
MPRA
Munich Personal RePEc Archive

Volatility models versus intensity models:
analogy and differences

Aknouche, Abdelhakim and Dimitrakopoulos, Stefanos

Department of Mathematics, College of Science, Qassim University,
Department of Statistics, Athens University of Economics and
Business

28 October 2024

Online at https://mpra.ub.uni-muenchen.de/122528/
MPRA Paper No. 122528, posted 05 Nov 2024 23:25 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/122528/


Volatility models versus intensity models: analogy and differences

Abdelhakim Aknouche* and Stefanos Dimitrakopoulos1**

*Department of Mathematics, College of Science, Qassim University, Saudi Arabia
**Department of Statistics, Athens University of Economics and Business, Greece

Abstract

We consider two popular classes of volatility models, the generalized autoregressive conditional

heteroscedastic (GARCH) model and the stochastic volatility (SV) model. We compare these two

models with two classes of intensity models, the integer-valued GARCH (INGARCH) model and

the integer-valued stochastic volatility/intensity (INSV) model, which are corresponding integer-

valued counterparts of the former. We reveal the analogy and differences of the models within the

same class of volatility/intensity models, as well as between the two different classes of models.

Keywords: GARCH, integer-valued GARCH, integer-valued stochastic intensity, observation-

driven models, parameter-driven models, stochastic volatility.
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1 GARCH vs INGARCH models: analogy and differences

The integer-valued GARCH process (INGARCH; e.g. Grunwald et al., 2000; Rydberg and Shephard,

2000; Heinen, 2003; Ferland et al., 2006; Fokianos et al., 2009; Zhu, 2011; David and Liu, 2016;

Ahmad and Francq, 2016; Aknouche et al., 2018a; Aknouche and Francq, 2021; Aknouche et al.,

2022b) has a discrete conditional count distribution (Poisson, negative binomial, Double Poisson,

etc.), whose intensity, materialized by the conditional mean, has a similar but not identical equation

to that of the GARCH specification (Bollerslev, 1986; Francq and Zakoian, 2019). This is due to the

fact that the GARCH volatility equation relates the current volatility to the squared values of the past

underlying process, while in the INGARCH model, the intensity equation relates the intensity (which

in the Poisson case is exactly the volatility) to the values (and not to the squared values) of the past

observed process. To be more precise, let us give the difference between the GARCH and INGARCH

model and in order to do that in simple terms, we focus, as far as the GARCH case is concerned, on

the conditional Gaussian distribution.

1.1 GARCH model

An instance of the conditionally Gaussian GARCH(1, 1) model can be written in the following Multi-

plicative Error Model (MEM, see Engle, 2002; Hausch, 2012; Aknouche et al., 2022a; Aknouche and

Francq, 2021, 2023)

Yt =
√

htηt (1a)

(ηt) is i.i.d. with ηt ∼ N (0, 1) (1b)

ht = ω + αY 2
t−1 + βht−1, (1c)

where ω > 0, α ≥ 0, and β ≥ 0. Instead of the MEM-GARCH specification (1a), the GARCH

model (1) can also be represented by the following distributional representation (e.g. Aknouche and

Dimitrakopoulos, 2023)

Yt|F t−1 ∼ N (0, ht) (2a)

F t = σ {Yt, Yt−1, ...} (2b)

ht = ω + αY 2
t−1 + βht−1. (2c)

Although in the literature on GARCH models, representations (1) and (2) of the GARCH model

are generally considered indistinguishable, there is, however, a small but important difference between

them. Representation (1) implies (2) in the sense that if a stochastic process (Yt) satisfies (1), then it

necessarily satisfies (2).

However, the converse is not true: if a stochastic process (Yt) satisfies (2), it does not necessarily

satisfy (1). Therefore, representation (2) is more general, since the dependence structure of the process

(Yt) is not explicit in terms of past values. For example, for representation (1), the dependence

structure can be manifested via the linear stochastic recurrence equation

Yt = AtYt +Bt,

where Yt is a vector, which depends on Yt and (At, Bt) are given (e.g. Bougerol and Picard, 1992;

Francq and Zakoian, 2019).

On the other hand, without additional restrictive assumptions, there is no explicit dependence
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of Yt in representation (2) a priori. That’s why specification (1) is often used when we study the

probabilistic structure of a GARCH model. In other words, in this case, (1) is simpler to handle than

(2). However, for parameter estimation, the two representations are used interchangeably because

they lead to the same conditional distribution. Note that (2) is not a MEM, while (1) it is. However,

any GARCH model can be seen as a MEM, whenever it is possible to have a MEM representation

with the same conditional distribution. Finally, the GARCH model has the property that the domain

of strict stationarity {
(α, β) ∈ [0,∞)2 : E log

(
αη21 + β

)
< 0

}
is strictly larger than that of the second-order stationarity domain{

(α, β) ∈ [0,∞)2 : α+ β < 1
}

(e.g. Francq and Zakoian, 2019).

1.2 INGARCH model

Let us now turn our attention to the INGARCH model which, first of all, is not a MEM because

it is defined through the distributional form and thus no corresponding MEM form is possible (e.g.

Aknouche and Francq, 2021, 2022; Aknouche and Scotto, 2024). The Poisson INGARCH model has

the following distributional representation

Yt|F t−1 ∼ P (λt) (3a)

F t = σ {Yt, Yt−1, ...} (3b)

λt = ω + αYt−1 + βλt−1. (3c)

Thus, the INGARCH model (3) is defined via a distributional form as in (2), but it differs from (2)

in two ways:

i) The conditional distribution of an INGARCH model is discrete (rather than continuous) with

a given time-varying conditional mean parameter λt, usually called intensity, which, in the Poisson

case, coincides with the volatility.

ii) As highlighted above, in the INGARCH model, the intensity equation (3c) relates the intensity

λt to the term Yt−i and not to the squared term Y 2
t−i, as is the case with the volatility ht of the

GARCH model (2) or (1).

The main reason for which model (3) is called Integer-valued GARCH (Ferland et al., 2006) is

that, for the conditional Poisson distribution, the intensity

λt := E (Yt|F t−1) = V ar (Yt|F t−1)

is equal to the conditional variance (also known as volatility). So if λt is replaced by ht, then

Yt|F t−1 ∼ P (ht) (3a)

V ar(Yt|F t−1) = ht (3b)
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F t = σ {Yt, Yt−1, ...} (3c)

ht = ω + αYt−1 + βht−1, (3d)

which is the analog of (2). Nevertheless, as stated above, (3) differs from (2) in terms of (3a) and 3d.

Although the Poisson INGARCH model is not conditionally overdispersed (but conditionally

equidispersed), it is unconditionally overdispersed in the sense V ar (Yt) > E (Yt) (e.g. Christou

and Fokianos, 2014).

Now, if the conditional distribution of an INGARCH model is negative binomial, that is,

Yt|F t−1 ∼ NB
(
τ, τ

λt+τ

)
(4a)

F t = σ {Yt, Yt−1, ...} (4b)

λt = ω + αYt−1 + βλt−1 (4c)

then

E (Yt|F t−1) = λt

and

V ar (Yt|F t−1) =
(
1 + 1

τ λt

)
λt

so that

λt = E (Yt|F t−1) < V ar (Yt|F t−1) ,

which means that the intensity λt is no longer equal to the volatility. In this case, the analogy with

the GARCH specification is lost and this is the main reason for which there is a strong controversy

around the INGARCH notation (Davis et al., 2016, Davis et al., 2021). Nevertheless, by an abuse of

notation we continue to name model (4) the (negative binomial) INGARCH.

It can be observed that the negative binomial INGARCH process is conditionally overdispersed

(V ar (Yt|F t−1) > E (Yt|F t−1)) and therefore necessarily unconditionally overdispersed (V ar (Yt) >

E (Yt)), where the latter magnitude of overdispersion is greater than that of the Poisson INGARCH

process. Overdispersion is an important concept in count data and it is the analogue of the heavy tail

property for real-valued distributions (Aknouche and Scotto, 2024).

As for the GARCH specification in (2), the study of path properties (such as ergodicity, geometric

ergodicity, mixing etc.) of (3) and (4) is more tedious than that of a MEM representation, as in (1).

Typically, a nonlinear stochastic equation driven by an i.i.d. innovation is associated to model (3),

based on which, the path properties of (3) are studied. See, for example, the Poisson/mixed-Poisson

process representations (e.g. Fokianos et al., 2009; Doukhan et al., 2012; Christou and Fokianos, 2014;

Aknouche et al., 2018b; Aknouche and Demmouche, 2019), and the quantile function representation

(Neumann, 2011; Davis and Liu, 2016; Aknouche and Francq, 2021, 2022).

For example, the Poisson INGARCH model can be represented by the following stochastic (Poisson

process) equation (Fokianos et al., 2009; Doukhan et al., 2012)

Yt = Nt (λt) (5a)

(Nt) is an i.i.d. sequence of Poisson processes with intensity 1 (5b)
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λt = ω + αYt−1 + βλt−1. (5c)

As is the case with the relationship between (1) and (2), representation (5) implies (3) but the

converse is not true. However, (3) and (5) have the same conditional distribution but the Poisson

INGARCH is not a MEM.

Also, the negative binomial INGARCH model can be represented by the following stochastic

(mixed-Poisson) equation (Christou and Fokianos, 2014)

Yt = Nt (Ztλt) (6a)

(Zt) is an i.i.d. with mean 1 and variance ρ2 = 1
τ (6b)

Zt ∼ G (τ, τ) (6c)

(Nt) is an i.i.d. sequence of Poisson processes with intensity 1 (6d)

(Nt) and (Zt) are independent (6e)

λt = ω + αYt−1 + βλt−1. (6f)

When Zt is degenerate at 1 (i.e. ρ2 = 0), equation (6) reduces to the Poisson INGARCH (4).

When the condition (6c) is dropped (or unspecified), model (6) does not necessarily have the negative

binomial distribution.

As is the case with the relationship between (1) and (2), representation (6) implies (4) but the

converse is not true. However, (4) and (6) have the same conditional distribution but the Negative

binomial INGARCH is not a MEM.

Finally, in contrast with the GARCH model, the strict and second-order stationarity domains for

the INGARCH(1, 1) model coincide and are both given by{
(α, β) ∈ [0,∞)2 : α+ β < 1

}
.

(e.g. Aknouche and Francq, 2021).

2 SV vs INSI models: analogy and differences

The analogy between the stochastic volatility (SV) model and the integer-valued stochastic volatil-

ity/intensity (INSI) model is more pronounced than that between the GARCH and INGARCH.

2.1 The SV model

To simplify the analysis, consider the (conditionally) Gaussian SV model given by the following equa-

tion

Yt =
√

htηt (7a)

(ηt) is i.i.d. with ηt ∼ N (0, 1) (7b)

log (ht) = ϕ0 + ϕ1 log (ht−1) + σet (7c)
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(et) is i.i.d. with et ∼ N (0, 1) (7d)

(ηt) and (et) are independent, (7e)

where ϕ0, ϕ1 ∈ R and σ > 0.

Due to (7a), the conditionally Gaussian SV representation (7) is a MEM, as is the case with (1).

The SV model can also be represented by the following distributional form

Yt|ht ∼ N (0, ht) (8a)

log (ht) = ϕ0 + ϕ1 log (ht−1) + σet (8b)

(et) is i.i.d. with et ∼ N (0, 1) . (8c)

As for the relation between (1) and (2), the SV representations (7) and (8) are not equivalent, as

(7) implies (8) but the converse is not true, so (8) is more general. However, (7) and (8) have the

same conditional distribution and are used interchangeably for parameter estimation. By an abuse of

notation, we say that the SV model (7) or (8) is a MEM (as in the GARCH case).

Note that the SV model (7)-(8) is parameter-driven in the sense of Cox (1981). The reason is

that, due to the presence of the term et in the dynamic equation (8b), the volatility ht in (7)-(8) is

unobserved, even with perfect knowledge of the parameters (ϕ0, ϕ1), and is driven by its past latent

values. Unobservability for random variables is the analog of “unknowness” for (non-random) real

parameters. In fact, the term “unknown” cannot be used for latent variables, since the values taken

even by observed random variables are always unknown before observing them. That’s why models

driven by latent variables are called parameter-driven (Cox, 1981) or also state space models, as

opposed to parameter spaces for unknown parameters.

On the contrary, the GARCH model (2)-(3) is observation-driven, since the volatility ht is a

deterministic function of past observations F t−1 = σ {Yt−1, Yt−2, ...}, and therefore is observed under

perfect knowledge of the parameters (ω, α, β). The opposition “observation-driven” vs “parameter-

driven” is expressed by Cox (1981) in another but an equivalent way. It should be noted that the term

“stochastic volatility” is also very controversial because the volatility in both the SV and GARCH

models is already stochastic. The correct terminology, regarding “stochastic volatility” would be, in

reference to Cox (1981), “unobserved conditional volatility”. On the contrary, the term “GARCH”

could be replaced by the term “observed conditional volatility”.

For the SV model, the domain of strict stationarity coincides with that of second-order stationarity

and is given by

{ϕ1 ∈ R : |ϕ1| < 1} ,

(see e.g. Taylor, 1982; Aknouche, 2017).

2.2 The INSI model

Aknouche et al. (2024) introduced an integer-valued model for count data, which is an analog to the

SV model. It was called “integer-valued stochastic intensity” (INSI) model. The authors of this paper

considered both the Poisson and the negative binomial conditional distribution cases. In particular,
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the Poisson INSI model is given by the following distributional form (e.g. Aknouche et al., 2024)

Yt|λt ∼ P (λt) (9a)

log (λt) = ϕ0 + ϕ1 log (λt) + σet (9b)

(et) is i.i.d. with et ∼ N (0, 1) , (9c)

where ϕ0, ϕ1 and σ are defined as in the SV specification (7)-(8).

As for the INGARCH model, specification (9) is not a MEM. It is defined through the conditional

distribution, as is the case with the SV representation (8). However, (9) differs from (8) in only one

aspect, unlike the difference between the INGARCH and the GARCH:

- The conditional distribution of the Poisson INSI is discrete rather than continuous, as is the case

with the real-valued SV model.

Nonetheless, the log-intensity equation (9b) is exactly the same as that of the Gaussian SV model.

The main reason for which model (9) could be called Integer-valued SV is that, in the conditional

Poisson distribution, the intensity

λt = E (Yt|λt) = V ar (Yt|λt) := ht

is equal to the conditional variance.

Thus, at first glance, model (9) should be simply named Poisson SV and not Poisson INSV.

However, the latter name is kept for reasons that become apparent in the case of the negative binomial

INSV model. Indeed, if the conditional distribution of an INSV/INSI model is the negative binomial,

that is,

Yt|λt ∼ NB
(
τ, τ

λt+τ

)
(10a)

log (λt) = ϕ0 + ϕ1 log (λt) + σet (10b)

(et) is i.i.d. with et ∼ N (0, 1) , (10c)

then E (Yt|λt) = λt but

V ar (Yt|λt) =
(
1 + 1

τ λt

)
λt.

Hence, the intensity

λt = E (Yt|λt) ̸= V arE (Yt|λt)

is no longer equal to the volatility. In this case, we lose the analogy with the SV and this is the

main reason for which Aknouche et al. (2024) highlighted that there may be a controversy regarding

the INSV notation. Nevertheless, by an abuse of notation we continue to name model (4) (negative

binomial) INSV or INSI. Note finally that model (10) cannot be called negative binomial SV, as is the

case with the Poisson INSV, which could be called Poisson SV, as emphasized above. This is because

in the negative binomial case, the intensity λt is no longer the volatility although the INSV (10) and

the SV (8) have exactly the same log-(intensity/volatility) equation. In the sequel, model (9) or (10)

could be called INSI. It is clear that, like the SV, the INSI is parameter-driven. On the contrary, the

INGARCH is, like the GARCH, observation-driven model.

It is difficult to study the probabilistic path properties of the Poisson or negative binomial INSV

models due to the non-MEM property. So Aknouche et al. (2024) wrote (9) and (10) as stochas-
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tic equation representations, involving the Poisson and Mixed Poisson processes, respectively (e.g.

Aknouche et al., 2024). A more general quantile function representation could also be used (e.g.

Aknouche and Francq, 2021; Aknouche et al., 2024).

In the Poisson INSI case, it is possible to represent (9) with the following stochastic equation,

involving the Poisson process:

Yt = Nt (λt) (11a)

(Nt) is an i.i.d. sequence of Poisson processes with intensity 1 (11b)

log (λt) = ϕ0 + ϕ1 log (λt) + σet (11c)

(et) is i.i.d. with et ∼ N (0, 1) (11d)

(Nt) and (et) are independent. (11e)

As for (1) and (2), specification (11) implies (9) and the converse is not true, so (9) is more general.

Moreover, the Poisson INSI model (9) or (11) is not a MEM. As for the Poisson INGARCH model,

the Poisson INSI model is not conditionally overdispersed since E (Yt|λt) = V ar (Yt|λt). But it is, in

fact, unconditionally overdispersed as V ar (Yt) > E (Yt) (e.g. Aknouche et al., 2024, Proposition 2.3).

The negative binomial INSI model (10) can also be represented through the following stochastic

equation, involving the mixed Poisson process:

Yt = Nt (Ztλt) (12a)

(Zt) is an i.i.d. with mean 1 and variance ρ2 = 1
τ (12b)

Zt ∼ G (τ, τ) (12c)

(Nt) is an i.i.d. sequence of Poisson processes with intensity 1 (12d)

(et) is i.i.d. with et ∼ N (0, 1) (12e)

(Nt) and (et) are independent. (12f)

Of course, (12) implies (10) but the converse is not true. However, (10) and (12) have the same

conditional distribution.

It is possible to drop the Gamma assumption (12c) and the Gaussian assumption (12e) to get the

following more general mixed Poisson INSI representation.

Yt = Nt (Ztλt) (13a)

(Zt) is an i.i.d. with mean 1 and variance ρ2 = 1
τ (13b)

(Nt) is an i.i.d. sequence of Poisson processes with intensity 1 (13c)

(et) is i.i.d. with mean zero and variance σ2 (13d)

(Nt) and (et) are independent. (13e)

This is the model, whose path properties were studied in Aknouche et al., (2024). For parameter

estimation, Aknouche et al. (2024) considered two particular cases of (13): i) The Poisson INSI with

a Gaussian innovation and Zt, being degenerate at 1. ii) The negative Binomial INSI with Gaussian
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innovation and Zt ∼ G (τ, τ).

As for the negative binomial INGARCH model, the negative binomial INSI model is condition-

ally overdispersed (V ar (Yt|λt) > E (Yt|λt)) and is therefore necessarily unconditionally overdispersed

(V ar (Yt) > E (Yt), e.g. Aknouche et al., 2024), with this overdispersion being greater than the one

obtained by the Poisson INSI model.

Finally, as with the GARCH and SV models, the INSI model could be called “integer-valued

unobserved intensity model” as opposed to the INGARCH model, which, in turn, could be called

“integer-valued observed intensity model”.

3 Conclusion

Some remarks can be drawn.

- The mixed Poisson INSI model (13) encompasses the Poisson conditional distribution (Zt = 1

a.s.), the negative binomial distribution (Zt ∼ G (τ, τ)) and other conditional distributions, depending

on the distribution of Zt. The path properties of model (13) have been revealed without any assumption

on the distribution of Zt or that of et.

- Model (13) is parameter-driven like the SV model. In contrast, both the GARCH and INGARCH

are observation-driven.

- The INGARCH and the INSI model (13) are not MEM, in contrast with the GARCH and SV.

Since the INSI is not MEM, it does not admit an ARMA representation (Aknouche et al., 2024).

- The INSI model is an interesting alternative with better formal correlation properties than the

mixed Poisson INGARCH model (e.g. Aknouche et al., 2024) for which the intensity depends only

on past observations. In particular, unlike the INGARCH model, the INSI model incorporates a

contemporary innovation term in the conditional mean and also allows for negative autocorrelations,

which can gain further flexibility.

- Finally, as a consequence of the Cox (1981) dichotomy, it is possible to oppose “observed con-

ditional volatility” with “unobserved conditional volatility” for volatility models (GARCH and SV).

Likewise, “observed conditional intensity” is opposed to “unobserved conditional intensity” for inten-

sity models (INGARCH and INSI).
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