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Abstract

We examine if the day-of-the-week effect is present in Bitcoin return series. The model

specification in use accounts for conditional heteroscedasticity, which is captured in the

form of a stochastic volatility process that allows for periodic time-varying parameters.

We find periodicity in Bitcoin returns, which is evidence against the market efficiency of

Bitcoin.
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1 Introduction

Over the last decade, there has been an increasing interest to understand the behaviour of a

new type of financial asset that has been labelled cryprocurrency. Given its large capitalisation

(Coinmarket, 2016), the market of cryptocurrencies has attracted much attention (governments,

policy makers, banks, hedge funds, consumers). The most popular cryprocurrency is the Bitcoin

(Nakamoto, 2009).

It has been well documented that cryptocurrency return series exhibit time-varying volatil-

ity, also known as conditional heteroscedasticity. Conditional heteroscedasticity in the relevant

empirical literature has been modelled as a GARCH-type specification (Glaser et al., 2014;

Gronwald, 2014; Dyhrberg, 2016a, 2016; Bouoiyour and Selmi, 2015, 2016; Bouri et al., 2017a,

Katsampa, 2017; Naimy and Hayek, 2018) or as a stochastic volatility process (Phillip et al.,

2018).

In this paper we turn our attention to the day-of-the-week effect on Bitcoin returns. Al-

though there is a voluminous financial literature that has examined whether the expected return

and volatility of a stock are uniformly distributed across the days of the week (thus, rejecting or

accepting the efficient market hypothesis, proposed by Fama (1965); see e.g. Aknouche, 2017;

Aknouche et al., 2020; Aknouche et al., 2018), no study so far has examined something similar

in the case of returns on crypotocurrencies. The present paper aspires to fill this gap.

To our knowledge, the paper by Mbanga (2018) is the only paper that has investigated

the day-of-the-week pattern of price clustering in Bitcoin. However, Mbanga (2018) does not

analyse potential abnormalities over the week in Bitcoin returns but in price levels. This is

the reason for which this paper has ignored conditional heteroscedasticity, which is a main

characteristic of cryptocurrency returns. Aknouche et al. (2022) used a periodic autoregressive

conditional duration to detect a day-of-the week periodicity in Bitcoin volumes. However,

conditional heteroskedasticity has not been explored.

Accounting for conditional heteroscedasticity, we focus on whether the seasonality pattern in

the form of day-of-the-week effect is present in the Bitcoin returns (and with what periodicity).

To this end, we exploit the periodic autoregressive stochastic volatility model (Aknouche, 2017).

It is an extension of the standard stochastic volatility model (Taylor, 1986) that allows the

parameters in the stochastic volatility equation to vary periodically over time. In this way,
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we can identify any periodically changing structure (e.g. Aknouche, 2015) in the time series

volatility of Bitcoin returns.

Our paper also contributes to the debate about whether the market of Bitcoin is effi-

cient. The empirical findings about the efficient market hypothesis for Bitcoin are inconclusive

(Urquhart, 2016; Nadarajah and Chu, 2017; Bouri et al., 2017a, 2017b; Balcilar et al., 2017).

If there is periodicity in Bitcoin returns, this is evidence against that hypothesis.

The paper is organized as follows. In Section 2 we describe the model and in section 3 we

present the empirical results.

2 The periodic autoregressive stochastic volatility model

The Gaussian stochastic volatility (SV) model is given by:

 yt =
√
htηt

log (ht) = α + β log (ht−1) + σet

, t ∈ Z, (1)

where yt is the log-return and ht is the conditional variance that follows a first-order autore-

gressive process, where α ∈ R is the intercept, |β| < 1 is the slope parameter, and σ2 > 0 is

the variance. Also,
{
(et, ηt)

i.i.d∼ N ((0, 0)′, I2)
}
, where I2 is the identity matrix of dimension 2.

The Gaussian periodic SV model (Aknouche, 2017) imposes S-periodicity on the parameters

over time by setting t = nS + v, for n ∈ Z, 1 ≤ v ≤ S. The resulting specification reads:

 ynS+v =
√
hnS+vηnS+v

log (hnS+v) = αv + βv log (hnS+v−1) + σvenS+v

, n ∈ Z, 1 ≤ v ≤ S, (2)

where the parameters αv ∈ R, |β1...βS| < 1, and σ2
v > 0 (1 ≤ v ≤ S) are S-periodic over t,

and {(enS+v, ηnS+v)} is defined as before. The model in (2) is named periodic autoregressive

stochastic volatility (PAR-SVS). It defines a periodic-time varying dependence structure, where

the dependence between successive times is distanced by a multiple of the period S. If there

is S-periodicity in the volatility of a daily return series (in our case Bitcoin), this suggests the

presence of the day-of-the-week effect in that series. Notice also, that the PAR-SVS reduces to

the SV model for S = 1.
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For the estimation of the SV and PAR-SVS we adopt Bayesian methods as described in

Aknouche (2017). The (reasonably flat) priors used in this paper are displayed in the Appendix

of this paper.

3 Empirical analysis: The Bitcoin

3.1 Data and some descriptive statistics

We use 3014 daily closing prices for the Bitcoin Coindesk Index, from July 18, 2010 to October

17, 2018. We transform the prices to returns, by taking the natural logarithm of the ratio of

two successive closing prices. The time series plot of Bitcoin returns is given in Figure 1(a).

Based on the simple and partial autocorrelation functions of Bitcoin returns (Figures 1(b)

and 1(c), respectively), these returns seem to follow a white noise process. It is difficult to

detect a possible periodicity in their conditional distributions, as almost all autocorrelations

are insignificant.

However, if, for example, these returns follow a SV (or a GARCH) model, the squared

returns will have an autoregressive conditional duration (ACD) representation, which is no

longer uncorrelated and a possible periodicity could appear in their autocorrelations. Therefore,

we plotted the squared returns of Bitcoin, along with their simple and partial autocorrelation

functions (Figures 1(d) and 1(f), respectively).

From the autocorrelations of the squared returns, there is an indication of periodicity, as

it can be observed that important picks appear in lags, which are multiples of 7 (7, 21, 28 in

Figure 1(f)). There exist of course other more important picks on other lags but they are not

so persistent at their multiples.

In Table 1, we provided some descriptive statistics for the Bitcoin data, using the full sample

and by each day of the week separately. The average return and the volatility (approximated by

the absolute value) are somewhat different from one day to another. Furthermore, the returns

exhibit negative skewness and high positive kurtosis that vary notably from Monday to Sunday.

Since the distributions of returns over the days are not constant, we suspect that the day-of-the

week effect may characterize the Bitcoin return data.
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3.2 Estimation results

We design our empirical analysis, by assuming that the conditional distribution of Bitcoin

returns is characterized by a periodicity of up to magnitude 7. This approach is different from

the one usually used for non-cryptocurrency returns (such as stocks, exchange rates, etc.,),

which are characterized by a periodicity of up to magnitude 5, due to the non-trading days at

each week (week-end).

Therefore, we first estimate seven PAR-SVS models, corresponding to each S ∈ {1, ..., 7}.

Then, we conduct model comparison, using the Deviance information Criterion (DIC; Spiegel-

halter et al., 2002) in order to identify the period of the best fitting PAR-SVS model.

We run the MCMC samplers for 2500 iterations after a burn-in of 2500 draws. To monitor

convergence and mixing of the samplers, we use (and report) the relative numerical inefficiency

(RNI) and the numerical standard error (NSE); see, for example, Geweke (1989).

Based on the DIC values (Table 2), PAR-SV7 is the best model, being followed by the SV

model. In Table 3, the results (posterior means and standard deviations) for the SV model

show that there is high persistence (0.8626) in the estimated volatilities, which are plotted in

Figure 2. In Table 4, the parameters for the PAR-SV7 model are all significant and different

from one day to another especially for the αv’s and βv’s, a fact that supports the use of periodic

SV modeling tools. The existence of periodicity in Bitcoin returns is also an evidence that

they are market inefficient. Finally, Figure 3 plots the estimated volatilities from the PAR-SV7

model and Figure 4 portraits the difference in volatilities between the PAR-SV7 and the SV

models.

4 Conclusions

We examined the day-of-the-week effect in Bitcoin and found that the hypothesis that Bitcoin

returns exhibit periodicity in their conditional distributions is tenable. Also, this empirical

finding does not support the efficient market hypothesis for the data in question.
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(a) Time series plot of Bitcoin returns.
  

(b) Sample autocorrelation function of the Bit-
coin returns.

  

(c) Sample partial autocorrelation function of the
Bitcoin returns.

  
(d) Time series plot of the squared Bitcoin returns.

  

(e) Sample autocorrelation function of the squared
Bitcoin returns.

  

(f) Sample partial autocorrelation function of the
squared Bitcoin returns.

Figure 1: Empirical results. Descriptive plots for Bitcoin.
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Figure 2: Empirical results. Bitcoin estimated volatilities induced by the SV model.

  
Figure 3: Empirical results. Bitcoin estimated volatilities induced by the PAR-SV7 model.

  

Figure 4: Empirical results. The difference between estimated volatilities (hPAR−SV7
t − hSV

t ).
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Table 1: Empirical results. Day-of-the-week effect in the daily Bitcoin returns(yt).

Mean of yt Mean of |yt| Mean of y2t Skewness Kurtosis Min Max
Full series 0.0037 0.0333 0.0033 -0.3452 15.0201 -0.4915 0.4246

1 Monday 0.0048 0.0346 0.0035 -0.8533 13.6092 -0.3483 0.3478
2 Tuesday 0.0068 0.0353 0.0035 0.9435 12.7229 -0.2188 0.4246
3 Wednesday 0.0043 0.0329 0.0032 -0.5759 11.9987 -0.3321 0.3086
4 Thursday 0.0044 0.0375 0.0040 -0.5852 13.2344 -0.4700 0.2908
5 Friday 0.0025 0.0349 0.0034 0.4227 9.3506 -0.2610 0.2987
6 Saturday 0.0032 0.0312 0.0036 -1.1543 24.9235 -0.4915 0.4055
7 Sunday 7.4187e-05 0.0264 0.0020 -0.8474 17.4367 -0.3724 0.2360

Table 2: DIC values and monodromy parameters (Bitcoin returns).

PAR-SV1 ≡ SV PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV6 PAR-SV7

DIC
(Std)

−9946.7109
(2.2431)

−9883.0069
(2.5607)

−9918.1148
(2.8753)

−9922.8003
(3.0197)

−9905.4721
(2.9816)

9902.2034
(2.8903)

−9950.8321
(2.6844)

Rank of DIC values 2 7 4 3 5 6 1
Monod. 0.8626 0.7841 0.6480 0.6229 0.6024 0.5775 0.4621

Notes: The monodromy (Monod.) parameters
∏S

v=1 βv are quite large, indicating strong
volatility persistence. Std stands for standard deviation. In computing the standard errors of

DIC, we have replicated the algorithm 100 times.

Table 3: Empirical results for the SV model (Bitcoin returns).

Mean St. dev NSE RNI
α −0.8324 0.0514 0.0025 0.4080
β 0.8626 0.0097 0.0001 0.5261
σ2 0.3162 0.0111 0.0005 0.2592

Table 4: Empirical results for the PAR-SV7 model (Bitcoin returns).

Periodic SV parameters Mean St. dev NSE RNI
α1 −1.0069 0.1319 0.0025 0.0458

1 Monday β1 0.8421 0.0214 0.0004 0.0509
σ2
1 0.2661 0.0215 0.0060 0.1934

α2 −0.9573 0.1511 0.0012 0.3174
2 Tuesday β2 0.8398 0.0249 0.0033 0.0644

σ2
2 0.3404 0.0287 0.0004 0.0359

α3 −0.7087 0.1469 0.0214 2.5999
3 Wednesday β3 0.8788 0.0239 0.0032 2.2271

σ2
3 0.3328 0.0312 0.0069 0.2151

α4 −0.6756 0.1464 0.0010 0.1903
4 Thursday β4 0.8877 0.0241 0.0044 0.1281

σ2
4 0.3230 0.0330 0.0008 0.1695

α5 −0.2986 0.1654 0.0117 0.6854
5 Friday β5 0.9434 0.0258 0.0016 0.4957

σ2
5 0.3501 0.0293 0.0006 0.0954

α6 −0.3996 0.1357 0.0012 0.2397
6 Saturday β6 0.9309 0.0234 0.0023 0.6778

σ2
6 0.3269 0.0320 0.0037 1.5641

α7 −0.2888 0.1564 0.0012 0.2375
7 Sunday β7 0.9536 0.0257 0.0013 0.2116

σ2
7 0.3043 0.0277 0.0020 0.6830
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Table A.1: Prior distributions for the parameters of the SV model (which is equivalent to
PAR-SVS with S=1).

Prior for ω = (α, β)′, ω ∼ N (ω0,Σ0) Prior for σ2 : aλ
σ2 ∼ χ2

a

Priors ω0 Σ0 a λ

Hyperparameters

(
0
0

) (
0.05 0
0 0.5

)
5 0.2

Notes: χ2
a denotes the chi-square distribution with a degrees of freedom.

The diagonal matrix Dk (k = 4, 10) is defined to be

Dk (i, j) =


0 if i ̸= j

0.05 if i = j is odd

0.5 if i = j is even

, 1 ≤ i, j ≤ k. (A.1)

Table A.2: Prior distributions of ω and σ2 for the candidates PAR-SVS, 2 ≤ v ≤ 7.

Prior for ω = (α, β) : ω ∼ N (ω0,Σ0) Prior for σ2 : avλv

σ2
v

∼ χ2
av

Priors ω0 = Σ0 = a = (a2, ..., aS) λ = (λ2, ..., λS)
S = 2 04×1 D4 10× 12 0.1× 12

S = 3 06×1 D6 10× 13 0.1× 13

S = 4 08×1 D8 10× 14 0.1× 14

S = 5 010×1 D10 10× 15 0.1× 15

S = 6 012×1 D12 10× 16 0.1× 16

S = 7 014×1 D14 10× 17 0.1× 17

Notes:
Dk, 0k×1 and 1k denote respectively the diagonal matrix given by (1), the null vector with k
components and the k-vector with all components equal to 1.
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