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Abstract

Does wealth inequality affect optimal patent policy? This study develops a Schum-
peterian growth model with heterogeneous households to explore this question. Our model
features a general innovation specification that nests two common specifications: (a) the
knowledge-driven specification that uses R&D labor, and (b) the lab-equipment speci-
fication that uses final output for R&D. Under the knowledge-driven specification, all
households prefer the same level of patent protection. However, under the lab-equipment
specification, less wealthy households prefer weaker patent protection, so an unequal dis-
tribution of wealth reduces optimal patent protection and economic growth. Under the
general innovation specification, strengthening patent protection has an inverted-U ef-
fect on innovation, in contrast to the positive effect under the two special cases. More
importantly, an unequal wealth distribution continues to reduce optimal patent protec-
tion. Calibrating the model to US data, we find that eliminating wealth inequality raises
economic growth by about 0.5% via stronger patent protection.
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1 Introduction

The seminal study by Solow (1956) shows that economic growth is ultimately driven by techno-
logical progress. Therefore, innovation policies, such as R&D subsidies and patent protection,
are crucial for stimulating economic growth and technological progress. For example, according
to the Royal Swedish Academy of Sciences (2018), "Romer showed that unregulated markets
will produce technological change, but tend to underprovide R&D and the new goods created
by it. Addressing this under-provision requires well-designed government interventions, such as
R&D subsidies and patent regulation. His analysis says that such policies are vital to long-run
growth". However, most growth-theoretic studies on optimal patent policy are based on growth
models that feature a representative household. Given that different households may prefer dif-
ferent levels of patent protection, it would be crucial to explore the optimal design of patent
policy in a growth-theoretic framework that features heterogeneous households. Specifically, we
consider heterogeneous households with different levels of wealth. Therefore, this study asks
the following question: how does the wealth distribution affect the optimal design of patent
policy?
To explore the above question, we develop a Schumpeterian growth model with heteroge-

neous households. Interestingly, we find that whether the wealth distribution affects optimal
patent policy depends on the underlying innovation specification. A novelty of our Schum-
peterian growth model is that it features a general innovation specification that captures two
commonly used innovation specifications as special cases: (a) the knowledge-driven innovation
specification that uses labor as R&D input, and (b) the lab-equipment innovation specification
that uses final output as R&D input. Within this growth-theoretic framework, we obtain the
following results.
Under our general innovation specification, strengthening patent protection has an inverted-

U effect on innovation, whereas the effect of patent protection on innovation is positive under
the two special cases. Intuitively, stronger patent protection reallocates labor from production
to R&D and leads to a reduction in production, which in turn decreases the amount of final
output for R&D whenever R&D requires both labor and final output as inputs under our general
innovation specification. Under the knowledge-driven innovation specification, the effect of
patent protection on innovation (which requires only R&D labor) is positive, and all households
prefer the same level of patent protection. Therefore, in this special case, the optimal level of
patent protection does not depend on the wealth distribution.
Under the lab-equipment innovation specification, the effect of patent protection on inno-

vation (which requires only final output for R&D) is also positive, but wealthier households
prefer a higher level of patent protection in this case. Therefore, the wealth distribution affects
optimal patent policy. Given that less wealthy households prefer weaker patent protection,
an unequal distribution of wealth reduces the optimal level of patent protection and economic
growth. Our general innovation specification nests the two special cases and shows that the
surprising result under the knowledge-driven specification (i.e., all households prefer the same
level of patent protection) is due to a knife-edge parameter condition. In other words, the
wealth distribution generally affects the optimal design of patent policy, and an unequal wealth
distribution reduces the optimal level of patent protection.
The intuition of the above finding can be explained as follows. The optimal level of patent

protection is determined by a tradeoff between innovation and monopolistic distortion. In our
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general-equilibrium setting, the monopolistic distortionary effect is represented by a reduction
in the level of consumption. Whether this effect affects all households equally depends on the
aggregate consumption-asset ratio. If this ratio decreases, then less wealthy households suffer a
larger reduction in consumption relative to wealthier households; in this case, less wealthy house-
holds prefer a lower level of patent protection than wealthier households. So, does the aggregate
consumption-asset ratio depend on the level of patent protection? Under the knowledge-driven
specification, it does not because innovation uses only labor as R&D input. However, whenever
innovation uses also final output as R&D input (under both the general and lab-equipment
specifications), an increase in the level of patent protection reallocates some final output from
consumption to R&D and reduces the aggregate consumption-asset ratio, which in turn affects
the optimal level of patent protection for heterogeneous households. Finally, calibrating the
model to data for a quantitative analysis, we find that eliminating wealth inequality in the US
raises the optimal level of patent protection and leads to a quantitatively significant increase
in economic growth by about 0.5%.
This study relates to the literature on innovation and economic growth. In this literature,

the seminal study by Romer (1990) develops the first R&D-based growth model, in which
innovation is driven by the creation of new products. Then, Aghion and Howitt (1992) develop
the Schumpeterian growth model, in which innovation is driven by the development of higher-
quality products; see also Grossman and Helpman (1991) and Segerstrom et al. (1990) for other
early studies. Subsequent studies apply the Schumpeterian growth model to explore the effects
of innovation policies, such as R&D subsidies and patent protection. This study provides a
contribution to this literature by exploring optimal patent policy in a Schumpeterian growth
model with heterogeneous households and a general innovation specification.
Therefore, this study also relates to the literature on patent policy and innovation-driven

growth. The seminal study on optimal patent protection is by Nordhaus (1969), who uses a
partial-equilibrium model. Judd (1985) is the first study that explores optimal patent protec-
tion in a dynamic general-equilibrium model. Since the development of the innovation-driven
growth model by Romer (1990) and Aghion and Howitt (1992), subsequent studies have used
the innovation-driven growth model to explore the effects of patent policy; see Cozzi (2001), Li
(2001), Goh and Olivier (2002) and Iwaisako and Futagami (2003) for early studies and Chu
(2022) for a recent survey of the subsequent theoretical and empirical studies in this literature.1

It is useful to note that previous studies either adopt the knowledge-driven innovation speci-
fication or the lab-equipment innovation specification. A novel contribution of our analysis is
that we adopt a general innovation specification, under which an inverted-U effect of patent
protection on innovation emerges.
Previous studies in this literature have also identified an inverted-U effect of patent protec-

tion on innovation; see for example, Horii and Iwaisako (2007) for a model in which R&D is
more effective in competitive industries than in patent-protected industries, Furukawa (2007)
for a model in which machine usage in the past has a positive learning-by-experience effect on
current productivity, Chu et al. (2012) for a model in which blocking patents have contrast-
ing effects on vertical and horizontal innovation, Chu and Pan (2013) for a model in which
endogenous quality increments generate an escape-infringement effect of blocking patents on

1For more recent studies, see Klein (2022), Ohki (2023), Xi (2023), Iwaisako (2024) and Klein and Yang
(2024).
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innovation,2 Iwaisako and Futagami (2013) for a model in which patent protection has con-
trasting effects on innovation and capital accumulation, and Pan et al. (2018) for a model in
which status preference also generates this inverted-U effect and reduces the growth-maximizing
level of patent protection. As mentioned, unlike previous studies, we consider a general innova-
tion specification that captures both knowledge-driven and lab-equipment innovation and show
that an inverted-U effect of patent protection on innovation emerges via this general innova-
tion specification; see Lerner (2009) and Qian (2007) for empirical evidence for this inverted-U
effect.
Recent studies in this literature have also explored the effects of patent policy on income

inequality and innovation in the presence of heterogeneous households; see for example, Chu
(2010), Chu and Cozzi (2018), Chu et al. (2021, 2023) and Kiedaisch (2021). This study
contributes to this branch of the literature by showing that the innovation specification and
heterogeneous households have the following implication: whether the wealth distribution af-
fects optimal patent policy depends on the underlying innovation specification. Specifically,
under the general innovation specification, a reduction in wealth inequality increases the op-
timal level of patent protection. This result complements previous studies on optimal patent
protection that are based on a representative-household setting by showing that household
heterogeneity gives rise to an extra dimension on the determinants of optimal patent policy.
The rest of this study is organized as follows. Section 2 presents the Schumpeterian growth

model with heterogeneous households. Section 3 explores the effects of the wealth distribution
on optimal patent policy under different innovation specifications. Section 4 concludes.

2 A Schumpeterian model with wealth inequality

The seminal study by Aghion and Howitt (1992) develops the Schumpeterian growth model.3 As
in Romer (1990), they assume that R&D uses labor as input, which is known as the knowledge-
driven innovation specification in the literature. Rivera-Batiz and Romer (1991) instead assume
that R&D uses final output as input, which is known as the lab-equipment innovation specifica-
tion. We consider a general innovation process that uses both labor and final output as factor
inputs and captures these two commonly used specifications as special cases. Furthermore, we
introduce heterogeneous households to the Schumpeterian model as in Chu (2010) and Chu and
Cozzi (2018). To side step the issue of the scale effect, we normalize the aggregate supply of
labor to unity as in these previous studies.4

2Klein and Yang (2024) also consider a similar framework with the addition of rent protecting activities to
generate an inverted-U relationship between blocking patents and innovation.

3Our results are also robust to the variety-expanding model; see Appendix C.
4See Jones (1999) and Laincz and Peretto (2006) for a discussion of the scale effect.
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2.1 Heterogeneous households

There is a unit continuum of households i ∈ [0, 1]. They have identical preferences but differ in
their levels of wealth. Household h has the following utility function:5

u(h) =

∫ ∞
0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 is the subjective discount rate and ct(h) is the consumption of house-
hold h at time t. The household maximizes utility subject to the following asset-accumulation
equation:

ȧt(h) = rtat(h) + wt − ct(h), (2)

where at(h) is the value of financial assets owned by household h and rt is the real interest
rate.6 Each household supplies one unit of labor to earn wage income wt.
From standard dynamic optimization, household h’s consumption path is given by

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across all households such that
ċt(h)/ct(h) = ċt/ct for all h ∈ [0, 1], where ct ≡

∫ 1

0
ct(h)dh denotes aggregate consumption.

Therefore, the growth rate of aggregate consumption is also given by

ċt
ct

= rt − ρ. (4)

2.2 Final output

Final output yt is produced by competitive firms using the following production function that
aggregates a unit continuum of intermediate goods into the final good:

yt = exp

(∫ 1

0

lnxt(i)di

)
, (5)

where xt(i) denotes intermediate good i ∈ [0, 1]. From profit maximization, the conditional
demand function for xt(i) is

xt(i) =
yt
pt(i)

, (6)

where pt(i) is the price of xt(i).

5Here, we consider log utility for analytical tractability. In the quantitative analysis, we use the iso-elastic
utility for more realistic numerical results.

6Financial assets are the shares of monopolistic firms, protected by patents.
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2.3 Intermediate goods

Each intermediate good i is produced by an industry leader, who acts as a monopolist. The
production function of the leader in industry i is

xt(i) = znt(i)lx,t(i), (7)

where the parameter z > 1 is the step size of each quality improvement and nt(i) is the number
of quality improvements that have occurred in industry i as of time t. Given the productivity
level znt(i), the industry leader employs production labor lx,t(i) and faces the marginal cost
function wt/znt(i). From Bertrand competition between the current industry leader and the
previous industry leader, the profit-maximizing price for the current industry leader is:

pt(i) = µ
wt
znt(i)

, (8)

where the markup ratio µ > 1 is a patent policy parameter as in Li (2001).7 The amount of
monopolistic profit in industry i is

πt(i) = pt(i)xt(i)− wtlx,t(i) =
µ− 1

µ
yt, (9)

and the wage payment in industry i is

wtlx,t(i) =
1

µ
pt(i)xt(i) =

1

µ
yt. (10)

2.4 R&D

From (9), we see that πt(i) = πt. Therefore, in a symmetric equilibrium, the value of inventions
is also equal across industries such that vt(i) = vt for i ∈ [0, 1].8 The no-arbitrage condition
that determines vt is

rt =
πt + v̇t − λtvt

vt
, (11)

where λt is the arrival rate of innovation. Intuitively, (11) equates the interest rate rt to the
rate of return on vt for which the latter is given by the sum of monopolistic profit πt, capital
gain v̇t and expected capital loss λtvt. The last term captures the situation in which the current
technology becomes obsolete when the next innovation arrives.9

Competitive entrepreneurs devote Rt units of final output and employ lr,t units of labor to
conduct innovation. The arrival rate of innovation λt is given by the following specification:

λt = ϕ

(
Rt

Zt

)α
(lr,t)

1−α , (12)

7Here we follow Dinopoulos and Segerstrom (2010) to assume that new industry leaders are able to charge the
markup µ (even when it is above the quality step size z) because the closest competitors choose to immediately
exit the market in equilibrium; see Dinopoulos and Segerstrom (2010) for a detailed discussion.

8See Cozzi et al. (2007) for a justification for the symmetric equilibrium in the Schumpeterian model.
9See Cozzi (2007) for a discussion on this Arrow replacement effect.
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where ϕ > 0 is a productivity parameter and Zt is the aggregate level of technology, which cap-
tures an increasing-diffi culty effect of R&D. The parameter α ∈ (0, 1) determines the intensity
of final output Rt in the R&D process relative to R&D labor lr,t and nests the knowledge-driven
specification (α → 0) and the lab-equipment specification (α → 1) in the literature as special
cases. The profit-maximizing conditions of R&D are as follows:

αλtvt = Rt, (13)

(1− α)λtvt = wtlr,t. (14)

2.5 Decentralized equilibrium

The equilibrium is a time path of allocations {ct(h), at(h), yt, xt(i), lx,t(i), lr,t, Rt} and a time
path of prices {wt, rt, pt(i), vt}. Also, at each instance of time, the following conditions hold:

• given an initial distribution of asset a0(h), households h ∈ [0, 1] maximize utility at any
time t taking {wt, rt} as given;

• competitive firms produce final good yt to maximize profit taking pt(i) as given;

• monopolistic firm i produces intermediate good xt(i) and chooses {lx,t(i), pt(i)} to maxi-
mize profit taking wt as given;

• competitive R&D entrepreneurs choose Rt and lr,t to maximize expected profit taking
{wt, vt} as given;

• the market-clearing condition for labor holds such that lr,t +
∫ 1

0
lx,t(i)di = 1;

• the market-clearing condition for the final good holds such that
∫ 1

0
ct(h)dh+Rt = yt;

• the total value of household assets equals the value of all monopolistic firms such that∫ 1

0
at(h)dh =

∫ 1

0
vt(i)di.

2.6 Aggregate economy

We define aggregate technology Zt as follows:

Zt ≡ exp

(∫ 1

0

nt(i)di ln z

)
= exp

(∫ t

0

λωdω ln z

)
, (15)

which uses the law of large numbers. Differentiating the log of Zt in (15) with respect to time
yields the growth rate of technology given by

gt ≡
Żt
Zt

= λt ln z. (16)
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Substituting (7) into (5) yields the aggregate production function as follows:

yt = Ztlx,t, (17)

where lx,t = lx,t(i) for all i ∈ [0, 1]. Lemma 1 shows that the aggregate economy jumps to a
balanced growth path with a constant growth rate g and a stationary allocation of labor {lx, lr}.

Lemma 1 The aggregate economy always jumps to a unique and stable balanced growth path.

Proof. See Appendix A.

2.7 Economic growth

Combining (13) and (14) yields

α

1− α =
Rt

wtlr,t
. (18)

Then, substituting wt = Zt/µ from (10) and (17) into (18) yields

Rt

Zt
=

α

1− α
lr,t
µ
, (19)

which can then be substituted into (12) and (16) to derive the growth rate of technology as

gt = λt ln z = ϕ

(
1

µ

α

1− α

)α
lr,t ln z. (20)

Lemma 2 shows that the steady-state equilibrium R&D labor lr is increasing in the level of
patent protection µ.

Lemma 2 The steady-state equilibrium level of R&D labor lr is increasing in µ.

Proof. See Appendix A.

This result originates from Li (2001), who however focuses on the knowledge-driven spec-
ification captured by α → 0 in (20), which then implies a positive effect of µ on g. Here, we
consider a general innovation specification with α ∈ (0, 1) under which the steady-state equi-
librium growth rate g depends on both R&D labor lr and final output R. In this case, (20)
shows that the level of patent protection µ has both positive and negative effects on the steady-
state equilibrium growth rate g. Intuitively, stronger patent protection increases R&D labor lr
and decreases production labor lx, which in turn decreases the amount of output available for
R&D. These positive and negative effects together generate an inverted-U effect on innovation.
Proposition 1 summarizes this result; see also Figure 1.
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Proposition 1 The steady-state equilibrium growth rate g is an inverted-U function in patent
protection µ.

Proof. See Appendix A.

Figure 1: Effects of patent protection on growth

2.8 Wealth distribution

From (2), the law of motion for the aggregate value of assets is given by

ȧt = rtat + wt − ct, (21)

where at =
∫ 1

0
at(h)dh. We define the initial share of wealth owned by household h as θa,0(h) ≡

a0(h)/a0, which is exogenously given at time 0. We consider a general distribution function of
initial wealth share with a mean of one and a standard deviation of σa > 0. Taking the log
of wealth share θa,t(h) ≡ at(h)/at at time t and differentiating the resulting expression with
respect to time yield

θ̇a,t(h)

θa,t(h)
=
ȧt(h)

at(h)
− ȧt
at

=
ct − wt
at

− ct(h)− wt
at(h)

, (22)

which uses (2) and (21). Then, (22) can be re-expressed as

θ̇a,t(h) =
ct − wt
at

θa,t(h)− θc,t(h)ct − wt
at

, (23)

where θc,t(h) ≡ ct(h)/ct is the share of consumption by household h at time t. Taking the log
of θc,t(h) and differentiating the resulting expression with respect to time yield

θ̇c,t(h)

θc,t(h)
=
ċt(h)

ct(h)
− ċt
ct
. (24)
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Given that (3) and (4) imply ċt(h)/ct(h) = ċt/ct, (24) becomes θ̇c,t(h) = 0 for all t, which in
turn implies θc,t(h) must jump to its steady-state value θc(h) at any time t.
Balanced growth of the aggregate economy implies that

ȧt
at

=
ċt
ct

= rt − ρ, (25)

which also uses (4). Substituting (25) into (21) yields

ct − wt
at

= ρ. (26)

Substituting θc,t(h) = θc(h) and (26) into (23) yields

θ̇a,t(h) = ρ [θa,t(h)− 1]− [θc(h)− 1]
ct
at
, (27)

where the aggregate consumption-asset ratio can be derived as10

ct
at

=
c

a
=

1

µ− 1

(
µ− α

1− α
lr

1− lr

)[
ρ+ ϕ

(
1

µ

α

1− α

)α
lr

]
(28)

for all t. Equation (27) implies that the only solution that is consistent with the long-run
stability of the state variable θa,t(h) is θ̇a,t(h) = 0 for all t. Therefore, the wealth distribution
is stationary and exogenously given at time 0 (i.e., θa,t(h) = θa,0(h) for all t). Finally, imposing
θ̇a,t(h) = 0 on (27) yields the steady-state value of the consumption share θc,t(h):

θc,t(h) = θc(h) = 1− ρ [1− θa,0(h)]

c/a
, (29)

which changes whenever the consumption-asset ratio c/a changes.

2.9 Income distribution

Income earned by household h is

It(h) = rtat(h) + wt. (30)

Integrating It(h) across all households yields total income as

It ≡
∫ 1

0

It(h)dh = rtat + wt, (31)

where at ≡
∫ 1

0
at(h)dh. We define the share of income earned by household h as θI,t(h) ≡

It(h)/It. Combining (30) and (31) and using at(h) = θa,t(h)at = θa,0(h)at yield

θI,t(h) =
θa,0(h)rtat + wt

rtat + wt
. (32)

10See the proof of Lemma 4 in Appendix A.
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Here, we use the standard deviation of income share θI,t(h) to measure income inequality defined
as

σI,t ≡

√∫ 1

0

[θI,t(h)− 1]2 dh =
rtat/wt

1 + rtat/wt
σa, (33)

which is also the coeffi cient of variation of income It(h). Equation (33) shows that income
inequality is increasing in rtat/wt (i.e., interest income relative to wage income) and σa (i.e.,
wealth inequality). Specifically, patent protection affects income inequality through rtat/wt,
which captures the interest-rate rt and asset-value at/wt effects of innovation on income in-
equality as discussed in Chu and Cozzi (2018). An increase in the level of patent protection
causes a positive asset-value effect because stronger patent protection decreases the share of
wage income as shown in (10) and increases the share of profit income as shown in (9). Fur-
thermore, stronger patent protection in our model has an inverted-U effect on the growth rate
gt and the real interest rate rt = ρ+ gt from Proposition 1. In Proposition 2, we show that the
asset-value effect always dominates the interest-rate effect, such that stronger patent protection
has an overall positive effect on income inequality. This result is consistent with the empirical
results in Adams (2008), who finds a positive effect of patent protection on income inequality
in a cross-country panel regression model.11

Proposition 2 The degree of income inequality σI is increasing in patent protection µ.

Proof. See Appendix A.

3 Optimal patent policy

We impose balanced growth on (1) to derive the welfare function of household h as

u (h) =
1

ρ

[
ln c0 (h) +

g

ρ

]
, (34)

where c0 (h) is the level of household h’s consumption at time 0. Substituting c0 (h) = θc (h) c0

into (34) yields

u (h) =
1

ρ

[
ln θc (h) + ln c0 +

g

ρ

]
, (35)

where the initial level of aggregate consumption c0 can be derived as12

c0 =
ρ+ (1− α)ϕ

(
1
µ

α
1−α

)α
ϕµ (1− α)

(
1
µ

α
1−α

)α . (36)

11Chu et al. (2021) also find a positive effect in the short run but a negative effect in the long run in a panel
VAR. In their theoretical model, they allow for long-run dynamics in the market structure.
12See the proof of Lemma 3 in Appendix A.
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Lemma 3 shows that the initial level of aggregate consumption c0 is decreasing in the level of
patent protection µ.

Lemma 3 The initial level of aggregate consumption c0 is decreasing in µ.

Proof. See Appendix A.

Therefore, the condition that determines the utility-maximizing level of patent protection
for household h is, in general, given by

ρ
∂u (h)

∂µ
=
∂ ln θc (h)

∂µ︸ ︷︷ ︸
?

+
∂ ln c0

∂µ︸ ︷︷ ︸
−

+
1

ρ

∂g

∂µ︸︷︷︸
+/−

, (37)

where ∂g/∂µ is given by the inverted-U effect of patent protection on innovation from Propo-
sition 1, whereas ∂ ln c0/∂µ < 0 from Lemma 3 captures the negative distortionary effect of
patent protection on aggregate consumption. Whether the optimal level of patent protection
is the same or different across households depends on θc (h), which in turn depends on the
aggregate consumption-asset ratio c/a as shown in (29). Before we discuss the general case, we
first consider the two commonly used special cases in the literature.

3.1 Knowledge-driven innovation specification

We first consider the knowledge-driven innovation specification, which is given by α→ 0 in (12).
Under the knowledge-driven specification, the arrival rate of innovation simplifies to λt = ϕlr,t,
which originates from the seminal study by Aghion and Howitt (1992) and is commonly used
in the literature. In this case, the steady-state equilibrium growth rate g is given by

g =

[
ϕ

(
µ− 1

µ

)
− ρ

µ

]
ln z,

which becomes increasing in patent protection µ under the knowledge-driven specification.
More importantly, the resource constraint on the final good becomes yt = ct, and the aggregate
consumption-asset ratio simplifies to c/a = ρ + ϕ, which is independent of the level of patent
protection. Therefore, the optimal level of patent protection is the same across all households h
because (29) implies that θc (h) is independent of µ (i.e., ∂ ln θc (h) /∂µ = 0 in (37)). Proposition
3 derives the optimal level of patent protection, which is the same across all households h.
However, in the next sections, we will show that this result is due to the knife-edge parameter
condition α = 0 and does not hold whenever α > 0.

Proposition 3 Under the knowledge-driven innovation specification, the optimal level of patent
protection is given by

µ∗ =

(
1 +

ϕ

ρ

)
ln z. (38)

Proof. See Appendix A.
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3.2 Lab-equipment innovation specification

We now consider the lab-equipment innovation specification, which is given by α → 1 in (12).
Under the lab-equipment specification, the arrival rate of innovation simplifies to λt = ϕRt/Zt,
which uses final output instead of labor as R&D input and is also often used in the literature.
In this case, the steady-state equilibrium growth rate g is given by

g =

[
ϕ

(
µ− 1

µ

)
− ρ
]

ln z,

which is also increasing in patent protection µ under the lab-equipment specification. The
resource constraint on the final good becomes yt = ct +Rt. As for the aggregate consumption-
asset ratio, it simplifies to c/a = ρ + ϕ/µ, which is now decreasing in the level of patent
protection. Therefore, the optimal level of patent protection is different across households
because (29) implies that θc (h) is decreasing (increasing) in µ for less-wealthy (wealthier)
households; i.e., ∂ ln θc (h) /∂µ < 0 for θa,0(h) < 1 (∂ ln θc (h) /∂µ > 0 for θa,0(h) > 1) in
(37). Proposition 4 derives the utility-maximizing level of patent protection for household h
and shows that it is increasing in the household’s wealth share θa,0(h). Therefore, wealthier
households prefer a higher level of patent protection than less-wealthy households. The intuition
of this result can be explained as follows. When the level of patent protection increases, the
consumption share of wealthy households increases at the expense of less-wealthy households
because the former owns more assets, whose value increases relative to consumption (i.e., a/c
is increasing in µ).

Proposition 4 Under the lab-equipment innovation specification, the utility-maximizing level
of patent protection for household h is increasing in its wealth share θa,0(h) and given by13

µ∗(h) =
ϕ

ρ

ln z

1− θa,0(h) ln z
. (39)

Proof. See Appendix A.

Given that different households prefer different levels of patent protection, we need to specify
a social welfare function in order to derive the optimal level of patent protection. For simplicity,
we consider a linear aggregate of households’utility functions given by

U ≡
∫ 1

0

u (h) dh =
1

ρ

[∫ 1

0

ln θc (h) dh+ ln c0 +
g

ρ

]
. (40)

Then, the condition that determines the optimal level of patent protection µ is given by

ρ
∂U

∂µ
=

∫ 1

0

∂ ln θc (h)

∂µ︸ ︷︷ ︸ dh
−/+

+
∂ ln c0

∂µ︸ ︷︷ ︸
−

+
1

ρ

∂g

∂µ︸︷︷︸
+

. (41)

The first term on the right-hand side of (41) is given by

13Here we assume θa,0(h) < 1/ ln z for all h ∈ [0, 1] to ensure an interior solution for µ∗(h).
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∫ 1

0

∂ ln θc (h)

∂µ
dh = −ρ∂a/c

∂µ︸ ︷︷ ︸
+

∫ 1

0

1− θa,0(h)

θc (h)
dh = −ρ∂a/c

∂µ︸ ︷︷ ︸
+

∫ 1

0

[
1

1− θa,0(h)
− ρ

ρ+ ϕ/µ

]−1

dh,

(42)
where θc (h) is given by (29) and a/c = (ρ+ϕ/µ)−1 is increasing in µ. From Jensen’s inequality,
we have14∫ 1

0

[
1

1− θa,0(h)
− ρ

ρ+ ϕ/µ

]−1

dh >

[
1∫ 1

0
[1− θa,0(h)] dh

− ρ

ρ+ ϕ/µ

]−1

= 0, (43)

which together with (42) ensures that∫ 1

0

∂ ln θc (h)

∂µ
dh < 0. (44)

Therefore, an unequal distribution of wealth (i.e., θa,0(h) 6= 1 for some h) reduces the optimal
level of patent protection. Proposition 5 summarizes this result. Intuitively, the lower con-
sumption share θc (h) of the less wealthy households implies that the stronger negative effect
of patent protection on their consumption carries more weight (due to their higher marginal
utility of consumption) in the social welfare function than the weaker negative effect on the
wealthier households.

Proposition 5 Under the lab-equipment innovation specification, an unequal distribution of
wealth reduces the optimal level of patent protection.

Proof. Proven in text.

Suppose we consider the following simple parametric example: θa,0(h) = 1−ε for h ∈ [0, 0.5]
and θa,0(h) = 1+ε for h ∈ [0.5, 1], where the parameter ε ∈ (0, 1) measures the degree of wealth
inequality. In this case, (42) becomes

∫ 1

0

∂ ln θc (h)

∂µ
dh = −∂a/c

∂µ︸ ︷︷ ︸
+

(ερ)2

ρ+ϕ/µ

1−
(

ερ
ρ+ϕ/µ

)2 < 0, (45)

which is strictly negative (unless ε = 0) and decreasing in ε. Therefore, a higher degree of wealth
inequality (i.e., a larger ε) strengthens the negative effect of patent protection. Proposition 6
derives the condition for the optimal level of patent protection and shows that it is decreasing
in the degree of wealth inequality.

14Recall that
∫ 1
0
θa,0(h)dh = 1.
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Proposition 6 Under the lab-equipment innovation specification and the parametric example
in which θa,0(h) = 1− ε for h ∈ [0, 0.5] and θa,0(h) = 1 + ε for h ∈ [0.5, 1], the optimal level of
patent protection µ∗ is determined by15

1

ρ2

[(
ϕ

µ∗
+ ρ

)2

− ρ

ln z

(
ϕ

µ∗
+ ρ

)]
= ε2, (46)

and it is decreasing in the degree of wealth inequality ε.

Proof. See Appendix A.

3.3 General innovation specification

Finally, we consider our general innovation specification given by α ∈ (0, 1) in (12). In this case,
the optimal level of patent protection is determined by the condition in (37), in which θc (h) is
given in (29) and depends on c/a. Lemma 4 shows that the aggregate consumption-asset ratio
c/a in (28) is decreasing in the level of patent protection µ.

Lemma 4 Under the general innovation specification, c/a in (28) is decreasing in µ.

Proof. See Appendix A.

Therefore, the optimal level of patent protection under the general innovation specification is
different across households because (29) and Lemma 4 imply that θc (h) is once again decreasing
(increasing) in µ for less-wealthy (wealthier) households; i.e., ∂ ln θc (h) /∂µ < 0 for θa,0(h) < 1
(∂ ln θc (h) /∂µ > 0 for θa,0(h) > 1) in (37). Proposition 7 shows that wealthier households
prefer a higher level of patent protection than less-wealthy households and that an unequal
distribution of wealth reduces the optimal level of patent protection. These implications are the
same as in the lab-equipment specification but differ from the knowledge-driven specification,
under which patent policy does not affect the aggregate consumption-asset ratio c/a because
innovation uses only labor. However, when innovation uses also final output for R&D under the
general innovation specification (and also under the lab-equipment specification), an increase
in the level of patent protection reallocates some final output from consumption to R&D and
reduces the aggregate consumption-asset ratio, which in turn affects the negative effect of patent
protection on consumption differently across heterogeneous households. As a result, an unequal
distribution of wealth across households reduces the optimal level of patent protection under
the general innovation specification.

Proposition 7 Under the general innovation specification, the utility-maximizing level of patent
protection for household h is increasing in the household’s wealth share θa,0(h). Furthermore,
an unequal distribution of wealth reduces the optimal level of patent protection.

Proof. See Appendix A.

15Note that (46) simplifies to µ∗ = ϕ
ρ

ln z
1−ln z under ε = 0 as in θa,0(h) = 1 for all h ∈ [0, 1] in (39).
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3.4 Quantitative analysis

In this section, we calibrate the model to see if an unequal distribution of wealth has a quan-
titatively significant effect on the optimal level of patent protection. In order to perform a
more realistic quantitative analysis, we generalize the utility function to an isoelastic form as
follows:16

u(h) =

∫ ∞
0

e−ρt
[ct(h)]1−σ − 1

1− σ dt, (47)

which captures the log utility function in (1) as a special case when σ → 1. In this case,
the model features the following set of parameters {σ, ρ, α, µ, z, ϕ}. We follow the empirical
estimate in Cashin and Unayama (2016) to set the intertemporal elasticity of substitution to 0.2
(i.e., σ = 5). We set the discount rate ρ to a conventional value of 0.05 and the degree of labor
intensity 1 − α in the R&D process to an empirical value of 0.184 (i.e., α = 0.816) computed
by Chu and Cozzi (2019). Then, we follow Jones and Williams (2000) to set the markup
parameter µ to an empirical value of 1.25. Finally, we calibrate the remaining parameters
{z, ϕ} by targeting a long-run annual GDP growth rate g of 3% in the US and an arrival rate
of innovation of 1/3 as in Acemoglu and Akcigit (2012). Table 1 summarizes the calibrated
parameter values.

Table 1: Calibration
σ ρ α µ z ϕ
5.00 0.050 0.816 1.250 1.095 3.989

Given the parameter values in Table 1, we simulate the optimal markup level µ∗ under
different degrees of wealth inequality. Once again, we consider the following simple parametric
example: θa,0(h) = 1 − ε for h ∈ [0, 0.5] and θa,0(h) = 1 + ε for h ∈ [0.5, 1]. In the US, the
bottom 50% of population owns roughly 3% of total wealth, which corresponds to a value of
0.94 for ε (i.e., (1 − ε)/2 = 0.03). We consider the entire range of values ε ∈ [0, 1] to explore
how the degree of wealth inequality affects optimal patent protection. Figure 2a presents the
simulation results. In the case of a completely equal wealth distribution (i.e., ε = 0), the
optimal markup level is µ∗ε=0 = 1.292. As ε increases, the optimal markup level decreases.
At ε = 0.94, the optimal markup level decreases to µ∗ε=0.94 = 1.250, which corresponds to the
empirical markup in Table 1. Figure 2b presents the equilibrium growth rate g under different
values for the markup and shows a significant decrease in the equilibrium growth rate of 0.44%
from µ∗ε=0 = 1.292 to µ∗ε=0.94 = 1.250. In other words, moving from the current degree of wealth
inequality in the US to a completely equal society would lead to an increase in the growth rate
of almost 0.5%. Therefore, this simple numerical exercise shows that wealth inequality can
have a quantitatively significant effect on optimal patent protection, innovation and economic
growth. Figure 2b also shows that the effect of wealth inequality on economic growth is non-
linear. Specifically, as the degree of wealth inequality decreases, the growth rate increases
but at a decreasing rate. Figure 2c presents the percent change in social welfare defined as
U ≡

∫ 1

0
u (h) dh relative to the benchmark under different values for the markup and shows a

decrease in the welfare level of 6.73% from µ∗ε=0 = 1.292 to µ∗ε=0.94 = 1.250. This result shows
that wealth inequality has a quantitatively significant effect on social welfare.

16See Appendix B for the detailed derivations under this generalized utility function.
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Figure 2a: Markup and inequality Figure 2b: Growth and inequality

Figure 2c: Welfare and inequality

3.4.1 Robustness check: intertemporal elasticity of substitution

This section performs a robustness check by considering a range of the intertemporal elasticity of
substitution {0.1, 0.3} (i.e., σ ∈ {3.33, 10}). We recalibrate the model to aggregate data of the
US economy to see if wealth inequality has a quantitatively significant effect on optimal patent
protect the optimal level of patent protection. Table 2 summarizes the calibrated parameter
values.

Table 2: Calibration (σ = 3.33 and σ = 10)
σ ρ α µ z ϕ
3.33 0.050 0.816 1.339 1.095 2.840
10.00 0.050 0.816 1.136 1.095 8.655

Figure 3 simulates the optimal markup level µ∗, the equilibrium growth rate g and social
welfare U under different markup values for the case of σ = 3.33. Figure 4 simulates the
optimal markup level µ∗, the equilibrium growth rate g and social welfare U under different

17



markup values for the case of σ = 10. They show that the effects of wealth inequality follow
the same pattern as before. In Figure 3b, the equilibrium growth rate g decreases by 0.2% from
µ∗ε=0 = 1.367 to µ∗ε=0.94 = 1.339. Figure 4b shows that wealth inequality has a larger effect
on the equilibrium growth rate under different values for the markup. The equilibrium rate g
decreases by 1.34% from µ∗ε=0 = 1.203 to µ∗ε=0.94 = 1.136. As for social welfare, wealth inequality
has a larger effect in the case of σ = 10 than in the case of σ = 3.33. Specifically, social welfare
U decreases by 5.11% from µ∗ε=0 = 1.367 to µ∗ε=0.94 = 1.339 in Figure 3c and decreases by 8.5%
from µ∗ε=0 = 1.203 to µ∗ε=0.94 = 1.136 in Figure 4c. The results show that wealth inequality
continues to have a quantitatively significant effect on optimal patent protection, economic
growth and social welfare as before.

Figure 3a: Markup and inequality (σ = 3.33) Figure 3b: Growth and inequality (σ = 3.33)

Figure 3c: Welfare and inequality (σ = 3.33) Figure 4a: Markup and inequality (σ = 10)
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Figure 4b: Growth and inequality (σ = 10) Figure 4c: Welfare and inequality (σ = 10)

3.4.2 Robustness check: R&D labor intensity

This section performs another robustness check by considering a larger range of R&D labor
intensity {0.284, 0.384} (i.e., α ∈ {0.716, 0.616})17 and recalibrate the model to aggregate data
of the US economy. Table 3 summarizes the calibrated parameter values.

Table 3: Calibration (α= 0.716 and α= 0.616)
σ ρ α µ z ϕ
5.00 0.050 0.716 1.249 1.095 4.480
5.00 0.050 0.616 1.248 1.095 4.780

Figure 5 and Figure 6 simulate the optimal markup level µ∗, the equilibrium growth rate
g and social welfare under different markup values for the cases of α = 0.716 and α = 0.616,
respectively. They show that the effects of wealth inequality follow the same pattern as before.
In Figure 5b, the equilibrium growth rate g decreases by 0.4% from µ∗ε=0 = 1.287 to µ∗ε=0.94 =
1.249. Figure 6b shows that the equilibrium rate g still decreases by 0.4% from µ∗ε=0 = 1.283
to µ∗ε=0.94 = 1.248. As for social welfare, social welfare U decreases by 6.45% from µ∗ε=0 = 1.287
to µ∗ε=0.94 = 1.249 in Figure 5c and decreases by 6.21% from µ∗ε=0 = 1.283 to µ∗ε=0.94 = 1.248 in
Figure 6c. The results show that wealth inequality continues to have a quantitatively significant
effect on optimal patent protection, economic growth and social welfare as before.

17The value of 0.384 exceeds twice the benchmark value and is close to the maximum value computed by Chu
and Cozzi (2019).
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Figure 5a: Markup and inequality (α = 0.716) Figure 5b: Growth and inequality (α = 0.716)

Figure 5c: Welfare and inequality (α = 0.716) Figure 6a: Markup and inequality (α = 0.616)

Figure 6b: Growth and inequality (α = 0.616) Figure 6c: Welfare and inequality (α = 0.616)
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4 Conclusion

In this study, we have developed a Schumpeterian growth model with heterogeneous households
to explore the conditions under which wealth inequality affects the optimal level of patent pro-
tection. Our results can be summarized as follows. Under the knowledge-driven specification,
all households prefer the same level of patent protection. In contrast, under the lab-equipment
specification, we find that wealthier households prefer stronger patent protection than less
wealthy households. To explore which of these two results are more robust, we also consider
a general innovation specification that captures the two specifications as special cases. In this
case, we continue to find that wealthier households prefer stronger patent protection and that
an unequal distribution of wealth reduces optimal patent protection. Therefore, wealth in-
equality having no effect on optimal patent policy under the knowledge-driven specification is
due to a knife-edge parameter condition. Within our growth-theoretic framework, an unequal
distribution of wealth stifles innovation and economic growth by reducing the optimal level
of patent protection. Therefore, government policies, such as taxation and income transfer,
that affect the wealth distribution could have important implications on the optimal design of
patent policy. We leave this extension to future research. Finally, although this study focuses
on how the wealth distribution affects the optimal level of patent protection, it would also be
interesting to see how the wealth distribution affects the optimal rate of R&D subsidy. We
leave this extension also to future research.
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Appendix A: Proofs

Proof of Lemma 1. Taking the log of the profit-maximizing condition of R&D (1−α)λtvt =
wtlr,t and then differentiating it with respect to time yields

λ̇t
λt

+
v̇t
vt

=
ẇt
wt

+
l̇r,t
lr,t
. (A1)

Using (10) and (17) yields wt = Zt/µ. Then, we combine α/ (1− α) = Rt/(wtlr,t) from (13)
and (14) to obtain Rt/Zt = αlr,t/[µ (1− α)] as shown in (19). Substituting (19) into (12) yields

λt = ϕ

(
1

µ

α

1− α

)α
lr,t. (A2)

Taking the log of (A2) and then differentiating it with respect to time yields λ̇t/λt = l̇r,t/lr,t.
Substituting this condition into (A1), we obtain

v̇t
vt

=
ẇt
wt

=
Żt
Zt
, (A3)

where the second equality uses ẇt/wt = Żt/Zt from wt = Zt/µ. Based on (A2) and the no-
arbitrage condition rtvt = πt + v̇t − λtvt, (A3) can be rewritten as

rt + ϕ

(
1

µ

α

1− α

)α
lr,t −

πt
vt

=
Żt
Zt
. (A4)

Using (9) and (14) yields πt/vt = (µ− 1) (1− α)λtyt/ (µwtlr,t) and then combining (10) obtains
πt/vt = (µ− 1) (1− α)λtlx,t/lr,t. Substituting this condition into (A4) and using (A2), we
obtain

rt + ϕ

(
1

µ

α

1− α

)α
lr,t − ϕ (µ− 1) (1− α)

(
1

µ

α

1− α

)α
(1− lr,t) =

Żt
Zt
, (A5)

where we have used the resource constraint on labor lx,t = 1− lr,t. We define a transformed
variable st ≡ ct/Zt. Then, differentiating st with respect to time yields ṡt/st = ċt/ct − Żt/Zt
and combining (4) obtains rt = ṡt/st + Żt/Zt + ρ. Substituting this condition into (A5) yields

ṡt
st

= ϕ (µ− 1) (1− α)

(
1

µ

α

1− α

)α
− ρ− ϕ [1 + (µ− 1) (1− α)]

(
1

µ

α

1− α

)α
lr,t. (A6)

Based on the market-clearing condition for final goods, we obtain st = (yt−Rt)/Zt. Substituting
(17) and (19) into this condition, we obtain the following relationship between st and lr,t:

st = 1− µ(1− α) + α

µ(1− α)
lr,t. (A7)

Differentiating (A7) with respect to time yields ṡt = − [µ(1− α) + α] l̇r,t/ [µ(1− α)] and then
substituting it into (A6) obtains

l̇r,t =
µ(1− α)st
µ(1− α) + α

{
ϕ [1 + (µ− 1) (1− α)]

(
1

µ

α

1− α

)α
lr,t − ϕ (µ− 1) (1− α)

(
1

µ

α

1− α

)α
+ ρ

}
,

(A8)
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which is a one-dimensional differential equation in lr,t. Drawing l̇r,t as a function of lr,t on phase
diagram, one can easily show that the dynamics of lr,t is characterized by saddle-point stability
such that lr,t must jump to the unique stable steady-state value lr:

lr =
ϕ (µ− 1) (1− α)

(
1
µ

α
1−α

)α
− ρ

ϕ [1 + (µ− 1) (1− α)]
(

1
µ

α
1−α

)α , (A9)

which also implies a stable steady-state innovation arrival rate λ from (A2).

Proof of Lemma 2. Differentiating (A9) with respect to µ yields

dlr
dµ

=
(1− α)

[
ρ+ ϕ

(
1
µ

α
1−α

)α]
− ρ [1 + (µ− 1) (1− α)] α

µ

ϕ [1 + (µ− 1) (1− α)]2
(

1
µ

α
1−α

)α . (A10)

From (A9), we obtain

lr > 0⇐⇒ ϕ (1− α)

(
1

µ

α

1− α

)α
>

ρ

(µ− 1)
. (A11)

Substituting (A11) into (A10) yields

dlr
dµ

>
ρ

ϕµ (µ− 1)
(

1
µ

α
1−α

)α > 0. (A12)

Equation (A12) shows that lr is increasing in µ.

Proof of Proposition 1. Substituting (A9) into (20) and then differentiating it with respect
to µ yields

dg

dµ
=

(1− α) ln z

[1 + (µ− 1) (1− α)]2

ρ− ϕ
[
αµ2 − (1 + α)µ− α2(µ− 1)2

]( α

1− α

)α(
1

µ

)1+α

︸ ︷︷ ︸
≡Θ(µ)

 .
(A13)

Note the following properties: (a) Θ(1) = −ϕ [α/ (1− α)]α; (b) lim
µ→∞

Θ (µ)→∞; (c) Θ (µ) is a

strictly increasing function, i.e.,

dΘ (µ)

dµ
= αϕ

(
α

1− α

)α(
1

µ

)2+α {[
µ− α2(µ− 1)

]
+ µ (1− α) [µ (1− α) + α] + α

}
> 0.

Using these properties, we can graphically show that Θ (µ) intersects ρ from below only once
at some point µ > 1, below (above) which dg/dµ > 0(< 0); see Figure A1. This result shows
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that g is an inverted-U function in µ.

Figure A1

Proof of Proposition 2. We combine at = vt and (14) to obtain at/wt = lr,t/ [(1− α)λt].
Substituting (12) into this result and using (19) yield

at
wt

=
1

ϕ

(µ
α

)α( 1

1− α

)1−α

. (A14)

Equation (A14) shows that at/wt is increasing in µ. We substitute (A14) and rt = g + ρ from
(4) into (33) to derive

σI =

1
ϕ

(
µ
α

)α ( 1
1−α
)1−α

(ρ+ g)

1 + 1
ϕ

(
µ
α

)α ( 1
1−α
)1−α

(ρ+ g)
σa. (A15)

Differentiating (A15) with respect to µ yields

dσI
dµ

=

σa
ϕ

(
µ
α

)α ( 1
1−α
)1−α[

1 + 1
ϕ

(
µ
α

)α ( 1
1−α
)1−α

(ρ+ g)
]2

αµ (g + ρ) +
dg

dµ︸ ︷︷ ︸
≡Ξ

 . (A16)

Substituting (20) and (A13) into Ξ and using (A9), we obtain

Ξ =

[
ϕ (µ− 1) (1− α)

(
1
µ

α
1−α

)α
− α2ρ

]
ln z + µρ (1− α)2 ln z + αρ [1 + (µ− 1) (1− α)]2

µ [1 + (µ− 1) (1− α)]2

>
ϕ (1− α)

(
1
µ

α
1−α

)α
[µ− α2 (µ− 1)] ln z + µρ (1− α)2 ln z + αρ [1 + (µ− 1) (1− α)]2

µ [1 + (µ− 1) (1− α)]2
> 0,
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where the second inequality uses the condition ϕ (µ− 1) (1− α)
(

1
µ

α
1−α

)α
> ρ from (A9) due

to lr > 0. Equation (A16) shows that σI is increasing in µ.

Proof of Lemma 3. Substituting (A9) into (A7), we obtain the initial level of aggregate
consumption c0 as

c0 ≡ s0Z0 =
ρ+ (1− α)ϕ

(
1
µ

α
1−α

)α
ϕµ (1− α)

(
1
µ

α
1−α

)α , (A17)

where Z0 is normalized to unity. Equation (A17) is identical to (36) in text. Differentiating
(A17) with respect to µ yields

dc0

dµ
= −

ρ+ ϕ
(

1
µ

α
1−α

)α
ϕµ2

(
1
µ

α
1−α

)α < 0. (A18)

Equation (A18) shows that c0 is decreasing in µ.

Proof of Proposition 3. In this proof, we make use of the parameter α→ 0, which renders
the general innovation specification degenerate. First, using (A9), the steady-state equilibrium
level of R&D labor lr is given by

lim
α→0

lr =
µ− 1

µ
− 1

µ

ρ

ϕ
exp

lim
α→0
−

ln
(

1
µ

α
1−α

)
1
α

 =
µ− 1

µ
− 1

µ

ρ

ϕ
, (A19)

where the second equality uses the L’Hôpital’s rule. Equation (A19) shows that lr is also
increasing in µ as in the case of the general innovation specification. Using (A2) and (A9)
derives the arrival rate of innovation:

lim
α→0

λ = ϕ(
µ− 1

µ
) exp

lim
α→0

ln
(

1
µ

α
1−α

)
1
α

− ρ

µ
= ϕ

(
µ− 1

µ

)
− ρ

µ
, (A20)

where the second equality also uses the L’Hôpital’s rule. Substituting (A20) into (16), under
the knowledge-driven innovation specification, the steady-state growth rate g is given by

g =

[
ϕ

(
µ− 1

µ

)
− ρ

µ

]
ln z, (A21)

Equation (A21) shows that g is increasing in µ. Using (A17) and the L’Hôpital’s rule, we can
derive the initial level of aggregate consumption c0 is given by:

lim
α→0

c0 =
1

µ

1 +
ρ

ϕ
exp

lim
α→0
−

ln
(

1
µ

α
1−α

)
1
α

 =
1

µ

(
1 +

ρ

ϕ

)
. (A22)
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Equation (A22) shows that c0 is also decreasing in µ as in the case of the general innovation
specification. As for the aggregate consumption-asset ratio, using (28) and the L’Hôpital’s rule
yields

lim
α→0

c

a
=

µ

µ− 1

ρ+ lim
α→0

ϕ

(
1

µ

α

1− α

)α
lr︸ ︷︷ ︸

=λ

 = ρ+ ϕ. (A23)

Combining (A23) and (29) yields θc(h) = 1− ρ [1− θa,0(h)] / (ρ+ ϕ). Substituting this condi-
tion, (A21) and (A22) into (35) and then differentiating it with respect to µ yields

ρ
∂u(h)

∂µ
=

1

µ2

(1 +
ϕ

ρ

)
ln z − µ︸ ︷︷ ︸

≡Φ

 . (A24)

The utility-maximizing level of patent protection for household h requires Φ = 0. Then, we can
derive

µ∗(h) =

(
1 +

ϕ

ρ

)
ln z. (A25)

Equation (A25) shows that µ∗(h) = µ∗ across all households h because it is independent of
θa,0(h). As a result, µ∗(h) = µ∗ is also the optimal level of patent protection.

Proof of Proposition 4. In this proof, we make use of the parameter α→ 1, which renders
the general innovation specification degenerate. First, using (A9), the steady-state equilibrium
level of R&D labor lr is given by

lim
α→1

lr = 0. (A26)

Using (A2) and (A9) derives the arrival rate of innovation:

lim
α→1

λ = ϕ(
µ− 1

µ
) exp

[
lim
α→1

ln
(

α
1−α
)

1
1−α

]
− ρ = ϕ

(
µ− 1

µ

)
− ρ, (A27)

where the second equality uses the L’Hôpital’s rule. Substituting (A27) into (16), under the
lab-equipment innovation specification, the steady-state growth rate g is given by

g =

[
ϕ

(
µ− 1

µ

)
− ρ
]

ln z, (A28)

Equation (A28) shows that g is increasing in µ. Using (A17) and the L’Hôpital’s rule, we can
derive the initial level of aggregate consumption c0 is given by:

lim
α→1

c0 =
1

µ
+
ρ

ϕ
exp

lim
α→1

ln
(

1
µ

α
1−α

)
1

1−α

 =
1

µ
+
ρ

ϕ
. (A29)
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Equation (A29) shows that c0 is also decreasing in µ as the general innovation specification. As
for the aggregate consumption-asset ratio, using (28) and the L’Hôpital’s rule yields

lim
α→1

c

a
= ϕ

 1

µ
+
ρ

ϕ
exp

lim
α→1

ln
(

1
µ

α
1−α

)
1

1−α

 = ρ+
ϕ

µ
. (A30)

Combining (A30) and (29) yields θc(h) = 1 − ρ [1− θa,0(h)] / (ρ+ ϕ/µ). Substituting this
condition, (A28) and (A29) into (35) and differentiating it with respect to µ yields

ρ
∂u(h)

∂µ
=

ϕ

µ2
{(
ρ+ ϕ

µ

)
− ρ [1− θa,0(h)]

}
1−

[
ϕ

ρ

(
1

µ
+
ρ

ϕ

)
− [1− θa,0(h)]

]
ln z︸ ︷︷ ︸

≡Ω

 . (A31)

The utility-maximizing level of patent protection for household h requires Ω = 0. Then, we can
derive

µ∗(h) =
ϕ

ρ

ln z

1− θa,0(h) ln z
. (A32)

Proof of Proposition 6. There are two types of households. Type 1 has θa,0(h) = 1 − ε
for h ∈ [0, 0.5] whereas type 2 has θa,0(h) = 1 + ε for h ∈ [0.5, 1]. As a result, (29) can
be rewritten as θc(h) = 1 − ερ/ (ρ+ ϕ/µ) for h ∈ [0, 0.5] and θc(h) = 1 + ερ/ (ρ+ ϕ/µ) for
h ∈ [0.5, 1]. Substituting these condition into (35), we obtain the welfare functions of two types
respectively:

ρu(h) = ln c0 + ln

(
1− ερ

ρ+ ϕ
µ

)
+
g

ρ
for h ∈ [0, 0.5] , (A33)

ρu(h) = ln c0 + ln

(
1 +

ερ

ρ+ ϕ
µ

)
+
g

ρ
for h ∈ [0.5, 1] . (A34)

We substitute (A33) and (A34) into (40) to derive the social welfare function:

ρU = ln c0 + 0.5 ln

(
1− ερ

ρ+ ϕ
µ

)
+ 0.5 ln

(
1 +

ερ

ρ+ ϕ
µ

)
+
g

ρ
. (A35)

Substituting (A28) and (A29) into (A35) and then differentiating it with respect to µ yields

ρ
∂U

∂µ
=

ϕ ln z

ρµ2

[(
ρ+ ϕ

µ

)2

− (ερ)2

] {(ερ)2 −
[(

ρ+
ϕ

µ

)2

− ρ

ln z

(
ρ+

ϕ

µ

)]}
. (A36)

Based on (A36), we know that the optimal level of patent protection µ∗ is determined by

1

ρ2


(
ϕ

µ∗
+ ρ

)2

︸ ︷︷ ︸
≡χ2

− ρ

ln z

(
ϕ

µ∗
+ ρ

)
︸ ︷︷ ︸

≡χ

 = ε2. (A37)
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The left-hand side (LHS) of (A37) is increasing in χ because ε > 0 ⇐⇒ χ > ρ/ ln z whereas
the right-hand side (RHS) of (A37) ε2 is independent of χ. Therefore, we can find the optimal
level of χ, which is increasing in ε. Based on χ ≡ ϕ/µ∗ + ρ, we know µ∗ is decreasing in χ. As
a result, µ∗ is decreasing in ε.

Proof of Lemma 4. The market-clearing condition for final goods is yt = ct +Rt. Using this
condition, one can derive the following aggregate consumption-asset ratio:

ct
at

=

yt
Zt
at
Zt

−
Rt
Zt
at
Zt

=
lx,t
at
Zt

−
α

1−α
lr,t
µ

at
Zt

, (A38)

where the second equality uses (17) and (19). We know that the value of assets equals the value
of inventions such that at = vt. The balanced-growth values of an innovation is vt = πt/ (ρ+ λ)
and the combining (9) and (A2) yields

at
Zt

=
a

Z
=

µ−1
µ
lx

ρ+ ϕ
(

1
µ

α
1−α

)α
lr
. (A39)

Substituting (A39) into (A38) yields

ct
at

=
c

a
=

1

µ− 1

(
µ− α

1− α
lr

1− lr

)[
ρ+ ϕ

(
1

µ

α

1− α

)α
lr

]
. (A40)

Equation (A40) is identical to (28). Substituting (A9) into (A40) and differentiating it with
respect to µ yields

d
(
c
a

)
dµ

= −
α
(
c
a

)
µ
[

ρ
1−α + ϕ

(
1
µ

α
1−α

)α] < 0. (A41)

Equation (A41) shows that c/a is decreasing in µ.

Proof of Proposition 7. The condition that determines the utility-maximizing level of
patent protection for household h is given by

ρ
∂u (h)

∂µ
= −ρ∂a/c

∂µ︸ ︷︷ ︸
+

1− θa,0(h)

θc (h)
+
∂ ln c0

∂µ︸ ︷︷ ︸
−

+
1

ρ

∂g

∂µ︸︷︷︸
+/−

, (A42)

where ∂(a/c)/∂µ is positive from Lemma 4. Therefore, the first term on the right-hand side
of (A42) is negative for less wealthy households (i.e., θa,0(h) < 1) and positive for wealthier
households (i.e., θa,0(h) > 1), implying that wealthier households prefer a stronger level of
patent protection. As before, we consider a linear aggregate of the households’utility functions
given by

U ≡
∫ 1

0

u (h) dh =
1

ρ

[∫ 1

0

ln θc (h) dh+ ln c0 +
g

ρ

]
. (A43)
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Then, the condition that determines the optimal level of patent protection µ is given by

ρ
∂U

∂µ
=

∫ 1

0

∂ ln θc (h)

∂µ
dh+

∂ ln c0

∂µ︸ ︷︷ ︸
−

+
1

ρ

∂g

∂µ︸︷︷︸
+/−

. (A44)

The first term on the right-hand side of (A44) is given by∫ 1

0

∂ ln θc (h)

∂µ
dh = −ρ∂a/c

∂µ︸ ︷︷ ︸
+

∫ 1

0

1− θa,0(h)

θc (h)
dh = −ρ∂a/c

∂µ︸ ︷︷ ︸
+

∫ 1

0

[
1

1− θa,0(h)
− ρa

c

]−1

dh, (A45)

where θc (h) is given by (29) and a/c is given by (28) and increasing in µ from Lemma 4. Finally,
from Jensen’s inequality, we have∫ 1

0

[
1

1− θa,0(h)
− ρa

c

]−1

dh >

[
1∫ 1

0
[1− θa,0(h)]dh

− ρa
c

]−1

= 0, (A46)

which together with (A45) implies that∫ 1

0

∂ ln θc (h)

∂µ
dh < 0 (A47)

unless θa,0(h) = 1 for all h. Therefore, wealth inequality gives rise to an additional negative
effect of patent protection on social welfare.
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Appendix B: The generalized utility function

This appendix presents the key equilibrium conditions for the model under the isoelastic
utility function in (47). Equation (3) can be revised as follows:

ċt(h)

ct(h)
=

1

σ
(rt − ρ) . (B1)

Therefore, the growth rate of aggregate consumption is given by

ċt
ct

=
1

σ
(rt − ρ) . (B2)

Appendix A shows v̇t/vt = ċt/ct on the balanced-growth path. Substituting this condition into
(11) and using (B2), we obtain

ρ

σ
+

(
σ − 1

σ

)
rt + λt =

πt
vt
. (B3)

Combining (9), (10) and (14) yields πt/vt = (µ− 1) (1− α)λtlx,t/lr,t. Using this condition and
λt = ϕ {α/ [µ (1− α)]}α lr,t from (20), (B3) can be rewritten as

ρ

σ
+

(
σ − 1

σ

)
rt + ϕ

(
1

µ

α

1− α

)α
lr,t = (µ− 1) (1− α)ϕ

(
1

µ

α

1− α

)α
(1− lr,t) , (B4)

where we have used the resource constraint on labor lx,t = 1− lr,t. Moreover, on the balanced-
growth path, ċt/ct = Żt/Zt implies that

rt = σϕ

(
1

µ

α

1− α

)α
lr,t ln z + ρ, (B5)

where we have used (20) and (B2). We substitute (B5) into (B4) to derive the equilibrium lr
under the generalized utility function:

lr =
ϕ (µ− 1) (1− α)

(
1
µ

α
1−α

)α
− ρ

ϕ [1 + (σ − 1) ln z + (µ− 1) (1− α)]
(

1
µ

α
1−α

)α . (B6)

As for wealth distribution, we firstly substitute (B2) into (21) by considering ȧt/at = ċt/ct
and then (26) can be revised as follows

ct − wt
at

=

(
σ − 1

σ

)
rt +

ρ

σ
. (B7)

Substituting (B5) into (B7) and using (B6), (B7) can be rewritten as

ct − wt
at

=
ϕ (σ − 1) (µ− 1) (1− α)

(
1
µ

α
1−α

)α
ln z + [1 + (µ− 1) (1− α)] ρ

1 + (σ − 1) ln z + (µ− 1) (1− α)
. (B8)

Under this generalized utility function, we know that θc,t(h) = θc(h) still holds for all t. Given
this condition and using (B8), (27) can be revised as follows
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θ̇a,t(h) =
ϕ (σ − 1) (µ− 1) (1− α)

(
1
µ

α
1−α

)α
ln z + [1 + (µ− 1) (1− α)] ρ

1 + (σ − 1) ln z + (µ− 1) (1− α)
[θa,t(h)− 1]−[θc(h)− 1]

ct
at
,

(B9)
where ct/at can be derived as

ct
at

=
c

a
=

1

µ− 1

(
µ− α

1− α
lr

1− lr

)[
ρ+ ϕ [1 + (σ − 1) ln z]

(
1

µ

α

1− α

)α
lr

]
, (B10)

for all t. As a result, we know θ̇a,t(h) = 0 for all t with long-run stability. Imposing θ̇a,t(h) = 0
on (B9) yields the steady-state value of θc,t(h) given by

θc,t(h) = θc(h) = 1−
ϕ (σ − 1) (µ− 1) (1− α)

(
1
µ

α
1−α

)α
ln z + [1 + (µ− 1) (1− α)] ρ

1 + (σ − 1) ln z + (µ− 1) (1− α)

[1− θa,0(h)]

c/a
.

(B11)
Finally, we impose balanced growth on (47) to derive the welfare function of household h as

u(h) =
1

1− σ

{
[c0 θc(h)]1−σ

ρ− (1− σ) g
− 1

ρ

}
, (B12)

where we have used c0 (h) = θc (h) c0. Then, we assume ρ > (1 − σ)g to ensure that utility is
bounded. The market-clearing condition for final goods implies yt/Zt = (ct +Rt) /Zt. Using
this condition, (17) and (19), we obtain the initial level of aggregate consumption c0 as

c0 =
(1− α) [µ (1− α) + α + µ (σ − 1) ln z]

(
1
µ

α
1−α

)α
+ [µ (1− α) + α] ρ

µϕ (1− α) [1 + (σ − 1) ln z + (µ− 1) (1− α)]
(

1
µ

α
1−α

)α , (B13)

where we have used (B6) and Z0 is normalized to unity. Similarly, we consider two types of
households: type 1 has θa,0(h) = 1 − ε for h ∈ [0, 0.5] and type 2 has θa,0(h) = 1 + ε for
h ∈ [0.5, 1]. The social welfare function is given by

U =
0.5

1− σ

{
[c0 θ1c(h)]1−σ

ρ− (1− σ) g
− 1

ρ

}
+

0.5

1− σ

{
[c0 θ2c(h)]1−σ

ρ− (1− σ) g
− 1

ρ

}
, (B14)

where

θ1c(h) = 1−
ϕ (σ − 1) (µ− 1) (1− α)

(
1
µ

α
1−α

)α
ln z + [1 + (µ− 1) (1− α)] ρ

1 + (σ − 1) ln z + (µ− 1) (1− α)

ε

c/a
for h ∈ [0, 0.5] ,

θ2c(h) = 1+
ϕ (σ − 1) (µ− 1) (1− α)

(
1
µ

α
1−α

)α
ln z + [1 + (µ− 1) (1− α)] ρ

1 + (σ − 1) ln z + (µ− 1) (1− α)

ε

c/a
for h ∈ [0.5, 1] .
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Appendix C: Variety expansion

In this appendix, we sketch out a variety-expanding version of the model in which all our
results are robust. To begin, we replace the Cobb-Douglas production function of final good in
(5) by the following CES production function:

yt =

[∫ Nt

0

xηt (i)

]1/η

, (C1)

where the parameter η ∈ (0, 1) determines the elasticity 1/(1 − η) of substitution between in-
termediate goods xt(i) for i ∈ [0, Nt]. Then, we replace the production function of intermediate
goods in (7) by a simple one-to-one production function xt(i) = lx,t(i). In this case, the familiar
profit-maximizing price of xt(i) is given by pt(i) = wt/η. As before, we introduce a patent
policy parameter µ ∈ (1, 1/η) such that pt(i) = µwt. It can be shown that the equilibrium
features symmetry, such that lx,t(i) = lx,t/Nt for all i ∈ [0, Nt]. In this case, the production
function in (C1) simplifies to

yt = N
1/η
t xt(i) = N

(1−η)/η
t lx,t, (C2)

which implies that the steady-state equilibrium growth rate of output is gy = gN (1− η) /η.
As in Section 2.4, we consider a general innovation specification under which R&D uses

both final output and labor such that

Ṅt = ϕNt

[
Rt

N
(1−η)/η
t

]α
(lr,t)

1−α , (C3)

where the scaling by N (1−η)/η
t in Rt/N

(1−η)/η
t is to ensure a steady-state equilibrium growth

rate gN of varieties. Performing similar derivations as in Section 2.7 and using the steady-state
output growth rate gy = gN (1− η) /η yield

gy =
1− η
η

ϕ

(
1

µ

α

1− α

)α
lr. (C4)

Comparing (20) and (C4), it can be shown that the effect of patent protection µ on economic
growth remains the same as before. In other words, the steady-state output growth rate is an
inverted-U function in the level of patent protection µ under the general innovation specification
but an increasing function in µ under the knowledge-driven specification (i.e., α→ 0) and the
lab-equipment specification (i.e., α → 1). Furthermore, given that this variety-expanding
model has a similar aggregate structure as our Schumpeterian model, it can also be shown that
all our results on the wealth distribution and optimal patent policy continue to hold in our
variety-expanding growth model.18

18Derivations are relegated to an unpublished appendix that is available upon request.
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