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Abstract

Genetically modified (GM) crops are expected to reduce agricultural carbon
emissions, which account for approximately 30% of global carbon emissions, by
reducing the use of high-emission production inputs. However, upon examining
the gradual roll-out of GM crops across countries, we find that GM crops
have increased total agricultural carbon emissions by 7.4% and increased the
carbon-emission intensity of crops by 9.4%. A key reason is that GM crops have
expanded cultivation into marginal lands, which require more fertilizer and energy
inputs. While exporting GM crops to non-GM countries could reduce the global
carbon-emission impact of GM crops, a large portion of GM crops is used for
domestic livestock production, which further increases carbon emissions. Policies
that restrict GM crops to the lands most suitable for them and encourage the
export of GM crops could help mitigate the impact of GM crops on global carbon
emissions.

Keywords: Genetically modified crops, agricultural carbon emissions, agricultural
technology, crop yield
JEL: Q16, Q54, O13, O50
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1 Introduction

Climate change has led to substantial damage and induced panic globally (Tol,
2009; Carleton & Hsiang, 2016; Nordhaus, 2019). Substantial evidence suggests that
anthropogenic greenhouse gas emissions (carbon emissions hereafter) are the principal
cause of climate change (Crowley, 2000; Solomon et al., 2009). In 2021, carbon emissions
from global agrifood systems reached 16 billion tonnes, representing a 14% increase
since 2001 and accounting for 30% of total global anthropogenic carbon emissions (FAO,
2023). Exploring ways to reduce agricultural carbon emissions is crucial for mitigating
climate change.

Advances in agricultural technologies that reduce high-emission inputs and minimize
arable land usage may reduce agricultural carbon emissions. Genetic modification of
crops is one such technology. Genetically modified (GM) crops, initially developed to
boost crop resilience and agricultural productivity, are believed to mitigate agricultural
carbon emissions by reducing production inputs and conserving land (Qaim & Zilberman,
2003; Klümper & Qaim, 2014). Over the past two decades, the harvested area of GM
crops has grown at an annual rate of 8.6% (ISAAA, 2020), and by 2023, it accounted for
23.7% of the harvested area of all field crops worldwide (AgbioInvestor, 2023). Studies
based on field trials (e.g., Carpenter, 2010) and scientific emission models (e.g., Brookes,
2022) suggest that GM crops could reduce carbon emissions because the pest-resistant
and herbicide-tolerant traits of GM crops contribute to reductions in pesticide, energy,
and land inputs per unit of crop output.

However, this prediction is inconsistent with the observed significant growth in
agricultural carbon emissions over the period of rapid GM crop adoption (FAO, 2023).
When examining the effect of GM crops on agricultural carbon emissions based on
data from 1985 to 2018 for 145 countries, our difference-in-differences (DID) estimates
suggest that the adoption of GM crops increased the total agricultural carbon emissions
by 7.3% and increased carbon emissions per crop yield by 9.4%. Event studies and
various robustness checks confirm that this finding represents a causal effect and is not
driven by preexisting trends or confounding factors.

We develop a conceptual model to help understand why the adoption of GM crops
increases carbon emissions. The model is built on the fact that the two primary sources
of agricultural carbon emissions are production inputs and land use changes (See
subsection 2.1 for details). It assumes a representative farmer selects the amount of land
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and other variable inputs to maximize agricultural income. The adoption of GM crops
is assumed to increase the efficiency of the variable inputs. We examine the effect under
three scenarios: fixed land area, flexible land area with constant land quality, and flexible
land area with declining land quality. The adoption of GM crops is predicted to increase
total carbon emissions in each of the three scenarios by increasing the production
inputs and to increase carbon emissions per yield in the last scenario by extending
production to marginal lands with lower quality; the effect on carbon emissions per yield
is negative in the first scenario and ambiguous in the second scenario. The intuition
behind the predicted impact on total carbon emissions is the widely observed Jevons
paradox (Jevons, 1866): as technological progress improves the efficiency of production
inputs, the total consumption of that input may actually increase rather than decrease.
The predicted impacts on carbon emissions per yield depend critically on extending
production to marginal lands that require more high-emission inputs.

We present evidence supporting the predicted mechanisms of the effect of GM
crops on carbon emissions. First, we show that the adoption of GM varieties increased
the yield and harvested area of major GM crops by 13.8% and 15.0%, respectively.
Second, we find that GM crops increased per area input of fertilizer and energy, two
major sources of carbon emissions, by 23.3% and 8.0%, respectively. Third, GM crops
increased total crop area, encouraged multiple cropping, crowded out non-GM crops,
and reduced tree cover. Fourth, GM crops reduced the average quality of the land
cultivating GM crops. Finally, we show that the effect on carbon emissions per yield is
larger in countries more likely to reclaim low-quality marginal land (i.e., countries with
lower farmland per capita and lower GDP per capita). Therefore, a potential way to
reduce the impact of GM crops on carbon emissions is to limit their cultivation to the
most suitable land for them.

Finally, we investigate the potential effect of agricultural trade on mitigating the
impact of GM crops on carbon emissions. We show that GM countries on average
have a lower carbon emissions per crop yield than non-GM countries, suggesting that
the carbon-emission effect can be partly offset by exporting GM crops. However, only
one-third of the additional crop output is directly exported and the remainder is used
for domestic consumption, especially for livestock production. The substantial increase
in domestic livestock production further increases carbon emissions, and this effect
cannot be mitigated by exporting livestock because non-GM countries on average have
a lower carbon-emission intensity in livestock production. Therefore, encouraging the
export of crops from GM countries to non-GM countries with higher carbon-emission
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intensity could also mitigate the impact on global carbon emissions.

This paper contributes to the literature on evaluating the impact of GM crops.
Many studies have examined the impact of GM crops on yield (Qaim & De Janvry,
2003), farmer health (Huang et al., 2002), consumer willingness to pay (Kimenju &
De Groote, 2008), production inputs (Ahmed et al., 2021), land use change (Villoria,
2019), structural transformation (Bustos et al., 2016), grain trade (Nes et al., 2022),
and biodiversity (Noack et al., 2024). Only a small number of studies examined the
effect of GM crops on carbon emissions based on field trials or scientific emission
models (e.g., Carpenter, 2010; Brookes, 2022). For a given farmland area, these studies
generally suggest that GM crops reduced carbon emissions by increasing the efficiency
of production inputs. However, our study illustrates that when farmers are allowed to
expand the production scale, GM crops could substantially increase the total amount
and intensity of agricultural carbon emissions. The inconsistency between our findings
and previous field-trial based studies can be explained by the well-known Jevons paradox
(Jevons, 1866).

This paper also contributes to the literature on examining the determinants of
agricultural carbon emissions. Existing studies have examined the effect of agricultural
productivity (Jones & Sands, 2013), land savings (Hong et al., 2022), land use change
(Havlík et al., 2013), land management (Baker et al., 2013), irrigation (Zhao et al., 2018),
and agricultural subsidies (Laborde et al., 2021) on agricultural carbon emissions. Our
study complements the literature by examining one of the most important agricultural
technology progress, genetic modification of crops, on agricultural carbon emissions.
An important implication of our study is that technology progress not necessarily
reduce carbon emissions, even when the technology progress improves the efficient of
the high-emission inputs.

The remainder of the study proceeds as follows. Section 2 provides the background
of this study, Section 3 presents the conceptual model, Section 4 describes the data
and the empirical strategy, Section 5 presents the main results, Section 6 examines the
mechanisms of the effect, and Section 7 concludes.
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2 Background

2.1 Agricultural carbon emissions

In 2021, the carbon emissions from global agrifood systems reached 16 billion tonnes,
representing a 14% increase since 2001 and accounting for 30% of total global
anthropogenic carbon emissions (FAO, 2023). Within the agrifood systems, livestock
(including enteric fermentation, manure management, and pasture management) account
for 31% of emissions, crop production accounts for 27%, land use (including land use
change, cultivated organic soils, and savanna burning) accounts for 24%, and the supply
chain accounts for the remaining 18% (Ritchie, 2019).

Agricultural carbon emissions consist of methane (CH4, 40–45%), nitrous oxide
(N2O, 40–50%), and carbon dioxide (CO2, 10–15%). CH4 is mostly released through
enteric fermentation in livestock and manure management, N2O arises from synthetic
fertilizer application and manure in soils and rice cultivation, while CO2 is primarily
linked to fuel combustion and land-use changes (FAO, 2020). Emissions of CH4,
N2O, and CO2 are usually converted into CO2 equivalents using their global warming
potentials, making it possible to aggregate different gases into a single emissions
measure.1

The most widely used agricultural carbon emission dataset is constructed by FAO
(https://www.fao.org). FAO calculates agricultural carbon emissions based on the
IPCC Tier 1 method (Eggleston et al., 2006; FAO, 2023).2 To make the carbon
emission data comparable across countries, the IPCC method calculates the emission
by combining default emission factors with agricultural production inputs and activity
data. Specifically, for each input or activity, such as fertilizer application, fossil fuel
consumption, or crop residue burning, the amount of input or activity is multiplied
by the corresponding emission factor to estimate the carbon emissions. In addition,
FAO also incorporates detailed adjustments to emission factors to account for specific
conditions. For example, when estimating emissions from perennial crops, FAO makes
adjustments for different crop types and climate conditions. This ensures that while
the core method relies on standard emission factors, the calculations are tailored to

1The commonly used global warming potentials for each gas are from the IPCC Fifth Assessment
Report: CO2 = 1 CO2, CH4 = 28 CO2, and N2O = 265 CO2.

2More details on the calculation process can be found at https://www.ipcc-nggip.iges.or.jp/
public/2006gl/index.html.
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capture specific agricultural practices and environmental conditions.

Note that the emission factors adopted by FAO are the same for the GM and
non-GM varieties of the same crop. This fact avoids the concern that carbon emission
effect of GM crops is artificially caused by the differences in the calculation process.
Appendix Table A1 summarizes the data sources, main steps, and factor adjustments
of the carbon emission calculation adopted by FAO. Appendix A.3 presents an example
to illustrate how FAO calculates the carbon emissions from a given crop.

2.2 Genetically modified crops

Agricultural GM technology began in the early 1980s with the creation of the first GM
plant, tobacco, in 1983. This breakthrough led to the commercialization of GM crops,
with the ’Flavr Savr’ tomato being the first approved for sale in 1994 (James, 2013).
In 1996, Monsanto introduced Roundup Ready soybean, engineered for glyphosate
resistance, which improved weed control without harming the crop (Bruening et al.,
2000). That same year, Bt corn was commercialized, designed to produce a bacterial
toxin that targeting pests while being safe for humans. Since then, GM crops such as
soybean, maize, cotton, and rapeseed have been developed for traits like pest resistance
and herbicide tolerance. These innovations have reduced the need for pesticides and
herbicides, cutting production costs and environmental impact (Carpenter, 2010).
Appendix Table A2 summarizes the key characteristics of each of the major GM crops.
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Figure 1: First harvest year of the four major GM crops in each country
Notes: This figure shows the first harvest year of the four major GM crops (maize, soybean, cotton, and rapeseed) across
countries. The four major GM crops account for 98% of global GM crop production.

The global acreage of GM crops expanded swiftly, from 1.7 million hectares in
1996 to over 190 million hectares by 2018. Figure 1 shows that by 2018, 29 major
agricultural production countries, accounting for 67% of global harvested area of field
crops, have adopted at least one of the four most widely cultivated GM crops (maize,
soybean, cotton, and rapeseed). The four major GM crops account for 98% of global
GM crop production (ISAAA, 2020). Appendix Figure A1 presents the adoption year
and adoption rate of each of the four major GM crops in each country. Since the
advent of GM technology, the global production of soybean and maize has increased
by approximately 330 million tons and 595 million tons, respectively (Brookes, 2022).
From 1996 to 2018, farmers worldwide realized a cumulative additional income of $225
billion from the use of GM technology. Although GM crops hold significant potential
and are widely utilized, they remain constrained by prohibitions. Hansen & Wingender
(2023) find that the global benefits derived from the adoption of GM crops have been
limited to only one-third of their potential now.

2.3 Trends in crop area, land quality, and carbon emissions

This subsection shows that the trends in crop area, land quality, and carbon emissions
are consistent with the main argument of this study that the adoption of GM crops
extends the crop cultivation to marginal lands with lower quality, which in turn increase
agricultural carbon emissions.
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Expanding crop area. Figure 2 presents a significant increasing trend in the
global share of the harvested area of the four major GM crops after 1996, the year when
GM varieties of these crops become available for commercialization. This increasing
trend does not exist before 1996. The share of the four GM crops increased from 15.4%
in 1996 to 20.7% in 2018. This increase is mainly driven by maize and soybean, the
two major GM field crops. Similar but more significant trends are observed in Figure 6
when focusing on the GM countries.

Figure 2: Changes in the share of the four major GM crops in global crop harvested
area

Notes: The gray dashed line represents the year when GM crops were first commercially cultivated.

Declining land quality. Figure 3 presents the grid-level land expansion and
land quality decline from 2000 to 2010 for soybean and maize, the two GM crops that
experienced significant land expansions. The 9.25km × 9.25km grid-level data for each
crop are derived from FAO’s GAEZ database (FAO, 2021) and are only available for
2000 and 2010. Panels A and B show that the cultivated area of these two crops
increased substantially over this period, consistent with what is presented in Figure
6. Panels C and D present the distribution of the grid-level land quality in each year.
We find an increase in the share of low-quality land and a reduction in the share of
high-quality land from 2000 to 2010 for both crops. The GAEZ data measures land
quality by crop-specific attainable yield, calculated by combining climate, soil, and
terrain factors of the land. As the attainable yield is time invariant, the changes in land
quality come only from changes in the cultivated area.
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Figure 3: Grid-level changes in the harvested area and land quality for maize and
soybean

Notes: Panels A and B present the grid-level changes in the harvested area for soybean and maize from 2000 to 2010.
Panels C and D present the distribution of the grid-level land quality in 2000 and 2010 for countries that cultivated the
GM varieties of these two crops. The land quality is measured by the crop-specific attainable yield, which is derived
from the FAO’s GAEZ database.

Increasing carbon emissions. Figure 4 shows that country-level carbon emissions
increased significantly for the crop sector (Panel A) and for the whole agricultural sector
(Panel B) following the adoption of GM crops. Specifically, we plot the distribution of
country-level log carbon emissions in both 1996 and 2018. We use the data from all
countries instead of only GM countries considering that carbon emissions of non-GM
countries could also be affected through crop trade. We find significant rightward shift
in the distribution of carbon emissions from 1996 to 2018, suggesting a significant
positive effect of GM crops on global carbon emissions. Similar trends in crop-level
carbon emissions per area are presented in Appendix Figure A2.
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Figure 4: Distributions of agricultural carbon emissions in 1996 and 2018
Notes: The figure presents the distributions of country-level log total carbon emissions for the crop sector and the entire
agricultural sector in 1996 and 2018.

3 Conceptual Framework

3.1 Potential channels of the effect

Figure 5 presents the potential channels for GM crops to affect agricultural carbon
emissions. The effect channels can be roughly classified as direct effect channels and
indirect effect channels. We will examine each of these channels in our empirical analysis.
A key implication of these channels for our empirical analysis is that, as GM crops could
affect the carbon emissions of non-GM crops and non-crop agricultural production, one
should focus on the entire agricultural sector when examining the effect of GM crops
on carbon emissions.
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Figure 5: Mechanisms of the effect of GM crops on carbon emissions

Direct effect channels. GM crops could affect total agricultural carbon emissions
and the emission intensity by altering the production inputs and types of land use.
Compared with non-GM crops, GM crops may require different amounts of fertilizers,
pesticides, and energy (for machinery and irrigation) (Noack et al., 2024), and these
changes could affect agricultural carbon emissions. In addition, higher profit from GM
crops may convert other types of agricultural lands, such as forest and grasslands, into
crop production and reallocate land from other crops to GM crops (Carreira et al.,
2024). Given that different types of land use and crop types have varying carbon
emissions, the GM-induced land use change could affect carbon emissions (Searchinger
et al., 2018). Higher profit from GM crops may also lead farmers to increase multiple
cropping, reduce fallow, and utilize marginal lands for production (Klümper & Qaim,
2014). These changes could lower the land quality and increase production inputs and
carbon emissions.

Indirect effect channels. GM crops have the potential to indirectly affect carbon
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emissions through livestock production and agricultural trade. Crops, along with their
stalks, are major inputs in livestock production (Van Eenennaam & Young, 2014).3

The adoption of GM crops may reduce the cost and increase the output of livestock
production. Given that livestock production accounts for more than one-third of
agricultural carbon emissions, the impact of GM crops on livestock production could
affect total agricultural carbon emissions. In addition, changes in the output and price
of crops and livestock could affect agricultural trade. Since agricultural carbon-emission
intensity varies across countries, the GM-induced changes in agricultural trade could
also affect global agricultural carbon emissions (Nguyen et al., 2021).

3.2 A simple theoretical model

We develop a simple model to illustrate the direct effect of GM crops on agricultural
carbon emissions. To separate the effects from input adjustment, land expansion,
and land quality decline, the model examines the effect in each of the following three
scenarios: (1) fixed land area; (2) flexible land area with constant land quality; and
(3) flexible land area with declining land quality. The model focuses only on the direct
effect, which is also the focus of our empirical analysis.

3.2.1 Model setup

A representative farmer aims to maximize agricultural revenue through the cultivation
of a single crop. Agricultural production depends on farmland T and a composite input
E , which includes fertilizers, pesticides, energy, irrigation, and labor. The adoption of
GM crops is a factor-augmenting technical progress (Bustos et al., 2016) and increases
the efficiency of the composite input by a factor of θ > 1, reflecting the fact that GM
crops save various inputs such as pesticides, energy, and labor (Qaim & Zilberman,
2003; Klümper & Qaim, 2014). The production function is given by:

Y = A[θE]β[q(T )T ]1−β, (1)

3Maize and soybean are major inputs in livestock production in many countries. Cottonseed can
be refined into cottonseed cake for livestock feed. Stalks of these crops can be used in animal feed,
providing fiber and other nutritional components.

12



where 0 < β < 1 and A is the constant total factor productivity. The land quality
function q(T ) captures the effect of land expansion on land quality:

q(T ) = (T0

T
)α, 0 ≤ α < 1, (2)

where T0 is the initial land area managed by the farmer, T is the current land area, and
α is a parameter capturing the effect of land expansion on land quality. Specifically,
α = 0 implies a constant land quality, while α > 0 implies a declining average land
quality with land expansion. The assumption of α > 0 is consistent with the fact that
the best lands are typically first used (Gollin et al., 2021).

The farmer maximizes total profits:

max
E,T

Π = PY − wEE − wT T, (3)

where P is the price of the output, and wE and wT are the prices of E and T , respectively.
We assume that the adoption of GM crops does not affect prices; the effect of price
changes will be discussed later.

We prefer to interpret farmland expansion as an expansion of harvested area because
the adoption of GM crops could lead to an increase in multiple cropping (or equivalently,
a reduction in seasonal fallow), which increases the harvested area for a given land area.
An increase in multiple cropping has similar effects as land expansion in increasing crop
output and reducing land quality. Studies suggest that increases in multiple cropping
usually lead to more than proportional increases in production inputs, such as fertilizers
and energy (Tilman et al., 2002; Zhang et al., 2013).

Total carbon emissions increase with the flexible input E and land T :

C = aE + bT γ, a, b > 0, γ > 1.

This model setting reflects that production inputs and land use changes are the two
primary sources of crop carbon emissions (subsection 2.1). We allow γ > 1 to reflect
the fact that land expansion could lead to more than proportional increase in carbon
emissions. Land expansion usually requires clearing vegetation, leveling the land,
and improving soil quality before the production, and these activities could generate
additional carbon emissions. More importantly, as mentioned above, if the land
expansion takes the form of increased multiple cropping, it could lead to a more than
proportional increase in production inputs; these changes are not captured by the
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flexible inputs E in our model setting.

We measure carbon-emission intensity by emissions per area and emissions per yield:

Iarea = aE + bT γ

T
,

Iyield = aE + bT γ

Y
.

3.2.2 Scenario 1: Fixed land area

In the case fixed land area (i.e., T = T0), the profit maximizing condition of the farmer
is:

PAβθβEβ−1T 1−β
0 = wE.

In the equilibrium, the total carbon emissions are

C = a

(
wE

PAβθβT 1−β
0

) 1
β−1

+ bT γ
0 , (4)

and the carbon-emission intensities are

Iarea =
(

wE

PAβθβ

) 1
β−1

+ bT γ−1
0 , (5)

Iyield = aPβ

wE

+ b

A
T γ−1

0 (PAβθ

wE

)
β

β−1 . (6)

As β < 1, equations (4), (5), and (6) suggest that the adoption of the GM crops (i.e.,
an increase in θ) increases total carbon emissions, increases carbon emissions per area,
and reduces carbon emissions per yield.

Proposition 1 For a fixed farmland area, the adoption of the GM crops increases total
carbon emissions, increases carbon emissions per area, and reduces carbon emissions
per yield.
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3.2.3 Scenario 2: Flexible land area but constant land quality

In the case of flexible land area but constant land quality (i.e.,α = 0), the first order
conditions with respect to E and T imply that

T

E
= (1 − β)wE

βwT

, T = T̄ , PAβθβE∗β−1T̄ 1−β = wE, (7)

where T̄ is the maximum land area available for the farmer to rent in4. The equilibrium
total carbon emissions, emissions per area, and emissions per yield are

C = a

(
wE

PAβθβT̄ 1−β

) 1
β−1

+ bT̄ γ, (8)

Iarea =
(

wE

PAβθβ

) 1
β−1

+ bT̄ γ−1, (9)

Iyield = aPβ

wE

+ b

A
T̄ γ−1(PAβθ

wE

)
β

β−1 . (10)

The only difference from scenario 1 is that land expansion caused by the adoption of
GM crops increases total carbon emissions, emissions per area, and emissions per yield,
given that T̄ > T0 and γ > 1. The opposing effects of T̄ and θ in equation (10) imply
an ambiguous effect of GM crops on carbon emissions per yield.

Proposition 2 For a flexible land area but constant land quality, the adoption of
GM crops increases total carbon emissions and carbon emissions per area, but has an
ambiguous effect on carbon emissions per yield.

3.2.4 Scenario 3: Land quality declines as land expansion

In the case of declining land quality (i.e., α > 0), the first order conditions imply that

T = (1 − α)(1 − β)wE

βwT

E. (11)

4As prices are assumed to be constant, the equilibrium land area is in a corner solution that adopts
all the available land. Assuming an increasing land price will avoid the corner solution but not affect
the model prediction.
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Let K = (1−α)(1−β)wE

βwT
, the equilibrium total carbon emissions and emission intensities

are:
C = a

K
T ∗ + bT ∗γ = a( wE

PAθβ
)

1
α(β−1)

T0K
1−α

α + b( wE

PAθβ
)

γ
α(β−1)

T γ
0 K

γ
α , (12)

Iarea = a

K
+ bT ∗γ−1 = a

K
+ b( wE

PAθβ
)

γ−1
α(β−1)

T 1−γ
0 K

γ−1
α (13)

Iyield =
(

a

K
T ∗α(1−β) + bT ∗α(1−β)+(γ−1)

)KβT
α(1−β)
0

Aθβ


= aP

wE

+ b
( 1

Aθβ

) γ−1
α(β−1)

T 1−γ
0

(
wE

Pβ

) γ−1+α−αβ
α(β−1)

K(α−1)(1−β)+γ

(14)

Therefore, the adoption of GM crops increases total carbon emissions, emissions per
area, and emissions per yield.

Proposition 3 For flexible land area and declining land quality, the adoption of GM
crops increases the total carbon emissions and carbon emissions per area and per yield.

The last scenario is most realistic as the data show significant expansion of cropland
(Figure 2) and a decline in land quality (Figure 3) after the adoption of GM crops.
The first two scenarios are useful for highlighting that the expansion of cultivation to
marginal lands with lower quality is the main cause of increased carbon emissions per
yield; total carbon emissions and emissions per area are predicted to increase in each of
the three scenarios.

3.2.5 The effect of price changes

Price changes resulting from GM crop adoption could affect production decisions and
thus carbon emissions. It is most likely that GM crops reduce the price of output P

and increase the prices of the flexible inputs wE and land wT . The above equilibrium
conditions suggest that a lower output price reduces carbon emissions by reducing
production. However, this does not alter the prediction of the model as long as GM
crops still increase the output. Similarly, the increase in input and land prices only
partially offsets the effect of GM crops on carbon emissions and is unlikely to alter the
qualitative implications of the model.
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4 Data and Empirical Strategy

4.1 Data

Our analysis relies on data from 145 countries from 1985 to 2018. We exclude the data
after 2018 to avoid the confounding effect of COVID-19. We exclude countries with a
total farmland area of less than 100,000 hectares and those that never cultivate any of
the four GM crops (maize, soybean, cotton, and rapeseed). The 145 sample countries
account for 99% of the global agricultural output in 2018.

4.1.1 GM crop adoption data

The GM crop adoption data for the four major GM crops are compiled by Hansen &
Wingender (2023). The data contain the approval year and commercialization year of
each GM crop in each country where the GM variety is adopted. The commercialization
year is defined as the first year when a GM variety of the crop is first harvested and
commercially marketed for human consumption or animal feed in the country. The
data also contain the country-level harvested area of each GM crops in each year.
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Figure 6: Adoption of the four major GM crops
Notes: This figure presents the adoption rate and area of the four major GM crops. For each crop, the solid line presents
the global share of the harvested area, the dashed line presents the share of the harvested area in GM countries, and the
dash-dotted lines show the global total harvested area.

Figure 6 presents the global adoption rate and area of the four major GM crops.
Starting from 1996, the adoption rate in GM countries significantly increased and
reaching nearly 100% for soybean and cotton and 80% for maize and rapeseed by 2018.
By 2018, GM soybean and cotton accounted for more than half of the global harvested
area of these two crops, while GM maize and rapeseed accounted for approximately
one-fifth. Globally, the cultivated area of GM varieties reached 79 million ha for
soybean, 51 million ha for maize, 24 million ha for cotton, and 10 million ha for
rapeseed. Appendix Figure A1 presents the adoption rate of the major GM crops in
each country.

4.1.2 Carbon emissions data

Our main analysis utilizes two country-level measures of carbon emissions: carbon
emissions from all crops (i.e., crop carbon emissions) and carbon emissions from the
entire agricultural sector (i.e., agricultural carbon emissions). In supplementary analysis,
we will also use carbon emissions from each crop and from livestock production. All the
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data are available from 1985 to 2018 in the FAO dataset5. Our main analysis does not
use crop-level emissions for two reasons. First, the Conceptual Framework suggests that
focusing on specific GM crops tends to underestimate the impact on carbon emissions
as the adoption of GM crops could affect the carbon emissions of non-GM crops and
non-crop agricultural production. Second, the crop-level carbon emission data are only
available for two major GM crops (maize and soybean) and a limited set of non-GM
crops (barley, millet, oats, potatoes, rice, rye, sorghum, sugar cane, and wheat).

Crop carbon emissions refer to the carbon emissions from all crops in the country
in a year. In FAO data, crop carbon emissions are also referred to as emissions from
agricultural soils, which include emissions from synthetic fertilizers, manure applied to
soils, manure left on pasture, crop residues, cultivation of organic soils, and synthetic
fertilizers. Agricultural carbon emissions refer to emissions from all agricultural sectors,
including crop production, livestock production, and forestry. All these emissions
measures are calculated at the farm gate, excluding emissions from the subsequent
transportation and consumption of agricultural products. More details about the
construction of the FAO carbon emission data are provided in subsection 2.1.

We construct two measures of carbon-emission intensity for crop production: carbon
emissions per area (hectare) and carbon emissions per yield (ton). These measures are
calculated by dividing country-level total carbon emissions from crop production by crop
area or by crop output. The crop area and crop output data are also derived from FAO.
We also calculate crop-level emission intensity for individual crops in robustness checks.
Our main analysis does not utilize the emission intensity for the entire agricultural
sector as it is challenging to combine the emission intensities from different types of
agricultural production.6

Appendix Table A3 presents the summary statistics of these emission measures.
Appendix Figure A2 presents the crop-level trends of carbon emissions per area from
1985 to 2018 for crops with carbon emission data. Appendix Figure A3 presents the
distribution of national total agricultural carbon emissions across the sample countries.
Appendix Figure A4 presents the national carbon-emission intensity for each country.

5https://www.fao.org/faostat/en/#data/GT
6In a robustness check presented in Appendix Figure A9, we also measure the emission intensity of

the entire agricultural sector by emissions per value of agricultural output.
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4.1.3 Auxiliary data

Our analysis also uses crop-level data on yield and harvested area; country-level data
on fertilizer, pesticide, energy use, and irrigated area; as well as country-level data on
different types of agricultural land uses. The land use data include the total farmland
area, the harvested area of all crops, tree cover area, and forest area. The tree cover
area includes not only contiguous forested regions but also fragmented areas of tree
coverage. All these data are derived from the FAO. We also use various climatic control
variables: annual mean temperature, annual total precipitation, diurnal temperature
range, mean cloud cover, ground frost frequency, potential evapotranspiration, vapor
pressure, and number of rain days. The climate data are derived from the Climatic
Research Unit, one of the most widely used observed climate datasets.

4.2 Country-level regression models

Following Hansen & Wingender (2023), we estimate the effect of GM crops based
on comparing countries that adopted GM crops early and later, and countries never
adopted GM crops (as the pure control group). This identification strategy critically
depends on the parallel trends assumption, which states that countries adopt GM crops
early and later have no preexisting differential trends in carbon emissions. We support
this assumption by the following event study regression:

lnyit = α +
J∑

j=2
βj(Lag j)it +

K∑
k=0

γk(Lead k)it + µi + λt + Xitθ + εit (15)

where yit is the outcome variable of interest in country i and year t. The key outcome
variables are crop carbon emissions, agricultural carbon emissions, and carbon-emission
intensity measures. Lag j and Lead k are j-year lags and k-year leads relative to the
event year of the country. We define the event year as the first year when the first GM
crops (among the four major GM crops) are harvested in the country. In robustness
checks, we will also define the event year as the approval year of the first GM crops
in the country. The first lag ( j = 1) is used as the base year and excluded from the
model.

The model includes the country-fixed effects (µi) to account for country-specific
time-invariant determinants of carbon emissions and GM crop adoption, such as
agro-climatic conditions, economic incentives, and levels of public acceptance. The
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model includes the year-fixed effects (λt) to account for annual shocks common to all
countries. The model also includes a vector of exogenous climatic control variables (Xit)
to address concerns about the confounding effects from climate fluctuations.7 The error
term (εit) is clustered at the region-year level to address the potential bias in the error
term caused by spatial correlation and autocorrelation.8 To assign greater weight to
countries with more agricultural production, we estimate the model using country-level
harvested area as weight.

As presented in Figure 7, the event-study estimates suggest no evidence of preexisting
differential trends. This finding is not surprising since the timing of GM crop adoption
is unlikely to be affected by carbon emissions and their determinants. The timing of
GM crop adoption is determined by factors such as domestic policy and legislation,
economic incentives, and levels of public acceptance, and these factors are unlikely to be
major determinants of agricultural carbon emissions. Even if there are time-invariant
factors that could affect both the timing of adoption and carbon emissions, they should
have been accounted for by the country-fixed effects. Appendix Table A4 provides
further support for the exogeneity of the timing of GM crop adoption by showing that
it is uncorrelated with major determinants of agricultural carbon emissions.

To evaluate the average effect of GM crop adoption, we also estimate the following
staggered DID model:

lnyit = α + β1Treati × Postt + µi + λt + Xitθ + εit (16)

where the dummy variable Postt equals 1 for years after the first GM crop adoption
and equals 0 otherwise, and the dummy variable Treati equals 1 for countries that
adopted any of the four GM crops and 0 otherwise. All other model settings are the
same as those in the event study model.

7The climatic measures are annual mean temperature, annual total precipitation, diurnal
temperature range, mean cloud cover, ground frost frequency, potential evapotranspiration, vapor
pressure, and number of rain days.

8We adopt the standard region classification of East Asia and Pacific, Europe and Central Asia,
Latin America and Caribbean, Middle East and North Africa, North America, South Asia, and
Sub-Saharan Africa.
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4.3 Crop-level regression models

We use the following crop-level event-study regression model for robustness checks and
mechanism analyses:

yict = α +
J∑

j=2
βj(Lag j)ict +

K∑
k=0

γk(Lead k)ict + σit + ωct + πic + εict (17)

where yict is the outcome variable of interest for crop c in country i and year t. We
do not apply log transformation to the outcome variable because the crop-level data
contains many zeros; many countries do not cultivate all of the four crops. As an instead,
we follow the literature (Cohn et al., 2022; Chen & Roth, 2024) and adopt Poisson
regression with a quasi-maximum likelihood method to estimate the effect at the crop
level. σit, ωct, and πic are country-by-year fixed effects, crop-by-year fixed effects, and
country-by-crop fixed effects, respectively. Therefore, the identification depends mainly
on within-country variation across crops and over time, further reducing concerns of
omitted variables. The lags and leads are defined at the crop level; the first harvested
year of the GM variety of crop c in country i is defined as the event time. The error
term is clustered at the country-crop level.

We estimate the following crop-level staggered DID model to capture the average
effect:

yict = α + β1Treatic × Posttc + σit + ωct + πic + εit (18)

where the dummy variable Treatic equals one if crop c in country i is one of the four
major GM crops, and the dummy variable Posttc equals one if year t is after the
adoption of the GM variety of crop c in the country. All other variables are defined the
same as in model (17).

Non-GM crops are used as the pure control group in the estimation. To enhance
comparability, we limit the pure control crops to the FAO classification of cereals, pulses,
oil crops, and fiber crops that belong to the same crop types as the four GM crops. We
exclude fruits, nuts, vegetables, and tuber and root crops because they are biologically
different from the four GM crops and differ in production methods. For robustness
checks, we further limit the pure control crops to 15 crops that are biologically most
similar to the four GM crops: rice, wheat, barley, sorghum, lentils, chickpeas, millet,
groundnuts, cowpeas, pigeon peas, melonseed, bambara beans, jute, kenaf, and ramie.
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5 Main Results

5.1 Total carbon emissions

Figure 7 presents the dynamic effects of GM crop adoption on carbon emissions,
estimated based on the Event-Study model (15). We estimate both the effects on crop
carbon emissions and total agricultural carbon emissions. As detailed in subsection
3.1, the adoption of GM crops could affect the carbon emission from non-GM crops
and non-crop agricultural production. As such, our baseline estimation focuses on the
entire agricultural sector and all crops, rather than only the GM crops. The estimates
suggest that countries exhibited no differing trends in carbon emissions before GM crop
adoption, consistent with the parallel trends hypothesis. The estimates also suggest
that GM crops significantly increased carbon emissions over time. The estimated
effect on agricultural carbon emissions is comparable to that on crop carbon emissions,
suggesting a substantial effect on the carbon emission of non-crop productions, which
will be verified later.9

9Figure 7 also shows that the carbon-emission effect peaked approximately five years after the
adoption of GM crops, consistent with the observation in Appendix Figure A1 that once a country
adopts GM crops, the adoption rate of the GM crops tends to peak in approximately five years.
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Figure 7: Dynamic effects of GM crop adoption on agricultural carbon emissions
Notes: This figure presents the event-study estimates based on model (15) and the corresponding 95% confidence
intervals. The dependent variables in Panels A and B are the country-level total carbon emissions from the cropping
sector and the entire agricultural sector, respectively. The dashed vertical line indicates the year prior to GM crop
adoption. The confidence intervals are computed based on standard errors clustered at the region-year level.

We provide several robustness checks for the baseline event-study estimates.
Appendix Figure A5 addresses the potential concern of treatment effect heterogeneity
by adopting the interaction-weighted estimators of Sun & Abraham (2021) and the
interpolated estimators of Borusyak et al. (2024). The resulting estimates are comparable
to the baseline estimates. Appendix Figure A6 utilizes the approval time instead of the
adoption time of GM crops as the event time and finds similar estimates. Finally, we
exclude rapeseed, the GM crops that has been adopted only in three countries, from
the estimation and find the same estimates.10

Table 1 reports the DID estimates based on model (16). Column 1a shows that GM
crop adoption increased crop carbon emissions by 8.1%. The estimate remains robust

10Excluding rapeseed results in exactly the same estimates because rapeseed is not the first GM
crop adopted in these three countries; our event study utilizes the adoption year of the first GM crops
in a country as the event time.
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when a set of climatic control variables is included (column 1b) to address the concern
that the finding could be confounded by the reverse effect of climate change (Stocker
et al., 2013). The estimate is also robust to excluding data before 1990 (column 1c) to
address the potential confounding effect of earlier policies. Appendix Tables A5 and A8
provide additional robustness checks to show that the result is not sensitive to using
the approval time of GM crops as the event time, using the adoption rate of GM crops
as the key explanatory variable, adopting a Poisson regression, and excluding the top 3
GM-crop production countries from the sample.

Table 1: Effects of GM crop adoption on agricultural carbon emissions

Crop carbon emissions Agricultural carbon emissions

(1a) (1b) (1c) (2a) (2b) (2c)

Treati × Postt
0.081*** 0.071*** 0.078*** 0.081*** 0.074*** 0.090***
[0.025] [0.022] [0.025] [0.027] [0.025] [0.026]

Control variables No Yes No No Yes No
Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Drop years before 1990 No No Yes No No Yes
Observations 4,364 4,241 3,741 4,364 4,241 3,741

Notes: This table presents the effect of GM crop adoption on total agricultural carbon emissions, estimated based
on model (16). Columns 1a–1c present the effect on crop carbon emissions, and Columns 2a–2c present the effect on
agricultural carbon emissions. Columns 1a and 2a present the baseline estimate, columns 1b and 2b additionally control
for a set of climatic measures (see Footnote 7), and columns 1c and 2c exclude data before 1990. Standard errors reported
in square brackets are clustered at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Columns 2a–2c present the estimated effect on agricultural carbon emissions. One
would expect to see a smaller effect on agricultural carbon emissions than on crop carbon
emissions if GM crops only affect the cropping sector. However, the estimated effect
on agricultural carbon emissions is close to that on crop carbon emissions, suggesting
that GM crops also significantly increased the carbon emissions of non-crop agricultural
production. Appendix Table A6 supports this observation by showing that GM crop
adoption increased the carbon emissions from livestock production by 12.0%. The
corresponding event study (Appendix Figure A7) confirms that the estimated effect on
emissions from livestock production is not driven by preexisting trends. This finding is
consistent with the fact that the four GM crops, along with their stalks, serve as major
inputs in livestock production (see Footnote 3 for details).
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5.2 Emission intensity

We then estimate the impact on crop carbon-emission intensity. We adopt two intensity
measures: emissions per area and emissions per yield of crop. As it is difficult to measure
the emission intensity of the entire agricultural sector, our main analysis focuses only
on crop carbon-emission intensities.11 Examining the effect on crop emission intensity
enables us to show that GM crops affect total carbon emissions not only through
increasing total crop output. If total crop carbon emission is proportional to total crop
output, we should find no significant effect of GM crops on crop carbon emissions per
area or per yield.

Figure 8 presents the event-study estimates based on model (15). Panel A presents
the effect on per area carbon emissions, while Panel B presents the effect on per yield
carbon emissions. The estimates support the parallel trends assumption and suggest a
significantly positive and increasing effect on carbon emissions per area and per yield
over time. Appendix Figure A8 presents similar parallel trends and dynamic effects
when using the approval time of GM crops in each country, instead of the adoption
time as the event time in the event study.

11Appendix Figure A9 adopts the intensity measure of carbon emissions per value of agricultural
output and found a comparable result.
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Figure 8: Dynamic effects of GM crop adoption on crop carbon-emission intensities
Notes: This figure presents the event-study estimates based on model (15) and the corresponding 95% confidence
intervals. The dependent variables in Panels A and B are the country-level crop carbon emissions per area and per
yield, respectively. The dashed vertical line indicates the year before GM crop adoption. The confidence intervals are
computed based on standard errors that are clustered at the region-year level.

Table 2 reports the DID estimates based on model (16). Column 1a shows that GM
crops increased crop carbon emissions per area by 10.8%. The estimate is robust to
including a set of climatic control variables (column 1b) and excluding data before 1990
(column 1c). Columns 2a–2c show similar results for crop carbon emissions per yield.
Additional robustness checks presented in Appendix Tables A7 and A8 find comparable
results when using the approval time of GM crops as the event time, using the adoption
rate of GM crops as the key explanatory variable, and adopting a Poisson regression to
estimate the effect, and excluding the top 3 GM-crop production countries from the
sample. These findings suggest that the estimated effect on total carbon emissions is
not solely driven by a proportional increase in total crop output.
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Table 2: Effects on crop carbon-emission intensity

Carbon emissions per area Carbon emissions per yield
kg/ha kg/ton

(1a) (1b) (1c) (2a) (2b) (2c)

Treati × Postt
0.108*** 0.091*** 0.087*** 0.102*** 0.094*** 0.101***
[0.016] [0.014] [0.015] [0.017] [0.017] [0.018]

Control variables No Yes No No Yes No
Year FE Yes Yes Yes Yes Yes Yes
country FE Yes Yes Yes Yes Yes Yes
Drop years before 1990 No No Yes No No Yes
Observations 4,364 4,241 3,741 4,364 4,241 3,741

Notes: This table presents the effect of GM crop adoption on crop carbon-emission intensities, estimated based on model
(16). Columns 1a–1c present the effect on emissions per area, while columns 2a–2c present the effect on emissions per
yield. Columns 1a and 2a present the baseline estimate, columns 1b and 2b additionally control for a set of climatic
measures, and columns 1c and 2c exclude data before 1990. Standard errors reported in square brackets are clustered at
the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

5.3 Crop-level estimates

To further verify the impact of GM crops on carbon emissions, we present crop-level
estimates for maize and soybean, the two major GM crops with carbon emission data.
The estimation is based on a comparison of carbon emissions from these two crops
with emissions from non-GM crops with carbon emissions data (barley, millet, oats,
potatoes, rice, rye, sorghum, sugar cane, and wheat). Table 3 presents the crop-level
DID estimates based on model (18). We find that the adoption of the GM varieties
for maize and soybean increased their total carbon emissions by 14.4% (column 1a),
emissions per area by 5.7% (column 2a), and emissions per yield by 10.5% (column 3a).
Columns 1b, 2b, and 3b present the robustness checks that exclude the less comparable
non-GM crops from the control group of the estimation (i.e., potatoes, rice, and sugar
cane). The resulting estimates are similar. The effects on total carbon emissions and
carbon emissions per yield are comparable to those estimated for the whole cropping
sector (Tables 1 and 2). The estimated effect on carbon emissions per area is only about
half of that estimated for the whole cropping sector. This finding is consistent with the
fact that the adoption of the GM varieties increased the multiple cropping of these two
major GM crops (see Table 6).12

12The crop area in this study refers to crop harvested area. An increase in multiple cropping mean
an increase in the harvested area for given farmland.
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Table 3: Effects on the carbon emissions from maize and soybean production

Total emissions Emissions per
area

Emissions per
yield

(1a) (1b) (2a) (2b) (3a) (3b)

Treatic × Postct
0.144** 0.153** 0.057*** 0.057*** 0.105*** 0.105***
[0.062] [0.062] [0.012] [0.012] [0.031] [0.031]

Control variables Yes Yes Yes Yes Yes Yes
Country-crop FE Yes Yes Yes Yes Yes Yes
Year-country FE Yes Yes Yes Yes Yes Yes
Year-crop FE Yes Yes Yes Yes Yes Yes
Non-GM crops All Comparable All Comparable All Comparable
Observations 40,261 32,118 40,261 32,118 40,260 32,117

Notes: This table presents the effects of the adoption of GM varieties on total carbon emissions (columns 1a–1b),
emissions per area (columns 2a–2b), and emissions per yield (columns 3a–3b) for maize and soybean, estimated based on
Model (18) using Poisson regression. The control group in columns 1a, 2a, and 3a includes all non-GM crops with carbon
emissions data (barley, millet, oats, potatoes, rice, rye, sorghum, sugar cane, and wheat), while the control group in 1b,
2b, and 3b excludes the less comparable non-GM crops (i.e., potatoes, rice, and sugar cane). Standard errors reported in
square brackets are clustered at the country-crop level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

5.4 Heterogeneity

We examine the heterogeneity in the effect of GM crops on crop carbon emissions across
countries with different levels of crop output per capita, farmland per capita, GDP
per capita, annual mean temperature, and annual total precipitation. We construct a
dummy variable for each of these moderating variables. The dummy variable equals
one for countries where the 1995 value of the moderating variable is above the median,
and zero otherwise. We then interact the dummy variable with the DID component of
model (16) to examine the effect heterogeneity:

lnyit = α + β1Treati × Postt + β2Treati × Postt × Dummyi + µi + λt + Xitθ + εit (19)

We plot the estimates of β1 (Low) and β1 + β2 (High) in Figure 9. The corresponding
point estimates are presented in Appendix Tables A9 and A10.

We find no significant heterogeneity in the effect on total crop carbon emissions
(Panel A) with respect to each of the five moderating variables, although the effects
are larger (but not statistically significant) for countries with farmland per capita and
GDP per capita below the median. However, we find significantly larger effects on
carbon emissions per yield (Panel B) for countries with farmland per capita and GDP
per capita below the median. This finding is consistent with the theoretical prediction
that the expansion of the GM crop production to low-quality marginal lands is a key

29



reason for the increase in carbon emissions per yield; countries with lower farmland per
capita and lower GDP per capita are more likely to reclaim low-quality marginal lands
when facing the potential gains from GM crop production.

Figure 9: Heterogeneity of the effect on total carbon emissions (Panel A) and carbon
emissions per yield (Panel B)

Notes: This figure presents the heterogeneity in the effect of GM crops on carbon emissions with respect to crop
output per capita, farmland per capita, GDP per capita, annual mean temperature, and annual total precipitation. All
moderators are dummy variables that equal one for countries with the 1995 value of the moderator above the median.
The 95% confidence intervals (horizontal lines) are calculated using standard errors clustered at the region-year level.

6 Mechanisms

This section examines the channels through which GM crops affect agricultural carbon
emissions. As presented in Figure 5, there are two major direct effect channels (i.e.,
production inputs and land use changes) and two major indirect effect channels (i.e,
livestock production and agricultural trade) through which GM crops affect carbon
emissions.Before examining these effect channels, we verify that GM crops increased
crop yield and harvested area, which are preconditions for GM crops to increase carbon
emissions.

6.1 Effect on the yield and harvested area of GM crops

Table 4 presents the DID estimates of the effects on the yield and harvested area of the
four GM crops. The estimation is based on the crop-level regression model (18) that

30



compares the GM crops with non-GM crops that are biologically similar to these four
crops. The corresponding event-study estimates for all four crops together and for each
crop individually are presented in Appendix Figures A10 and A11.

Columns 1 and 3 of Table 4 show that the adoption of GM varieties increased the
yield and harvested area of the four GM crops by 13.8% and 15.0%, respectively.13

These effects are close to the estimated effect on carbon emissions from the GM crops
(Table 3). Columns 2 and 4 report the annual effect of GM crops, estimated based on a
modified version of model (18) that interacts the DID dummy with the number of years
after the adoption. We find an annual effect of 2.0% and 2.7% on yield and harvested
area, respectively, which is close to the estimates in the literature (Scheitrum et al.,
2020).

Table 4: Effect of the adoption of GM varieties on the yield and harvested area of the
four GM crops

(1) (2) (3) (4)
Yield Area harvest

Treatic × Postct 0.138*** 0.150**
[0.036] [0.068]

Treatic × Posttimect 0.020*** 0.027***
[0.005] [0.009]

Country-crop FE Yes Yes Yes Yes
Year-country FE Yes Yes Yes Yes
Year-crop FE Yes Yes Yes Yes
Observations 35,526 35,526 36,958 36,958

Notes: This table presents the effect of the adoption of GM varieties on the yield (columns 1 and 2) and harvested area
(columns 3 and 4) of the four GM crops, estimated based on Model (18). While columns 1 and 3 present the average
effect, columns 2 and 4 present the annual average effect. Standard errors reported in square brackets are clustered at
the country-crop level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

6.2 Effect on production inputs

Table 5 shows that GM crop adoption increased per area fertilizer use (column 1)
and energy use (column 3) by 23.3% and 8.0%, respectively, but had no significant
effect on pesticide use (column 2) and irrigation area (column 4). These effects are
estimated based on regression model (16), which uses country-level per harvested

13Some of the previous studies do not find a significantly positive effect of GM varieties on the
harvested area (Sexton & Zilberman, 2011; Barrows et al., 2014, e.g.). A potential explanation is that
these studies do not exclude crops that are not biologically comparable to GM crops from the control
group in the estimation. We have also tried to include all non-GM crops in the control group and
found a statistically insignificant effect on the harvested area (not reported).
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area inputs of crop production as the dependent variables; crop-level input data are
generally unavailable. Since fertilizer and energy are major sources of agricultural
carbon emissions, these estimates explain why GM crops substantially increased the
intensity of carbon emissions.14

Table 5: Effect of GM crop adoption on per area inputs of crop production

(1) (2) (3) (4)
Log fertilizer

per area
Log pesticide

per area
Log energy

per area
Log total

irrigation area

Treati × Postt 0.233*** 0.065 0.080* -0.019
[0.042] [0.040] [0.042] 0.013

Control variables Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 3,865 3,620 3,737 4,108

Notes: This table presents the effects of GM crop adoption on per area inputs in crop production, estimated based on a
modified version of the country-level DID Model (16) that uses each input as the dependent variable. Standard errors
reported in square brackets are clustered at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and *
p < 0.1.

6.3 Effects on land uses

Changes in agricultural land use types. We estimate the effect of GM crops on
country-level agricultural land use based on model (16). As presented in Table 6, we
find that GM crops increased the total farmland area by 3.5% (column 1) and increased
the crop harvested area by 6.8%. The larger effect on crop harvested area than on
farmland area suggests a positive effect on multiple cropping, which is another reason for
the increased inputs. We also find that GM crops reduced tree cover by 0.9% (column
3) and forest area by 0.3% (column 4), although the later estimate is not statistically
significant at the conventional level. Tree cover area includes fragmented areas of tree
coverage adjacent to contiguous forested regions. As tree cover is a net carbon sink
(Vestin, 2024), shifting land use from tree cover to crop production necessarily increases
agricultural carbon emissions.

14The insignificant effect on pesticide use is likely due to the offsetting effects of the pesticide-saving
nature of major GM crops and the expansion to marginal lands that requires more pesticides. The
insignificant effect on irrigation areas is potentially because irrigation is mainly determined by water
endowments.
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Table 6: Effect of GM crops on agricultural land use

(1) (2) (3) (4)
Log farmland

area
Log crop

harvested area
Log tree cover

area
Log forest

area

Treati × Postt 0.035*** 0.068*** -0.009*** -0.003
[0.012] [0.021] [0.004] [0.008]

Control variables Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 4,241 4,241 3,532 3,741

Notes: This table presents the effect of GM crop adoption on country-level agricultural land use, estimated based on a
version of the DID model (16) that uses log area of different types of agricultural land as the dependent variables. The
tree cover area in column 3 includes fragmented areas of tree coverage adjacent to contiguous forested regions. The
sample sizes for tree cover and forest area are smaller because data for these two variables are only available from 1991
and 1993 onward, respectively. The reported standard errors are clustered at the region-year level. Significance levels are
*** p < 0.01, ** p < 0.05, and * p < 0.1.

Crowding-out non-GM crops. In addition to affecting land use types, GM crops
may have also crowded out non-GM crops. We estimate the crowding-out effect based
on a version of the crop-level DID model (18) that uses the area of non-GM crops as
the dependent variable. Specifically, we estimate the effect of GM crop adoption on the
harvested area of non-GM crops of the same types as the four GM crops. As presented
in Appendix Table A11, the adoption of GM crops reduced the area of the same types
of non-GM crops by 4.1% (column 1). The effect is even larger (7.6%) when focusing on
the 15 most botanically similar crops (column 2). Based on the assumption that crops
are cultivated in lands most suitable for them before GM crop adoption, the crowding
out of non-GM crops implies the use of less suitable land for GM crop production. This
could increase production inputs and thus carbon emissions.

Utilizing marginal lands. The high profit of GM crops may have led to the
utilization of marginal land with lower quality. This could increase carbon emissions
as marginal lands generally require more fertilizer and energy inputs. We do not have
crop-level land quality data that can be used for rigorous analysis. The best available
data are the crop-level land quality measures from FAO’s GAEZ database (FAO, 2021),
which are only available for 2000 and 2010.15 We have presented in Figure 3 the
expansion of the cultivated area of major GM crops from 2000 to 2010 and the decline in
land quality for these crops. Appendix Figure A12 further supports this by comparing
land quality changes for each crop from 2000 to 2010 between countries that adopted

15As detailed in subsection 2.3, the GAEZ data measures land quality by crop-specific attainable
yield, calculated by combining climate, soil, and terrain factors of the land used for each crop. Therefore,
the changes in land quality over time arise solely from changes in the cultivated area.
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the GM varieties before 2010 and countries that did not. We find a significant decline
in land quality for maize and soybean in GM countries but not in non-GM countries.

6.4 Effects on livestock production and agricultural trade

This subsection provides suggestive evidence on the indirect effect of GM crops on
carbon emissions through livestock production and agricultural trade. First, we estimate
the effect of GM crop adoption on the production and export of crops and livestock.
Then, we combine these estimates with the carbon intensity of each product in GM
and non-GM countries to infer the effect of agricultural trade.

Columns 1 and 2 of Table 7 present that the adoption of GM crops increased major
crop production and export by 5.6% and 19.6%, respectively. These effects are estimated
based on modified versions of model (16) that use major crop production and export as
the dependent variables.16 When combining these effect estimates with country-average
production and export (also reported in the table), we calculate that GM crops increased
country-average crop production and export by 839 and 332 kilotonne, respectively.
Therefore, a large share (71.6%) of the increased crop output was used for domestic
consumption instead of export.

Table 7: Effect of GM crops on agricultural production and export

Major crops Livestock

(1) (2) (3) (4)
Production Export Production Export

Treati × Postt
0.056** 0.196*** 0.296*** 0.622***
[0.025] [0.067] [0.033] [0.080]

Dependent variable mean (kt) 14988 1696 1348 186
Control variables Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
country FE Yes Yes Yes Yes
Observations 4,113 3,884 3,918 3,310

Notes: This table presents the effect of GM crop adoption on the production and export of major crops (columns 1–2)
and livestock (columns 3–4), estimated based on model (16). The major crops are maize, soybean, wheat, rice, potatoes,
barley, millet, oats, rye, and sorghum. The livestock refers to meat, eggs, and dairy; these products are combined
after being converted to protein equivalent quantity. Standard errors reported in square brackets are clustered at the
region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

As major GM crops (i.e., soybean and maize) are typically used for livestock
16The major crops examined are maize, soybean, wheat, rice, potato, barley, millet, oats, rye, and

sorghum. We focus on major crops instead of only the GM crops because GM crops could affect the
production and export of non-GM crops.
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production, we also investigate the effect of GM crops on the production and export of
livestock. As presented in columns 3 and 4 of Table 7, we find that GM crop adoption
increased the production and export of livestock by 29.6% and 62.2%, respectively. The
livestock refers to meat, egg, and dairy; these products are combined after transformed
to protein equivalent quantity. Given that using crops to produce livestock generates
additional carbon emission (Herrero et al., 2013; Havlík et al., 2013), the substantial
increase in domestic livestock production suggests that livestock production is an
important channel through which GM crops to increase agricultural carbon emissions.

The effect of agricultural trade on global carbon emissions depends on the relative
carbon-emission intensities of crop and livestock production in GM and non-GM
countries. Panel A of Figure 10 shows that the carbon-emission intensity is much higher
in non-GM countries than in GM countries for maize and soybean (two GM crops
with carbon emission data). We calculate the average carbon-emission intensity as the
weighted average emissions per ton of yield, using 1996 national total output of the
product as the weights. As such, exporting GM crops to non-GM countries could reduce
global carbon emissions. Panel B of the figure shows that the livestock carbon-emission
intensity is slightly lower in non-GM countries than in GM countries.17 Therefore,
exporting livestock to non-GM countries may not reduce global carbon emissions.

17Livestock here includes meat, eggs, and dairy, aggregated in protein-equivalent terms. Livestock
carbon emissions mainly come from feed production, methane from digestion, manure, and land use.
Beef has the highest footprint, at 20-30 tons of CO2 per ton, due to high methane emissions and
resource needs. Pork and poultry are lower, at 5-7 and 4-5 tons per ton, respectively, due to better
feed efficiency and less methane.
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Figure 10: Carbon-emission intensity in GM and non-GM countries
Notes: This figure presents the weighted average carbon emissions per yield for crops (Panel A) and livestock (Panel B)
in GM and non-GM countries. We use the 1995 country-level total output of each product as the weights. Livestock
refers to meat, eggs, and dairy; these products are combined after being converted to protein-equivalent quantities.

In sum, encouraging the export of GM crops instead of the derived livestock products
may help mitigate the impact of GM crops on global carbon emissions. While we observe
that crop exports could partly offset the impact of GM crops on global carbon emissions,
less than one-third of the additional crop output resulting from GM crop adoption
is directly used for export. Most of the additional crop output are used for domestic
consumption, especially for livestock production. The domestic production and export
of livestock further increase global carbon emissions.
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7 Concluding Remarks

As agrifood systems contribute 30% of global total anthropogenic carbon emissions,
exploring ways to reduce agricultural carbon emissions is of great significance for
mitigating climate change. GM crops, initially developed and adopted to boost crop
resilience and agricultural productivity, are believed to mitigate agricultural carbon
emissions by reducing input use and conserving land. Over the past two decades, the
harvested area of GM crops has been increasing at an annual rate of 8.6%, accounting
for more than 23.7% of the harvested area of all field crops worldwide by 2023. However,
we did not observe a decline in agricultural carbon emissions following the adoption of
GM crops. Instead, the opposite trend was observed.

We develop a theoretical model to show that if the adoption of GM crops leads
farmers to extend cultivation to low-quality marginal lands, both total carbon emissions
and carbon-emission intensity will increase. This prediction is consistent with our
empirical findings that the adoption of the GM varieties increased the yield and
harvested area of the major GM crops, increased total crop areas, increased multiple
cropping, crowded out non-GM crops, reduced tree cover, increased per area input of
fertilizer and energy, and reduced the average quality of cultivated cropland.

The findings of this study suggest that agricultural technological progress does not
necessarily reduce carbon emissions, even if the technology increases the efficiency of
high-emission input use. Instead, consistent with the Jevons paradox, input saving
technology such as GM crops increases agricultural carbon emissions. Policies that limit
GM crops to lands most suitable for them could mitigate their effect on agricultural
carbon emissions. Policies encouraging the export of GM crops to countries with higher
crop carbon-emission intensities could also help mitigate the impact on global carbon
emissions.

We conclude by highlighting that our study does not assess the effect of GM crops
on welfare. Existing studies generally find that GM crop adoption increased crop yield
(Villoria, 2019; Hansen & Wingender, 2023), implying a welfare gain through alleviating
global food supply pressures and increasing the income of farmers. Many studies also
suggest a welfare-improving effect of GM crops through reducing the environmental
and health risks of chemical pollution (Carpenter, 2010; Ahmed et al., 2021). Our
study does not evaluate the relative magnitudes of welfare gain from these channels
and welfare losses from carbon emissions.
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A Appendix for Online Publication

A.1 Figure

Figure A1: Adoption rate of GM crops in each country
Notes: The data are derived from Hansen & Wingender (2023). The first harvest year of GM crops could be earlier than
the approved commercialization year in some countries where there is no legislation or existing legislation has not been
enforced.
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Figure A2: Crop-level trends of carbon emissions per area
Notes: The figure presents the global-average carbon emissions per area for each of the major crops.

Figure A3: Log agricultural carbon emissions in each country
Notes: The figure presents the association between log agricultural carbon emissions and log farmland area across
countries in 1996 and 2018, respectively.
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Figure A4: Carbon emissions per area of agricultural production
Notes: The figure presents the carbon emissions per area (kt/km2) for crop production (left) and agricultural

production (right) in each country, calculated as the average from 1985 to 2018.
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Figure A5: Robust to treatment effect heterogeneity
Notes: This figure addresses the potential concerns regarding treatment effect heterogeneity of the baseline event-study
estimates presented in Figure 7 by adopting the interaction-weighted estimators of Sun & Abraham (2021) and the
interpolated estimators of Borusyak et al. (2024). The dependent variables in Panels A and B are the country-level
total carbon emissions from the cropping sector and the entire agricultural sector, respectively. The dashed vertical line
indicates the year prior to GM crop adoption. The confidence intervals are computed based on standard errors that are
clustered at the region-year level.
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Figure A6: Robust to using the approval time as the event time
Notes: As a robustness check for the baseline event-study estimates in Figure 7, this figure substitutes the approval time
for the adoption time of GM crops as the event time. The dependent variables in Panels A and B are the country-level
total carbon emissions from the cropping sector and the entire agricultural sector, respectively. The dashed vertical line
indicates the year before GM crop adoption. The confidence intervals are computed based on standard errors that are
clustered at the region-year level.
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Figure A7: Dynamic effects of GM crops on livestock carbon emissions
Notes: This figure presents the effect of GM crop adoption on carbon emissions from livestock production, estimated
based on model (15). The confidence intervals are computed based on standard errors that are clustered at the region-year
level.
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Figure A8: Dynamic effects of GM crop adoption on crop carbon-emission intensities
(approval time)

Notes: This figure provides a robustness check for the event-study estimates shown in Figure 8, using the approval time
of GM crops in each country instead of the adoption time as the event time. The dependent variables in Panels A and B
are the country-level crop carbon emissions per area and per yield, respectively. The dashed vertical line indicates the
year before GM crop adoption. The confidence intervals are computed based on standard errors that are clustered at the
region-year level.
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Figure A9: Dynamic effects of GM crop adoption on carbon emissions per value
Notes: This figure presents robustness checks for the event-study estimates presented in Figure 8, using carbon emissions
per value of crop production (Panel A) and per value of agricultural production (Panel B) as the dependent variables.
The dashed vertical line indicates the year before GM crop adoption. The confidence intervals are computed based on
standard errors that are clustered at the region-year level.
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Figure A10: Dynamic effects of the adoption of GM varieties on the yield and
harvested area of the four GM crops

Notes: The figure reports the effects of GM varieties on the yield (Panel A) and harvested area (Panel B) of the four
GM crops, estimated based on the event-study model (17) using Poisson regression. Standard errors are clustered at the
country-crop level.
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Figure A11: Dynamic effects of the adoption of GM varieties on the yield and
harvested area of each major GM crop

Notes: The figure reports the effects of GM varieties on the yield and harvested area of each of the four GM crops,
estimated based on a modified version of the event-study model (17) using Poisson regression. Standard errors are
clustered at the country-crop level.
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Figure A12: Crop-level land quality changes in GM and non-GM countries from 2000
to 2010

Notes: This figure presents the changes in crop-level attainable yield, a measure of land quality, from 2000 to 2010 in
GM and non-GM countries, calculated based on the raster data from the FAO’s GAEZ database. GM countries are
those that adopted the GM variety of the crop before 2010, while non-GM countries are those that did not.
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A.2 Table

Table A1: Details of FAO’s calculation of agricultural carbon emissions

Source Step Data source Adjustments

Fertilizer use Amount of nitrogen
fertilizer × emission factor

National agricultural
statistics, surveys

Adjustments for local
conditions such as soil type
or climate

Crop residue
burning

Amount of crop residue
burned × crop-specific
emission factors

National agricultural
surveys

Emission factors vary by crop
type and regional conditions

Rice
cultivation

Area of rice cultivation ×
emission factors, adjusted
for water management
and organic amendments

Agricultural census,
land use data

Adjustments based on water
management (e.g., continuous
flooding vs. intermittent
drainage) and the type of
organic fertilizer applied

Land use
changes

Land area converted ×
emission factors for
carbon stock loss

Land-use change maps,
satellite data

Adjustments for different
land types, vegetation, and
soil organic carbon

Livestock
Number of livestock ×
emission factors for
enteric fermentation

Livestock statistics
from agricultural
surveys

Adjustments based on
livestock type (e.g., dairy vs.
non-dairy cattle)

Energy use
Amount of fuel (e.g.,
diesel) consumed × the
emission factors for CO2

National fuel
consumption data

Adjustments for fuel type
(diesel, electricity) and energy
source

Notes: This table summarizes the data sources, main steps, and adjustment factors used in the carbon emission
calculations adopted by the FAO, derived from the IPCC Guidelines for National Greenhouse Gas Inventories.
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Table A2: Summary of GM crops features and advantages

Category Features Maize Soybean Cotton Rapeseed

Herbicide
tolerant

HT crops can survive applications of
specific herbicides, facilitating weed
control without harming the crop.

✓ ✓ ✓ ✓

Insect
resistant

These crops produce proteins toxic to
certain insects, reducing or eliminating
insecticide use. The Bt protein is a
notable example, providing protection
against pests like the corn borer.

✓ ✓ ✓

Stacked
trait

Crops with both HT and IR traits,
combining weed and pest management
in one. This allows more efficient use of
inputs, particularly in high-pressure
environments.

✓ ✓ ✓

Output
trait

These traits improve crop
characteristics (e.g., drought tolerance
or nutritional value) without modifying
input needs, making them distinct from
input traits.

✓ ✓ ✓ ✓

Notes: This table summarizes the main features and advantages of major GM crops varieties. The data are typically
derived from: https://gm.agbioinvestor.com/

Table A3: Summary statistics

Variable Unit Obs Mean Std. Min Max

Total emissions

Crop 1000kt 4675 10.094 28.291 0.006 287.797
Agriculture 1000kt 4675 36.144 94.400 0.017 757.510
Livestock 1000kt 4675 25.013 64.099 0.017 501.865

Crop emission intensities

emissions per area t/100km2 4675 4.142 29.679 0.129 554.244
Emissions per yield t/100t 4675 9.345 30.760 0.350 453.636

Inputs of crop production

Fertilizer per area t/km2 4241 13.303 24.076 0 229.942
Pesticide per area 10t/ha 4675 1.245 2.094 0 18.034
Energy per area (carbon
equivalent) kt/km2 4068 0.417 4.471 0 86.903

Irrigation area 1000km2 4,526 20.587 77.798 0 749.427

Notes: This table reports the summary statistics of main variables.
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Table A4: Correlation between the timing of GM crop adoption and determinants of
carbon emissions

(1) (2) (3) (4) (5)

Harvested
area per
capita

Crop
output per

capita

Agricultural
carbon

emissions
per capita

Carbon
emissions
per crop

area

Carbon
emissions
per crop

yield

Adoption year 0.272 -0.067 0.541 0.402 0.166
[0.561] [0.508] [0.559] [1.726] [1.851]

Crop fixed effects Yes Yes Yes Yes Yes
Observations 38 38 38 38 38

Notes: This table reports the simple correlation between the year of the first GM crop adoption in a country and the
major determinants of carbon emissions: per capita harvested area, per capita crop output, per capita agricultural
carbon emissions, per area carbon emissions, and per yield carbon emissions. Significance levels are *** p < 0.01, ** p <
0.05, and * p < 0.1.

Table A5: Robustness checks of the effect on total agricultural carbon emissions

(1) (2) (3) (4) (5) (6)
Crop carbon emissions Agricultural carbon emissions

Approval
time

Adoption
rate

Poisson
regression

Approval
time

Adoption
rate

Poisson
regression

Treata
i × Posta

t 0.073*** 0.080***
[0.023] [0.026]

Treati × Postt ×
GMrateit

0.112*** 0.090**

[0.032] [0.035]
Treati × Postt 0.060** 0.074***

[0.026] [0.023]
Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Observations 4,265 4,364 4,364 4,265 4,364 4,364

Notes: This table presents robustness checks for the baseline estimates presented in table 1. Columns 1 and 4 use the
approval time of GM crops as the event time. Columns 2 and 5 use the adoption rate of GM crops as the key explanatory
variable. Columns 3 and 6 adopt a Poisson regression (without taking log for the dependent variable). Standard errors
reported in square brackets are clustered at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and *
p < 0.1.

55



Table A6: Effect on carbon emissions from livestock production

(1) (2) (3) (4)
Baseline Approval

time
Adoption

rate
Poisson

regression
Treati × Postt 0.120*** 0.106***

[0.031] [0.028]
Treata

i × Posta
t 0.118***

[0.026]
Treati×Postt×GMrateit 0.123***

[0.037]
Year FE Yes Yes Yes Yes
country FE Yes Yes Yes Yes
Observations 4,364 4,155 4,241 4,241

Notes: This table presents the effect of GM crop adoption on carbon emissions from livestock production, estimated
based on model (16). Column 1 presents the baseline result using first harvested time of GM crops as the event time.
Column 2 uses the GM crop approval year as the event time, column 3 uses the GM crop adoption rate as the key
explanatory variable, and column 4 adopts the Poisson regression (without taking log for the dependent variable).
Standard errors reported in square brackets are clustered at the region-year level. Significance levels are *** p < 0.01, **
p < 0.05, and * p < 0.1.

Table A7: Robustness checks of the effect on crop carbon-emission intensities

(1) (2) (3) (4) (5) (6)
Crop carbon emissions Agricultural carbon emissions

Approval
time

Adoption
rate

Poisson
regression

Approval
time

Adoption
rate

Poisson
regression

Treata
i × Posta

t 0.106*** 0.102***
[0.015] [0.017]

Treati×Postt×GMrateit 0.184*** 0.181***
[0.020] [0.026]

Treati × Postt 0.084*** 0.033*
[0.014] [0.018]

Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Observations 4,265 4,364 4,364 4,265 4,364 4,364

Notes: This table presents robustness checks for the baseline estimates in Table 2. Columns 1–3 present the effects on
crop carbon emissions per area, while columns 4–6 present the effects on crop carbon emissions per yield. Columns 1
and 4 use the approval time of GM crops as the event time. Columns 2 and 5 use the adoption rate of GM crops as the
key explanatory variable. Columns 3 and 6 adopt a Poisson regression model (without taking log for the dependent
variable). Standard errors reported in square brackets are clustered at the region-year level. Significance levels are *** p
< 0.01, ** p < 0.05, and * p < 0.1.
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Table A8: Robust to excluding top 3 GM crop production countries

(1) (2) (3) (4)
Total carbon emissions Carbon-emission intensity

Crop
production

Agricultural
production Per area Per yield

Treati × Postt 0.099*** 0.094*** 0.129*** 0.126***
[0.026] [0.024] [0.017] [0.018]

Control variables No No No No
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 4,343 4,220 4,343 4,343
R-square 0.991 0.991 0.947 0.927

Notes: This table examines the robustness of the baseline estimates in Tables 1 and 2 by excluding top 3 GM crop
production countries from the sample (i.e., the United States, Brazil, and Argentina). Standard errors reported in square
brackets are clustered at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A9: Heterogeneity of the effect on total carbon emissions

Indexi

(1) (2) (3) (4) (5)
Crop output
per capita

Farmland
per capita

GDP per
capita

Mean
temperature

Total
precipitation

Treati × Postt 0.100*** 0.089*** 0.098*** 0.077*** 0.067**
[0.033] [0.024] [0.023] [0.029] [0.028]

Indexi × Treati ×
Postt

-0.030 -0.046** -0.075*** -0.012 0.008

[0.033] [0.022] [0.023] [0.026] [0.025]
Control variables Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
country FE Yes Yes Yes Yes Yes
Observations 4,241 4,241 4,241 4,241 4,241

Notes: This table examines the heterogeneity in the effect of GM crops on carbon emissions with respect to crop output
per capita, farmland per capita, GDP per capita, annual mean temperature, and annual total precipitation. We create a
dummy variable for each of these moderating variables. The dummy variable equals one for countries with a 1995 value
of the moderating variable above the median, and zero otherwise. The dummy variable is then interacted with the DID
component of model (16) to examine the effect heterogeneity. Standard errors reported in square brackets are clustered
at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

57



Table A10: Heterogeneity of the effect on carbon emissions per yield

Indexi

(1) (2) (3) (4) (5)
Crop output
per capita

Farmland
per capita

GDP per
capita

Mean
temperature

Total
precipitation

Treati × Postt 0.080 0.149*** 0.152*** 0.118*** 0.095***
[0.065] [0.021] [0.021] [0.024] [0.022]

Indexi × Treati ×
Postt

0.014 -0.135*** -0.161*** -0.046 -0.003

[0.069] [0.027] [0.029] [0.030] [0.028]
Control variables Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
country FE Yes Yes Yes Yes Yes
Observations 4,241 4,241 4,241 4,241 4,241

Notes: This table examines the heterogeneity in the effect of GM crops on carbon emissions per yield with respect to crop
output per capita, farmland per capita, GDP per capita, annual mean temperature, and annual total precipitation. We
create a dummy variable for each of these moderating variables. The dummy variable equals one for countries with 1995
value of the moderating variable above the median, and equals zero otherwise. The dummy variable is then interacted
with the DID component of model (16) to examine the effect heterogeneity. Standard errors reported in square brackets
are clustered at the region-year level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A11: Crowding-out effect on the harvested area of non-GM crops

(1) (2)
Harvested area

Crops of the same types Botanically most similar
crops

Treati × Postit -0.041** -0.076***
[0.018] [0.025]

Control variables Yes Yes
Country-crop FE Yes Yes
Year-crop FE Yes Yes
Observations 71,611 22,759

Notes: This table presents the effect of GM crop adoption on the harvested area of non-GM crops, estimated based on
a version of the crop-level DID model (18) that uses the harvested area of non-GM crops as the dependent variable.
Column 1 examines the effect on all non-GM crops of the same types of the four GM crops, while column 2 examines the
effect on the 15 crops that are botanically most similar to the four GM crops. The errors are cluster at the country-crop
level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

A.3 An example of carbon emission calculation

Using the calculation of carbon emissions from a single crop as an example, we
illustrate how the FAO calculates agricultural carbon emissions. This example
provides a structured approach to estimating carbon emissions for crop production
in a given country, covering essential processes such as crop residue management,
nitrogen fertilizer application, fuel consumption, organic soil management, and land-use
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change. These steps ensure accurate and consistent emission estimations that align
with international standards. More details on the calculation process can be found at
https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

FAO calculates crop carbon emissions from the following key processes and stages:

Crop Residue Management: The nitrogen content in crop residues is a primary
source of N2O emissions. FAO follows Eggleston et al. (2006) guidelines, calculating
N2O emissions based on nitrogen present in crop residues. The nitrogen content is
estimated using the formula:

Nresidue = Harvested Area × Yield per Area × Nitrogen Content in Residues

FAO applies default emission factors for N2O emissions from residues and also accounts
for methane (CH4) emissions if field burning of residues occurs.

Synthetic Nitrogen Fertilizer Application: The application of nitrogen fertilizers
produces direct and indirect N2O emissions, another major source of greenhouse gas
emissions in crop production. FAO’s estimation approach uses nitrogen input data
along with IPCC default emission factors to calculate emissions from fertilizer use:

N2O Emissions (fertilizer) = Nitrogen Applied × EFfertilizer

where EFfertilizer represents the emission factor for fertilizers.

Management of Organic Soils: For crop production on organic soils (e.g., peatlands),
decomposition of soil organic matter leads to N2O and CO2 emissions. FAO estimates
these emissions based on default emission factors specific to organic soil types.

Fuel Consumption in Machinery: Fossil fuel combustion in agricultural machinery
used for planting, harvesting, and transportation contributes to CO2 emissions. FAO
includes emissions from fuel consumption by applying fuel usage rates and emission
factors:

CO2 Emissions (fuel) = Fuel Consumed × CO2 Emission Factor

Land-Use Change (if applicable): When crop cultivation involves converting forests,
grasslands, or other natural ecosystems, emissions due to soil and vegetation carbon
loss must be considered. FAO uses IPCC default coefficients to account for emissions
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from these land-use changes.

Finally, the total carbon emissions from all relevant processes are calculated by
summing the emissions of each greenhouse gas (CO2, CH4, N2O) and converting them
using global warming potential (GWP) factors from the IPCC Fifth Assessment Report:

Total CO2-eq Emissions = CO2 + CH4 × 25 + N2O × 298

where 25 and 298 are the GWP factors for CH4 and N2O, respectively.
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