𝑎𝑥𝑥 is the number of predetermined states. For a given 

structural parameter vector, 𝐻𝐻𝑥𝑥𝑥𝑥 is a fixed matrix. Because that is the case, the second-order 

component, 𝐻𝐻𝑥𝑥𝑥𝑥(𝑥𝑥𝑡𝑡⨂𝑥𝑥𝑡𝑡), does need to be done particle by particle in a sequential format, but 

can be vectorized to one operation.9 As it can be summarized to one operation, one can make 

good use of the inbuilt LAPACK libraries or run the process on a GPU in parallel. However, this 

process comes with a caveat typically not encountered during normal applications. Forwards 

iterating the entire particle system in one go requires significant amounts of memory, especially 

if it is done in parallel for several structural parameter vectors at once.  

Based on MATLAB (R2021b), in parallel applications, MATLAB works out of the CPU cache. 

The CPU cache is a type of memory that is much faster and located close to the CPU. Any 

 
9 All current particles can be stacked as column vectors into a matrix, 𝑋𝑋𝑡𝑡

𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚 of size 𝑎𝑎𝑥𝑥 by the number of particles. 
In this case, the Kronecker product can be conveniently defined using the 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑝𝑝𝑒𝑒 and 𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 function as 
𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚�𝑋𝑋𝑡𝑡

𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚, 𝑎𝑎𝑥𝑥, 1�.∗ 𝑒𝑒𝑒𝑒𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡(𝑋𝑋𝑡𝑡
𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥, 1), where “.∗” indicates element by element multiplication. The last 

step is to pre-multiply by 𝐻𝐻𝑥𝑥𝑥𝑥. 
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calculation that can be done on the cache is significantly faster than calculations based on data 

in the RAM or hard drive. The problem is that cache memory is much more expensive and 

therefore limited to a few MB. There are different types of caches with different speeds and sizes 

on the standard computers to optimize performance. The L1 type is usually the fastest but 

smallest. Other caches may address this trade-off between size and speed differently. In the case 

of MATLAB, in parallel applications, once a dataset is larger than a given CPU cache, 

performance will degrade because of memory access. Therefore, while intuitively, the speed of the 

CPU itself seems to be of utmost importance, in this application, memory access is the second 

important variable.  

While the way MATLAB handles arrays that are larger than the CPU cache is mostly black box, 

for this application, it turns out that breaking down the calculation into sub-sets and ensuring 

that all required arrays for each parallel sub-calculation fit into the cache is advantageous. 

Fortunately, the forward iteration of the particle system can be broken down easily by separating 

the particle system into new arrays. To decide on this breakdown in a semi-optimal way, I 

approximate the total storage needed by the particle system and the arrays required in operation. 

The memory requirement is then divided by the cache size, which delivers the number of sub-

sets of particles. Finally, this number is rounded up for a safety margin to avoid approximation 

errors. The result is a semi-efficient number of sub-sets for the total calculation.  

To access any performance advantages, I test computation times for likelihood evaluations. The 

test computer has an Intel® Core™ i9-10980XE CPU. This CPU has three caches, where the L1 

has 1.1MB of storage, the L2 has 18.0MB, and the L3 has 24.8 MB. I set the number of particles 

to 10.000, as in the estimation. The result is a significant speed-up for any cache, but in this case, 

the L1 cache seems to provide an optimal trade-off between size and speed. The gains are even 

starker for less performative CPUs, like in a work laptop. 

To showcase the performance gains, Table A.1  below shows likelihood evaluations times for naïve 

and optimized memory management for single and multithreaded computations for the most 

performative cache (L1) based on a sample of 100 evaluations: 

Table A.1: Overview of performance gains across different specifications 
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Notes: Time is measured in seconds 

On a single Core, the time reduction from optimizing memory management is equal to roughly -

48%. This also holds true for multithreaded calculations using parpool. Multithreaded 

calculations allow for an orthogonal performance gain to memory management, bringing the total 

gain up to 62% or 0.57s per likelihood evaluation. For Metropolis-Hastings samplers, this decrease 

scales linearly to estimation time as estimation time is roughly 𝑎𝑎𝑀𝑀𝑀𝑀𝑠𝑠𝑣𝑣𝑠𝑠𝑙𝑙 ∗ 𝑡𝑡𝑙𝑙𝑖𝑖𝑘𝑘𝑠𝑠𝑙𝑙𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑠𝑠 𝑠𝑠𝑣𝑣𝑠𝑠𝑙𝑙.. For the 

sequential Monte Carlo estimation, I developed an alternative version in which the forward 

iteration is computed on the GPU which are already heavily employed in other fields that require 

large array operations (e.g. neural networks). Sequential Monte Carlo techniques (SMC) heavily 

rely on CPU parallelization. This can be a significant computational advantage over MCMC 

techniques. If the time per likelihood evaluation and the number of likelihood evaluations is fixed, 

then the SMC can be up to 𝑎𝑎𝐶𝐶𝑜𝑜𝐶𝐶𝑠𝑠𝑠𝑠 times faster.10 However, due to its parallel nature, CPU 

resources are typically not available for multithreading of the likelihood evaluation. The result is 

that the time/likelihood may be significantly slower if one purely relies on CPU calculations. The 

advantage of using a GPU for sequential Monte Carlo estimation is that it brings in new resources 

that can be split. Equally, GPUs have much larger memories, and typically, no cache-like 

constraints are experienced for the size of arrays in this problem. On a test basis for non-

sequential likelihood evaluations, the time per likelihood evaluation for a GPU (0.65s) is 

comparable to that of the multithreaded memory-optimized implementation (0.57). As a last 

note, as the design of MATLAB memory access is mostly black box, this implementation need 

not always provide advantages, especially in different versions of MATLAB.  

 
10 The actual speed up depends on the exact algorithm settings (comparing reasonable algorithm settings vs forcing 
equal numbers of likelihood evaluations) but is substantial in any case. For an estimation using the Metropolis 
Hastings algorithm using a quite standard 5,000,000 likelihood evaluations as in Leeper, Plante and Traum (2010) 
estimation time may be as long as 89 (47, 32) days based on the single, naïve ((single, optimized), (Multi, 
optimized)) implementation. The run time for the SMC algorithm employed ended up being 5 days implying a 
reduction of 94% (89%, 85%). Comparing based on an equal number of likelihood evaluations, it would imply savings 
of 85% (72%, 60%).  

Processor Memory management Time/likelihood eval. 
   

Single Naïve 1.54 
Single optimized 0.82 
Multi Naïve 1.07 
Multi optimized 0.57 
GPU optimized 0.65 
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For this paper, I am really grateful to Amisano and Tristani (2010) for providing me with their 
code base, which allowed me to double-check my work and improve upon it. 

 

 

 

 

 

A.3 Posterior density plots 
 

 

A.3.1 Core model parameters 
 

Fig. A.1: Posterior density graphs for core model parameters 
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Notes: Posterior and prior density plots for core model parameters. Dashed line corresponds to prior density and 
solid line to posterior density.  

 

A.3.2 Linear rule parameters 
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Fig. A.2: Posterior density graphs for linear rule parameters 
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Notes: Posterior and prior density plots for linear fiscal rule parameters. Dashed line corresponds to prior density 
and solid line to posterior density.  

 

 

 

A.3.3 Non-linear rule parameters 
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Fig. A.3: Posterior density graphs for non-linear rule parameters 
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Notes: Posterior and prior density plots for non-linear rule parameters. Dashed line corresponds to prior density and 
solid line to posterior density.  

 

 

A.4 Amisano and Tristani (2010) re-estimation 
 

This appendix presents re-estimation results for the Amisano and Tristani (2010) model, which 

builds the core of the model developed here and Amisano and Tristani (2010) also designed the 

conditional particle filter employed here. This section features three estimations. Firstly and 

secondly, I estimate the Amisano and Tristani (2010) model estimations for the linear and non-

linear versions using their base estimation procedure described in their paper based on code 

developed for this paper. That includes using the Metropolis-Hastings algorithm on a set of 

transformed parameters and generating 55,000 draws using a Gaussian transition kernel. The 

chain is initialized based on a gaussian approximation of the posterior using a preliminary linear 

run. Further, the first 5000 draws are discarded. The transition kernel is based on the 

approximated covariance matrix from an initial linear run. Lastly, as a proof of concept, I estimate 

the non-linear Amisano and Tristani (2010) model using the SMC algorithm described above 
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using the prior distribution of 𝜃𝜃, 𝑝𝑝(𝜃𝜃), as the initial distribution, 𝜇𝜇1(𝜃𝜃). The number of parameter 

particles is set to 3000, the number of blocks is three and mixture weights and particle degeneracy 

are as in main estimation. In both applications, the particle filter is initialized based on the 

unconditional linear distribution to match Amisano and Tristani (2010) who use the linear 

Covariance matrix. However, I do not use the non-linear unconditional mean and instead use the 

linear unconditional mean. For this exercise, I rely on the original data set which was available 

to me as Amisano and Tristani (2010) very kindly shared their code with me.  

Table A.2 below represents the estimation results for the posterior simulation for the linear and 

quadratic approximations on the original dataset. For the linear estimation, all parameters are 

contained in the highest posterior density intervals produced by Amisano and Tristani (2010). 

Additionally, all estimates are within 0.4 standard deviations of the original. That is the case 

even for very tightly measured parameters like 𝛽𝛽. The highest difference between estimates can 

be found in the parameters 𝛽𝛽 and 𝜓𝜓𝜋𝜋. For 𝜓𝜓𝜋𝜋 the posterior mean is 2.013. In comparison, Amisano 

and Tristani (2010) estimate the parameter to be slightly lower at 1.947. This difference 

constitutes to roughly 0.38 standard deviations. Looking at transition plots for the parameter 

movement during the simulation, parameter transitions appear stable. Furthermore, the estimates 

appear stable across multiple runs with negligible differences. 
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Table A.2: Replication Results MH 

 

Notes: Posterior estimates for the linear and non-linear model using the MH algorithm 

For the non-linear estimation, the results are very similar. All estimates are contained in the 

original highest posterior density intervals and within one standard deviation from their posterior 

estimates rounding up. The larger deviations can be found for the parameters 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝜋𝜋. 𝑝𝑝𝑖𝑖 is 

estimated to be slightly higher at 0.89 in comparison to 0.85. This difference constitutes to 

approximately 0.8 standard deviations. Similarly, the posterior mean for 𝜎𝜎𝜋𝜋 is 0.0014 in 

comparison to the estimate of 0.00174 found by Amisano and Tristani (2010). Overall, the 

estimates presented here are much closer to Amisano and Tristani (2007) where estimates match 

within 0.4 standard deviations.  

Table A.3 below presents estimation results of the SMC procedure without adaptive tempering 

on the original Amisano and Tristani (2010) model. The SMC estimation conducted here 

produces posterior estimates entirely consistent with the original estimates based on the MCMC 

para linear quadratic 
mean Sd. mean Sd. 

         
𝛽𝛽 0.994388 0.00104 0.99311 0.00112 

𝛾𝛾 − 1 2.35549 0.88414 2.58380 0.82127 
ℎ 0.461389 0.06397 0.46263 0.06481 

𝜙𝜙 − 1 4.004861 1.22902 3.44992 0.87042 
𝜃𝜃 − 1 5.484073 2.09163 4.17055 1.42953 
𝜁𝜁 0.402195 0.07384 0.49058 0.07023 
𝑙𝑙 0.083153 0.04296 0.06354 0.03618 

𝜓𝜓𝜋𝜋 − 1 1.01288 0.16845 0.91251 0.15902 
𝜓𝜓𝑦𝑦  0.043456 0.03108 0.06423 0.04667 
𝑝𝑝𝑖𝑖  0.894975 0.01371 0.89056 0.01343 
𝑝𝑝𝜏𝜏  0.506594 0.15723 0.54403 0.14531 
𝑝𝑝𝐵𝐵  0.997937 0.00167 0.99853 0.00126 
𝑝𝑝𝜋𝜋  0.988598 0.00711 0.97366 0.01117 
𝜎𝜎𝜏𝜏  0.045471 0.01507 0.04113 0.01340 
𝜎𝜎𝐵𝐵  0.013328 0.00162 0.01487 0.00199 
𝜎𝜎𝜋𝜋  0.001398 0.00019 0.00133 0.00019 
𝜎𝜎𝑖𝑖  0.001941 0.00013 0.00194 0.00013 
𝜏𝜏 0.455751 0.28511 0.36558 0.22613 

𝜋𝜋 − 1 0.005609 0.00311 0.00906 0.00318 
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technique. All estimates are within one standard deviation of the estimates found by Amisano 

and Tristani (2010). 

Table A.3: Replication Results SMC 

 

Notes: Posterior estimates for the non-linear model using the SMC algorithm 

 

 

A.5 Estimation diagnostics 
 

Fig. A.4 below displays estimation diagnostics for the main estimation in this paper. The key 

mechanic in the diagnostics below comes from the effective sample size dynamic in SMC 

algorithms. In a SMC algorithm, one generates repeated importance sampling distributions for a 

sequence of increasingly different distributions. Samples generated for an initial distribution may 

not match later distributions particularly well and therefore, the number of effective samples will 

naturally decrease. To control this and to ensure the effective sample size stays high enough, two 

para 
SMC 

mean Sd. 
   
𝛽𝛽 0.99352 0.00119 

𝛾𝛾 − 1 2.29758 1.00288 
ℎ 0.46244 0.07441 

𝜙𝜙 − 1 3.46547 1.21152 
𝜃𝜃 − 1 4.40969 1.61064 
𝜁𝜁 0.44653 0.08395 
𝑙𝑙 0.08090 0.04519 

𝜓𝜓𝜋𝜋 − 1 0.91519 0.19334 
𝜓𝜓𝑦𝑦  0.09522 0.06507 
𝑝𝑝𝑖𝑖  0.88754 0.01787 
𝑝𝑝𝜏𝜏  0.49547 0.18285 
𝑝𝑝𝐵𝐵  0.99823 0.00154 
𝑝𝑝𝜋𝜋  0.97886 0.01137 
𝜎𝜎𝜏𝜏  0.04094 0.01797 
𝜎𝜎𝐵𝐵  0.01421 0.00208 
𝜎𝜎𝜋𝜋  0.00126 0.00021 
𝜎𝜎𝑖𝑖  0.00197 0.00016 
𝜏𝜏 0.38494 0.36830 

𝜋𝜋 − 1 0.00970 0.00402 
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strategies are employed in this paper. Firstly, Jasra et al (2010) propose a mechanism by which 

the rate of decay can be controlled. Secondly, once the sample size falls below a threshold, the 

draws are resampled to create more evenly weighted draws. For more detail on this see the 

estimation procedure section. The result is the pattern of the effective sample size in fig. 4 below. 

Fig. 4 shows repeated phases of very consistent decay of the ESS followed by an abrupt upwards 

jump as a result of the resampling step once the ESS falls below the threshold. The consistency 

of the behaviour shows how effective the procedure developed by Jasra et al (2010) is at 

controlling the path of the ESS. As a by-product of the resampling step, one typically receives a 

much more well behaved distribution of particles in a potentially higher average density area. 

Therefore, the acceptance rate jump upwards after every resampling step. To ensure that the 

acceptance rate is close to the target value of 0.24, the Herbst and Schorfheide (2016) target 

function will then gradually raise the scaling factor for the Metropolis Hastings step. 

In the tempering schedule, 𝜙𝜙𝑛𝑛 moves from zero to one. If 𝜙𝜙𝑛𝑛 is equal to zero, then the particle 

system represents the initial distribution. As 𝜙𝜙𝑛𝑛 moves to one, the SMC samples approximates 

distributions increasingly more similar to the posterior which culminates at 𝜙𝜙𝑛𝑛 = 1 with the 

posterior. The tempering schedules here is concave. This is the case for arguably two reasons. 

Firstly, the SMC sampler does not start out in an area of low density as the initial distribution 

is an approximated posterior. Therefore, the sampler can add information quickly without 

generating bridge distributions which are too dissimilar. Secondly, as the temperature increases, 

the noise of the target density due to the particle filter approximation increases.11 With increasing 

noise in the target function, the current posterior become more difficult to transverse and the 

speed of the tempering schedule decreases as it has to ensure the planned decay of the ESS.  

 

 

 
11 Assume 𝑝𝑝(𝑦𝑦|𝜃𝜃) is distributed as a normal with mean, 𝜇𝜇 𝑝𝑝(𝑦𝑦|𝜃𝜃), and variance, 𝜎𝜎 𝑝𝑝(𝑦𝑦|𝜃𝜃)

2 . Then the variance of the 

tempered distribution is defined as: 𝑉𝑉𝐵𝐵𝑁𝑁�𝜋𝜋𝑛𝑛(𝜃𝜃)� ∝ 𝑉𝑉𝐵𝐵𝑁𝑁 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛� =

�𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛�𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛�
2
𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛�. For small 𝜙𝜙𝑛𝑛,𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛� is essentially zero. As 𝜙𝜙𝑛𝑛 

increases, 𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛� increases reaching the full variance at 𝜙𝜙𝑛𝑛 = 1 
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Fig. A.4: Simulation Diagnostics 

 

Notes: Simulation Diagnostics for the mean estimation. It includes acceptance rates, scaling factor, effective samples 

size and temperature path across the iteration.  
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A.6 Regression Tables for IRFs 
 

Table A.4: Regression of IRFs on impact of output to government consumption and transfer shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to government 

consumption and transfers, respectively. Initial conditions are phrased as percentage steady state deviations as per the 

model set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 is the RMSE 

for a mean model. 

 

 

 

 

 

 

 

 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+4
𝑌𝑌 |𝑣𝑣𝐺𝐺  𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+4

𝑌𝑌 |𝑣𝑣𝑍𝑍  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝐵𝐵−1 -0.0050 0.0003 -16.92 -0.0093 0.0007 -12.61 

𝑌𝑌�𝐵𝐵−1 -0.0003 8.52E-06 -30.24 0.0019 2.16E-05 89.09 
𝑖𝑖�̃�𝐵−1 -0.0061 0.0002 -25.29 -0.0128 0.0006 -21.10 

𝐵𝐵�𝐵𝐵−1 -7.27E-05 7.81E-07 -93.17 -0.0002 1.95E-06 -79.19 
�̃�𝜏𝐵𝐵−1
𝑙𝑙  0.0003 5.57E-06 46.07 0.0004 1.39E-05 31.88 

𝑍𝑍�𝐵𝐵−1 -7.88E-05 4.47E-06 -17.62 -0.0002 1.11E-05 -20.20 
𝐺𝐺�𝐵𝐵−1 0.0010 3.66E-06 260.76 9.58E-05 9.15E-06 10.46 
𝐵𝐵�𝐵𝐵−1 -0.0003 2.65E-06 -94.69 -0.0007 6.74E-06 -110.01 
�̃�𝜏𝐵𝐵−1
𝑐𝑐  3.47E-05 4.92E-06 7.06 8.06E-05 1.28E-05 6.27 
𝜋𝜋𝐵𝐵−1
∗  0.0043 0.0006 7.47 0.0042 0.0014 2.91 

Const. 0.0957 0.0001 708.11 -0.0085 0.0003 -25.16 
              
              
𝐼𝐼2 0.8789   0.6489   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0331     0.0830     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝐵𝐵𝑎𝑎  0.0951     0.1400     
obs. 60000     60000     
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Table A.5: Regression of IRFs on impact of output to consumption and labour tax shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to consumption and 

labour taxation, respectively. Initial conditions are phrased as percentage steady state deviations as per the model 

set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛 is the RMSE for 

a mean model. 

 

 

 

 

 

 

 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+4
𝑌𝑌 |𝑣𝑣𝜏𝜏𝑐𝑐  𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵+4

𝑌𝑌 |𝑣𝑣𝜏𝜏𝑙𝑙  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝐵𝐵−1 -0.0020 9.30E-05 -21.194 -0.0054 0.0003 -18.12 

𝑌𝑌�𝐵𝐵−1 0.0002 2.69E-06 81.743 0.0006 8.67E-06 66.11 
𝑖𝑖�̃�𝐵−1 -0.0015 7.61E-05 -19.770 -0.0052 0.0002 -21.00 

𝐵𝐵�𝐵𝐵−1 -2.56E-05 2.46E-07 -103.990 -8.33E-05 7.91E-07 -105.30 
�̃�𝜏𝐵𝐵−1
𝑙𝑙  5.76E-05 1.75E-06 32.842 0.0005 5.70E-06 82.46 

𝑍𝑍�𝐵𝐵−1 -1.02E-05 1.40E-06 -7.279 -4.36E-05 4.54E-06 -9.60 
𝐺𝐺�𝐵𝐵−1 -5.51E-06 1.15E-06 -4.796 6.92E-06 3.70E-06 1.87 
𝐵𝐵�𝐵𝐵−1 -8.29E-05 8.47E-07 -97.844 -0.0002 2.69E-06 -75.74 
�̃�𝜏𝐵𝐵−1
𝑐𝑐  9.04E-05 1.58E-06 57.057 2.76E-05 5.21E-06 5.30 
𝜋𝜋𝐵𝐵−1
∗  0.0024 0.0002 13.098 0.0071 0.0006 12.09 

Const. 0.0065 4.26E-05 151.902 0.0353 0.0001 256.67 
              
              
𝐼𝐼2 0.6929   0.5345   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0104     0.0337     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝐵𝐵𝑎𝑎  0.0188     0.0494     
obs. 60000     60000     
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