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Abstract

Vegetable pesticide residues are a pervasive food safety concern. Utilizing over
half a million records of vegetable tests from 287 cities, we find that COVID-19
increases the national average pesticide residue by 11% during the peak months of
the pandemic in China. The pandemic nearly doubled the pesticide testing failure
rate in cities with the highest infection rates. Empirical evidence suggests that the
estimated effect stems from pandemic-induced disruptions in vegetable production
and transportation, which result in untimely pest control and subsequent overuse
of pesticides. Pandemic-related vegetable pesticide residue changes increase health
risks by up to 10% in cities with the highest COVID-19 infection rates. Our
findings underscore the significant impact of social disruptions on food safety
through a channel largely overlooked in the literature.
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1 Introduction

Social disruptions, such as pandemics and natural disasters, can affect food security by

disrupting agricultural production and transportation, which may even lead to serious

food safety issues (De Haen and Hemrich, 2007; Laborde et al., 2020; Ristaino et al.,

2021).1 During the disruptions, food production and logistic disruptions may prevent

farmers from adopting optimal food safety standards. For example, pandemics may

prevent the timely use of pesticides and fertilizers, and to compensate for yield losses,

farmers may overuse pesticides and fertilizers later, leading to food safety problems.

Similarly, the lack of timely transportation may force farmers to apply more food

preservatives, which can bring about food safety issues. This study utilizes data from

COVID-19 to infer the potential impact of social disruptions on food safety.

Specifically, we examine the impact of the COVID-19 outbreak on vegetable pesticide

residues, using data from over 656,000 records of vegetable pesticide residue testing

conducted during the pandemic in China. Vegetable pesticide residues are one of the

major global food safety concerns (Zilberman et al., 1991; Friedle et al., 2021; Wilson

and Tisdell, 2001). Intensive agricultural practices have led to widespread pesticide use

to control pests and maximize yields, resulting in the accumulation of pesticide residues

in vegetables (Morrison Paul et al., 2002; Li et al., 2021). Vegetable pesticide residues

could cause acute and chronic health effects, especially among young children (Pascale

and Laborde, 2020; Sunding and Zivin, 2000; Eom, 1994; Hoffmann et al., 2019).

Vegetable production and transportation were significantly affected during the

COVID-19 in China, where strict epidemic prevention and control policies were im-

plemented. Once diagnosed as positive in a COVID-19 test, individuals are promptly

isolated for treatment. The duration of isolation typically lasts for at least 14 days.

1Food security is about ensuring that people have access to enough nutritious food to lead healthy
lives, while food safety is about ensuring that the food people consume is free from harmful contaminants
and is safe to eat (Shaw, 2007). Both concepts are essential for public health and well-being, but they
address different aspects of the food system.
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Additionally, people who have been to areas with high or medium risk of the epidemic

also face the risk of being quarantined. The COVID-19 pandemic reduced working

time flexibility and labor hiring in rural areas. Due to the transportation disruptions

caused by the COVID-19 lockdowns, high or medium-risk areas faced severe shortages

of vegetable supplies (Ruan et al., 2021). If the pandemic prevents farmers from

purchasing or applying pesticides promptly, subsequent pest outbreaks could potentially

lead to excessive use of pesticides. In addition, the pandemic might have disrupted

the supply chain and delayed the sale of vegetables, which could lead farmers to use

additional pesticides to preserve vegetables. Our data support these concerns. A simple

summary of statistics shows that cities with a high vegetable pesticide test failure rate

are usually those with a high COVID-19 infection rate during the pandemic (Figure 3).

We identify the impact of COVID-19 on vegetable pesticide residue based on the

plausibly exogenous rollout of COVID-19 across Chinese cities. An event study shows

that cities with early and later COVID-19 outbreaks had no differential trends in

vegetable pesticide test failure rates before the pandemic, while the test failure rate

significantly increased in cities with COVID-19 outbreaks. Our difference-in-differences

estimates suggest that a 1 percentage point increase in the COVID-19 infection rate

significantly increases the pesticide residue testing failure rate by 5.5 percentage points.

The peak impact of the COVID-19 pandemic raised the national failure rate for vegetable

pesticide testing by 11 percent. In the top 1 percent of cities with the highest COVID-19

infection, the pandemic almost doubled the pesticide testing failure rate. These findings

are robust to including various control variables, using different sets of fixed effects,

and adopting alternative estimation methods.

We also present evidence supporting that the COVID-19 pandemic increases veg-

etable pesticide residue by impacting vegetable production and transportation. First,

we find that COVID-19 had a larger effect on pesticide residue in vegetable-exporting

cities than in vegetable-importing cities. Second, we find that the COVID-19 outbreak
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significantly reduced the vegetable output of a city. Third, we show that COVID-19

had no significant effect on the pesticide testing failure rate of processed vegetables.

Fourth, we find a larger effect on the testing failure rate in small and poor cities with

weaker vegetable supply chains. Finally, we find no effect on the testing failure rate of

pesticides that are unlikely affected by the pandemic-caused disruption in vegetable

production and transportation. We also show that the elevated testing failure rate is

not caused by more stringent testing standards. The test standard is mandated by the

central government and has remained constant throughout the pandemic.

Finally, we evaluate the effect of COVID-19 on health risks through vegetable

pesticide residue. We combine the estimated city-level effect of COVID-19 on pesticide

residue with the marginal effect of vegetable pesticide intake on health risks derived

from the literature. Our database contains information on the exact residue level of

each pesticide that is assessed as failed in each test. We find that while the mean

effect of the pandemic-caused health risk through vegetable pesticide residue is low

(0.16%), the effect could be quite large in cities with high COVID-19 infection rates.

For example, COVID-19 increased the health risk by 2.5% in Shanghai, 4.6% in Sanya,

and 9.6% in Wuhan during 2020–2022.

By examining the effect of COVID-19 on vegetable pesticide residue, this study

contributes to understanding the impact of social disruptions on food safety. Although

many studies have examined the effect of social disruptions on food security (e.g.,

Laborde et al., 2020; Ristaino et al., 2021; Alabi and Ngwenyama, 2023), the impact

of social disruptions on food safety has been generally ignored (see Béné (2020) and

Munialo and Mellor (2024) for the most recent reviews of the literature). Our study

shows that vegetable production and logistic disruptions during the pandemic led to

a significant increase in vegetable pesticide residue, creating substantial health risks

for all vegetables consumers. We also find that the health risk is much higher in small

and poor cities with weaker vegetable supply chains, suggesting that more attention
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should be paid to food safety issues in disadvantaged small and poor cities during a

social disruption.

Our study also contributes to understanding the determinants of vegetable pesticide

residue. Vegetable pesticide residuals are a global concern as recent intensive agricultural

practices led to widespread pesticide use to control pests and maximize yields (Zilberman

et al., 1991; Friedle et al., 2021; Wilson and Tisdell, 2001). Understanding factors

that affect pesticide residue has important policy implications as pesticide overuse

may create long-term environmental damage, such as groundwater contamination

(Lai, 2017) and pesticide resistance (Gagic et al., 2021), and acute and chronic health

effects (Pascale and Laborde, 2020; Sunding and Zivin, 2000). Existing studies on the

determinants of pesticide residues generally focus on the effect of other factors such as

farming technologies (Tambo et al., 2021), related regulations (Möhring et al., 2020),

and enforcement stringency (Foster and Babcock, 1991). This study is the first to

examine the impact of a social disruption on vegetable pesticide residue and to explore

potential channels of this effect.

Finally, this study contributes to understanding the impact of COVID-19. Many

studies find that COVID-19 severely disrupted daily lives and adversely impacted

physical and mental well-being (Paakkari and Okan, 2020), labor markets (Coibion et

al., 2020), productivity (Bloom et al., 2023), and inequality (Adams-Prassl et al., 2020).

Our study highlights an unexpected channel of the impact of COVID-19 on health

and the environment: vegetable pesticide residue. Based on more than half a million

records of vegetable pesticide residue testing during the pandemic, this study finds

that the pandemic-caused vegetable production and disruptions substantially increased

health risks by increasing vegetable pesticide residue. This finding is consistent with

the observation that the lack of access to fresh vegetables is a major issue in pandemic-

affected regions (Richards and Rickard, 2020; Çakır et al., 2021; Ruan et al., 2021). In

addition, as a high level of pesticide residue corresponds to a high level of pesticide use
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and environmental pollution (Braga et al., 2020; Tang et al., 2021), our finding also

suggests a negative environmental effect of COVID-19.

The paper is organized as follows. Section 2 provides the study background. Section

3 details the data and empirical strategies. Section 4 presents the main empirical results

and Section 5 concludes. Additional results are presented in the Appendix.

2 Background

2.1 Impacts of pesticides

Pesticides, including both chemical and biological agents, are indispensable in modern

agriculture for controlling pests that threaten food security. Pesticide use is instrumental

in increasing agricultural productivity and essential for sustaining the global population

(Schneider et al., 2023; Wang et al., 2022). The benefits of pesticide use need to be

evaluated against potential adverse impacts as the unregulated and excessive application

of pesticides is associated with a plethora of environmental and health risks (Tang

et al., 2021), such as environmental pollution, decreased biodiversity, and potential

for health hazards arising from the presence of pesticide residues in food (Zou et al.,

2023). Moreover, the human consumption of vegetables contaminated with pesticide

residues has been implicated in a range of health concerns (Li et al., 2021), such

as endocrine disruption and increased carcinogenic risks, highlighting the need for a

balanced approach to pesticide use.

2.2 Pesticides regulation in China

The Chinese government has implemented a comprehensive strategy to control and

monitor pesticide residues in the food supply chain. First, China has established a

robust regulatory framework that includes setting stringent maximum residue limits
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for pesticides in food, aligning with international standards.2 Second, China has

implemented risk-based monitoring, focusing on crops that are most likely to be

contaminated and pesticides that pose the highest risk to human health. Third, a

critical component of the monitoring strategy is the systematic sampling and testing of

agricultural products at various stages of the supply chain, from the farm to the market.

Finally, efforts are made to increase public awareness about pesticide residues and food

safety, such as the publication of testing results and the enforcement actions taken

against non-compliance. Despite these efforts, monitoring has detected regular instances

where pesticide residues surpass the national limits, underscoring the imperative for

ongoing enhancement in pesticide regulation and management practices.

2.3 COVID-19 control in China

Individuals diagnosed as positive are promptly isolated for treatment and close contacts

are traced and quarantined to curb the spread of the virus during COVID-19. Local

communities ensure the reporting and supervision of positive test results through various

mechanisms. Electronic Health Code Systems that use mobile apps and other means to

record and track individuals’ health information and test results in real-time, ensuring

proper handling and isolation of positive cases. The duration of isolation typically lasts

for at least 14 days following diagnosis. A positive test result significantly impacts

individuals’ daily lives and work. Positive patients are usually prohibited from going

outside, participating in group activities, or visiting public places to reduce the risk of

transmission.

2Global entities such as the Codex Alimentarius Commission play a pivotal role in establishing
guidelines for maximum residue limits of pesticides in foodstuffs to safeguard consumer health (Drogué
and DeMaria, 2012).
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3 Data and Method

3.1 Data

3.1.1 Vegetable pesticide residue

We construct a comprehensive dataset on vegetable pesticide residue based on the

food safety sampling and testing information disclosed by 247 organizations of the

Administration for Market Regulation in China. As stipulated by the Food Safety Laws,

these organizations are mandated to conduct randomized sampling across all segments

of the food supply chain in all prefecture cities in mainland China and to publicly

disseminate the test outcomes. We construct the dataset in the following steps. First,

we located all official websites hosting food safety test outcomes. Second, we retrieved

all relevant documents from each identified website.3 Third, we employed various

algorithms to extract tabular data from the acquired files, ensuring a comprehensive

collection of testing records.4 Finally, we purged files unrelated to vegetable pesticide

residue testing, such as the records of non-vegetable items and legal documents pertaining

to court cases.

We obtained a dataset containing 656,000 records of vegetable safety sampling and

testing from 287 out of the 293 prefecture cities in mainland China from 31 January 2020

to 31 December 2022.5 Each record contains the name and category of the vegetable

tested, the time and location of the test, and the pass/fail assessment of the test. For

tests assessed as "failed," the records also contain the name of each exceeded pesticide,

the level of each exceeded pesticide, and the standard of the assessment.6

3The Administration for Market Regulation organizations post their test results in a variety of
formats.

4We developed a custom mapping schema to align disparate column names across all formats to a
unified set of food safety test attributes, facilitating the integration of data into a singular, coherent
dataset.

5Data before 2020 are only available for a small number of prefecture cities, and data after 2022
are generally not available when we construct the dataset.

6For records documenting failed tests, we have employed advanced natural language processing
techniques to meticulously extract information regarding detected adulterants from the inspector’s
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Figure 1: Distribution of the monthly number of vegetable samples tested in each
city

Note: We calculate the monthly total number of vegetable samples tested in each city during the sample period and plot
the density of distribution in this figure. The dashed vertical line denotes the average number of vegetable samples
tested.

Among the 656,000 records, 572,000 are related to fresh vegetables, and the remaining

83,000 are for processed vegetables. Our main analysis uses data for fresh vegetables,

and data for processed vegetables are only used for robustness checks. Figure 1 presents

the distribution of the monthly number of fresh vegetables tested in each city. The

monthly average number of vegetable samples tested is 533, with large variations across

cities. Figure 3 presents the percentage of tests recorded as failed in each city (Panel

A) and each month (Panel C).

3.1.2 COVID-19 infection rate

Daily data on COVID-19 infection in each city are collected from the official websites of

cities in China. We construct the daily data on COVID-19 infection from January 2020

notes.

8



to December 2022. China began officially disclosing the COVID-19 infection data at

the end of December 2019 and stopped reporting the data at the end of December 2022.

China gradually lifted COVID-19 epidemic control measures after December 2022. The

primary data used in our analysis is the daily number of COVID-19 confirmed cases.

0

.2

.4

.6

.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

of
 c

iti
es

2020m1 2021m1 2022m1 2023m1
First month of COVID-19 outbreak

Figure 2: Roll out of COVID-19 across Chinese cities

Note: This figure presents the distribution of the first month of the COVID-19 outbreak across cities. The first month
of the COVID-19 outbreak is defined as the first month of local COVID-19 outbreak that had led to the classification of
this city as a medium to high-risk area; this definition excludes controllable imported cases of COVID-19.

The key explanatory variable used in the study, the COVID-19 infection rate, is

calculated as the number of confirmed cases per hundred population in each day of a

city. In event studies, we define the outbreak of COVID-19 as the first month of the

local COVID-19 outbreak that had led to the classification of this city as a medium to

high-risk area, which also excludes controllable imported cases of COVID-19. Figure 3B

reports the cross-city variation in the infection rate. Figure 2 reports the accumulated

distribution of the timing of the COVID-19 outbreak across cities.
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3.1.3 Auxiliary data

Our analysis utilized the following city-year-level data: population size, GDP per capita,

rural income, mechanical power per agricultural land area, and vegetable output, all

sourced from the National Bureau of Statistics. Additionally, we utilized climate data,

including mean temperature, total precipitation, humidity, and wind speed, derived from

the China Meteorological Administration. We also used the search index for pesticide

regulations, obtained from Baidu, China’s leading search engine akin to Google in the

United States. These variables are mainly used as control variables and moderating

variables.

3.2 Method

3.2.1 Effect of COVID-19 on pesticide residue

We estimate the effect of COVID-19 on pesticide residue based on the following

regression model:

𝑦𝑖𝑣𝑐𝑑 = 𝜏𝑣 + 𝜏𝑐 + 𝜏𝑑 + 𝛼𝐶𝑜𝑣𝑐𝑑 + 𝑋𝑐𝑑𝛽 + 𝜖𝑖𝑣𝑐𝑑 , (1)

where 𝑦𝑖𝑣𝑐𝑑 is the vegetable pesticide residue test outcome for test 𝑖 of vegetable 𝑣 in

city 𝑐 on day 𝑑. In each test, the outcome is either pass (𝑦 = 0) or fail (𝑦 = 1), where

fail indicates the pesticide residue exceeds the regulatory limits. The key explanatory

variable, 𝐶𝑜𝑣𝑐𝑑, is the COVID-19 infection rate in city 𝑐 and day 𝑑. The infection

rate is defined as the number of people recorded as COVID-19-positive per hundred

population. COVID-19-positive patients who recovered or deceased by day 𝑑 are not

counted when calculating the infection rate. In robustness checks presented in Appendix

Table A.5, we find comparable results when replacing the COVID-19 infection rate with

the dummy of COVID-19 outbreak, which is defined as the first month (columns 1–3)

or first day (columns 4–6) of local COVID-19 outbreak that had led to the classification

of this city as a medium to high-risk area.
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The model includes vegetable-type fixed effects (𝜏𝑣) and city-fixed effects (𝜏𝑐) to

account for potential confounding factors that are time-invariant for a given vegetable

and city and includes day-fixed effects (𝜏𝑑) to account for common shocks in a given day.

In robustness checks, we include city-by-year, week-by-year, and week-by-city fixed

effects and find comparable results. The model also consists of a vector of time-varying

control variables (𝑋𝑐𝑑) to address potential omitted variable concerns. The control

variables included in the baseline analysis are four exogenous climatic variables that

may affect both pesticide residue and COVID-19 infection: daily mean temperature,

total precipitation, humidity, and wind speed. In robustness checks, we also control for

per capita GDP, rural income, mechanical power per area, and legal regulations search

index.7 Finally, 𝜖𝑖𝑣𝑐𝑑 is an error term that will be clustered at the city level, city-year

level, or month-year level.

The coefficient 𝛼 captures the effect of the COVID-19 infection rate on pesticide

residue based on the assumption that, conditional on the fixed effects and control

variables, the COVID-19 infection rate is not driven by omitted determinants of

vegetable pesticide residue. We support this assumption by showing that the estimates

of 𝛼 are robust to controlling for various factors that could affect either COVID-19

infection or pesticide residue. More importantly, we present evidence showing that

cities with early and later COVID-19 outbreaks have no preexisting different trends in

pesticide residue based on the following event study regression model:

𝑦𝑣𝑐𝑚 = 𝜏𝑣 + 𝜏𝑐 + 𝜏𝑚 +
𝑗∑︁

𝑗=𝑗,𝑗≠−1
𝛾 𝑗𝑑

𝑗
𝑐𝑚 + 𝑋𝑐𝑚𝛽 + 𝜖𝑣𝑐𝑚, (2)

where 𝑦𝑣𝑐𝑚 is the average pesticide testing failure rate for vegetable 𝑣 in city 𝑐 and

7The local income level measured by per capita GDP and rural income has the potential to affect
the financial funds available for epidemic control. The mechanization rate measured by mechanical
power per area may affect pesticide residue when COVID-19 infection reduces the labor available for
agricultural production. The legal regulations search index, which measures the frequency of online
searches for vegetate pesticide residue-related information, is used to control for differences in concerns
about pesticide residue across cities.
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month 𝑚, and 𝑑
𝑗
𝑐𝑚 is a dummy variable that equals 1 for city 𝑐 if month 𝑚 is 𝑗 months

away from the first month of COVID-19 outbreak in the city and equals 0 otherwise.8

For example, 𝑑−3 = 1 if the month is 3 months before the COVID-19 outbreak in the

city, and 𝑑4 = 1 if the month is 4 months after the COVID-19 outbreak in the city. The

event study is set at the monthly level to fully capture the effect over the 36 months of

the sample period and to reduce the effect of daily and weekly fluctuations. Figure 2

shows that there were substantial differences in the timing of the COVID-19 outbreak

across the sample cities.

3.2.2 Effect of COVID-19 on health through pesticide residue

Pesticides could have substantial detrimental effects on health. Health issues linked

to pesticide exposure include cancers and tumors, neurological and cognitive damage,

congenital anomalies, and reproductive problems such as infertility (Verger and Boobis,

2013; EEA, 2023). We infer the detrimental effect of COVID-19 on health through

pesticide residue by combining the estimated impact of COVID-19 on pesticide residue

with the effect of pesticide residue on health.

Specifically, we follow the literature (Verger and Boobis, 2013; FAO, 2020; Khan

et al., 2020) to estimate the effect of COVID-19 on health in city 𝑐 through pesticide

residue according to:

Δ𝐻𝐼𝑐 = 𝐻𝐼𝑐 × 𝐼𝐷𝑅𝑐 (3)

where 𝐼𝐷𝑅𝑐 is the changes in the average pesticide testing failure rate across all

vegetables in city 𝑐 caused by COVID-19, and 𝐻𝐼𝑐 is the cumulative health risk for all

pesticides detected in vegetables in city 𝑐. The cumulative health risk is calculated

8Recall that we define the timing of the COVID-19 outbreak in a city as the first month of the
local COVID-19 outbreak that had led to the classification of this city as a medium to high-risk area.
Our data shows that the first month when the first case of local COVID-19 infection was reported is
generally the first month of the COVID-19 pandemic in a city.
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according to the following:

𝐻𝐼𝑐 =
∑︁

𝑘
(𝐻𝑄𝑘,𝑐 × 𝑃𝑟𝑜𝑏𝑃𝑘,𝑐), (4)

where 𝑃𝑟𝑜𝑏𝑃𝑘,𝑐 is the proportion of samples contaminated by pesticide 𝑘 over all contam-

inated samples in city 𝑐 , and 𝐻𝑄𝑘,𝑐 is the health risk of pesticide 𝑘 in city 𝑐. The health

risk of certain pesticides is determined by comparing the value of the estimated daily

intake of certain pesticides (𝐸𝐷𝐼) with the acceptable daily intake (𝐴𝐷𝐼) according to

𝐻𝑄𝑘,𝑐 =
𝐸𝐷𝐼𝑘,𝑐

𝐴𝐷𝐼𝑘
× 100%, (5)

where 𝐴𝐷𝐼𝑘(𝑚𝑔/𝑘𝑔 · 𝑑𝑎𝑦) is the acceptable daily intake of pesticide 𝑘 obtained from

WHO (2023) and 𝐸𝐷𝐼𝑘,𝑐 (𝑚𝑔/𝑘𝑔 ·𝑑𝑎𝑦) is the daily intake of pesticide 𝑘 in city 𝑐 calculated

according to

𝐸𝐷𝐼𝑘,𝑐 =
(𝑅𝑘,𝑐 × 𝐹𝐶𝑝)

𝐵𝑊
, (6)

where 𝑅𝑘,𝑐 (𝑚𝑔/𝑘𝑔) is the average concentration of pesticide residue 𝑘 in contaminated

vegetable samples in city 𝑐 (calculated based on our pesticide residue dataset), 𝐹𝐶𝑝

(𝑘𝑔/𝑑) is the per capita dietary consumption of vegetables in province 𝑝, which is

calculated based on data from National Bureau of Statistics of China; the city-level

vegetable consumption data is not available. 𝐵𝑊 (𝑘𝑔) is the average body weight of

Chinese adults assumed by the Codex Alimentarius Commission and WHO to estimate

EDI.
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4 Results

4.1 Correlation between COVID-19 and pesticide residue

We observed a positive association between the pesticide test failure rate and the

COVID-19 infection rate. A sample with a pesticide concentration higher than the

corresponding legal limit is defined as a test failure (see Appendix Table A.1). Figure 3A

shows substantial variation in the pesticide testing failure rate across cities, ranging from

0.19% to 18.1%. Figure 3B shows significant variation in the COVID-19 infection rate

across cities, ranging from 0 to 1.1% (i.e., 1.1 infection per 100 population). Comparing

Figures 3A and 3B, we find that cities with a high pesticide test failure rate are usually

those with a high COVID-19 infection rate.

Figure 3C provides further support by showing a positive association between the

pesticide test failure rate and COVID-19 infection rate over time. We classify all sample

cities into five equal-sized groups based on their average COVID-19 infection rate

and then plot the monthly pesticide testing failure rate for the first and last groups,

respectively. We find that the high-infection group of cities has a much higher pesticide

test failure rate than the low-infection group of cities over most of the sample months.

Although the simple correlation suggests a strong positive effect of COVID-19 infection

on local vegetable pesticide residue, this correlation could be driven by other factors.

The next subsection examines the effect of COVID-19 infection on local vegetable

pesticide residue after controlling for potential confounding factors.
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Figure 3: Pesticide testing failure rate and COVID-19 infection rate
Note: Panel A presents the city-level vegetable pesticide testing failure rate, calculated as the city-level average failure
rate over the sample period for all vegetables tested. Panel B presents the COVID-19 infection per 1,000 population,
calculated as the average number of infections per thousand population over the sample period. Panel C presents the
monthly testing failure rates for the high- and low-infection groups of cities. We classify all cities into 5 equal-sized
groups according to their average COVID-19 infection rate and define the first group as the low-infection group and the
last group as the high-infection group.
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4.2 Dynamic effects of COVID-19 outbreak on pesticide residue

Figure 4 presents the dynamic effect of the COVID-19 outbreak on vegetable pesticide

residue, estimated based on the event-study model (2). We define the timing of the

COVID-19 outbreak in a city as the first month of the local COVID-19 outbreak that

had led to the classification of this city as a medium to high-risk area (see Footnote 8 for

more details). We estimate the effects of 9-month lags and 24-month leads; estimates

beyond these lags and leads are not precisely estimated due to small sample sizes.

The event study identifies the dynamic effect of the COVID-19 outbreak on vegetable

pesticide residue by comparing cities with different outbreak dates.
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Figure 4: Event study of the effect of COVID-19 outbreak on vegetable pesticide
testing failure rate

Note: This figure presents the effect of the COVID-19 outbreak on vegetable pesticide testing failure rate, estimated
based on the event-study model (2). We present the estimates with the four baseline control variables (i.e., daily mean
temperature, total precipitation, humidity, and wind speed), estimates excluding these control variables, and estimates
additionally include four other control variables (Per capita GDP, rural income, legal regulations search index, and
mechanical power per area), respectively. The vertical dashed lines denote the 95% confidence intervals.

The identification is based on the parallel trends assumption that the lags of COVID-

19 outbreak should have no significant effect on pesticide residue (i.e., estimates of

16



𝛾 𝑗 is not statistically different from zero for 𝑗 < 0 in the model (2)). Figure 4 shows

that the estimated coefficients of the 9-month lags are close to zero and all statistically

insignificant at the 5% level. This finding supports the parallel trend assumption

that cities with early and later COVID-19 outbreaks are comparable. In other words,

conditional on the fixed effects and control variables included in the model, the estimated

dynamic effects of the COVID-19 outbreak are unlikely to be primarily driven by omitted

confounding factors that could lead to different trends across cities.

The estimates of the 24 lags suggest that the COVID-19 outbreak significantly

increased the pesticide residue and the effect growing over time. We also show in

the figure that this finding is robust to excluding the four climatic control variables

(i.e., daily mean temperature, total precipitation, humidity, and wind speed) from the

model. This finding mitigates the concern that the estimated effect could be driven

by omitted climatic factors that may simultaneously affect the COVID-19 infection

rate and the pesticide residue. We also show that the estimated effects are comparable

when controlling for four additional factors that could affect the COVID-19 infection

rate or the pesticide residue (see Footnote 7 for details). In addition, Figure A.2 in the

Appendix adopts the interaction-weighted estimator proposed by (Sun and Abraham,

2021) to address the potential bias of the event study in the presence of treatment

effects heterogeneous across cohorts. The resulting estimates are comparable, although

with wider confidence intervals.

In the event study, the size of a specific estimated coefficient needs to be interpreted

relative to the omitted reference group of the estimation (Nunn and Qian, 2011). In

addition, the event study identifies the effect of the COVID-19 outbreak but not

necessarily the effect of COVID-19 intensity (i.e., the infection rate). Cities with early

COVID-19 outbreaks may not necessarily have higher COVID-19 infection rates if they

were successful in subsequently controlling the virus. To obtain a more direct effect size

of the COVID-19 pandemic on vegetable pesticide residue, the next section estimates

17



the effect of the COVID-19 infection rate.

4.3 The Impact of COVID-19 infection rate

Table 1 presents the effect of COVID-19 infection rate on vegetable pesticide testing

failure rate, estimated based on the model (1). The baseline estimate in column 1

suggests that a 1 percentage point increase in the COVID-19 infection rate (i.e., 1

additional infection per 100 population) significantly increases the pesticide residue

testing failure rate by 5.5 percentage points. Given that the highest monthly average

national infection rate during our sample period was 0.06 percent, the estimates suggest

that the peak national impact of the COVID-19 pandemic on the vegetable pesticide

testing failure rate was 0.33 percentage points, about 11 percent of the national mean

testing failure rate of 3.01 percentage points. As the COVID-19 infection rate varied

widely across cities, the impact is much larger in some cities. For example, for the top

1 percent city-days with the highest COVID-19 infection, the infection rate was 0.517

percent. Therefore, COVID-19 increased the pesticide testing failure rate in these city

days by as much as 2.84 percentage points, close to the mean pesticide residue testing

failure rate in the sample.
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We provide various robustness checks to verify the estimated effect of COVID-19

infection rate on vegetable pesticide residue. Columns 2 and 3 show that the estimated

effect is robust to omitted variables. Column 2 excludes the four climatic control

variables and finds a comparable estimated effect. This finding mitigates the concern

that the estimate could be driven by omitted climatic factors that may simultaneously

affect the COVID-19 infection rate and the pesticide residue. Column 3 shows that the

estimated effect is comparable when controlling for four additional factors that could

affect the COVID-19 infection rate or the pesticide residue. Columns 4–6 show that

the estimated effect is not significantly affected by clustering the error term at the

month-year level, city level, and city-year level, respectively. This finding mitigates the

concern that the estimated effect could have been biased by autocorrelation or cross-

sectional correlation within cities. Columns 7 and 8 further control for the week-by-year

and week-by-city fixed effects, respectively, and find comparable estimates. Column 9

excludes the 17 cities with a population of more than 10 million to address the concern

that COVID-19 is more likely to break out in these large cities.9 The estimate becomes

slightly larger compared to the baseline estimate.

Another potential concern is that the higher testing failure rate following the COVID-

19 pandemic may reflect stricter testing standards rather than an actual effect on the

pesticide residue. This argument is not well supported as we do not find any changes in

the standard of pesticide tests before and after the COVID-19 pandemic. The standard

is stipulated by the Central government and cannot be changed in the absence of new

legislation. Note that as we have observed that the COVID-19 outbreak increased

the pesticide testing failure rate, governments can increase the number of vegetable

samples tested in response to the higher failing rate. However, our finding should not

be biased by a larger number of samples tested because we measure the pesticide testing

failure rate as the ratio between the number of failed tests and the total number of

9These cities are Chongqing, Shanghai, Beijing, Chengdu, Guangzhou, Shenzhen, Wuhan, Tianjin,
Xi’an, Suzhou, Zhengzhou, Hangzhou, Shijiazhuang, Linyi, Dongguan, Changsha, and Qingdao.
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tests. There is no reason to believe that a larger number of tests could increase the

failure rate. In addition, we find no significant changes in the trend of the number of

vegetable samples tested following the COVID-19 pandemic (Appendix Figure A.1).

4.4 Heterogeneity in the impact of COVID-19

Panels A--C of Figure 5 examine the heterogeneity in the impact of COVID-19 infection

rate on vegetable pesticide testing failure rate with respect to the population size, GDP

per capita, and annual mean temperature (moderating variables) of the sample cities,

respectively. The heterogeneity effect is estimated based on the following regression

model:

𝑦𝑖𝑣𝑐𝑑 = 𝜏𝑣 + 𝜏𝑐 + 𝜏𝑑 + 𝛼1𝐶𝑜𝑣𝑐𝑑 + 𝛼2𝐶𝑜𝑣𝑐𝑑 ∗ 𝐷𝑢𝑚𝑚𝑦𝑐 + 𝑋𝑐𝑑𝛽 + 𝜖𝑖𝑣𝑐𝑑 , (7)

where 𝐷𝑢𝑚𝑚𝑦𝑐 is a dummy variable that indicates whether the moderating variable in

the city is above the median of all sample cities in 2018, and all other variables are the

sample as defined in the baseline model (1). The dummy variable equals 1 for cities

with the moderating variable above the median and 0 otherwise. We use the 2018 value

of the moderating variables to avoid the potential endogenous effect of COVID-19. The

effect for cities with a moderating variable below and above the median is captured by

𝛼1 and 𝛼1 + 𝛼2 and denoted as ’Low’ and ’High,’ respectively, in Figure 5.
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Figure 5: Heterogeneity and nonlinear effects of COVID-19 on vegetable pesticide
testing failure rate

Note: Panels A to C present the differences in the effects of COVID-19 between sample cities with population size, GDP
per capita, and annual mean temperature above and below the median, respectively. The estimates are based on the
model (7). Panel D presents the linear, quadratic, and cubic effects of COVID-19 infection rate on the testing failure
rate across the distribution of the COVID-19 infection rate, estimated by additionally including the quadratic and cubic
terms in model (1). The vertical line in each figure presents the 95% confidence interval.
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Panel A shows that the effect is much lower in cities with a population size above

the median than in cities with a population size below the median (0.03 versus 0.12),

which is plausible because larger cities have tighter pesticide residue regulation and

a more efficient vegetable supply chain even under the pandemic. Similarly, Panel B

shows that the effect is much lower in cities with a GDP per capita above the median;

cities with a lower GDP per capita are generally those with a smaller population size.

These findings suggest that more attention should be paid to pesticide residues in

disadvantaged small and poor cities during a pandemic. Panel C finds no significant

difference in the effect between cities with high and low annual mean temperatures.

This finding further alleviates the concern that the estimated effect of COVID-19 can

be driven by the confounding effect of temperature.

Panel D presents the linear, quadratic, and cubic effects of COVID-19 infection

rate on the testing failure rate across the distribution of the COVID-19 infection rate,

estimated by additionally including the quadratic and cubic terms in model (1). Both

the quadratic and cubic estimates suggest that the marginal effect of COVID-19 on

pesticide residue increased with the COVID-19 infection rate. This finding is consistent

with the fact that the strictness of epidemic control, which could disrupt vegetable

production and transportation, increased sharply with the COVID-19 infection rate.

This finding suggests that disproportionately, more efforts should be directed towards

addressing vegetable pesticide residue issues in cities with high levels of pandemic.
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Figure 6: Effect of COVID-19 outbreak on pesticide testing failure rate
Note: Panel A presents the percentage of testing failure caused by each of the top 10 most frequently overused pesticides.
Panel B presents the estimated effect of COVID-19 on the testing failure rate caused by each of these pesticides. The
corresponding point estimates are reported in Table A.4.

We also find significant differences in the effects of COVID-19 infection on the

residue of different pesticides. We estimate the effect on each of the top 10 most

frequently detected pesticides based on the model (1). These 10 pesticides account for

80.3% of the total number of failed tests of pesticide residue. Figure 6A presents the

share of each pesticide in the failed tests, and Table A.2 describes the function of each

of these pesticides in vegetable production. Figure 6B shows that the marginal effects

of COVID-19 on testing failure are widely different across pesticides.10 The figure also

shows that the estimated effect on pesticides other than these top 10 pesticides (the

group of "other") is much larger, suggesting that the COVID-19 pandemic had a larger

effect on the overuse of less frequently detected pesticides.

10Among the 10 most frequently overused pesticides, only the two pesticides (ranked in the third
and fourth) that are mainly used in early stages of vegetable production are unaffected. As presented
in Table A.2, the third pesticide, sodium 4-chlorophenoxyacetate, is usually used to stimulate root
formation of vegetables, and the fourth pesticide, clothianidin, is primarily applied as a seed treatment
and soil treatments in the initial stages of vegetable production.
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4.5 Mechanism analyses

Intuitively, the pandemic disrupts vegetable production and transportation, leading

to excessive pesticide usage. Specifically, the COVID-19 pandemic might have led

to local control measures that interrupt the supply of agricultural inputs. If farmers

cannot obtain pesticides timely, the subsequent outbreak of vegetable diseases and pests

may force farmers to use excessive amounts of pesticides and thus increase pesticide

residue. In addition, even if the pandemic does not affect the supply of pesticides, it

may still impact the timeliness of farmers’ pesticide usage. Anecdotal evidence suggests

that the COVID-19 pandemic limits working time flexibility and labor hiring in rural

areas of China. Finally, the pandemic might have disrupted the supply chain and

delayed the sale of vegetables, which could lead farmers to use additional pesticides to

preserve vegetables. We find three pieces of evidence supporting that the COVID-19

pandemic increases vegetable pesticide residue by impacting vegetable production and

transportation.

First, we show that COVID-19 had a larger effect on the pesticide residue in

vegetable exporting (production) cities than in vegetable importing (consumption)

cities. If the effect on pesticide residue is caused by the impact on vegetable production

and transportation, we should find a larger effect if a COVID-19 pandemic occurred in

a vegetable exporting city. We define a city as a vegetable exporting (importing) city

if its per capita vegetable output in 2018 is above (below) the median of all cities.11

As presented in columns 1 and 2 of Table 2, the estimates confirm that the impact of

COVID-19 on the pesticide testing failure rate is larger in vegetable exporting cities

than in vegetable importing cities.

11the real data on city-level vegetable importing and exporting are not available
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Second, we find that the COVID-19 pandemic reduced vegetable output. Columns

3–5 of Table 2 present the estimated effect of COVID-19 infection rate on log vegetable

output for all sample cities, vegetable exporting cities, and vegetable importing cities,

respectively. The estimations are based on modified versions of the model (1) that

use city-year-level log vegetable output as the dependent variable. The vegetable

exporting and importing cities follow the same definition as before. We find that a

1% increase in the COVID-19 infection rate would significantly reduce the vegetable

output in an average city by 4.5 %. The estimated marginal effect is much larger in

vegetable-exporting cities (10.0%) than in vegetable-importing cities (5.6%). The larger

impact on vegetable-exporting cities confirms that vegetable transportation has also

been affected by the pandemic.

Third, we show that COVID-19 had no significant effect on the pesticide testing

failure rate of processed vegetables. If the impact on vegetable pesticide residue is

through affecting vegetable production and transportation but not other channels, such

as the testing standard and food processing, we should expect no significant effect on

the testing failure rate of processed vegetables. We estimate the effect of COVID-19 on

the testing failure rate of processed vegetables based on the model (1). The data for the

testing failure rate of processed vegetables come from the same sources. As presented

in column 6 of Table 2, we find no significant effect of the COVID-19 infection rate on

the testing failure rate of processed vegetables. Columns 7–9 show that this finding is

robust to control variables and fixed effects.

4.6 Impact on health risk through pesticide residue

We further evaluate the effect of COVID-19 on health risks through the channel of

vegetable pesticide residue. This is a challenging task as the connection between

pesticide residue and health is complicated. We can only roughly estimate the extent to

which COVID-19 could affect the overall health risk through the channel of vegetable
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pesticide residue. As detailed in the Method section, we combine the estimated city-

level average effect of COVID-19 on pesticide residue with the marginal effect of

vegetable pesticide intake on health risk (derived from the literature) to evaluate the

effect of COVID-19 on health risk through the channel of vegetable pesticide residue.

Importantly, our database contains information on the exact residue level of each

pesticide that is assessed as failed in each test. This information enables us to infer

the effect of the level of pesticide residue. We calculate the effect on health risk by

comparing the actual intake of each pesticide with the acceptable daily intake to enable

comparison.
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(0.006,0.017]
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[0.000,0.003]
No data

A. Effect of Cov on pesticide, %
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(2.00,3.16]
[0.00,2.00]
No data

B. Effect of pesticide on health risk, %
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No data

C. Effect of Cov on health risk through pesticide residue, %

Figure 7: Predicted impact of vegetable pesticide residue caused by COVID-19 on
health risk

Note: Panel A presents the estimated effect of COVID-19 on the pesticide testing failure rate. Panel B presents the
marginal effect of vegetable pesticide residue on health risk, calculated based on the method described in subsection
3.2.2. Panel C presents the impact of COVID-19 on health risk, calculated by combining the estimates presented in
Panels A and B.
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Our results show a substantial effect of COVID-19 on health risks in cities with

a high COVID-19 infection rate. Figure 7A presents the average effect of COVID-19

on the pesticide residue testing failure rate in each city, and Figure 7B presents the

estimated marginal effect of pesticide residue on health risk. The cross-city variation

in the marginal effect of pesticide residue on health risk comes from the differences

in per capita vegetable consumption and types of pesticides used. Figure 7C presents

the average effect of COVID-19 infection rate on health risk through the channel of

vegetable pesticide residue. Although the mean effect on health risk is low (0.16%), the

effect could be quite large in cities with high COVID-19 infection rates. For example,

COVID-19 increased the health risk by 2.5% in Shanghai, 4.6% in Sanya, and 9.6% in

Wuhan. Note that the health risk is calculated based on the average pesticide intake

caused by COVID-19 during 2020–2022 and should be interpreted accordingly.

5 Concluding Remarks

While it is well known that social disruptions can affect food security by disrupting

agricultural production and transportation, the potential impact of social disruptions

on food safety has been generally overlooked. Food production and logistic disruptions

caused by social disruptions may prevent farmers from adopting optimal food safety

standards, thus leading to food safety issues. This study utilizes the data from COVID-

19 to infer the potential impact of social disruptions on food safety.

Based on data from over 656,000 records of vegetable pesticide residue tests con-

ducted in China during COVID-19, we find that COVID-19 has increased the national

average pesticide residue by 11 percent during the peak months of the pandemic. In

cities with the highest infection rates, the pandemic nearly doubled the pesticide testing

failure rate. We provide several pieces of evidence suggesting that this effect stems

from pandemic-induced disruptions in vegetable production and transportation, which
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result in untimely pest control and subsequent overuse of pesticides. We also estimate

that the pandemic-caused increases in vegetable pesticide residue heightened the health

risks by up to 10 percent in cities with the highest COVID-19 infection rates. These

findings confirm the significant impact of social disruptions on food safety.
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A Appendix for Online Publication

A.1 Summary statistics appendix

Table A.1: Standard of vegetable pesticide testing failure for the top 20 pesticides

Pesticide name Number of failed tests in the
sample

Standard of test failure

Isofenphos-methyl 184 0.01mg/kg
Carbendazim 227 2mg/kg
Emamectin benzoate 303 0.015mg/kg
Isocarbophos 321 0.05mg/kg
Avermectins 338 0.05mg/kg
Imidacloprid 386 0.5mg/kg
Thiamethoxam 519 0.3mg/kg
Cyhalothrin 523 0.5mg/kg
Fipronil 585 0.02mg/kg
Fenthion 598 0.05mg/kg
Acetamiprid 700 0.2mg/kg
Phorate 783 0.01mg/kg
Cyromazine 840 4mg/kg
6-Benzylaminopurine 1112 0mg/kg
Carbofuran 1305 0.02mg/kg
Omethoate 1537 0.02mg/kg
Clothianidin 2768 0.04mg/kg
4-Chlorophenoxyacetic 3422 0mg/kg
Chlorpyrifos 3599 0.02mg/kg
Procymidone 4606 0.2mg/kg

Notes: This table presents the standard of pesticide testing failure for each of the 20 most frequently
overused pesticides. There are more than a hundred pesticides used in vegetable production, and the
top 20 pesticides account for 91.2% of the total cases of testing failure.
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A.2 Result appendix
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Figure A.1: Effect of COVID-19 outbreak on the number of vegetable samples tested
in each month

Note: This figure presents the estimates of a modified version of Model 2 with the dependent variable of the number of
vegetable samples tested in each month.
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Figure A.2: Event study of the effect of COVID-19 outbreak on vegetable pesticide
testing failure rate, Sun and Abraham (2021) estimate

Note: This figure presents the effect of the COVID-19 outbreak on vegetable pesticide testing failure rate, estimated
based on the event-study model (2), using the interaction-weighted estimator proposed by (Sun and Abraham, 2021).
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