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Abstract

Employing a spatial equilibrium model and exploiting staggered solar farm
installations across Chinese counties, this study reveals that solar energy de-
velopment reduces local GDP per capita by an average of 2.7%. This negative
effect, primarily from competition for high-value land, is more pronounced in
counties with high land opportunity costs. We observe a 2% increase in the
local population despite lower wages and higher housing prices, implying im-
provements in local amenities. This paper reframes the resource curse debate
by examining the impacts of renewable energy, specifically solar power.
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1 Introduction

The relationship between natural resource abundance and economic growth has

been a long-standing debate in the literature (van der Ploeg, 2011). The “resource

curse” hypothesis suggests that resource-rich countries and regions, typically those

abundant in fossil fuels and minerals, tend to experience slower economic growth

compared to their resource-poor counterparts (Sachs and Warner, 1995). This per-

spective has been challenged by proponents of the “resource blessing” argument,

who posit that natural resources can stimulate economic development when man-

aged effectively (Alexeev and Conrad, 2009). The mechanisms underlying the di-

vergent outcomes have been extensively studied in the context of conventional re-

sources.1 However, the applicability of these paradigms to renewable resources re-

main understudied, representing a significant gap in our understanding of resource-

driven economic dynamics.

This paper investigates the economic and welfare implications of the rapid ex-

pansion of solar energy. Over the past decade, solar power has become a key

renewable resource in the global energy landscape, with China emerging as a global

leader. As of 2023, China’s installed solar capacity reached 609 gigawatts (GW),

representing 37% of the global total.

Solar energy differs notably from conventional fossil fuels that warrants a dis-

tinct analysis. First, as a renewable resource, solar energy provides an alternative

to finite fossil fuels and offers environmental benefits such as reduced greenhouse

gas emissions and lower pollution. Second, from an economic perspective, solar

energy demands considerable upfront investment in infrastructure, such as photo-

voltaic panels and transmission lines, but it benefits from low operational costs

(Borenstein, 2012). Third, solar farms require substantial land areas, with photo-

voltaic panel installations and related infrastructure typically occupying an average

of 2.5 hectares per megawatt of capacity (Capellán-Pérez et al., 2017). Fourth, the

intermittency of solar power generation can introduce grid instability, necessitat-

1. Regarding resource curse, empirical studies have proposed crowding out of manufacturing
(Harding and Venables, 2016), weakened learning-by-doing spillovers (Gylfason et al., 1999), and
institutional deterioration (Mehlum et al., 2006; Ross, 2006) as main explanations. In terms of
resource blessing, Lederman and Maloney (2007) show that resource-rich countries can achieve
accelerated growth, especially with strong institutions in place. Collier and Goderis (2008) ar-
gue that resource booms facilitate industrialization and infrastructure development, leading to
increased investment in human capital and technology. Gylfason (2001) emphasizes that effec-
tive utilization of natural resources can enhance income levels and living standards, highlighting
the importance of sound economic policies. See van der Ploeg (2011) for an overview of the
literature.
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ing additional investments in energy storage or backup systems (Yin et al., 2020).

Collectively, these unique features–both advantageous and challenging–suggest that

the implications of solar energy development may differ significantly from those of

traditional natural resources.

To organize our empirical analysis, we develop a Rosen-Roback-style locational

equilibrium model. The model considers a county endowed with finite land and

population. It assumes land as the primary input for solar energy production and

that the local government allocates land among residential housing, solar farms,

and other production facilities. Residents make location choices based on the equi-

librium wage rates, housing prices, and amenities, choosing between the county

and an outside alternative. The model yields predictions regarding the economic

impact of solar energy development. On one hand, it suggests potential negative

effects through competition for high-value lands, which reduces government land

sales revenue and subsequent productivity-enhancing investments. On the other

hand, it indicates positive impacts through increased energy supply and potential

changes in labor supply. The direction and magnitude of labor supply changes de-

pend critically on how solar energy development affects residential welfare via its

impacts on wage rates, costs of living, and amenities. Given these complex and

potentially offsetting effects, both the net economic impact and the overall welfare

implications of solar energy development remain ambiguous.

We empirically estimate the impacts of solar energy development by combining

geocoded solar farm data with county-level socioeconomic indicators. The iden-

tification strategy exploits the staggered construction of 4,496 solar farms across

Chinese counties between 2005 and 2019. We find that solar energy development

has a negative impact on local economy. Counties with solar farm installations ex-

perienced an average decline of 2.7% in GDP per capita. The parallel pre-trend ob-

served in the event-study specification supports the identification assumption that

counties with early, late, or no solar farm installations exhibit similar economic

trajectories prior to the installation. To account for the variation in the installed

capacity across solar farms, we also employ a difference-in-differences specification

complemented by a Bartik-style instrument variable. The instrument interacts the

time-varying national solar energy capacity and cross-sectional local solar radiation

endowments to address the endogeneity concerns arising from the non-random dis-

tribution of solar capacity over space. Notably, this approach yields comparable

estimates to the event-study specification, reinforcing the robustness of our finding.
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We next explore whether land competition, as suggested by our conceptual

model, is a primary mechanism underlying the negative economic impacts of solar

energy development. We document that 21.3% of solar farms are sited on previously

impervious surfaces–a land type that is typically more economically valuable than

croplands, grasslands, forests, and other land uses. We find that the negative

economic impacts of solar energy are particularly pronounced when solar farms

occupy these high-value lands. Using detailed land transaction records, we show

this land competition leads to a declined land transaction, which reduces local

government revenue from land sales by as much as 20%. Given that land sales

indirectly contribute about 14% to local GDP in China, this 20% reduction in

land revenue translates to an estimated 2.8% decline in GDP, which closely aligns

with our empirical findings. Moreover, the adverse economic impacts of solar energy

development are mitigated in counties with lower land opportunity costs, marked by

steeper slopes, lower economic levels, smaller industrial shares, or lower urbanization

rates. The economic impact can even be positive in counties where solar farms

are installed on low-economic-value lands such as forests and water body. These

findings corroborate our hypothesis that competition for high-value land is the main

mechanism driving the negative economic impacts of solar energy development.

The economic implications of land competition extend beyond the reduction in

government revenue. Our theoretical model posits that land sales revenue exclu-

sively finances local production infrastructure. Consequently, declining land sales

revenue reduce local economic attractiveness through diminished infrastructure in-

vestment. We document a decline in the county-level total factor productivity

following solar power installation, and find that solar energy development dampens

the entry of new firms roughly by 10%, particularly in the service and agricultural

sectors. This indirect crowding-out effect could possibly exacerbate the observed

GDP decline.

We present evidence of enhanced non-economic quality of life or amenities re-

sulting from solar energy development. One key strength of our model lies in its

ability to infer changes in overall amenities through observed population dynamics

while accounting for shifts in wage rates and housing prices, even when the full spec-

trum of amenities is not readily observable. Our analysis reveals an approximately

2% increase in local population, despite concurrently a decline of about 5% in wage

rates and an increase of 5% in housing prices. This pattern infers an improve-

ment in overall amenities that outweighs the economic drawbacks. Corresponding
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to this inference, we find some, albeit noisy, evidence of improved air quality and

the phasing out of fossil-based power plants following solar farm installation.

Our study contributes to the extensive literature examining how resource abun-

dance affects economic performance (Sachs and Warner, 1997; Gylfason et al., 1999;

Gylfason, 2001; Mehlum et al., 2006; Ross, 2006; Lederman and Maloney, 2007; Col-

lier and Goderis, 2008; van der Ploeg, 2011; Harding and Venables, 2016). Specif-

ically, we contribute to the recent strand of literature that exploits within-country

variations in energy resources to investigate localized impacts on income, employ-

ment, housing prices, and environmental amenities (Black et al., 2005; Papyrakis

and Gerlagh, 2007; Michaels, 2011; Caselli and Michaels, 2013; Muehlenbachs et al.,

2015; Jacobsen and Parker, 2016; Feyrer et al., 2017; Allcott and Keniston, 2018;

Bartik et al., 2019).

Our study focuses distinctively on renewable energy, departing from previous

studies that largely examine fossil fuels or minerals. The fundamental differences

between renewable and conventional energy resources underscore the need to re-

visit the resource curse versus resource blessing debate in the context of renewable

energy. However, research on the economic impacts of renewable energy remains

relatively limited. Only a few recent studies have explored the fiscal and employ-

ment effects of solar and wind energy development, which generally reveal positive

outcomes (Fabra et al., 2024; Gilbert et al., 2024; Scheifele and Popp, 2024). Our

paper extends this nascent literature by providing the first comprehensive assess-

ment of the socioeconomic impacts of renewable energy, incorporating a wide range

of economic and welfare indicators including but not limited to GDP, population,

wage rates, housing prices, and firm dynamics.

We advance the literature by proposing a novel mechanism to explain the re-

source curse argument: land competition. While previous literature has emphasized

the significant land demands of solar development (Miskin et al., 2019; Hernandez

et al., 2015; Trainor et al., 2016; Baker et al., 2013), our work is, to the best of

our knowledge, the first to examine how solar-related land competition can precip-

itate economic downturns in an urban context. Prior research linking renewable

energy development with land use has primarily focused on the capitalization of

wind energy development into agricultural land values (Haan and Simmler, 2018;

Kaffine, 2019) and the visual disamenities associated with wind turbines (Gibbons,

2015; Guo et al., 2024). Our work extends this literature by examining a differ-

ent dimension: the impact of solar energy development on land sales revenue, a
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critical pathway through which it influences the local economy. This perspective

is particularly salient for developing countries that undergo rapid urbanization and

renewable energy expansion simultaneously.

Our work also contributes to the literature by employing an equilibrium frame-

work, which enables us to examine the complex interplay among various economic

variables and their consequent welfare implications. Pioneered by Moretti (2011)

and Kline and Moretti (2014) in the study of place-based policies, this framework

has recently been applied to investigate the impact of resource abundance (Allcott

and Keniston, 2018; Bartik et al., 2019) . Within this framework, population change

serves as a proxy for the net welfare effects of solar energy development, as individu-

als demonstrate their preferences by moving to more favorable locations (commonly

referred to as “vote with their feet”). This theoretically grounded approach to mea-

suring net welfare directly speaks to the fundamental question of whether renewable

energy development enhances local well-being. In this regard, our work bridges the

gap between two previously distinct strands of literature: studies focusing on labor

and housing markets and those examining the environmental benefits of renewable

energy development (Rivera et al., 2024; Millstein et al., 2017; Buonocore et al.,

2016; Novan, 2015; Cullen, 2013; Fell and Kaffine, 2018; Fell et al., 2021).

Finally, our findings yield significant policy implications for solar farm siting

decisions. We argue that these decisions should factor in land opportunity costs

alongside commonly considered factors such as local energy demand and solar radi-

ation endowments. Ceteris paribus, solar farms should be situated away from high-

value land or areas with future potential for productive activities. More broadly,

our results underscore the necessity of integrating local urbanization trajectories

into energy transition planning. This perspective connects our work to the broad

literature on how land allocation and land use regulation shape urban development

patterns (Henderson et al., 2022; Shertzer et al., 2018; Hsieh and Moretti, 2019).

The remainder of this paper is organized as follows. Section 2 provides a brief

background of China’s solar energy. Section 3 develops a conceptual model to

analyze the impacts of solar energy. Section 4 describes the data and empirical

method. Section 5 presents the empirical results on the economic impacts and

Section 6 presents the results on the welfare implications. Section 7 concludes.
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2 Background

2.1 Overview of solar energy development in China

China has emerged as a global leader in solar power deployment, as evidenced

by Figure 1, which demonstrates the country’s remarkable growth in solar capacity.

It shows that China’s installed solar capacity has surged from less than 10 GW

in 2009 to an impressive 600 GW by 2023. The proportion of solar capacity in

China’s overall installed energy capacity has expanded significantly, now exceeding

20%. Additionally, China’s contribution to global solar capacity has risen sharply,

exceeding 40%. Despite fluctuations in some years, the overall trajectory clearly

reflects China’s growing reliance on solar energy to meet its domestic energy needs

and its increasing contribution to global renewable energy transition.

FIGURE 1 Installed Solar Power Capacity in China from 2009 to 2023

Notes: The bars represent the cumulative installed solar power capacity in China. The line
marked with solid circle markers illustrates China’s percentage of solar power capacity relative
to its total power capacity, which includes all energy sources like fossil fuels and other renewable
sources. The line marked with multiplication sign markers (×) indicates China’s percentage of
the global solar power capacity that is installed within China. Data sources: China’s National
Energy Administration and International Energy Agency.

China is also a global leading provider of solar photovoltaic (PV) modules. As

of 2023, China accounted for approximately 86% of global solar PV module produc-

tion (International Energy Agency, 2023). This dominance extends beyond module

production, encompassing the entire solar PV supply chain, including polysilicon,
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ingots, wafers, and cells. Looking ahead, China has outlined ambitious goals for the

expansion of its solar energy infrastructure. The country has aimed to install 3,000

GW of solar capacity by 2035, a five-fold increase from the current level, with plans

to further expand this capacity to 5,000 GW by 2050. On the power generation

front, China has set equally impressive benchmarks, targeting solar energy gener-

ation of 3,500 Terawatt hours by 2035 and 6,000 Terawatt hours by 2050 (Energy

Research Institute and Commission, 2019).

2.2 Policies

A key factor in China’s solar growth has been the unwavering government sup-

port, including subsidies, tax incentives, and programs like the Golden Sun Pro-

gram and Top Runner Program.2 Among these supporting policies, the subsidies

have played a crucial role. China introduced feed-in tariff (FIT) schemes in the late

2000s. The FIT policy guaranteed a fixed price for solar electricity fed into the grid,

with the government collecting a surcharge from consumers to cover the difference

between the FIT price and the benchmark tariff (i.e., the cost of sulfur-scrubbed

coal power). As the industry matured and costs declined, China began phasing

out subsidies starting in 2015. China officially achieved grid parity for solar power

in early 2019. Despite the move towards grid parity, China continues to provide

subsidies to solar power generators that were built before 2021.

It is important to note that these subsidies are financed through a national sur-

charge on electricity bills, with the central government managing the funds. Local

governments are exempt from these costs, placing the financial burden squarely on

the central government. Therefore, these subsidies do not factor into the economic

impacts of solar energy development on county-level GDP examined in this study.3

2. The Golden Sun program provides subsidies to grid connected and off-grid solar PV power
generation projects. The Top Runner Program is designed to increase the use of high-efficiency
PV products, thus maximizing energy yield, initiating PV industry transformation.
3. Chinese policies have emphasized the development of distributed solar energy systems since

2020, which generate electricity in close proximity to the point of consumption and minimize
the costs of long-distance power transmission (National Energy Administration, 2023). However,
distributed solar energy accounts for only a very small share during our studying period from 2005
to 2019.

8



3 Conceptual Framework

Our analysis builds on a spatial equilibrium model, drawing from the canonical

Rosen-Roback framework which was later refined by Moretti (2011). Our goal is to

illustrate how solar energy development impacts economic and welfare outcomes at

the local level. The model considers a county with a fixed population of N̄ and a

finite land area of L̄. Residents face a choice between settling in the county, where

they provide one unit of labor to produce a globally traded good, or pursuing an

outside option. The county’s land is allocated among three key uses: residential

housing, solar farm, and other production facilities. This assumption captures the

competing demands for land resource in an urban environment transitioning towards

renewable energy.

3.1 Preferences

The indirect utility of individual i in county c is:4

Vic = V (wc, rc, Ac; ϵic) (1)

where wc is the nominal wage rate, rc the housing price, and Ac a measure of local

amenities (e.g., air quality) of county c. The random term ϵic captures individual

i’s idiosyncratic preference for county c. Without loss of generality, we assume that

the individual’s utility increases with the nominal wage rate and local amenities

(∂Vic

∂wc
> 0, ∂Vic

∂Ac
> 0) and decreases with the cost of housing (∂Vic

∂rc
< 0).

In this model, the utility of residing in county c is determined by three factors:

the real wage (defined as the nominal wage rate adjusted for the cost of housing),

the county’s amenities, and the individual’s idiosyncratic preference for county c.

The decision to live in county c is made by comparing this location-specific utility

to the reservation utility V̄ associated with the outside option. Assuming that the

random term ϵij follows the normalized Extreme Value Type I Distribution, we

are able to show that the proportion of population settling in county c is given by

(Bayer and Timmins, 2007):

4. In deriving the indirect utility function, we assume a utility function where an individual’s
well-being is determined by the consumption of a numerarie good, a unit of housing, and a vector
or amenities. The price of the numerarie good is normalized to one. Consequently, the indirect
utility function is formulated by substituting the optimal consumption levels into the direct utility
function, with the expenditure on the numeraire good implicitly represented by the difference
between wage rate and housing price.
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λc =
Vc

Vc + V̄
(2)

where Vc = Vc(wc, rc, Ac) is the deterministic part of the county’s utility.

3.2 Production

In county c, a competitive sector is composed of numerous firms, all operating

under an identical Constant Returns to Scale Cobb-Douglas production function.5

The aggregate output of county c is represented by the equation:

Yc = ϕcQ(Nc, L
Y
c , Ec) (3)

where ϕc represents the county’s productivity, Nc is the aggregate labor input, LY
c

denotes the land input, and Ec represents the aggregate energy input.

The non-contingent inverse labor demand function for county c is expressed as:

wc = ϕcw̃c(Nc, L
Y
c , Ec) (4)

We assume the function exhibits specific properties: ∂w̃c

∂Nc
< 0, indicating that the

wage rate decreases as labor supply increases; ∂w̃c

∂LY
c
> 0 and ∂w̃c

∂Ec
> 0, implying that

the nominal wage rate increases with a rise in production land or energy input.6

Following Diamond (2016) and Moretti (2011), we posit that the residential

housing supply is influenced by two key factors: the availability of developable land

and the aggregate demand for housing. For the sake of simplicity, we express the

residential housing supply function as:

rc = r(PR
c , Nc) (5)

where rc represents the housing price in county c, PR
c denotes the cost of residential

land, which reflects the availability of land for residential development, and Nc

signifies the total number of residents in county c, serving as a proxy for housing

demand. Both ∂rc
∂PR

c
> 0 and ∂rc

∂Nc > 0, indicating that the housing price increases

5. To maintain model tractability, we abstract from explicitly modeling the solar energy gener-
ation process. Instead, we adopt a simplified approach wherein land is treated as the sole physical
input for solar energy generation in our subsequent analyses.
6. More precisely, Equation (4) represents the marginal product of labor, as labor demand

should be expressed as a function of wages, land costs, and energy prices. However, we maintain
this alternative expression for analytical tractability.
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with both rising land costs and growth in the county’s population.

3.3 Government

The local government of county c seeks to optimize a combination of economic

performance and residential welfare, assigning varying weights to each objective

(Henderson et al., 2022). We model the government’s decision-making process as the

maximization of a weighted sum of these two objectives. This function guides the

allocation of land among three primary uses: residential housing, solar farms, and

other production facilities. The resulting optimization problem can be formalized

as:

max
LR
c ,LY

c ,LS
c

Ω(Yc, Vc) (6)

where Ω(·) represents the government objective function. The economic perfor-

mance is measured by Yc, the aggregate output, and the residential welfare is repre-

sented by Vc, the indirect utility of a representative resident. LR
c , L

Y
c , and LS

c are the

land allocations for residential housing, production, and solar farms, respectively.

3.4 Impacts of solar energy development

Before laying out model predictions, we make two key assumptions. First, we

treat land as the primary physical input for solar energy generation, directly de-

termining production scale. We abstract from other inputs such as labor and solar

radiation in this analysis. This simplification, focusing on land as the binding

resource constraint, allows us to better analyze the opportunity costs of land allo-

cation between solar farms and alternative uses. Second, we assume solar energy

development affects local productivity through its impact on land sales revenue,

an assumption grounded in Chinese land finance practices. Since 2008, China’s

central bank has mandated that land sales revenue be exclusively allocated to in-

frastructure construction (Henderson et al., 2022). Consequently, when solar farms

occupy land that could otherwise generate sales revenue, they indirectly affect local

productivity.7

Based on the model setup and these assumptions, we characterize the economic

and welfare effects of solar energy development as follows:

7. This approach to modeling resource booms aligns with conventional literature, such as Bartik
et al. (2019) and Allcott and Keniston (2018), who incorporate resource booms directly into the
total factor productivity of aggregate production functions.

11



Effect on Economic Output: Solar energy development can have ambiguous ef-

fects on local aggregate output, stemming from the interplay of two primary mech-

anisms.

a) Factor supply: Solar energy development reduces available land for alter-

native uses, potentially constraining land for production and lowering aggregate

output. Meanwhile, solar energy development can augment energy supply and

enhance electricity utilization in local production processes, which may positively

impact aggregate output. Additionally, solar energy development may influence

local population, a mechanism we will elaborate on shortly, potentially exerting an

ambiguous effect on aggregate output by altering local labor supply;

b) Productivity: Land allocation to solar farms reduces the county’s land sales

revenue and thereby limiting local government capacity for productivity-enhancing

infrastructure investment, which reduces aggregate output.

Effect on Residential Welfare: The effect of solar energy development on local

residential welfare is ambiguous, which is primarily manifested through population

changes that reflect the county’s altered attractiveness to potential residents. The

net effect is contingent upon the relative magnitude and direction of solar energy

development’s influence on three key factors: a) Nominal wage rates: The impact is

ambiguous, hinging on changes in government investment, local energy supply, and

population itself; b) Housing prices: The net effect remains ambiguous. Solar farm

expansion constrains residential land availability, potentially raising housing prices.

This price pressure may be amplified or dampened by changes in local population,

which are indeterminate; c) Local amenities: The impact could be positive, for

instance, if solar farms contribute to improved environmental quality.

It is important to note that, theoretically, we should not observe negative im-

pacts of solar energy development on both aggregate output and residential welfare,

as this would violate the optimization principle. For a detailed derivation of these

results, see Appendix A.
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4 Data and Method

4.1 Data

Solar farms. We use China’s farm-level solar data from 2005 to 2019. Almost

all solar plants in China are built after 2005 (see Figure 1), and we exclude data

after 2019 to avoid potential confounding effects of COVID-19. The data include

each solar farm’s longitude, latitude, installed capacity, construction date, and grid

connection date. All the solar farms used in the regressions are centralized solar

systems. We exclude distributed solar energy systems for two reasons. First, one

primary purpose of distributed solar systems in China is to alleviate poverty and

improve economic conditions. Including these systems in the regression may obscure

the true relationship between solar energy growth and local economic impacts, as

these solar projects themselves are a response to existing economic challenges.8

Second, distributed solar energy accounts for only a small share during our studying

period. Figure 2 shows the geographical distribution of solar farms, which are

dispersed across northern, eastern, southwestern, and northeastern China. In total,

there are 4,496 solar farms.

Economic variables. We compile county-level GDP, GDP by sector, popu-

lation, government revenue from land sales from the National Bureau of Statistics

of China. We also collect county-level firm entry and exit data from the Business

Registry Database of the State Administration of Industry and Commerce, and the

land transaction data from the Real Estate Registration Center of the Ministry of

Natural Resources.9

Environmental variables. We obtain daily air quality data from the Min-

istry of Ecology and Environment, covering over 2,500 air quality monitoring sta-

8. China has implemented a targeted approach to poverty alleviation through the deployment
of distributed solar photovoltaic systems, particularly in rural areas. This initiative, known as the
Solar Energy for Poverty Alleviation Program, was launched in 2014 with the goal of providing
stable energy access and generating income for impoverished households. By 2020, the program
aimed to add over 10 Gigawatt of solar capacity, benefiting more than 2 million households across
approximately 35,000 villages.
9. The data on land transaction are derived from around 1.8 million individual land transaction

records covering the years 2000 to 2020 from the LandChina website managed by the Real Estate
Registration Center of the Ministry of Natural Resources (https://www.landchina.com/). Each
land parcel transaction is geocoded using the specific address of the land parcel, and the size of the
land area involved in the transaction is also recorded. Only land parcels designated for residential
and industrial/commercial purposes are available for bidding in the land transaction market and
have associated prices. Therefore, the calculation of land transaction volume is specifically based
on these two types of land parcels.
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FIGURE 2 Solar farms by grid connection year and installed capacity

tions across China since 2014. The data include the Air Quality Index (AQI) and

concentrations of PM2.5, PM10, CO, SO2, and O3. We use air quality stations’

coordinates to construct county-level air quality and pollution variables: the data

is first interpolated to a 0.1◦ × 0.1◦ resolution using the Inverse Distance Weighted

method, and then averaged to county level.

Geographical variables. We gather land use data from the China Land Cover

Dataset, which has a spatial resolution of 30 meters and identifies nine major land

types: Cropland, Forest, Shrub, Grassland, Water, Snow and Ice, Barren, Impervi-

ous, and Wetland (Yang and Huang, 2021). We match the land use data in the year

prior to the solar farm installation with solar farm geographic data to determine

the area of different types of land occupied by solar plants. As we do not have the

geographic boundary information of each solar farm, we infer the land area occupied

by each solar farm based on the capacity of the solar farm and a conversion factor

that transforms installation capacity to surface area in square meters.10 Then, we

assume each solar farm occupies a circular area centered on its midpoint. Finally,

we overlay the circular area onto the land use map and calculate the area of different

land types within the circle.

The urbanization rate data are derived from Li et al. (2020), who provide dy-

namic urban boundary delineations based on the global artificial impervious area

10. Statistics show that for each 1 megawatt of solar farm capacity, the average land area
occupied is 2.5 hectare, which includes the land for photovoltaic panel installation and that for
amenities.
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mapping. We compute the county-level urbanization rate by calculating the propor-

tion of these urban polygons that fall within each county’s administrative bound-

aries across different years. In heterogeneity analysis, we also use the mean elevation

and slope of each county derived from the Shuttle Radar Topography Mission.

4.2 Method

Our baseline estimation uses a difference-in-differences (DID) specification that

compares the change in outcome variables before and after solar farm installation.

Formally, the DID specification is as follows:

Outcomei,t = βTreatedi ∗ Posti,t + θi + θt + ϵi,t (7)

where i indexes counties and t indexes years. Outcomei,t denotes the outcome

variable in county i in year t, such as the natural log of real GDP per capita.

Treatedi is a binary variable indicating whether the county has at least one solar

farm during the sample period, and Posti,t is a binary variable that equals one for

post-treatment years in treated counties, and zero otherwise. Our baseline analysis

defines the treatment year as the year when the full capacity of the first solar farm

is connected to the grid in the county. Later on, we show that the main results are

robust to defining the treatment year as the year when the first solar farm begins

connecting to the grid in the county. The county fixed effects θi and year fixed

effects θt are included to account for county-specific confounding factors and annual

common shocks, respectively. The ϵi,t denotes the residual term. We estimate this

equation using ordinary least squares (OLS) with standard errors clustered at the

city level to allow for unspecified correlation in the error terms across counties

within each city.

Given the great variation in installed capacity across solar farms (as displayed

in Figure 2), we also use a DID design with a continuous treatment:

Outcomei,t = βCapacityi,t + θi + θt + ϵi,t (8)

where Capacityi,t denotes the cumulative installed capacity of all solar farms in

county i up to year t. Since the dependent variable is in logarithmic form, β

represents the estimated average percentage change in Outcomei,t for each megawatt

increase in installed capacity. This equation is also estimated using OLS with

standard errors clustered at the city level.
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Considering the potential endogeneity of the treatment arising from non-random

distribution of solar farms, we employ two alternative estimation methods. First,

we adopt an event study to verify the identification assumption underlying the DID

estimation (7) that in the absence of solar farms, counties with solar farms (i.e.,

the treated group) and those without (i.e., the control group) would have identical

trends in Outcomei,t. While we cannot directly test this counterfactual, we can

examine whether the trends before the treatment were the same by estimating the

following event study model:

Outcomei,t =
5∑

k=−5,k ̸=−1

βkSolari,t+k + θi + θt + ϵi,t (9)

where Solari,t+k is an indicator variable for the kth year relative to the event time

(the year of the first grid connection in the county). The coefficients βk for k ≥ 0

capture the dynamic effects of the treatment after the event has occurred. The

coefficients βk for k < 0 serve as a placebo or falsification test. This equation is

also estimated using OLS with standard errors clustered at the city level.

Second, we construct a Bartik IV for installed capacity in model (8) as:

IVi,t = Endowmenti ∗
∑
i

Capacityi,t−1 (10)

where Endowmenti denotes the solar radiation endowment of county i, acting as

the “share” component of a Bartik IV. The term
∑

iCapacityi,t−1 represents the

national cumulative installed solar capacity up to the previous year, serving as the

“shift” component of a Bartik IV. The solar radiation endowment is exogenous and

influences the incentive to build a solar farm. Similarly, the national capacity up to

the previous year is exogenous to a county’s GDP but captures other factors, such as

photovoltaic technology level, that affect the incentive for solar farm development.

5 Effects on Economic Outputs

We present the baseline results in subsection 5.1, followed by robustness checks

in subsection 5.2. Next, we explore the underlying mechanisms in subsection 5.3

and examine heterogeneous effects in subsection 5.4.
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5.1 Baseline results

The baseline results for GDP are presented in Table 1. In all columns, the

dependent variable is the natural log of real GDP per capita. Column (1) shows

the DID estimates from Equation (7). We find that β < 0, suggesting that solar

farm has a negative impact on GDP. The point estimate implies an average 2.7%

decrease in GDP per capita. Column (2) reports the estimates of the DID model

with the continuous installed capacity as the key explanatory variable, as specified

in Equation (8). Column (3) presents the two-stage least squares (2SLS) estimates

of Equation (8) using the Bartik IV constructed in Equation (10). The 2SLS es-

timate suggests that a 1-MW increase in installed capacity corresponds to a 0.3%

decrease in GDP per capita. Considering the average capacity of 13.1 MW per solar

power plant, this translates to an average 3.9% decrease in GDP per capita, which

aligns closely with the DID estimates in column (1). The OLS estimate reported in

column (2) also suggests a significantly negative effect of installed capacity, but the

estimated effect size is larger. Given our data involves staggered treatment adop-

tion, we also employ the Callaway and Sant’Anna DID methodology. The results,

which confirm the robustness of our finding, are shown in Appendix B.

TABLE 1 Effects of solar farms on GDP per capita

(1) (2) (3)

DID OLS IV

Treatedi ∗ Posti,t -0.027*

(0.014)

Capacityi,t -0.008** -0.003***

(0.004) (0.001)

Mean of Capacityi,t 13.1 13.1

Kleibergen-Paap F statistic 26.4

Observations 33,701 33,701 30,848

R-squared 0.950 0.950 -1.402

Notes: The dependent variable is the natural log of the real GDP per capita. Column 1
presents the DID estimates based on Equation (7). Column 2 presents the intensity DID
estimates based on Equation (8). Column 3 presents the IV estimates using the Bartik
IV constructed in Equation (10). Standard errors reported in parentheses are clustered
at the city level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

In Figure 3, we visualize the dynamic effects of solar farm on GDP using the

event study specification of Equation (9). Panel A shows the coefficient estimates
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for the natural log of real GDP per capita. All estimates of βk are statistically

insignificant and close to zero for k < 0. This finding supports the identification

assumption that counties with early, late, or no solar farm installations have no

differential trends prior to installation. Significant negative impacts emerge two

years after solar farm installation, dropping by approximately 10% below its initial

level before gradually recovering. Panels B to D report the estimates for the log

of industrial GDP per capita, service GDP per capita, and agricultural GDP per

capita, respectively. The industrial and service sectors account for the majority of

the effects, exhibiting trends similar to the overall GDP. In contrast, agricultural

GDP remains unaffected. Figure 3 also suggests a potential rebound pattern of the

coefficients, indicating that our estimated negative effects likely depict the short-

to-medium-term consequences of solar installation.

FIGURE 3 Dynamic effects of solar farms on GDP across sectors

Notes: This figure presents the dynamic effects of solar farms on GDP per capita, estimated
based on the event study model (9). The dependent variable in Panel A is the natural log of real
GDP per capita, while those in Panels B–D are the natural log of the real GDP per capita from
the industrial, service, and agricultural sectors, respectively. The shaded areas denote the 95%
confidence intervals calculated based on standard errors clustered at the city level.
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5.2 Robustness checks

We examine the robustness of the estimated effect on GDP per capita by consid-

ering alternative model specifications, weighting methods, event timing, potential

confounding from local governments’ environmental protection efforts, and spillover

effects. The robustness checks are based mainly on the event-study model that es-

timates the dynamic effects and tests the parallel-trends assumption. All model

settings remain consistent with those in model (9), except as noted in each robust-

ness check.

Robust to model specifications. Figure 4 examines the robustness to a set of

model specifications. Panels A and B adjust the clustering level of the residual term

from city level to the county level and city-year level, respectively. Panel C includes

county-specific time trends to capture unobservable county-specific time-varying

factors. Panel D consolidates periods beyond the specified leads and lags into the

aggregate coefficients, with lead periods ≤ −5 accumulated into the -5th period and

lag periods ≥ 5 accumulated into the 5th period (Schmidheiny and Siegloch, 2023).

All resulting estimates are comparable to the baseline estimates presented in Panel

A of Figure 3, confirming the robustness of our results to alternative specifications.

Robust to weighting methods. As alternatives to the unweighted baseline re-

gression in Panel A, we apply weighted regressions using territorial area size, GDP

per capita, and population in 2010 as weights in Panels B to D of Figure 5, re-

spectively. Weighting by area size is justified when the impact of solar farms is

expected to vary with the geographical size of the local area, as larger areas may

have more land available for solar farm development. When weighting by GDP per

capita, regions with higher economic output exert more influence on the estimated

effects, highlighting the overall economic impact. Finally, weighting by population

assumes that the effect of solar farms on the local economy is proportional to the

population size, which is reasonable given that larger populations typically corre-

spond to greater economic activity and energy demand. Figure 5 demonstrates the

robustness of the negative effects on the local economy across various weighting

specifications.
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FIGURE 4 Robustness checks: Alternative model specifications

Notes: This figure examines the robustness of the baseline event-study estimates for the natural
log of the real GDP per capita. Panels A and B cluster the error term at the county and city-
year level, respectively. Panel C controls for county-specific year trends. Panel D accumulates
periods beyond pre and post 5th periods into the -5 and 5 periods respectively. Standard errors
are clustered at the city level in Panels C and D. The shaded areas denote the 95% confidence
intervals.
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FIGURE 5 Robustness checks: Weighted regressions

Notes: This figure examines the robustness of the baseline estimates using weighted regressions.
The dependent variable in all panels is the natural log of the real GDP per capita. Panel A
presents the baseline results for comparison. Panel B uses the log of each county’s territorial area
as weights. Panel C weights observations by the log of real GDP per capita, and Panel D by the
log of population. Standard errors are clustered at the city level. The shaded areas denote the
95% confidence intervals.

Robust to event timing. While the baseline regression uses the year when the

full capacity of the first solar farm is connected to the grid as the event time in

each county, this robustness test uses the year when the first solar farm begins

connecting to the grid, which occurs several months to years earlier. The results,

shown in Figure 6, reveal that the negative effects on total GDP, industrial GDP,

and service GDP are consistent with the baseline findings.

21



FIGURE 6 Robustness checks: Alternative event timing

Notes: This figure examines the robustness of the baseline estimates using alternative event timing,
specifically when the first solar farm begins connecting to the grid. The four panels display results
for the log of real GDP per capita, real industrial GDP per capita, real service GDP per capita,
and real agricultural GDP per capita, respectively. Standard errors are clustered at the city level.
The shaded areas denote the 95% confidence intervals.

Potential confounding effect of environmental attitude. A potential threat

to our identification is that the local governments’ willingness to protect the envi-

ronment might be positively correlated with solar farm installation and negatively

correlated with economic performance due to the costs of environmental regula-

tion. Our baseline analysis relieves this concern by including various fixed effects

and supporting the parallel-trends assumption. To explicitly address this concern,

we examine whether the timing of solar farm installation is correlated with local

governments’ attitudes toward environmental protection. We adopt two measures

of these attitudes – the frequency of air pollution-related terms in government an-

nual reports and the length of environmental policy documents (Zhang and Chen,

2021). We estimate the effect of solar farm installation on government attitudes

using modified versions of the event-study model (9) with these attitude measures

as dependent variables. Figure 7 shows that these measures are not significantly
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correlated with solar farm installation, either before or after the installation. These

results relieve the concern that the timing of solar farm installation could be affected

by the environmental attitudes of local governments.

FIGURE 7 Robustness checks: Environmental attitudes
Notes: This figure addresses the potential confounding effects of government’s environmental
attitudes. The dependent variable in Panel A is the natural log of the frequency of air-pollution-
related words in government annual reports, and the dependent variable in Panel B is the natural
log of the total word counts of environmental policy documents. Standard errors are clustered at
the city level. The shaded areas denote the 95% confidence intervals.

Spatial spillover effects. Another concern involves the potential for spatial

spillover effects. Counties may share economic resources, labor markets, and air

quality with neighboring counties, resulting in the propagation of the impacts of

solar energy development over space. To more precisely estimate the localized

economic impacts, we incorporate the solar energy developments of neighboring

counties into our regression model. This approach helps mitigate potential omitted

variable bias, ensuring that our estimated effects are not confounded by contempora-

neous solar installations in adjacent areas. Specifically, as presented in Appendix B,

we additionally control for the solar power installation of bordering counties, coun-

ties within 50km, and counties within 100km of the focal county, respectively, in

the DID model Equation (7). The resulting estimates remain consistent across

specifications.

5.3 Mechanism

This subsection investigates the underlying mechanisms of the negative economic

impacts of solar energy development.
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5.3.1 Land competition effect

Solar farms typically require substantial land for photovoltaic panels and related

infrastructure. According to the United States National Renewable Energy Labo-

ratory, solar farms require approximately 3.5 acres per gigawatt-hour per year, or

2.5-2.8 acres per megawatt of installed capacity (Ong et al., 2013). As a comparison,

coal power plants require only about 10% of the land needed for solar farms (Mi-

tavachan and Srinivasan, 2012). As a result, solar farms often occupy land that

could have been used for other purposes. If these alternative uses could have gener-

ated higher returns, solar farm installation could diminish economic performance.

Figure 8 displays the distribution of land types used for solar farms. As detailed

in subsection 4.1, we calculate the share of nine major land types based on land

use data before the construction of solar farms. We find that croplands account

for 45.2% of the total, followed by impervious surfaces at 21.3% and grasslands

at 17.1%. Forests cover 9.7%, and barren lands and water bodies make up the

remaining 6.7%. Impervious surfaces, made of hard, non-porous materials, often

represents high-value land with active economic activities in a county. Using imper-

vious surfaces for solar farms imposes much higher opportunity cost, as it sacrifices

land that could be used for other, potentially more valuable economic activities.

FIGURE 8 Land used for solar farms by land type

Notes: This figure presents the share of each land type used for solar farms. Calculation details
are provided in subsection 4.1.
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If the land competition effect contributes to the observed negative economic

impact of solar farms, we would expect a stronger negative impact in counties

where more solar farms were built on impervious surfaces. To empirically examine

this, we employ a model where we interact the DID term with the share of each

type of land used for solar farm installation in each county:

GDPi,t = βTreatedi ∗ Posti,t + δTreatedi ∗ Posti,t ∗ Landi + θi + θt + ϵi,t (11)

where Landi denotes the share of a specific type of land type used for solar farms

in county i. Other variables are the same as the baseline model.

Table 2 presents the estimated effects across six distinct land types. A statisti-

cally significant negative interaction effect is observed solely for impervious surfaces,

as shown in Column (3). This finding suggests that the negative economic impact is

more pronounced when solar farms are constructed on impervious surfaces. Quan-

titatively, a 1% increase in impervious surfaces utilized for solar farms corresponds

to a 0.21% reduction in GDP per capita. Given that 21% of solar farms are situated

on impervious surfaces, this result indicates that competition for high-value land

is a primary driver of the negative economic impact associated with solar power

installations.

Notably, the interaction effects for forest and water body land types are statis-

tically significant and positive. As shown in Columns (5) and (7) of Table 2, a 1%

increase in the share of forest and water body areas utilized for solar farms cor-

responds to increases in GDP per capita of 0.12% and 0.30%, respectively. These

findings further corroborate the land competition hypothesis, suggesting that the

economic impacts can be positive when solar farms are situated on lands with lower

economic value. This result also underscores a critical policy implication: the neg-

ative economic impacts of solar farm installations could potentially be mitigated

or even reversed by prioritizing their placement on low-value lands. However, it is

important to note that the relatively small proportions of forest (9.7%) and wa-

ter body (2.7%) currently used for solar farms indicate that the negative effects

from occupying impervious surfaces remain dominant in the overall economic im-

pact. To further investigate the mechanism behind the land competition effect, we

decompose GDP into its sectoral components—agricultural, industrial, and service

GDP. The results show that land competition with high-value land (i.e., impervious

surfaces) negatively impacts all three sectors. See Appendix C for detailed results.
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TABLE 2 Mechanism: Land competition

(1) (2) (3) (4)

Interaction with land shares

Baseline Cropland Impervious

surface

Grassland

Treatedi ∗ Posti,t -0.027* -0.035 0.013 -0.037**

(0.014) (0.022) (0.016) (0.017)

Treatedi ∗ Posti,t ∗ Landi 0.018 -0.215*** 0.051

(0.041) (0.046) (0.049)

Mean of Landi 0.45 0.21 0.17

Observations 33,701 33,701 33,701 33,701

R-squared 0.950 0.950 0.950 0.950

(1) (5) (6) (7)

Interaction with land shares

Baseline Forest Barren land Water body

Treatedi ∗ Posti,t -0.027* -0.037** -0.025* -0.033**

(0.014) (0.016) (0.015) (0.014)

Treatedi ∗ Posti,t ∗ Landi 0.115** -0.019 0.296***

(0.046) (0.080) (0.120)

Mean of Landi 0.09 0.04 0.03

Observations 33,701 33,701 33,701 33,701

R-squared 0.950 0.959 0.950 0.950

Notes: The dependent variable in all columns is the natural log of the real GDP per capita. Column
(1) replicates the baseline DID estimates to facilitate comparison. Columns (2)–(7) present the
estimates of Equation (11), which interacts the DID term with the share of each type of land used
for solar farms. Standard errors reported in parentheses are clustered at the city level. Significance
levels are *** p<0.01, ** p<0.05, and * p<0.1.

To further examine the land competition effect, we apply the event study model

to analyze the effects of solar farm installations on land sales. If solar farm installa-

tions indeed reduce economic growth by occupying high-value land, we would expect

a decline in land transactions for high-return economic activities. Figure 9 presents

the estimated dynamic effects of solar farm installations on the natural log of area

of land sold, revenue from land sales, and the number of land transactions, across

both residential and industrial & commercial land. The results indicate a decrease

in the area sold for both residential and industrial & commercial land in counties
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with solar farms relative to control counties. Moreover, we also observe a decline in

government revenue from residential land sales. An alternative hypothesis for the

observed decline in residential land transactions and sales revenue is that proximity

to solar farms might deter potential residents, thereby reducing housing demand.

However, our subsequent analysis reveals increases in both local population and

housing prices, which contradicts this demand-driven explanation.

FIGURE 9 Mechanism: Effects on land sales
Notes: The dependent variables in Panels A–F are the natural logs of area size of residential and
industrial & commercial land sold, revenue from residential and industrial & commercial land sales,
and the number of residential and industrial & commercial land transactions, respectively. The
shaded area denotes the 95% confidence intervals constructed based on standard errors clustered
at the city level.
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Solar farm requires large land areas, and owners typically choose to lease the

land to reduce risks and protect cash flow, resulting in lower immediate government

income compared to selling the land outright. During our study period, the average

unit price of residential land parcels was significantly higher than that of industrial

and commercial land parcels (He et al., 2022; Henderson et al., 2022). Consequently,

revenue from residential land sales plays a vital role in local economic growth (Mo,

2018). The loss of revenue from residential land sales thus represents a key reason

for the observed GDP decline. To validate the idea that the decline in residential

land sales revenue is a primary explanation for the GDP decline, we provide a brief

calculation here. While revenue from land sales does not directly contribute to local

GDP, it is a crucial income source, accounting for over 40% of local government

revenue (Gyourko et al., 2022). This income then becomes government spending,

a significant driver of local GDP growth in China, representing about 35% to 40%

of GDP (Liu, 2020). Taking these numbers combined, we can infer that revenue of

residential land sales indirectly contributes to about 14% of local GDP. Therefore,

on average, the roughly 20% observed decrease in land revenue would result in

an approximately 2.8% decline in GDP, ceteris paribus, which closely matches our

estimates for the effects on GDP.

5.3.2 Productivity effects

Solar farms are typically established on leased land through contracts spanning

30 to 35 years, resulting in long-term commitments that effectively immobilize large

tracts of land. These extended commitments constrain local governments’ capac-

ity to generate revenue through land sales and invest in productivity-enhancing

infrastructure. Consequently, this reduction in government investment can lead to

a deterioration of local productivity, which diminishes the region’s attractiveness

to businesses.11 Figure 10 presents the decline in total factor productivity (TFP)

following solar power installation, a result that is robust across different TFP esti-

mation methods. Through this mechanism, the land competition effect propagates

beyond a mere reduction in government revenue, potentially triggering broader neg-

ative economic consequences that can persist for longer periods.

11. The literature on fiscal multipliers in China emphasizes the critical role of government
spending in stimulating local economic activity. Guo et al. (2016) estimate that each RMB of
county government expenditure can generate a 1.2 RMB increase in intra-county investment.
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FIGURE 10 Mechanism: Effects on total factor productivity

Notes: This figure presents the estimates from Equation (9) with county-level total factor produc-
tivity (TFP) as the dependent variable. Panels A–F display the results using different methods
to estimate the TFP: OLS, time fixed effects, random effects, dynamic generalized method of
moments, stochastic frontier analysis, and Malmquist Index through data envelopment analysis,
respectively. The shaded area denotes the 95% confidence intervals constructed based on standard
errors clustered at the city level.

To shed light on the cascading economic consequences, we examine the effects of

solar energy development on firm entry. Panel A of Figure 11 illustrates a decline

in the total number of firm entries following solar farm installations. This result

helps further explain the observed GDP declines. Specifically, Panels C and D re-

veal decreases in the entry of agricultural and service firms, while Panel B indicates

that industrial firm entry remains relatively stable. The diminished entry of agri-

cultural and service firms suggests two possible explanations. These firms may be

more reliant on robust infrastructure and high productivity levels, which could be

compromised by solar farm development. Additionally, as many of these firms are

small businesses that operate within or near residential areas, their reduced entry

may directly stem from the decrease in available residential land. The productivity

effect is also evidenced by the change in firm exits, as shown in Appendix D.

The conceptual model suggests that solar energy development enhances local en-

ergy supply. While we document that solar energy development has indeed boosted

local energy supply in Appendix E, increasing total electricity consumption by 7.9%,

these benefits have not translated into sufficient economic gains to counterbalance

the adverse effects of land allocation for solar farms.

29



FIGURE 11 Mechanism: Effects on firm entry

Notes: This figure presents the estimates from Equation (9) using different dependent variables.
The dependent variables in Panels A–D are the log of the total number of firm entries, the log
of industrial firms entries, the log of service firm entries, and the log of agricultural firm entries,
respectively. The shaded area denotes the 95% confidence intervals constructed based on standard
errors clustered at the city level.

5.4 Heterogeneity

The results presented thus far focus on the average treatment effects of solar

farm installation. We expect these effects to vary across counties with different

geographical suitability for solar farms, economic levels, and urbanization rates.

These factors influence the opportunity costs and benefits of solar farm installation.

We employ a DID specification to examine the heterogeneous effects of solar

farms, with the results shown in Table 3. Panel A reports the heterogeneous ef-

fects across counties with different geographical features, focusing on counties’ slope

(Column 2) and elevation (Column 3). Counties with higher average slope experi-

ence smaller negative impacts on output, as the coefficient for the interaction term

between solar installation and slope is significantly positive. This finding aligns

with the proposed mechanism that the opportunity cost of allocating land to solar

farms is lower in counties with steeper slopes, which are less suitable for other eco-
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nomic activities. Elevation has insignificant impacts, as the interaction coefficient

between solar installation and elevation is statistically indistinguishable from zero.

This suggests that while slope matters, differences in elevation alone do not signif-

icantly moderate the negative relationship between solar energy development and

GDP.

Panel B focuses on economic heterogeneity by adding interaction terms between

the DID variable and key economic indicators: natural log of real GDP per capita,

industrial share in GDP, service share in GDP, and agricultural share in GDP.

These economic variables are calculated using the 2005-2008 averages, prior to the

installation of the national first solar farm, to avoid endogeneity issues. The findings

in Panel B show that the interaction terms for log GDP per capita (Column 4) and

industrial share in GDP (Column 5) are significantly negative. This suggests that

the negative economic impacts of solar farms are more pronounced in counties with

higher GDP per capita or a larger industrial sector. In China, a high industrial share

typically correlates with a higher economic level, which increases the opportunity

cost of land. Conversely, the interaction terms for service share (Column 6) and

agricultural share (Column 7) are significantly positive, with the agricultural share

having the largest effect. The lower opportunity costs of using agricultural land for

solar farms may explain this.

Panel C examines heterogeneity related to urbanization. We measure urbaniza-

tion rate using the proportion of urban land area, rather than the share of popula-

tion residing in urban areas. This metric aligns more closely with our study’s focus

on land use dynamics. The results indicate that counties with higher urbanization

levels in 2005, as well as those experiencing substantial urban growth between 2000

and 2005, face more pronounced negative economic impacts from solar energy de-

velopment. These findings reinforce our land competition hypothesis. Both a high

initial urbanization rate and rapid urban growth (prior to the establishment of the

first solar farm) signify high opportunity costs of land use. Consequently, the in-

stallation of solar farms in such counties likely displaces or precludes higher-value

economic activities, resulting in more substantial economic trade-offs.12

12. In China, the average urbanization rate, measured by the share of urban land, was just
about 1% during 2000–2005. Thus, while urbanization rates in 2005 were relatively high in
certain counties than in other counties, they remained low in absolute terms. These counties were
still undergoing urbanization and required significant land for future economic activities, unlike
in some developed countries where a high urbanization rate might indicate a largely completed
urbanization process.
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TABLE 3 Heterogeneity

Panel A: Geographical heterogeneity (log GDP per capita as dependent variable)

(1) (2) (3)

Interaction with geographical variables

Baseline Log slope Log elevation

Treatedi ∗ Postt -0.027* -0.020 -0.027*
(0.014) (0.014) (0.014)

Treatedi ∗ Postt ∗ Interai 0.049* 0.005
(0.026) (0.008)

Observations 33,701 33,642 33,627
R-squared 0.950 0.947 0.946

Panel B: Economic heterogeneity (log GDP per capita as dependent variable)

(1) (4) (5) (6) (7)

Interaction with economic variables

Baseline Log GDP
per capita

Industrial
share

Service
share

Agricultural
share

Treatedi ∗ Postt -0.027* -0.017 -0.020 -0.019 -0.028*
(0.014) (0.014) (0.014) (0.014) (0.014)

Treatedi ∗ Postt ∗ Interai -0.129*** -0.566*** 0.487*** 0.582***
(0.023) (0.062) (0.116) (0.081)

Observations 33,701 33,141 33,087 33,087 33,014
R-squared 0.950 0.950 0.950 0.949 0.950

Panel C: Urbanization heterogeneity (log GDP per capita as dependent variable)

(1) (8) (9)

Interaction with urbanization variables

Baseline Urbanization in
2005

Change in urbanization
during 2000-2005

Treatedi ∗ Postt -0.027* -0.016 -0.019
(0.014) (0.015) (0.014)

Treatedi ∗ Postt ∗ Interai -0.025*** -0.004***
(0.008) (0.001)

Observations 33,701 33,701 33,701
R-squared 0.950 0.950 0.950

Notes: The dependent variable in all columns is the log of real GDP per capita. Column (1)
replicates the baseline DID estimates to facilitate comparison. Columns (2)–(9) present the es-
timates of Equation (11) with new interaction terms. Panel A examines the mediating effects of
geographic variables by interacting the DID term with county average slope and elevation. Panel
B focuses on economic variables, interacting the DID term with log GDP per capita and the
shares of industry, services, and agriculture in GDP. The interaction terms in columns (4)–(7)
use 2005-2008 averages, predating China’s solar energy development to avoid endogeneity. Panel
C assesses urbanization effects, interacting the DID term with county urbanization rates in 2005
and changes from 2000 to 2005, similarly chosen to predate the sample period. All the Interai
variables are de-meaned. Standard errors reported in parentheses are clustered at the city level.
Significance levels are *** p<0.01, ** p<0.05, and * p<0.1.
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6 Effects on Residential Welfare

Although GDP reflects economic output, it may not provide a complete picture

of local welfare. Our conceptual model suggests that population change better

reflects the net welfare effect of solar energy development, as people “vote with

their feet,” migrating to places where their overall well-being improves.

Panel A of Figure 12 demonstrates a local population increase of up to 2% follow-

ing the initial installation of a solar farm, suggesting an improvement in residential

welfare. Panels B and C reveal approximately a 5% decline in wage rates and a

comparable increase in housing prices, respectively. The wage rate decline can be

partially attributed to reduced local productivity, and the housing price increase

reflects the decreased residential land availability. More importantly, these patterns

indicate a substantial enhancement in local amenities, despite our inability to fully

observe them directly. The net welfare change depends on the relative magnitudes

of changes in wage rates, housing prices, and local amenities. In this context, the

observed population growth, coupled with declining wages and rising housing prices,

suggests that residents are willing to accept lower labor compensation and higher

living expenses in exchange for improved amenities.

We provide empirical evidence suggesting that the observed population growth

can be attributed to improvements in the local environment, particularly enhanced

air quality. Panels D and E of Figure 12 demonstrate reductions in CO and SO2 con-

centrations, respectively–the primary pollutants emitted by fossil fuel-based power

plants. Furthermore, Panel F illustrates that counties experience a decline in in-

cumbent electricity generation firms, primarily fossil-based generators, following the

installation of solar farms.

Appendix F presents additional results for other air pollutants, including O3,

NO2, and PM2.5. These pollutants did not exhibit a downward trend following so-

lar farm installations. This lack of change aligns with their primary sources being

non-energy related, such as transportation, or their nature as secondary pollutants,

rendering them less responsive to shifts in energy generation composition. The ab-

sence of significant changes in these pollutants serves as a placebo test, reinforcing

the robustness of our main findings. It suggests that the observed effects of solar

power deployment on GDP are not confounded by omitted variables such as gov-

ernment environmental regulatory stringency. Had such confounding factors been

present, we would expect to observe concurrent declines in O3, NO2, and PM2.5.
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FIGURE 12 Effects on residential welfare
Notes: This figure presents the estimates from Equation (9) using different dependent variables.
The dependent variables in Panels A–F are the log of total population, the log of housing price, the
log of wage per capita, the log of CO concentration, the log of SO2 concentration, and the log of
the exit of electricity generation firms, respectively. The shaded area denotes the 95% confidence
intervals constructed based on standard errors clustered at the city level.

7 Conclusion

The impact of resource abundance on economic growth has been a subject of

longstanding debate, traditionally centered on fossil fuels. Solar energy, however,

presents distinct characteristics: it is renewable, clean, and requires substantial land
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for infrastructure. These unique attributes suggest that solar energy may have dif-

ferent economic and welfare implications compared to conventional energy sources.

Given the rapid expansion of solar energy in China and globally, understanding

these implications is crucial. Our research investigates the effects of solar energy

development, highlighting the complex dynamics of land use and the associated

challenges and benefits to local economies.

Our analysis is grounded in a conceptual model that evaluates the economic and

welfare impacts of solar energy development within a locational equilibrium frame-

work. The model demonstrates how solar farm installations imposes substantial

economic costs through intensified land competition, which reduces local govern-

ment revenue from land sales and impairs its capacity to invest in productivity-

enhancing infrastructure. Simultaneously, the model employs population changes

as a revealed preference measure of changes in residential welfare, taking into ac-

count the net effect of changes in wage rates, housing prices, and local amenities.

Exploiting the spatio-temporal variation in solar farm installations, our empir-

ical analysis yields two primary findings. First, we identify an average decline in

GDP per capita of approximately 2.7%. This negative impact is more pronounced

in counties where land has higher opportunity costs. Our detailed mechanism anal-

ysis suggests that land competition, particularly for impervious surfaces with the

potential for more economically productive uses, significantly contributes to this ad-

verse economic outcome. Conversely, when solar farms utilize low-economic-value

lands, the economic effects of solar energy expansion can even be positive. This

land competition also crowds out residential land sales revenue, further impeding

local economic growth by dampening new firm entries. While counties with so-

lar energy development experience increased electricity utilization, the associated

economic benefits appear insufficient to offset the losses due to land competition.

Second, there is evidence of enhanced local amenities, particularly improvements

in environmental quality, as we observe declines in the concentration of certain air

pollutants and the phasing-out of fossil fuel-based electricity generators. We find

a 2% increase in local population, despite a 5% decline in wage rates and a 5%

increase in housing prices. This population growth, in the face of seemingly adverse

economic conditions, suggests that the benefits of improved local amenities may

outweigh the economic drawbacks. Such a pattern is consistent with an overall

increase in local residential welfare, as residents appear willing to accept lower

wages and higher living costs in exchange for enhanced environmental quality.
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Solar power deployment is widely recognized as a critical pathway for countries

to achieve clean electricity grids and transition towards low-carbon economies. Our

findings underscore the importance of strategic solar farm siting decisions, which

should carefully consider the complex interplay between land use opportunity costs

and residential welfare. Ceteris paribus, policymakers should prioritize avoiding

high-value or potentially productive land for solar installations, particularly in re-

gions experiencing rapid urbanization.

There are several caveats in our study that warrant future considerations. First,

the emergence of solar energy in China began only around 2009, limiting our obser-

vation to short-to-medium-term economic and welfare impacts within a decade or

so. In the long term, solar farms may yield economic benefits through sustained re-

newable energy production, reduced reliance on imported fossil fuels, technological

advancements in solar efficiency, and possible population agglomerations. Second,

the economic benefits of improved air quality, such as health improvements and

enhancements in human capital can be substantial and may outweigh the economic

costs in the long term. Third, the economic impacts of other renewable energy

sources may differ from those of solar energy, necessitating future research.
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Appendix

A Model details

Given the model setup and assumptions outlined in the main text, the local

government’s maximization problem can be characterized as to allocating a share

LS of land for solar farms, a share of LY for production facilities, with the remaining

(1−LS−LY ) share designated for residential development. The first-order condition

of this optimization problem can be expressed as:

dΩ

dLS
=

∂Ω

∂Y

dY

dLS
+

∂Ω

∂V

dV

dLS
≥ 0 (A.1)

For brevity, we omit the county subscript c in subsequent equations.

The derivative of the social objective function with respect to LS is non-negative.

While we assume that the objective function strictly increases in its components

( ∂Ω
∂Y

> 0 and ∂Ω
∂V

> 0), the signs of dY
dLS and dV

dLS are ambiguous. If solar expansion

enhances both economic performance and residential welfare until solar capacity

reaches its optimal level, the overall sign of the derivative is positive. Alternatively,

further solar expansion might increase the value of the social objective function by

improving economic performance at the expense of residential welfare, or vice versa.

However, the derivative of the social objective function with respect to LS cannot

be negative. This non-negativity constraint stems from the optimization principle:

if increasing LS were to decrease the value of the objective function, it would not

be optimal for the local government to increase LS any further.

According to Equation (3), the derivative of the production function with respect

to land allocated for solar farm construction can be expressed as:

dY

dLS
=

dϕ

dLS
Q(·) + dQ(·)

dLS
ϕ

=
dϕ

dΠ

(
LRdP

R

dLS
+ PRdL

R

dLS
+ LY dP Y

dLS
+ P Y dLY

dLS

)
Q(·)

+

(
∂Q

∂N

dN

dLS
+

∂Q

∂LY

dLY

dLS
+

∂Q

∂E

dE

dLS

)
ϕ

(A.2)

where Π = LRPR + LY P Y represents the revenue from residential and production

(industrial and commercial) land sales. This expression demonstrates that allo-
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cating land for solar farms impacts aggregate output through two main channels.

First, as more land is allocated to solar construction, land sale revenue are likely

to decrease. Since land sales revenue is used to support production infrastructure

in China, this change affects aggregate output by influencing the total factor pro-

ductivity. Second, the allocation of land to solar farms can alter the levels of factor

inputs of production, specifically labor (N), land (LY ), and energy (E).

By rearranging the terms, we can express these effects in the form of elasticities:

θY,LS = θϕ,πθπ,LS + (θQ,NθN,LS + θQ,Y SθLY ,LS + θQ,EθE,LS) (A.3)

where θϕ,π is the elasticity of total factor productivity with respect to land sales

revenue. θπ,LS = θPR,LS + θLR,LS + θPY ,LS + θLY ,LS decomposes the elasticity of

land sales revenue with respect to solar land into its components: the elasticities

of residential and production land prices and quantities with respect to solar land,

respectively. θQ,N , θQ,LY and θQ,E represent the output elasticities with respect to

labor, land, and energy inputs. θN,LS , θLY ,LS and θE,LS denote the elasticities of

labor, land, and energy with respect to solar land.

By assumption, θϕ,π > 0. We expect that θPR,LS ≥ 0 and θLR,LS < 0, as

increased land allocation for solar construction could reduce available residential

land, potentially driving up residential land prices due to scarcity. We also expect

θPY ,LS and θLY ,LS to be negligible as local governments in China collect land sales

revenue primarily from residential land. Consequently, the first term in Equation

(A.3) could be either positive or negative. Regarding the second term, θQ,N , θQ,LY

and θQ,E are positive based on the Cobb-Douglas production function. We antici-

pate θE,LS ≥ 0, as more land allocated to solar construction should increase local

electricity utilization. θLY ,LS can be either positive or negative. Solar farms may

compete for land resources, yet local governments might also increase production

land allocation to complement solar energy development. In addition, the sign of

θN,LS is indeterminate, depending on whether solar energy development attracts

more people to settle in the county. Considering these factors collectively, the over-

all impact of allocating land to solar construction on local aggregate output θY,LS

is ambiguous.

We now examine how the expansion of solar farms affects residential utility. The

total derivative of utility (V ) with respect to land allocated to solar (LS) is given

by:
dV

dLS
=

∂V

∂w

dw

dLS
+

∂V

∂r

dr

dLS
+

∂V

∂A

dA

dLS
(A.4)
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This equation decomposes the overall impact of solar land allocation on residential

utility into three channels. The first term captures how solar expansion affects

utility through changes in wage rate, the second through changes in housing prices,

and the third through changes in local amenities.

Building on Equations (4) and (5), we can derive the following expressions:

dw

dLS
= w̃(·) dϕ

dLS
+ ϕ(

∂w̃

∂N

dN

dLS
+

∂w̃

∂LY

dLY

dLS
+

∂w̃

∂E

dE

dLS
) (A.5)

and
dr

dLS
=

∂r

∂PR

dPR

dLS
+

∂r

∂N

dN

dLS
(A.6)

Equation (A.5) decomposes the effect of solar land allocation on wage into productivity-

driven and factor-driven (population, production land, and energy) components.

Similarly, Equation (A.6) breaks down the impact on housing prices into effects

from changes in residential land prices and population (as a proxy for local aggre-

gate demand).

Furthermore, we can establish a relationship between the utility level and popu-

lation distribution. Note that N̄ represent the total population and λ the proportion

settling in the county. This yields:

N = λN̄ =
V

V + V̄
N̄ (A.7)

For simplicity, we assume N̄ = V̄ = 1. Under these conditions, we can show that

N and V move in tandem for a marginal change in LS:

dN

dLS
=

1

(V + 1)2
dV

dLS
(A.8)

Combining these equations yields:

θV,LS =
θV,w(θϕ,πθπ,LS + θw̃,LY θLY ,LS + θw̃,EθE,LS) + θV,rθr,PRθPR,LS + θV,AθA,LS

1− θV,wθw̃,N+θV,rθr,N
V+1

(A.9)

where θV,LS is the elasticity of residential utility with respect to solar land allocation.

The numerator represents the effects of wage rate, housing prices, and amenity

changes due to the allocation of land to solar construction on residential utility.

The denominator adjusts for this utility change due to the equilibrium population

feedback.
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The numerator of θV,LS consists of three key components. The first component

is the combined effect of productivity change and land and energy input change,

where productivity change is likely negative based on our previous discussion, while

energy input change may be positive and land input is indeterminate. The sec-

ond component is the change in housing prices, which is probably non-positive as

increased solar land typically reduces residential land and raises housing prices.

The third component is the shift in local amenities accompanying solar land allo-

cation, which could be positive – for example, if solar farms reduce pollution. The

denominator is positive due to its negative second term, reflecting how a positive

population change lowers wages and increases housing prices and vice versa. Given

these factors, the overall sign of θV,LS is also ambiguous. However, if a positive

population effect is observed in the county along with a decline in nominal wage

and increased housing prices – both of which are hypotheses we can test empirically

– it is likely due to the improvement in local amenities.
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B Additional robustness

TABLE B.1 Effects of solar farms on GDP per capita using Callaway and
Sant’Anna DID method

(1) (2) (3) (4)

Baseline Simple

weighted

ATE

Calendar

time effects

Group-

specific

effects

Treatedi ∗ Posti,t -0.027*** -0.039** -0.030*** -0.032*

(0.005) (0.017) (0.009) (0.017)

Observations 33,701 33,701 33,701 33,701

Notes: The dependent variable is the natural log of the real GDP per capita. Columns
1 presents the DID estimates based on Equation (7). Columns 2-4 present the DID
estimates based on Callaway and Sant’Anna DID. Column 2 displays the overall average
treatment effect (ATE) across all treated units and time periods, with using the size
of each group as weights. Column 3 estimates the average treatment effect for each
calendar year, which are then combined into an overall average. Column 4 computes the
treatment effect for each cohort, where a cohort is defined by the year it first received
treatment, which is then averaged. Standard errors reported in parentheses are clustered
at the city level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

TABLE B.2 Effects of solar farms on GDP per capita: controlling for spillover
effects

(1) (2) (3) (4)

Treati ∗ Postt -0.027*** -0.018*** -0.019*** -0.024***

(0.005) (0.005) (0.005) (0.005)

Treati ∗ Postt(bordering counties) -0.043***

(0.004)

Treati ∗ Postt(counties within 50km) -0.079***

(0.005)

Treati ∗ Postt(counties within 100km) -0.050***

(0.004)

Observations 33,701 32,321 27,234 31,781

R-squared 0.953 0.954 0.954 0.955

Notes: Column 1 replicates the baseline estimates. Column 2 additionally controls for bordering
counties’ solar farms, and columns 3 and 4 control for solar farms of counties within 50km and
100km, respectively, of the centroid of the county. Significance levels are *** p < 0.01, ** p < 0.05,
and * p < 0.1.
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C Additional results for land competition effects

TABLE C.1 Impacts on agricultural GDP across land types

(1) (2) (3) (4)

Interaction with land shares

Baseline Cropland Impervious

surface

Grassland

Treatedi ∗ Posti,t 0.013 0.037* 0.051*** -0.014

(0.014) (0.020) (0.016) (0.015)

Treatedi ∗ Posti,t ∗ Landi -0.054 -0.209*** 0.138***

(0.034) (0.046) (0.037)

Mean of Landi 0.45 0.21 0.17

Observations 33,256 33,256 33,256 33,256

R-squared 0.931 0.931 0.932 0.932

(1) (5) (6) (7)

Interaction with land shares

Baseline Forest Barren land Water body

Treatedi ∗ Posti,t 0.013 0.009 0.004 0.015

(0.014) (0.014) (0.015) (0.014)

Treatedi ∗ Posti,t ∗ Landi 0.059 0.099** -0.093

(0.066) (0.048) (0.105)

Mean of Landi 0.09 0.04 0.03

Observations 33,256 33,256 33,256 33,256

R-squared 0.931 0.931 0.931 0.931

Notes: The dependent variable in all columns is the natural log of the real agricultural GDP
per capita. Column (1) replicates the baseline DID estimates to facilitate comparison. Columns
(2)–(7) present the estimates of Equation (11), which interacts the DID term with the share of
each type of land used for solar farms. Standard errors reported in parentheses are clustered at
the city level. Significance levels are *** p<0.01, ** p<0.05, and * p<0.1.
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TABLE C.2 Impacts on industrial GDP across land types

(1) (2) (3) (4)

Interaction with land shares

Baseline Cropland Impervious

surface

Grassland

Treatedi ∗ Posti,t -0.034 -0.007 0.039 -0.073**

(0.024) (0.042) (0.028) (0.029)

Treatedi ∗ Posti,t ∗ Landi -0.061 -0.399*** 0.201**

(0.078) (0.076) (0.090)

Mean of Landi 0.45 0.21 0.17

Observations 33,407 33,407 33,407 33,407

R-squared 0.921 0.921 0.922 0.921

(1) (5) (6) (7)

Interaction with land shares

Baseline Forest Barren land Water body

Treatedi ∗ Posti,t -0.034 -0.036 -0.048* -0.044*

(0.024) (0.024) (0.027) (0.025)

Treatedi ∗ Posti,t ∗ Landi 0.044 0.168** 0.469**

(0.158) (0.081) (0.188)

Mean of Landi 0.09 0.04 0.03

Observations 33,407 33,407 33,407 33,407

R-squared 0.921 0.921 0.921 0.921

Notes: The dependent variable in all columns is the natural log of the real industrial GDP per
capita. Column (1) replicates the baseline DID estimates to facilitate comparison. Columns (2)–
(7) present the estimates of Equation (11), which interacts the DID term with the share of each
type of land used for solar farms. Standard errors reported in parentheses are clustered at the
city level. Significance levels are *** p<0.01, ** p<0.05, and * p<0.1.
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TABLE C.3 Impacts on service GDP across land types

(1) (2) (3) (4)

Interaction with land shares

Baseline Cropland Impervious

surface

Grassland

Treatedi ∗ Posti,t -0.012 -0.047*** 0.008 0.001

(0.013) (0.017) (0.015) (0.015)

Treatedi ∗ Posti,t ∗ Landi 0.077** -0.114** -0.070**

(0.031) (0.050) (0.035)

Mean of Landi 0.45 0.21 0.17

Observations 33,310 33,310 33,310 33,310

R-squared 0.961 0.961 0.961 0.961

(1) (5) (6) (7)

Interaction with land shares

Baseline Forest Barren land Water body

Treatedi ∗ Posti,t -0.012 -0.013 -0.020 -0.016

(0.013) (0.014) (0.015) (0.013)

Treatedi ∗ Posti,t ∗ Landi 0.015 0.082** 0.175

(0.047) (0.039) (0.133)

Mean of Landi 0.09 0.04 0.03

Observations 33,310 33,310 33,310 33,310

R-squared 0.961 0.961 0.961 0.961

Notes: The dependent variable in all columns is the natural log of the real service GDP per
capita. Column (1) replicates the baseline DID estimates to facilitate comparison. Columns (2)–
(7) present the estimates of Equation (11), which interacts the DID term with the share of each
type of land used for solar farms. Standard errors reported in parentheses are clustered at the
city level. Significance levels are *** p<0.01, ** p<0.05, and * p<0.1.
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D Additional results for productivity effects

FIGURE D.1 Effects of solar farms on firm exits
This figure presents the estimates of Equation (9) using the number of firm exits across sectors as
the dependent variables. The shaded areas denote the 95% confidence intervals constructed based
on standard errors clustered at the city level.
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E Energy supply effects

Our conceptual framework posits that solar energy development enhances local

energy supply, potentially improving access to electricity. Figure E.1 illustrates the

impact of solar installations on electricity consumption. Following the establishment

of solar farm in a county, total electricity consumption increases by approximately

7.9% (Panel A). This growth is primarily driven by a 15.1% average annual increase

in industrial electricity consumption (Panel C), with no discernible change in res-

idential electricity consumption (Panel B). We also observe a significant increase

in agricultural machinery power (Panel D), suggesting that part of the additional

electricity is utilized in the agricultural sector. Note that the net damage of so-

lar farms on GDP per capita suggests that despite this increased electricity input

in production, the economic gains from enhanced electricity access have not been

sufficient to counterbalance the losses resulting from land allocation to solar farms.

FIGURE E.1 Mechanism: Effects on electricity consumption

Notes: This figure presents the estimates from Equation (9) using different dependent variables.
The dependent variables in Panels A–D are the log of total electricity consumption, the log of
residential electricity consumption, the log of industrial electricity consumption, and the log of
agricultural machinery power, respectively. The shaded area denotes the 95% confidence intervals
constructed based on standard errors clustered at the city level.
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Another potential explanation for the observed GDP decline relates to the in-

termittency of solar-generated electricity. The variable nature of solar power gener-

ation, coupled with inadequate storage and transmission infrastructure, has posed

significant challenges for grid integration. This has resulted in historically high cur-

tailment rates of solar energy in China, leading to substantial wastage of generated

power. In 2015 alone, China curtailed 4.65 million MWh of solar power, with the

curtailment rate reaching 12.6%.13 This issue has been particularly severe in north-

western provinces like Gansu, Qinghai, Xinjiang, and Ningxia, where curtailment

rates exceeded 40% in 2016.14 These high curtailment rates suggest that a signif-

icant portion of the potential economic benefits from solar power generation may

be unrealized.

However, we present suggestive evidence that solar power intermittency is not

a primary driver of the observed GDP decline in our study context. Specifically,

we examine the correlation between solar capacity and electricity stability at the

city level. Appendix Figure E.2 illustrates the relationship between solar energy

capacity and both the average number and duration of outages per user. This

result does not support the hypothesis that solar energy development negatively

impacts the local economy by compromising grid stability.

FIGURE E.2 Power outage and solar power capacity

The left subfigure presents a two-way scatter plot illustrating the relationship between the city-
level average number of outages per user and the city-level cumulative solar capacity, with a solid
line representing the linear fit. The right subfigure similarly depicts a two-way scatter plot of
the city-level average outage duration per user (in hours) against the city-level cumulative solar
capacity. Both figures indicate that neither the frequency nor the duration of outages increases
with solar capacity.

13. https://chinafocus.ucsd.edu/2021/02/16/solar-energy-in-china-the-past-
present-and-future/

14. https://www.nea.gov.cn/2017-01/19/c 135996630.htm
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F Impacts on air pollution

FIGURE F.1 Effects of solar farms on other air pollutants

This figure presents the estimates of Equation (9) using different air pollution measures as the
dependent variables. The dependent variables in Panel A–C are the log of O3, NO2, and PM2.5

concentrations, respectively. The shaded areas denote the 95% confidence intervals constructed
based on standard errors clustered at the city level.
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