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Abstract

Existing studies generally use “aggregate” temperature measures, such as mean
temperature, degree-days, temperature bins, and piece-wise linear function within
the growing season, to estimate the impact of global warming on crop yield. These
temperature measures blend temperatures from different phenological stages
of crop growth and thus implicitly assume that temperatures are additively
substitutable within the growing season. However, this assumption contrasts
with agronomic knowledge that crops are more sensitive to temperatures in
certain phenological stages. Utilizing a unique site-level data on the detailed
phenological stages of major crops in China, combined with crop production
data and daily weather data, we develop an econometric model with stage-
specific temperature measures. We then compare our estimates with models using
traditional aggregate temperature measures, and find that adopting an aggregate
temperature measure could overestimate the damage of global warming on crop
yield up to two times that estimated using stage-specific temperature measures.
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1 Introduction

Agriculture is expected to be the most vulnerable sector under global warming (Adams

1989, Nelson et al. 2009, Dell et al. 2014). As such, many studies on the impact of

global warming have focused on agriculture (e.g., Mendelsohn et al. 1994, Schlenker

et al. 2005, Deschênes & Greenstone 2007, Schlenker & Roberts 2009, Burke & Emerick

2016, Cui 2020, Chen & Gong 2021, Wang et al. 2024). These studies generally

utilize an “aggregate” temperature measures, such as mean temperature, degree-

days, temperature bins, and piece-wise linear function within the growing season,

which could blend temperatures from different stages of crop growth.1 For example,

Appendix Table A.1 shows 40 studies on the impact of global warming on agriculture

published in mainstream journals that used aggregate temperature measures. An

implicit assumption of these temperature measures is that temperatures are additively

substitutable within the growing season of a crop. However, this assumption sharply

contrasts with the agronomic knowledge that crops are more sensitive to temperature

in certain phenological stages of growth (Porter & Gawith 1999, Jones et al. 2002,

Fageria et al. 2006, Sánchez et al. 2014, Pessarakli 2021).

Adopting an aggregate temperature could lead to a biased estimate of the effect

of temperature on crop yield given that the effect of temperature differs across

stages and temperature fluctuates widely across stages in each year (see Figure A.1

for the fluctuations of daily temperature across growth stages for each year from

2000 to 2015 for a randomly selected county). An aggregate temperature measure,

whether constructed linearly or nonlinearly, necessarily blends positive and negative

temperature shocks from different stages. Therefore, the aggregate temperature shock

1For simplicity, we refer to temperature measures that blend temperatures from different stages
of crop growth, whether through aggregation or averaging, as aggregate temperature measures.
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could be smaller than the stage-specific temperature shock as the positive and negative

shocks from different stages offset each other during aggregation. A regression model

that utilizes the aggregate temperature measure thus tends to overestimate the impact

by attributing the effect of large stage-specific temperature shocks to the effect of small

aggregate temperature shocks.

This study proposes the use of stage-specific temperature measures. The key stages

of major grain crops (e.g., rice, wheat, and corn) are sowing, tillering, elongation,

flowering, milk ripening, and harvesting. Sowing is the first stage, involving planting

of seeds in soil. Tillering is the formation of additional shoots from the base of the

main stem. Elongation refers to rapid stem and leaf growth. Flowering indicates the

formation of flowers. Milk ripening occurs when the kernels are in the “milk” stage.

Harvesting is the final stage, involving the cutting or gathering of mature crops from

the field. The duration of each key stage lasts for 5 to 10 days depending on the

crop varieties (Fageria et al. 2006, Pessarakli 2021). Controlled environment studies

have shown that the effects of temperature on crop yield considerably vary across

phenological stages.2

Our empirical analysis combines a unique site-level data on the phenological stages

of major crops in China with county-level crop production data and gridded daily

weather data from 2001 to 2015 to investigate the importance of adopting stage-specific

temperature measures. Specifically, based on crop progress data for the two most

important grain crops in China (i.e., rice and wheat), we divide the growing season of

each crop into 11 stages: six key stages and five non-key stages. As each key stage lasts

for 5–10 days (Fageria et al. 2006, Pessarakli 2021), the baseline specification defines

a key stage as 10 days around the median starting day of the stage; days between two

key stages are defined as a non-key stage. The findings are robust to defining a key

stage as 5 days around the median starting day of the stage. Figure 1 illustrates our

2See literature reviews from Porter & Gawith (1999), Sánchez et al. 2014 and Teng et al. 2022.

2



definition of the six key stages (sowing, tillering, elongation, flowering, milk ripening,

and harvesting) and five non-key stages of rice growth in a randomly selected rice

production county. For each of these stages we then construct temperature measures

that are comparable to the frequently used aggregate temperature measures.

We estimate the effect of temperature in each stage with a panel model that

regresses crop yield on temperature measures for all the 11 stages, controlling for

the year- and county-fixed effects. The estimates confirm substantial differences in

the effects of temperature across stages of crop growth. Specifically, we find that the

effect of high temperature on rice yield is negative in seven stages and positive in the

remaining four stages, leading to a significantly negative overall effect of temperature

across the 11 stages. In addition, the marginal effects vary widely across stages and

the positive and negative effects could alternate in successive stages. These findings

are robust when different crops are examined; different stage-specific temperature

measures (i.e., stage mean, non-linear functions of stage mean, stage degree-days,

stage standardized deviations of temperature, and stage-specific temperature shocks)

are adopted; different key stage are defined; the county-fixed effects are excluded;

and other climatic factors are controlled (i.e., precipitation, wind speed, radiation,

vegetation evaporation, and atmospheric pressure).

We then examine whether most of the effect of stage-specific temperatures can

be captured with the usually used aggregate temperature measures. We estimate a

model that regresses crop yield on a full set of stage-specific temperature measures and

an aggregate temperature measure. The coefficients of the stage-specific temperature

measures from this regression reflect the effect of stage-specific temperature that cannot

be accounted for by the aggregate temperature measure. We find that controlling for

the aggregate temperature measures (including growing season mean temperature and

its square, a full set of temperature bins, degree-days and harmful degree-days) does

not considerably alter the estimated effect of stage-specific temperature measures. This
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finding suggests that the stage-specific temperature measures have substantial variation

independent of the aggregate temperature measures, which could be due to that a

substantial portion of the positive and negative stage-specific temperature shocks is

neutralized in the construction of an aggregate temperature measure.

Finally, we quantify the potential bias of adopting an aggregate temperature mea-

sure by comparing the impacts of global warming predicted with aggregate temperature

measure and that based on the stage-specific temperature measures. We find that the

impacts predicted with the aggregate temperature measures are considerably larger

than those predicted with corresponding stage-specific temperature measures. This

finding is robust when different aggregate and stage-specific temperature measures

are adopted based on different global warming scenarios. The estimates suggest that

adopting an aggregate temperature measure could overestimate the damage of global

warming twofold. County-level estimates reveal that compared with stage-specific

temperature measures, an aggregate temperature measure would overestimate the

damage of warming in hot areas and underestimate the benefit of warming in cold

areas.

This study contributes to the literature evaluating the impact of global warming

on crop yield. Many controlled environment studies find that temperature effects vary

over the life cycle of the plant (e.g., Seshu & Cady 1984, Porter & Gawith 1999,

Wassmann et al. 2009, Sánchez et al. 2014, Teng et al. 2022), but existing econometric-

based studies generally adopt aggregate temperature measures such as growing season

mean, degree-days, temperature bins, and piece-wise linear functions when examining

the impact of global warming on crop yield (e.g., Schlenker et al. 2007, Deschênes &

Greenstone 2007, Moore & Lobell 2014, Ray et al. 2015, Burke & Emerick 2016, Chen

& Gong 2021, Huang et al. 2024). This study illustrates that adopting an aggregate

temperature measure tends to overestimate the damage of global warming on crop

yield.
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We are not the first to raise concerns about the aggregate temperature measures.

For example, Schlenker & Roberts (2009) recognize that the time separability of

temperature is a strong assumption for the growing season temperature measures.

They address this concern by adopting different definitions of the growing season and

allow the coefficients to vary across months.3 Similarly, Welch et al. (2010) define three

growth phases (vegetative, reproductive, and ripening) of rice, and allow the estimated

coefficients of temperature to differ across three growth phases.4 Jagnani et al. (2021)

investigate how farmers adjust agricultural inputs in different stages of crop growth in

response to temperature variation. However, none of these studies utilize detailed field

data on the phenological stages of crops. To the best of our knowledge, we are the

first to adopt a stage-specific temperature measure utilizing detailed field data on the

phenological stages of crops to examine the impact of global warming on crop yield and

to explicitly evaluate the potential bias of utilizing an aggregate temperature measure.

The rest of this study is organized as follows: Section 2 reviews the frequently

used aggregate temperature measures and illustrates why adopting an aggregate

temperature measure would overestimate the damage of global warming, Section 3

introduces the data and method of this study, Section 4 presents the empirical findings,

and Section 5 concludes.

2 Conceptual Framework

Considering the production of a crop in year 𝑡 according to a temperature-dependent

Cobb-Douglas production function. For simplicity, we assume that temperature only

affects the total factor productivity (TFP) of crop production, similar to Burke et al.

3Specifically, they provide three pieces of evidence to support the time separability assumption.
First, they split the six-month growing season into three two-month intervals. Second, they jointly
estimate the effect of temperature for each month of the growing season. Third, they test for whether
the temperature response function is different in July than it is in other months.

4Felkner et al. (2009) also estimate the effect of temperature from three different stages on rice
yield, but defining the three stages as planting, growing, and harvesting instead.
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(2015); capital 𝑘𝑡, labor 𝑙𝑡, and output elasticity of capital 𝛼 do not respond. Daily

mean temperature in day 𝑑 of the growing season is 𝑇𝑑𝑡, the TFP is 𝑓 (𝑇𝑑𝑡), and the

yield of the crop is 𝑦𝑡 = 𝑓 (𝑇𝑑𝑡)𝑘𝛼𝑡 𝑙1−𝛼𝑡 .

2.1 Aggregate temperature measures

Existing econometric-based studies generally adopt growing-season aggregate temper-

ature measures (e.g., growing season mean temperature, degree-days, piece-wise linear

function, and temperature bins), which can be summarized by

𝑓 (𝑇𝑑𝑡) = 𝑓̂ (𝑔 (𝑇𝑑𝑡)) ,

where 𝑔 (·) is a certain form of aggregation of temperature across the growing season,

and 𝑓̂ (·) can be a linear function or a high-order polynomial of the temperature measure.

Early studies (e.g., Mendelsohn et al. 1994) measure temperature by the growing

season (or monthly, seasonal, and annually) mean

𝑔 (𝑇𝑑𝑡) =
∑𝐷

𝑑=1 𝑇𝑑𝑡

𝐷
, (1)

where 𝐷 is the number of days in the growing season (or month, season, and year).

Later studies incorporate agronomic knowledge (Ritchie & Nesmith 1991) to measure

temperature nonlinearly by growing season degree-days (e.g., Schlenker et al. 2006),

which is typically defined as the sum of truncated degrees between two bounds. For

example, when using bounds of 8◦C and 32◦C, the degree-days in each day can be

calculated as:

𝑑(𝑇𝑑𝑡) =



0 if 𝑇𝑑𝑡 ≤ 8

𝑇𝑑𝑡 − 8 if 8 < 𝑇𝑑𝑡 < 32

24 if 𝑇𝑑𝑡 ≥ 32

.
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The growing season degree-days is then calculated as the sum of degree-days across all

days in the growing season

𝑔 (𝑇𝑑𝑡) =
𝐷∑︁
𝑑=1

𝑑(𝑇𝑑𝑡). (2)

Degree-days above 34◦C are sometimes included as a separate variable and speculated

to be harmful.5

A more flexible temperature measure adopted in the literature is temperature bins,

which use counts of days in various temperature bins to approximate a temperature

distribution. For example, when three-degree temperature bins are adopted (e.g.,

Schlenker & Roberts 2009), and the measure for the bin of 6–9◦C is the number of

days in the growing season with temperature exposure falls into this interval. The

resulting temperature measure is a set of variables capturing the effect of the number

of days within each temperature interval.

𝑔 (𝑇𝑑𝑡) =
33∑︁

𝑗=0,3,6,9,···
𝛾 𝑗𝑥 𝑗, (3)

where 𝑥 𝑗 is the measure of bin 𝑗. Daily mean temperatures above 33◦C occur less

frequently and are usually lumped into the category of 𝑗 = 33. Similarly, temperatures

below freezing are lumped into the category of 𝑗 = 0.

Similar to the degree-days, a parsimonious piece-wise linear function (or linear

spline function) of temperature is adopted by some studies (e.g., Burke & Emerick

2016). This function assumes that yield increases linearly with temperature up to an

endogenous threshold and then decreases linearly above the threshold.6 As the piece-

5The degree-days and temperature bins can be more accurately calculated when using hourly
temperatures or daily maximum and minimum temperatures based on a sinusoidal interpolation.

6The piece-wise linear function can be written as

𝑔 (𝑇𝑑𝑡) =
{
𝑐1 + 𝑏1𝑇𝑡 if 𝑇𝑡 < 𝑇∗

𝑐2 + 𝑏2𝑇𝑡 if 𝑇𝑡 ≥ 𝑇∗ ,

where 𝑇∗ is the temperature threshold, 𝑇𝑡 could be accumulated degree-days within the range of the
segment of temperatures defined by the threshold, and 𝑐1, 𝑏1, 𝑐2, and 𝑏2 are constants. The threshold

7



wise measure of temperature is a special form of the degree-days and temperature bins,

this study does not specifically examine the piece-wise temperature measure.

Another group of studies measure temperature by the standardized deviations from

the long-run local mean (e.g., Miller et al. 2021).

𝑑(𝑇𝑑𝑡) =
𝑇𝑑𝑡 − 𝑇𝑑

𝑆𝐷𝑑

, (4)

where 𝑇𝑑 is the long-run local mean temperature of day 𝑑, and 𝑆𝐷𝑑 is the corresponding

standard deviation. The daily standardized deviation is then used in constructing

growing season aggregate temperature shocks, such as the number of days with a mean

temperature 1-SD above the local mean:

𝑔 (𝑇𝑑𝑡) =
∑︁
𝑑

𝐼 (𝑑(𝑇𝑑𝑡) ≥ 1), (5)

where 𝐼 (·) is a dummy variable that equals one if 𝑑(𝑇𝑑𝑡) ≥ 1.

2.2 Bias of using an aggregate temperature measure

By blending temperatures from different stages of crop growth, the aggregate

temperature measures implicitly assume that temperatures are additively substitutable

within the growing season. Specifically, the assumption is that a number of hot days

in different stages of growth has the same effect on crop yield. This assumption is

inconsistent with the fact that crops are more sensitive to temperatures in certain

stages of growth. This concern is aggravated when temperature fluctuates substantially

across days within a growing season. For example, we randomly select a rice-production

county (Qidong County in Hunan province and plot daily standardized deviation

of temperature during the growing season in Appendix Figure A.1. Considerable

is obtained by looping over all possible thresholds, estimating the least-squares segment slopes for
each one, and selecting the threshold and segment slopes with the best fit.

8



fluctuations occur across days within a growing season. In Figure 2, we plot daily

standardized deviation of temperature in 2004 and 2008 for the same county. Although

these two years have nearly identical growing season mean temperatures (24.65 ◦C

versus 24.68◦C) and degree-days (2215 versus 2218), they have very different stage-

specific temperatures.7

The aggregate temperature measures allow the positive and negative shocks from

different stages of crop growth to offset each other and substantially reduce the

temperature variation used for estimating the effect. Figure 3 shows that a growing

season temperature measure could have much smaller temperature variation than a

stage-specific temperature measure. Based on data from 1217 rice-producing counties,

panel A presents the distribution of the deviation of stage mean temperature from the

long-run average for stage 4 (i.e., flowering) in representative years; panel B presents

the distribution of the deviation of stage mean temperature from the long-run average

for each key stage in 2010; panel C presents the distribution of the deviation of the

growing season mean temperature from the long-run average in representative years;

and panel D presents the distribution of the total number of days in the growing

season with positive and negative temperature shocks (defined as 1-SD above or below

the long-run average) when calculated separately (dashed lines) or combined (solid

line). We find that the stage-specific temperature variations are quite large over years

(panel A) and across stages (panel B). However, the variations in growing season mean

temperature are much smaller (panel C) because most of the positive and negative

temperature shocks cancel each other out. Panel D further illustrates this by presenting

the distribution of the total number of days with positive (dashed red line) and negative

(dashed green line) temperature shocks during the growing season and the distribution

of the sum of these two shocks (solid line).

Table 1 provides an intuitive illustration of the bias of using an aggregate tempera-

7The distribution of temperature bins for these two years are also similar, as presented in Appendix
Figure A.3.
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ture measure, using growing season mean temperature as an example. Assuming that

the growing season of a crop can be classified into two stages: a key stage and a non-

key stage. In each stage, the temperature shock (i.e., deviation from the local long-run

average) could be positive (𝑏 > 0), none (0), or negative (𝑎 < 0).8 For simplicity,

we assume that a temperature shock in the non-key stage has no effect on crop yield

and a positive (negative) temperature shock in the key stage reduces (increases) crop

yield. The qualitative conclusion is the same if we adopt the more realistic assumption

that temperature shocks in the non-key stage have a smaller effect (Hatfield & Prueger

2015).

Columns 1 and 2 present the nine combinations of potential temperature outcomes.

Column 3 presents the temperature shocks used in identifying the effect when an

aggregate temperature measure is adopted. The growing season mean temperature is

used as an example. As a qualitative examination is performed, all conclusions based

on growing season mean temperature naturally apply to other aggregate temperature

measures discussed in subsection 2.1; in the following quantitative examinations, we

examine the effect of each frequently used aggregate temperature measure. Column

4 presents the temperature shocks that should be used for estimating the effect

because only the temperature from the key stage affects crop yield. Intuitively, the

estimated effect based on the aggregate temperature measure should be biased when

the temperature shocks in column 3 are different from those in column 4.

Column 5 shows that the estimated effects are unbiased only when the two stages

experience the same temperature shock (rows 3, 5, and 7). Column 6 shows that the

effects are overestimated when the absolute value in column 3 is smaller than that in

column 4 (rows 1, 2, 8, and 9) and underestimated when the opposite occurs (rows

4 and 6). This is because when mistakenly attributing the effect of a large (small)

8Examining the effect of temperature shocks is relevant because studies that attempt to address
endogeneity issues by including location-fixed effects in the regression model depend mainly on
temperature shocks for identification (Deschênes & Greenstone 2007).
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temperature shock to that of a small (larger) temperature shock, the marginal effect of

temperature will be overestimated (underestimated).9 As the chance of no temperature

shock (rows 4 and 6) is very small (Figure A.1), Table 1 suggests that the effect of

warming is most likely to be overestimated when an aggregate temperature measure

is adopted. The intuition behind this is that aggregate temperature measures allow

positive and negative shocks from different stages to offset each other and, incorrectly

attribute the effect of large stage-specific temperature shocks to that of small aggregate

temperature shocks. Notablt, this concern applies even to the most flexible aggregate

temperature measure—temperature bins. For example, if a positive shock occurs in

a key stage that increases the number of days belonging to a temperature bin and a

negative temperature shock occurs in a non-key stage that reduces the number of days

belonging to the same temperature bin, then the temperature bin calculated according

to temperatures from these two stages will be neutralized.

2.3 Stage-specific temperature measures

We propose the following stage-specific temperature measure:

𝑓 (𝑇𝑑𝑡) =
𝑆∑︁
𝑠=1

𝛼𝑠𝑓̃
(
𝑔
(
𝑇 𝑠
𝑑𝑡

) )
, (6)

where the growing season of the crop is divided into 𝑆 stages and all other variables are

the same as defined before. As presented in Figure 1, we follow the agronomic tradition

(Jones et al. 2002) to divide the growing season into six key stages (blue circles) and five

non-key stages (small red circles). As each key stage lasts for 5–10 days (Fageria et al.

2006, Pessarakli 2021), our main analysis defines a key stage as 10 days around the

median starting day of the stage; days between two key stages are defined as a non-key

9An implicit assumption here is that for rows 1 and 9, the directions of the shock are the same
in columns 3 and 4. This assumption is supported by the fact that in a warmer (colder) year, most
stages of growth are likely to be warmer (colder) than usual.
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stage. The stage-specific temperature coefficient 𝛼𝑠 captures the effect of temperature

in stage 𝑠. The stage-specific temperature measure 𝑔
(
𝑇 𝑠
𝑑𝑡

)
can be any of the temperature

measures presented in subsection 2.1 but constructed according to only temperatures

within the stage. The function 𝑓̃ (·) can be the first- or high-order polynomials of

the stage-specific temperature measure. Therefore, the only difference between the

stage-specific temperature measure and the aggregate temperature measure is that the

stage-specific temperature does not blend temperatures from different stages.

3 Data and Empirical Strategy

3.1 Data

3.1.1 Crop yield

This study utilizes county-level crop yield data derived from the County-Level

Agricultural Database managed by the Ministry of Agriculture and Rural Affairs of

China.10 The database contains an unbalanced panel of county-level input and output

for each of the major crops in China starting since 1981. We have access to the data

from 2001 to 2015 for rice and wheat, which are the two most important food crops in

China. As different varieties of the same crop have very different growing seasons, we

focus on counties producing the most widely cultivated variety of each crop: semilate

rice and winter wheat.11 Whenever there is no confusion, we simply refer to semilate

rice as rice and winter wheat as wheat. We also exclude counties where the sown

area of these crops is less than 1,000 hectares. As presented in Appendix Figure A.2,

the final sample contains 1,217 counties producing rice and 1,080 counties producing

wheat; there are 508 counties producing both of these two crops.

10http://www.zzys.moa.gov.cn/.
11In 2015, semilate rice accounted for 76% of the rice sown area in China, while winter wheat

accounted for 94% of the wheat sown area. Some counties cultivated both early rice and semilate rice.
To focus on semilate rice, we exclude all counties in which early rice was cultivated. This process
excludes about one-fifth of the rice production counties, mainly from southeast China.
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3.1.2 Crop progress

County-level crop progress data for each crop variety are derived from 778 agro-

climatic monitoring sites managed by the National Meteorological Information Center

of China.12 These sites were established to monitor crop progress in major agricultural

areas, and the locations of these sites were selected to represent different agricultural

regions in China. Given that China has roughly 2,000 agricultural counties, each of

the five agricultural counties share two monitoring sites. Each site collects detailed

data on the starting date of each key stage of the major crop varieties cultivated near

the site each year.13 We have access to site-level median starting date of each key

stage of each crop variety, calculated based on monitoring data from 1993 to 2013;

unfortunately, we do not have access to the starting date of each single year.14 We

spatially interpolate the site-level progress data of each crop to all counties producing

the crop using inverse-distance weighting with a radius of 200 km. Appendix Figure

A.4 presents the distribution of the key stages of rice and wheat across the sample

counties.

3.1.3 Weather

Daily temperature data are derived from the latest state-of-the-art global reanalysis

dataset, the Enhanced Global Dataset for the Land Component of the Fifth Generation

of European ReAnalysis (ERA5-Land).15 The dataset spans from 1981 to the

12http://data.cma.cn/site.
13Parcels to be monitored are selected to ensure that the crops cultivated on these parcels accurately

reflect regional cropping practices. The site’s staff solely focuses on monitoring crop conditions, while
the actual management of the parcels remains in the hands of ordinary farmers. The site’s staff rely
on on-site observations and agronomists’ technical manual criteria to determine the starting date for
each key stage of a crop.

14A potential concern stemming from this data limitation is that farmers may adjust the timing
of production to adapt to climate change, and we may thus overestimate the impact of stage-specific
temperature measures. However, given that this potential overestimation also applies to the growing
season aggregate temperature measures, it does not undermine the main conclusion of the study,
which is that adopting an aggregate temperature measure tends to overestimate the impact of climate
change than stage-specific temperature measure.

15Details of ERA5-Land can be found in Muñoz-Sabater et al. (2021).
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present and has a resolution of 9 km × 9 km. We use ArcGIS to construct county

average daily mean temperature from 1981 to 2015 accordding to data from all grids

within each county. The data before 2001 (the first year of our study sample) are

only used to construct the long-run climatic normal. We then derive five other

climatic measures (precipitation, wind speed, radiation, vegetation evaporation, and

atmospheric pressure) as control variables from ERA5-Land. Appendix Table A.2

presents the summary statistics of key climatic variables.

3.1.4 Global warming prediction

The predicted daily temperatures used for forecasting the end-of-the-century impact

of global warming on crop yield are also derived from ERA5-Land. Specifically, we

use the daily temperatures predicted based on the medium (RCP 4.5) and high (RCP

8.5) global warming scenarios from the CanESM2 model.16 We calculate county-level

predicted changes in temperature on the basis of the predicted daily temperature

difference between the 2011–2015 average and the 2096–2100 average. Figures 4

presents the predicted changes in stage-specific mean temperature for each of the 11

stages under scenarios RCP 4.5 and high RCP 8.5 in rice production counties. We find

significant variation in the predicted warming across counties (as indicated by the box

graph for each stage) and a larger temperature increase for each stage under RCP 8.5

than under RCP 4.5. The county-level increases in growing season mean temperature

for each sample county are presented in Appendix Figure A.5.

16See more details from https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-
daily-single-levels?tab=form.
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3.2 Empirical Strategy

The effect of stage-specific temperature can be estimated by:

𝑦𝑐𝑡 =

𝑆∑︁
𝑠=1

𝛼𝑠𝑓̃
(
𝑔
(
𝑇 𝑠
𝑑𝑐𝑡

) )
+ 𝛿𝑡 + 𝛿𝑐 + 𝑋𝑐𝑡𝛾 + 𝜀𝑐𝑡 , (7)

where 𝑦𝑐𝑡 is log yield of a crop cultivated in county 𝑐 and year 𝑡, and
∑𝑆

𝑠=1 𝛼𝑠𝑓̃
(
𝑔
(
𝑇 𝑠
𝑑𝑐𝑡

) )
is a set of stage-specific temperature measures for each of the 11 stages. Each key stage

is defined as the 10 days around the starting date of the stage in each county and the

days between two connected key stages are defined as a non-key stage (Figure 1).17 We

show that the results are robust when each key stage as the 5 days around the starting

date of the stage in panel A of Figure 6.

Model (7) includes the year fixed effects (𝛿𝑡) and county fixed effects (𝛿𝑐), and the

effects are identified according to the plausibly exogenous county-specific inter-annual

temperature fluctuations (Deschênes & Greenstone 2007). We show that the results

are comparable when county fixed effectsare excluded. Vector 𝑋𝑐𝑡 includes a set of

exogenous control variables: growing season total precipitation and its square, wind

speed, radiation, vegetation evaporation, and atmospheric pressure.18 The error term

𝜀𝑐𝑡 is clustered at the county level to address the potential bias from serial correlation.

In the estimation, we weight the model by the sown area of the crop in each county.

We examine the effect of stage-specific mean temperature, degree-days, standard-

ized deviation of temperature, and positive and negative temperature shocks, which

are calculated for each stage with Equations (1), (2) (4), and (5), respectively. We then

examine the nonlinear effects of these stage-specific temperature measures by including

their square terms in the regression. We do not examine the effects of stage-specific

17Specifically, a key stage is defined as five days before the starting date plus five days after the
starting date.

18We do not control for capital and labor inputs in the regression model as they are likely to be
endogenous. In addition, in a competitive equilibrium, the capital–labor ratios are fixed ( 𝑘𝑐𝑡

𝑙𝑐𝑡
= 𝛼

1−𝛼 ),
so most of their effects could have been accounted for by the county-fixed effects.
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temperature bins because the 11 stages divide the growing season into small sections

with narrow temperature ranges. If we further divide each stage into, such as, 3◦C bins,

we would have to estimate the effect of more than 100 temperature coefficients. Owning

to the narrow temperature range within each bin, most of the bins have insufficient

variation for the estimation of a credible effect.

We compare the total effect of stage-specific temperature measures estimated with

model (7), and the effect of the corresponding growing season temperature measures

is estimated according to the following equation:

𝑦𝑐𝑡 = 𝛽𝑓̂ (𝑔 (𝑇𝑑𝑐𝑡)) + 𝛿𝑡 + 𝛿𝑐 + 𝑋𝑐𝑡𝛾 + 𝜀𝑐𝑡 , (8)

where the only difference from model (7) is that the stage-specific temperature measure

is replaced by the corresponding growing season temperature measure 𝑓̂ (𝑔 (𝑇𝑑𝑐𝑡)).

Futhermore, we verify that the stage temperature measures have substantial

variation independent of growing season temperature measures:

𝑦𝑐𝑡 =

𝑆∑︁
𝑠=1

𝛼′𝑠𝑓̃
(
𝑔
(
𝑇 𝑠
𝑑𝑐𝑡

) )
+ 𝛽′𝑓̂ (𝑔 (𝑇𝑑𝑐𝑡)) + 𝛿𝑡 + 𝛿𝑐 + 𝑋𝑐𝑡𝛾 + 𝜀𝑐𝑡 , (9)

where the only difference from model (7) is that it additionally controls for one of the

growing season temperature measures 𝑓̂ (𝑔 (𝑇𝑑𝑐𝑡)). The coefficient 𝛼′𝑠 identifies the effect

of the stage-specific temperature measure that cannot be captured by the aggregate

temperature measure. If the estimated coefficients of the stage-specific temperature

measures (𝛼′𝑠 in model (9)) are similar to those from the model without controlling for

the aggregate temperature measure (𝛼𝑠 in model (7)), we would conclude that stage-

specific temperatures have substantial independent variation that cannot be captured

by the aggregate temperature measure.19 This finding suggests that growing season

19A potential concern of model (9) is the bad control problem as stage-specific temperature
measures could be strongly correlated with the aggregate temperature measure. The bad control
problem may lead to a substantial change in the coefficients of the stage-specific temperature
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aggregate temperature measures may not fully capture the effect of stage-specific

temperature on crop yield.

4 Results

For simplicity, this section only presents the estimates for rice, and the main estimates

for wheat are presented in Appendix A.3. Estimates based on these two crops are

comparable. We focus mainly on examining the effect of stage-specific or growing

season mean temperature and degree-days, as they are the two most widely used

temperature measures in the literature (Table A.1)

4.1 Effect of stage-specific temperature

Figure 5 presents the effect of stage-specific temperature on rice yield estimated with

model (7). Each key stage is defined as the 10 days around the starting date of the

stage, and the days between two connected key stages are defined as a non-key stage.

The estimates in the figure are presented in chronological order of the 11 stages. The

dependent variable (log rice yield) is multiplied by 100 so that the y-axis measures the

percentage effect.

Panel A presents the effect of stage mean temperature. The estimates suggest that

temperature has a statistically significant effect on rice yield in only five of the 11

stages, and the marginal effect differs across stages. The higher temperature in stages

2 and 8 increase rice yield, whereas the high temperatures in stages 7, 10, and 11 reduce

rice yield. These estimates confirm the main argument of this study: crops are more

sensitive to temperature in certain stages of growth. The negative marginal effect of

temperature is larger than the positive marginal effect, suggesting an overall damage of

measures. Therefore, model (9) provides a strict examination of the independent effects of stage-
specific temperature measures; the estimated coefficients of stage-specific temperature measures will
be unchanged only when there are substantial independent variations.
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warming on rice yield. Panel B adopts the temperature measure of stage degree-days

constructed according to Equation 2 and shows a similar effect pattern. We postpone

the discussion of the overall effect of stage temperature measures to subsection 4.2. We

also consider the nonlinear effect of temperature within each stage.

Figure 6 presents various robustness checks. Panel A defines each key stage as 5

days instead of 10 days around the starting date of the stage and finds comparable

estimates. Panel B adopts the temperature measure of total standardized deviations

of temperature in each stage, constructed according to Equation 5 and finds a similar

effect pattern, although the marginal effects are different because of differences in

units.20 Panels C and D respectively estimate the effect of total positive and total

negative temperature shocks in each stage, defined as the number of days with

temperature 1-SD above or below the long-run average. The estimates suggest the

significantly different effects of positive and negative temperature shocks in different

stages. Panels E and F examine the robustness to omitted variables by excluding the

climatic control variables and county-fixed effects, respectively. The resulting estimates

are comparable.

4.2 Independent effect of stage temperature measures

An intuitive way to illustrate the potential bias of adopting an aggregate temperature

measure is to examine whether it can account for most of the effect of stage-specific

temperatures. We do this by estimating model (9), which regresses rice yield on

both stage-specific temperature measures and an aggregate temperature measure. The

coefficient of the stage-specific temperature measure from this regression reflects the

effect of stage temperatures that cannot be accounted for by the aggregate temperature

20The total standardized deviation is calculated by subtracting the long-run (1981–2015) average
from the daily mean temperature, dividing by the standard deviation, and summing across all days in
the stage. This temperature measure allows us to account for the accumulated effect of temperature
within a stage and to relieve concerns of stage-specific time-invariant confounding factors by removing
stage mean from the regression.
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measure. If the estimated coefficient of the stage-specific temperature measure is

similar to the model without controlling for the aggregate temperature measure, we

would conclude that stage-specific temperatures have substantial independent variation

(relevant for identifying the impact on rice yield) that cannot be captured by the

aggregate temperature measure.

Figure 7 presents the estimated effect of stage mean temperature (panel A)

and stage degree-days (panel B) conditional on the aggregate temperature measures

(including growing season mean temperature and its square, a full set of temperature

bins, and degree-days and harmful degree-days). Specifically, we estimate the effect

of stage temperature measures based on four model settings. The first is the baseline

estimation without controlling for any aggregate temperature measure, which is the

same as that presented in Figure 5. The second is a version of model (9) that controls

for growing season mean temperature and its square. The third is a version of model

(9) that controls for a full set of temperature bins, setting the bin of 9–12°C as the

reference group. The fourth is a version of model (9) that controls for degree-days

and harmful degree-days. All these aggregate temperature measures are defined in

subsection 2.1. The estimates presented in Figure 7 suggest that controlling for these

aggregate temperature measures does not significantly affect the estimated effect of

stage temperature measures.21

We cannot conclude from Figure 7 that the stage temperature measure has a larger

or smaller effect than the aggregate temperature measure. The estimates only tell

us that the stage temperature measure has substantial and independent variation

(relevant for identifying the impact on rice yield) that cannot be captured by the

21The finding that controlling for aggregate temperature measures does not alter the estimated
effect of stage-specific temperature measures is not because these aggregate temperature measures
themselves have no significant effect on rice yield. Appendix Table A.3 shows that growing season
mean temperature and degree-days have significant and nonlinear effects on crop yield. Appendix
Figure A.6 similarly shows the significant nonlinear effects of growing season temperature bins. These
estimates are consistent with what has been found in the literature (e.g., Schlenker & Roberts 2009,
Huang et al. 2018, Chen & Gong 2021).
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growing season temperature measures. This finding is intuitive when considering that

a substantial portion of the positive and negative stage-specific temperature shocks has

been neutralized when constructing an aggregate temperature measure, as illustrated

in Figure 3. However, the estimates in Figure 7 indeed suggest the bias of using an

aggregate temperature measure as it cannot fully capture the impact of stage-specific

temperatures.

4.3 Bias of using an aggregated temperature measure

This subsection quantifies the bias of adopting an aggregate temperature measure by

comparing the predicted impacts of global warming according to the estimated marginal

effect of stage-specific temperature measures and the estimated marginal effect of the

corresponding aggregate temperature measures. We compare across the impacts of

global warming predicted according to stage mean temperature and its square, stage

degree-days and harmful degree-days, growing season mean temperature and its square,

growing season degree-days and harmful degree-days, and growing season temperature

bins.

The marginal effects of growing season mean temperature, growing season degree-

days, and growing season temperature bins are reported in Table A.3 and Figure A.6.

These estimates are obtained by estimating versions of model (8) versions that use

different growing season temperature measures as the key explanatory variables. The

estimates suggestion that high growing season mean temperature first increases and

then reduces rice yield (column 1 of Table A.3). The effect pattern is the same for

growing season degree-days (column 1 of Table A.3), and we find that harmful degree-

days reduce rice yield. Similarly, Figure A.6 shows that low and high temperature bins

are harmful for rice yield when compared with the temperature bin of 9–12°C.

We present the predicted impact under a medium global warming scenario (RCP

4.5) and a high global warming scenario (RCP 8.5). The county-level predicted
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warming from the 2011–2015 average to the 2096–2100 average is presented in Appendix

Figure A.5. For an average rice production county, the predicted increase in growing

season mean temperature is 2.30°C under the medium scenario and 5.04°C under the

high scenario. We examine the impact of a uniform warming scenario, which assumes

that all counties experience a temperature increase of 5°C on all days, showing that

the finding is not primarily driven by differences in predicted warming across counties

and over days in a growing season.

Column 1 of Table 2 presents the predicted impact of stage mean temperature,

which is calculated by summing up the predicted impacts across the 11 stages. The

impact in each stage is calculated by multiplying the marginal effect of stage mean

temperature with the county-level predicted warming in each stage. The resulting

estimates suggest that global warming will reduce the county mean rice yield by

3.88%, 7.11%, and 6.37%, respectively, under scenarios RCP 4.5, RCP 8.5, and the

scenario of 5°C uniform warming. Column 2 replicates column 1 but accounts for the

potential nonlinear effect of stage mean temperature. We first estimate a version of

model (7) that regresses rice yield on stage mean temperature and its square. The

estimated stage-specific nonlinear effect is presented in Figure A.7. We then combine

the estimated nonlinear effect with predicted warming in each stage to calculate the

predicted impact of warming. As expected, since each stage has a narrow temperature

range, accounting for the stage nonlinear effect that does not affect the predicted impact

of warming substantially. Column 3 presents the predicted impact of stage degree-

days and harmful degree-days. The predicted impacts are much larger under RCP 8.5

under the 5◦𝐶 uniform warming scenario, although these two scenarios predict similar

temperature increases (5.04 ◦𝐶 versus 5.00 ◦𝐶). This is because RCP 8.5 predicts

much more extreme warming in some counties and days and substantially increases

the predicted damage of harmful degree-days.

Columns 4–6 present the predicted impact of global warming according to the
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estimated marginal effects of the aggregate temperature measures of growing season

mean temperature and its square, growing season degree-days and harmful degree-days,

and growing season temperature bins, respectively. The predicted damage of warming

on rice yield based on the aggregate temperature measures are significantly larger than

that based on the corresponding stage-specific temperature measures. Specifically,

when columns 2 and 4 are compared (both examines the effects of temperature mean

and its square), we find that the aggregate temperature measure predicts damage that

is 1.28–1.74 times that predicted by the stage temperature measure under different

warming scenarios. Similarly, by comparing columns 3 and 5 (both examines the

effects of degree-days and harmful degree-days), we find that the aggregate temperature

measure predicts damage that is 0.42–1.94 times as large. In addition, column 6 shows

that the predicted impacts based on growing season temperature bins are significantly

larger than that based on the stage mean temperature.

Figure 8 presents the county-level impact of global warming on rice yield predicted

according to the stage mean temperature and its square (left panel) and growing season

mean temperature and its square (right panel) under the global warming scenario RCP

4.5. The figure suggests that while warming reduces rice yield in a large share of rice

production counties, it increases rice yield in a large number of cold counties in north

China and the southwest uplands of China. A larger number of counties are expected

to be damaged when measuring temperature by the growing season mean instead of the

stage mean (927 versus 724 counties). In addition, the estimated county-level damages

are generally larger when temperature is measured by the growing season mean. For

example, 345 counties are expected to experience a yield loss of more than 10% when

the growing season mean temperature is used, but the number of counties is only 28

when the stage mean temperature is used. All these observations are consistent with

the finding that adopting an aggregate temperature measure overestimates the damage

of global warming.
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5 Concluding Remarks

Agriculture is expected to be the most vulnerable sector under global warming because

temperature serves as a direct and critical input in crop production. Consequently,

numerous important studies on the impact of global warming focus on agriculture.

Considerable progress in the estimation of the impact of global warming on crop yield.

While early studies measure temperature by annual or seasonal means, later studies

propose measuring temperature by growing season mean, degree-days, temperature

bins, piece-wise linear functions, and temperature shocks, after incorporating the fact

that temperature affects crop yield mainly during the growing season and that the

effect could be cumulative and nonlinear.

However, all these widely used temperature measures can be classified as aggregate

temperature measures that blend temperatures from different stages of crop growth

owing to the implicit assumption that temperatures are additively substitutable within

the growing season. This assumption is inconsistent with agronomic knowledge, which

suggests that crops are more sensitive to temperature in certain phenological stages.

This study illustrates that as temperature fluctuates widely across growth stages, an

aggregate temperature measure tends to overestimate the impact by attributing the

effect of large stage-specific temperature shocks to the effect of small and neutralized

growing season temperature shocks.

Based on county-level data on the phenological stages of rice and wheat in China,

this study confirms that temperature shocks occurring in different stages of crop growth

have quite different effects. By estimating a regression model that includes both the

stage and aggregate temperature measures, we show that the stage-specific temperature

measure has a substantial effect independent of the aggregate temperature measure.

By comparing the predicted impact of global warming based on stage and aggregate

temperature measures, we find that adopting an aggregate temperature measure could

overestimate the impact of global warming twofold. These findings suggest the adoption
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of stage-specific temperature measures when information on crop stages is available.

24



Bibliography

Adams, R. M. (1989), ‘Global climate change and agriculture: an economic

perspective’, American Journal of Agricultural Economics 71(5), 1272–1279.

Burke, M. & Emerick, K. (2016), ‘Adaptation to climate change: Evidence from us

agriculture’, American Economic Journal: Economic Policy 8(3), 106–140.

Burke, M., Hsiang, S. M. & Miguel, E. (2015), ‘Global non-linear effect of temperature

on economic production’, Nature 527(7577), 235–239.

Chen, S. & Gong, B. (2021), ‘Response and adaptation of agriculture to climate change:

Evidence from china’, Journal of Development Economics 148, 102557.

Cui, X. (2020), ‘Climate change and adaptation in agriculture: Evidence from

us cropping patterns’, Journal of Environmental Economics and Management

101, 102306.

Dell, M., Jones, B. F. & Olken, B. A. (2014), ‘What do we learn from the weather? the

new climate-economy literature’, Journal of Economic Literature 52(3), 740–798.

Deschênes, O. & Greenstone, M. (2007), ‘The economic impacts of climate change:

evidence from agricultural output and random fluctuations in weather’, American

Economic Review 97(1), 354–385.

Fageria, N. K., Baligar, V. C. & Clark, R. (2006), Physiology of crop production, crc

Press.

Felkner, J., Tazhibayeva, K. & Townsend, R. (2009), ‘Impact of climate change on rice

production in thailand’, American Economic Review 99(2), 205–210.

Hatfield, J. L. & Prueger, J. H. (2015), ‘Temperature extremes: Effect on plant growth

and development’, Weather and Climate Extremes 10, 4–10. USDA Research and

25



Programs on Extreme Events.

URL: https://www.sciencedirect.com/science/article/pii/S2212094715300116

Huang, k., Guo, J. & Zhao, D. (2024), ‘Positive rainfall shocks, overoptimism, and

agricultural inefficiency in china’, Journal of the Association of Environmental and

Resource Economists 0(ja), null.

Huang, K., Wang, J., Huang, J. & Findlay, C. (2018), ‘The potential benefits of

agricultural adaptation to warming in china in the long run’, Environment and

Development Economics 23(2), 139–160.

Jagnani, M., Barrett, C. B., Liu, Y. & You, L. (2021), ‘Within-season producer response

to warmer temperatures: Defensive investments by kenyan farmers’, The Economic

Journal 131(633), 392–419.

Jones, J. B. et al. (2002), Agronomic handbook, CRC press.

Mendelsohn, R., Nordhaus, W. D. & Shaw, D. (1994), ‘The impact of global warming

on agriculture: a ricardian analysis’, American Economic Review pp. 753–771.

Miller, S., Chua, K., Coggins, J. & Mohtadi, H. (2021), ‘Heat waves, climate change,

and economic output’, Journal of the European Economic Association 19(5), 2658–

2694.

Moore, F. C. & Lobell, D. B. (2014), ‘Adaptation potential of european agriculture in

response to climate change’, Nature Climate Change 4(7), 610–614.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G.,

Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B.,

Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C.

& Thépaut, J.-N. (2021), ‘Era5-land: a state-of-the-art global reanalysis dataset for

land applications’, Earth System Science Data 13(9), 4349–4383.

Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler,

C., Msangi, S., Palazzo, A., Batka, M. et al. (2009), Climate change: Impact on

agriculture and costs of adaptation, Vol. 21, Intl Food Policy Res Inst.

26



Pessarakli, M. (2021), Handbook of Plant and Crop Physiology, CRC press.

Porter, J. R. & Gawith, M. (1999), ‘Temperatures and the growth and development of

wheat: a review’, European Journal of Agronomy 10(1), 23–36.

Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. (2015), ‘Climate variation

explains a third of global crop yield variability’, Nature Communications 6(1), 5989.

Ritchie, J. T. & Nesmith, D. S. (1991), ‘Temperature and crop development’, Modeling

Plant and Soil Systems 31, 5–29.

Sánchez, B., Rasmussen, A. & Porter, J. R. (2014), ‘Temperatures and the growth and

development of maize and rice: a review’, Global Change Biology 20(2), 408–417.

Schlenker, W., Hanemann, W. M. & Fisher, A. C. (2006), ‘The impact of global

warming on us agriculture: an econometric analysis of optimal growing conditions’,

Review of Economics and statistics 88(1), 113–125.

Schlenker, W., Hanemann, W. M. & Fisher, A. C. (2007), ‘Water availability,

degree days, and the potential impact of climate change on irrigated agriculture

in california’, Climatic Change 81(1), 19–38.

Schlenker, W., Michael Hanemann, W. & Fisher, A. C. (2005), ‘Will us agriculture

really benefit from global warming? accounting for irrigation in the hedonic

approach’, American Economic Review 95(1), 395–406.

Schlenker, W. & Roberts, M. J. (2009), ‘Nonlinear temperature effects indicate severe

damages to us crop yields under climate change’, Proceedings of the National

Academy of sciences 106(37), 15594–15598.

Seshu, D. & Cady, F. (1984), ‘Response of rice to solar radiation and temperature

estimated from international yield trials 1’, Crop science 24(4), 649–654.

Teng, L., ZHANG, X.-p., Qing, L., Jin, L., CHEN, Y.-q. & Peng, S. (2022), ‘Yield

penalty of maize (zea mays l.) under heat stress in different growth stages: A review’,

Journal of Integrative Agriculture .

Wang, D., Zhang, P., Chen, S. & Zhang, N. (2024), ‘Adaptation to temperature

27



extremes in chinese agriculture, 1981 to 2010’, Journal of Development Economics

166, 103196.

Wassmann, R., Jagadish, S., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh,

R., Howell, G., Pathak, H. & Sumfleth, K. (2009), ‘Climate change affecting rice

production: the physiological and agronomic basis for possible adaptation strategies’,

Advances in agronomy 101, 59–122.

Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A. &

Dawe, D. (2010), ‘Rice yields in tropical/subtropical asia exhibit large but opposing

sensitivities to minimum and maximum temperatures’, Proceedings of the National

Academy of Sciences 107(33), 14562–14567.

28



Figure 1: Stages of rice growth in a representative county

Note: This figure presents the stages of rice growth in a randomly selected rice production county (Dingyuan county in
Anhui province). The large red circles represent the median starting date of each key stage documented in the county,
and the small blue circles represent the 10 days belonging to each key stage. The date is coded as the number of days
since the first day of the year.
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Figure 2: Daily temperature fluctuations in two years with nearly identical growing
season mean temperature and degree-days

Note: This figure presents the daily standardized deviation of temperature for two years (2004 and 2008) with similar
growing season mean temperatures (24.65◦C and 24.68◦C) and degree-days (2215 and 2218). The daily standardized
deviation is calculated according to Equation (4). The data come from a randomly selected rice-production county
(Qidong county in Hunan province). The date is coded as the number of days since the first day of the year. The
dashed vertical lines mark the starting day of each key stage of rice in the county.

30



Figure 3: Stage and growing season temperature deviations
Note: Based on data from 1217 rice-producing counties, Panel A presents the distribution of the deviation of stage
mean temperature from the long-run average for stage 4 (i.e., flowering) in representative years. Panel B presents the
distribution of the deviation of stage mean temperature from the long-run average for each key stage in 2010. Panel
C presents the distribution of the deviation of the growing season mean temperature from the long-run average in
representative years. Panel D presents the distribution of the total number of days in the growing season with positive
and negative temperature shocks (defined as 1-SD above or below the long-run average) when calculated separately
(dashed lines) or combined (solid line).
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Figure 4: Predicted end-of-the-century increase in stage-specific mean temperature

Note: This figure presents the predicted increase in stage-specific mean temperature, calculated as the difference between
the 2011–2015 average and the 2096–2100 average, under global warming scenarios RCP 4.5 and RCP 8.5 for 1217 rice
production counties. For each stage, the box plot presents the mean, upper and lower quartile values, minimum and
maximum data values, and outliers. The legend markers S1–S11 denote each stage of rice growth.
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Figure 5: Effect of stage-specific temperature on rice yield

Note: This figure presents the estimated effect of stage-specific temperature on rice yield based on model (7). Panel
A measures temperature by stage mean, and Panel B measures temperature by stage degree-days and stage harmful
degree-days. The x-axis S1–S11 denote each stage of rice growth, in chronological order. The capped spikes represent
the 95% confidence intervals constructed based on standard errors clustered at the county level.

33



Figure 6: Robustness of the stage-specific temperature estimates

Note: This figure presents robustness checks for the estimates in Panel B of Figure 5. Panel A defines each key stage as
5 days around the starting date of the stage; Panel B measures temperature by the total standardized deviations (i.e.,
z-score) of daily temperature in each stage; Panels C and D, respectively, estimate the effect of stage total positive and
total negative temperature shocks, defined as the number of days with temperature 1-SD above or below the long-run
average; Panels E and F, respectively, exclude the climatic control variables and county-fixed effects. The capped
spikes represent the 95% confidence intervals constructed based on standard errors clustered at the county level.
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Figure 7: Effect of stage-specific temperature measures on rice yield conditional on
aggregate temperature measures

Note: The figure presents the estimated effects of stage mean temperature (Panel A) and stage degree-days and harmful
degree-days (Panel B) on rice yield based on a version of model 9 that does not control for the aggregate temperature
measure (Base), controls for growing season mean temperature and it square (Mean), controls for growing season degree-
days and harmful degree-days (Degreeday), or controls for growing season temperature bins (Bins). The capped spikes
represent the 95% confidence intervals constructed based on standard errors clustered at the county level.
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Figure 8: County-level impact of global warming on rice yield under scenario RCP
4.5 (%)

Note: This figure presents the county-level impact of global warming on rice yield predicted based on estimates of the
stage mean temperature and its square (left panel) and growing season mean temperature and its square (right panel)
under global warming scenario RCP 4.5. Specifically, the impact in each county is calculated by combining the
marginal effect of temperature in each county with the county-level predicted warming from the 2011–2015 average to
the 2096–2100 average.

36



Table 1: Potential bias of adopting an aggregate temperature measure

(1) (2) (3) (4) (5) (6)
Stage temperature outcome Temperature

measure
Biased (") or
Unbiased (✓)

Over- (↑) or
under-

estimate (↓)

Key Non-Key Aggregate Stage

1 𝑎 𝑏 𝑎+𝑏
2 𝑎 " ↑

2 𝑎 0 𝑎
2 𝑎 " ↑

3 𝑎 𝑎 𝑎 𝑎 ✓ -
4 0 𝑏 𝑏

2 0 " ↓
5 0 0 0 0 ✓ -
6 0 𝑎 𝑎

2 0 " ↓
7 𝑏 𝑏 𝑏 𝑏 ✓ -
8 𝑏 0 𝑏

2 𝑏 " ↑
9 𝑏 𝑎 𝑏+𝑎

2 𝑏 " ↑
Notes: This table classifies the growing season of a crop into a key stage (column 1) and a non-key stage (column 2)
of growth. Each stage is randomly subject to a negative (𝑎), none (0), or positive (𝑏) temperature shock, resulting in
9 combinations of shocks (rows 1–9). Column 3 presents the temperature shocks used when adopting an aggregate
temperature measure, while column 4 presents the temperature shocks that should be used if only the key-stage
temperature affects crop yield. Columns 5 and 6 present the bias and the direction of the bias when adopting an
aggregate temperature measure.
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A Appendix for Online Publication

A.1 Summary statistics

Figure A.1: Daily standardized deviation of temperature during the growing season

Note: This figure presents the daily standardized deviation of temperature in a randomly selected rice production
county (Qidong county in Hunan province) for each year from 2000 to 2015. The daily standardized deviation is
calculated according to Equation (4). The dashed vertical lines mark the starting day of each key stage of rice in the
county.
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Figure A.2: Sample counties producing semilate rice (left) and winter wheat (right)

Note: This figure presents sample counties producing semilater rice (left) and winter wheat (right). The sample excludes
counties producing early rice and spring wheat.
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Figure A.3: Distribution of temperature bins for two years with nearly identical
growing season mean temperature

Note: This figure presents the distribution of 3-degree temperature bins (calculated according to (3)) for two years
(2004 and 2008) with similar growing season mean temperatures (24.65◦C and 24.68◦C). The data come from a
randomly selected rice-production county (Qidong county in Hunan province).
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Figure A.4: Distribution of each key stages of rice and wheat across the sample
counties

Note: This figure presents the distribution of the starting date of each of the six key stages for semilate rice (left) and
winter wheat (right) across all sample counties cultivating each crop. The date of each stage is coded as the number of
days since the first day of the year. The first two stages of winter wheat are coded by negative values as winter wheat
was sown last year.
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Figure A.5: Predicted end-of-the-century increase in growing season mean
temperature

Note: This figure presents the predicted increase in county-level growing season mean temperature, calculated as the
difference between the 2011–2015 average and the 2096–2100 average, under global warming scenarios RCP 4.5 and
RCP 8.5 for 1217 rice production counties.
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Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

Articles Temperature Measures Measured over

1

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. "The

Impact of Global Warming on Agriculture: a Ricardian Analysis."

American Economic Review (1994): 753-771.

Temperature mean Individual months

2

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher.

"Will US Agriculture Really Benefit from Global Warming?

Accounting for Irrigation in the Hedonic Approach." American

Economic Review 95.1 (2005): 395-406.

Temperature mean Growing season

3

Negri, Donald H., Noel R. Gollehon, and Marcel P. Aillery. "The

Effects of Climatic Variability on US Irrigation Adoption." Climatic

Change 69.2 (2005): 299-323.

Degree-days Growing season

4

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher.

"The Impact of Global Warming on US Agriculture: an Econometric

Analysis of Optimal Growing Conditions." Review of Economics and

Statistics 88.1 (2006): 113-125.

Degree-days Growing season

5

Deschênes, Olivier, and Michael Greenstone. "The Economic

Impacts of Climate Change: Evidence from Agricultural Output and

Random Fluctuations in Weather." American Economic Review 97.1

(2007): 354-385.

Temperature mean,

Degree-days
Growing season

6

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher.

"Water Availability, Degree Days, and the Potential Impact of

Climate Change on Irrigated Agriculture in California." Climatic

Change 81.1 (2007): 19-38.

Degree-days Growing season

6



Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

7

Schlenker, Wolfram, and Michael J. Roberts. "Nonlinear

Temperature Effects Indicate Severe Damages to US Crop Yields

Under Climate Change." Proceedings of the National Academy of

Sciences 106.37 (2009): 15594-15598.

Temperature mean,

Piece-wise function,

Degree-days

The whole year

8
Piao, Shilong, et al. "The Impacts of Climate Change on Water

Resources and Agriculture in China." Nature 467.7311 (2010): 43-51.
Temperature mean The whole year

9

Lobell, David B., et al. "Nonlinear Heat Effects on African Maize As

Evidenced by Historical Yield Trials." Nature Climate Change 1.1

(2011): 42-45.

Temperature mean,

Degree-days,

Piece-wise function

Growing season

10

O’Loughlin, John, et al. "Climate Variability and Conflict Risk in

East Africa, 1990–2009." Proceedings of the National Academy of

Sciences 109.45 (2012): 18344-18349.

Temperature standard

deviations
Individual months

11

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken.

"Temperature Shocks and Economic Growth: Evidence from the

Last Half Century." American Economic Journal: Macroeconomics

4.3 (2012): 66-95.

Temperature mean The whole year

12

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. "What

Do We Learn from the Weather? the New Climate-economy

Literature." Journal of Economic Literature 52.3 (2014): 740-798.

Temperature mean,

Temperature bins
The whole year

13

Moore, Frances C., and David B. Lobell. "Adaptation Potential of

European Agriculture in Response to Climate Change." Nature

Climate Change 4.7 (2014): 610-614.

Temperature mean,

Temperature standard

deviations

Growing season

7



Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

14

Mueller, Valerie, Clark Gray, and Katrina Kosec. "Heat Stress

Increases Long-term Human Migration in Rural Pakistan." Nature

Climate Change 4.3 (2014): 182-185.

Temperature mean Growing season

15

Burke, Marshall, Solomon M. Hsiang, and Edward Miguel. "Global

Non-linear Effect of Temperature on Economic Production." Nature

527.7577 (2015): 235-239.

Temperature mean,

Restricted cubic

splines

The whole year

16

Mukherjee, Monobina, and Kurt Schwabe. "Irrigated Agricultural

Adaptation to Water and Climate Variability: the Economic Value

of a Water Portfolio." American Journal of Agricultural Economics

97.3 (2015): 809-832.

Degree-days Growing season

17

Ashraf, Quamrul, and Stelios Michalopoulos. "Climatic Fluctuations

and the Diffusion of Agriculture." Review of Economics and

Statistics 97.3 (2015): 589-609.

Temperature standard

deviations
Growing season

18

Ray, Deepak K., et al. "Climate Variation Explains a Third of

Global Crop Yield Variability." Nature Communications 6.1 (2015):

5989.

Temperature mean Growing season

19

Tack, Jesse, Andrew Barkley, and Lawton Lanier Nalley. "Effect of

Warming Temperatures on US Wheat Yields." Proceedings of the

National Academy of Sciences 112.22 (2015): 6931-6936.

Degree-days,

Temperature mean,

Piece-wise Linear

Function

Growing season

20

Lesk, Corey, Pedram Rowhani, and Navin Ramankutty. "Influence

of Extreme Weather Disasters on Global Crop Production." Nature

529.7584 (2016): 84-87.

Temperature mean Growing season
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Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

21

Burke, Marshall, and Kyle Emerick. "Adaptation to Climate

Change: Evidence from US Agriculture." American Economic

Journal: Economic Policy 8.3 (2016): 106-140.

Degree-days,

Temperature mean,

Piece-wise function

Growing season

22

Chen, Shuai, Xiaoguang Chen, and Jintao Xu. "Impacts of Climate

Change on Agriculture: Evidence from China." Journal of

Environmental Economics and Management 76 (2016): 105-124.

Temperature bins,

Degree-days
Growing season

23

Cai, Ruohong, et al. "Climate Variability and International

Migration: the Importance of the Agricultural Linkage." Journal of

Environmental Economics and Management 79 (2016): 135-151.

Temperature mean Growing season

24

Zhang, Peng, Junjie Zhang, and Minpeng Chen. "Economic Impacts

of Climate Change on Agriculture: the Importance of Additional

Climatic Variables Other Than Temperature and Precipitation."

Journal of Environmental Economics and Management 83 (2017):

8-31.

Temperature bins Growing season

25

Huang, Kaixing, et al. "The Potential Benefits of Agricultural

Adaptation to Warming in China in the Long Run." Environment

and Development Economics 23.2 (2018): 139-160.

Degree-days Growing season

26
Sellers, Samuel, and Clark Gray. "Climate Shocks Constrain Human

Fertility in Indonesia." World Development 117 (2019): 357-369.
Temperature mean Individual months

27

Diffenbaugh, Noah S., and Marshall Burke. "Global Warming has

Increased Global Economic Inequality." Proceedings of the National

Academy of Sciences 116.20 (2019): 9808-9813.

Temperature mean The whole year
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Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

28

Wang, Xuhui, et al. "Emergent Constraint on Crop Yield Response

to Warmer Temperature from Field Experiments." Nature

Sustainability 3.11 (2020): 908-916.

Temperature mean
Growing season, The

whole year

29

Cui, Xiaomeng. "Beyond Yield Response: Weather Shocks and Crop

Abandonment." Journal of the Association of Environmental and

Resource Economists 7.5 (2020): 901-932.

Temperature bins,

Degree-days
Growing season

30

Cui, Xiaomeng. "Climate Change and Adaptation in Agriculture:

Evidence from US Cropping Patterns." Journal of Environmental

Economics and Management 101 (2020): 102306.

Temperature mean,

Temperature bins
Growing season

31

Huang, Kaixing, et al. "The Impact of Climate Change on the

Labor Allocation: Empirical Evidence from China." Journal of

Environmental Economics and Management 104 (2020): 102376.

Temperature bins,

Degree-days
Growing season

32

Bozzola, Martina, and Melinda Smale. "The Welfare Effects of Crop

Biodiversity As an Adaptation to Climate Shocks in Kenya." World

Development 135 (2020): 105065.

Temperature mean Growing season

33

Huang, Kaixing, and Nicholas Sim. "Adaptation May Reduce

Climate Damage in Agriculture by Two Thirds." Journal of

Agricultural Economics 72.1 (2021): 47-71.

Degree-days Growing season

34

Chen, Shuai, and Binlei Gong. "Response and Adaptation of

Agriculture to Climate Change: Evidence from China." Journal of

Development Economics 148 (2021): 102557.

Degree-days,

Temperature bins,

Temperature Variation

Growing season
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Table A.1: Temperature measures used in studies on the impact of global warming
on agriculture

35

Kotz, Maximilian, et al. "Day-to-day Temperature Variability

Reduces Economic Growth." Nature Climate Change 11.4 (2021):

319-325.

Temperature standard

deviation, Degree-days
Individual months

36

Gatti, Nicolas, Kathy Baylis, and Benjamin Crost. "Can Irrigation

Infrastructure Mitigate the Effect of Rainfall Shocks on Conflict?

Evidence from Indonesia." American Journal of Agricultural

Economics 103.1 (2021): 211-231.

Temperature mean,

Temperature bins
Growing season

37

Ciccone, Antonio, and Adilzhan Ismailov. "Rainfall, Agricultural

Output and Persistent Democratization." Economica 89.354 (2022):

229-257.

Temperature mean The whole year

38

Huang, Kaixing, Jingyuan Guo, and Da Zhao. "Positive Rainfall

Shocks, Overoptimism, and Agricultural Inefficiency in China."

Journal of the Association of Environmental and Resource

Economists (Just Accepted) (2023).

Temperature mean Growing season

39

Wang, Di, et al. "Adaptation to Temperature Extremes in Chinese

Agriculture, 1981 to 2010." Journal of Development Economics 166

(2024): 103196.

Degree-days,

Piece-wise function
Growing season

40

Cui, Xiaomeng, and Zheng Zhong. "Climate Change, Cropland

Adjustments, and Food Security: Evidence from China." Journal of

Development Economics 167 (2024): 103245.

Temperature mean,

Degree-days,

Temperature bins

Growing season

11



Table A.2: Summary statistics of key variables

(a1) (a2) (b1) (b2)

Rice Wheat

Mean SD Mean SD

Yield (ton/ha) 6.8 1.6 3.8 1.7
Mean temperature in:
Stage 1 15.7 5.1 15.7 3.5
Stage 2 19.4 3.8 12.4 3.9
Stage 3 22.5 3.6 8.6 4.6
Stage 4 23.6 3.4 3.7 3.9

Stage 5 24.4 3.5 9.5 5.3
Stage 6 24.9 3.3 12.6 4.1
Stage 7 24.5 3.5 16.5 4.1
Stage 8 23.7 3.9 17.7 4.1
Stage 9 23.3 4.0 19.5 4.2
Stage 10 21.6 4.4 20.3 3.9
Stage 11 20.3 5.4 21.9 3.8
Growing season:
Mean temperature 22.1 3.3 9.3 3.1
Degree-day 2047.6 435.8 524.2 159.5
Harmful degree-day 0.02 0.3 0.01 0.01
N 11,309 10,080

Notes: This table presents summary statistics of key variables for rice and wheat, respectively. The units of all
temperature measures are ◦C.

12



A.2 Rice appendix

Figure A.6: Effect of growing season temperature bins on rice yield

Note: The figure presents the effect of growing season temperature bins estimated based on model (8). The 3°C
temperature bins are constructed according to Equation (3), and the bin of 9–12°C is used as the baseline. The capped
spikes represent the 95% confidence intervals constructed based on standard errors clustered at the county level.
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Figure A.7: Stage non-linear effect of temperature on rice yield (100 log)

Note: This figure is plotted based on estimates of a version of model (7) that includes both the stage mean
temperature and its square for each stage. Each panel plots the nonlinear relationship between rice yield and
temperature based on the quadratic temperature estimates. The shadow area represents the 95% confidence intervals
calculated based on standard errors clustered at the county level.
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Table A.3: Effect of aggregate temperature measures on rice yield (%)

(1) (2)

Growing season

Mean
temperature

Degree-days

Growing season mean temp (◦C) 19.604***
[5.002]

Growing season mean temp2 -0.430***
[0.108]

Growing season degree-day (100 day) 7.318***
[2.247]

Growing season degree-day2 -0.172***
[0.053]

Growing season harmful degree-day (day) -0.178***
[0.066]

Five climatic control variables Y Y
County and year fixed effects Y Y
Observations 11,309 11,309
R-squared 0.660 0.660

Notes: The table presents the estimates of model (8) that measures temperature by growing season mean and its
square (column 1) or growing season degree-days and harmful degree-days (column 2). The temperature measures are
constructed according to Equations (1) and (2). Standard errors reported in square brackets are clustered at the county
level. Significance levels are *** p<0.01, ** p<0.05, and * p<0.1.

A.3 Wheat appendix
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Figure A.8: Stage impact of temperature on wheat yield (%)

Note: This figure presents the estimates of model (7) for wheat. Panel A measures temperature by stage mean, while
Panel B measures temperature by stage degree-days. The capped spikes represent the 95% confidence intervals
constructed based on standard errors clustered at the county level.
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Figure A.9: Effect of stage temperature measures on wheat yield conditional on
aggregate temperature measures

Note: The figure presents the estimated effects of stage mean temperature (Panel A) and stage degree-days (Panel B)
on wheat yield based on a version of model 9 that does not control for the aggregate temperature measure (Base),
controls for growing season mean temperature and it square (Mean), controls for growing season degree-days and
harmful degree-days (Degreeday), or controls for growing season temperature bins (Bins). The capped spikes represent
the 95% confidence intervals constructed based on standard errors clustered at the county level.
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