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Stochastic Calculus and the Black-Scholes-Merton Model: A Simplified Approach  

 

 

ABSTRACT  

 

In the continuous-time finance literature, it is claimed that the expected rate of return of underlying 

asset does not affect the option pricing model. This paper has shown that with no arbitrage, i.e., under the 

Arbitrage (Gordan) theorem, different underlying asset price processes used in the Black-Scholes-Merton 

partial differential equation and the Black-Scholes-Merton option pricing formula require that risk-free 

interest rate be a linear function of underlying asset’s expected rate of return (alpha) and variance of return, 

or (as in the literature) risk-free interest rate equal underlying asset’s alpha.      
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1. Introduction   

 

The seminal works of Black and Scholes (1973) and Merton (1973) have inspired many researches on 

pricing and hedging different financial contracts. The literature argues that the option pricing formula does 

not contain underlying asset’s expected rate of return (e.g., Hull, 2022, Ross, 1993, Shreve, 2004, and 

Steele, 2001). This paper has shown that with no arbitrage, i.e., under the Arbitrage (Gordan) theorem, 

different underlying asset price processes used in the Black-Scholes-Merton partial differential equation 

and the Black-Scholes-Merton option pricing formula require that risk-free interest rate be a linear function 

of underlying asset’s expected rate of return (alpha) and variance of return, or (as in the literature) risk-free 

interest rate equal underlying asset’s alpha.    

The remainder of this paper is organized as follows. Section 2 introduces the Arbitrage Theorem in 

the framework of the binomial option pricing model. No arbitrage in the Black-Scholes-Merton model is 

shown in Section 3. Concluding remarks appear in Section 4.   

 

2. Derivation of the Binomial Option Pricing Model  

As shown in Figure 1, at 𝑡 = 0 , we have a stock with current price 𝑆(0) = 𝑆0 = $100  and a 

European call 𝑐(0) = 𝑐0  of three-month with exercise price 𝐾 = $110  and a European put option 

𝑝(0) = 𝑝0 of three-month with exercise price 𝐾 = $110. Suppose that after three months, at 𝑡 = 𝑇, the 

stock price will either go up to 𝑆0𝑢 = $120 or go down to 𝑆0𝑑 = $80 and 𝑟 = 0.03 is the continuously 

compounded risk-free rate of interest.  

                                        𝑐𝑢 = 𝑀𝑎𝑥[𝑆0𝑢 − 𝐾, 0] = 𝑀𝑎𝑥[120 − 110, 0] 

                                        𝑝𝑢 = 𝑀𝑎𝑥[𝐾 − 𝑆0𝑢, 0] = 𝑀𝑎𝑥[110 − 120, 0] 

                              𝜋          𝑆0𝑢 = 120  

              𝑆0 = 100 

𝑒𝑟 = 𝑒0.03    1 − 𝜋          𝑆0𝑑 = 80   

               𝑐0 =?                    𝑐𝑑 = 𝑀𝑎𝑥[𝑆0𝑑 − 𝐾, 0] = 𝑀𝑎𝑥[80 − 110, 0] 

               𝑝0 =?                    𝑝𝑑 = 𝑀𝑎𝑥[𝐾 − 𝑆0𝑑, 0] = 𝑀𝑎𝑥[110 − 80, 0] 



Figure 1. A binomial option pricing model.  

 

Then from the Arbitrage (Gordan) theory we have:1    

 

[

𝑒𝑟1 − 𝑒𝑟1 𝑒𝑟1 − 𝑒𝑟1
𝑆0𝑢 − 𝑒

𝑟𝑆0 𝑆0𝑑 − 𝑒
𝑟𝑆0

𝑐𝑢 − 𝑒
𝑟𝑐0 𝑐𝑑 − 𝑒

𝑟𝑐0
𝑝𝑢 − 𝑒

𝑟𝑝0 𝑝𝑑 − 𝑒
𝑟𝑝0

] [
𝜋

1 − 𝜋
] =

[
 
 
 
𝑒0.03 − 𝑒0.03 𝑒0.03 − 𝑒0.03

120 − 𝑒0.03100 80 − 𝑒0.03100
10 − 𝑒0.03𝑐0  0 − 𝑒0.03𝑐0
0 − 𝑒0.03𝑝0       30 − 𝑒0.03𝑝0 ]

 
 
 
[
𝜋

1 − 𝜋
] = [

0
0
0
0

],      (1)  

           𝑨𝑻             𝒑                                         = 𝟎    

 

hence, 𝜋 = 0.5761, 𝑐0 = 5.5911, and 𝑝0 = 12.34.   

Eq. (1) can be rewritten as:2  

 

{
 
 

 
 Money Market:                      𝑒𝑟 ⋅ 𝜋 + 𝑒𝑟 ⋅ (1 − 𝜋) = 𝑒0.03 ⋅ 𝜋 + 𝑒0.03 ⋅ (1 − 𝜋) = 𝑒0.03 ⋅ 1

  Stock:     𝑆0𝑢 ⋅ 𝜋 + 𝑆0𝑑 ⋅ (1 − 𝜋) = 120 ⋅ 𝜋 + 80 ⋅ (1 − 𝜋) = 𝑒0.03 ⋅ 100 = 𝐸𝑷[𝑆(𝑇)|𝑆0] = 𝑒
𝑟 ⋅ 𝑆0

Call:          𝑐𝑢 ⋅ 𝜋 + 𝑐𝑑 ⋅ (1 − 𝜋) = 10 ⋅ 𝜋 + 0 ⋅ (1 − 𝜋) = 𝑒
0.03 ⋅ 5.5911 = 𝐸𝑷[𝑐(𝑇)|𝑐0] = 𝑒𝑟 ⋅ 𝑐0

 Put:        𝑝𝑢 ⋅ 𝜋 + 𝑝𝑑 ⋅ (1 − 𝜋) = 0 ⋅ 𝜋 + 30 ⋅ (1 − 𝜋) = 𝑒0.03 ⋅ 12.34 = 𝐸𝑷[𝑝(𝑇)|𝑝0] = 𝑒𝑟 ⋅ 𝑝0

     

 

1 As shown in Chang (2015), the Arbitrage (Gordan) theory is:  

Let 𝑨 be an 𝑚 × 𝑛 matrix. Then, exactly one of the following systems has a solution:   

  System 1: 𝑨𝒙 > 𝟎 for some 𝒙 ∈ 𝑹𝒏   

  System 2: 𝑨𝑻𝒑 = 𝟎 for some 𝒑 ∈ 𝑹𝒎, 𝒑 ≥ 𝟎, 𝒆𝑻𝒑 = 1 where 𝒆 =

[
 
 
 
 
 
1
1
.
.
.
1]
 
 
 
 
 

.  

If System 2 holds (i.e., no arbitrage) and the matrix 𝑨 has rank 𝑚 − 1 (i.e., a complete market), the probability measure 𝒑 

will be unique. (Suppose that 𝑨𝑻𝒑 = 𝟎 and 𝒑 = (𝜋1, . . . , 𝜋𝑚)
𝑻 is a non-zero vector. Then the rank of 𝑨𝑻, 𝑅(𝑨𝑻), is less than 

𝑚. Unique solution for (𝜋1, . . . , 𝜋𝑚) and ∑ 𝜋𝑖 = 1𝑚
𝑖=1  imply 𝑅(𝑨𝑻) = 𝑚 − 1). Note that System 2 is a martingale.   

2 For a more extensive discussion of the properties of the binomial option pricing model (e.g., option Greeks), see Chang (2023).   



where 𝜋 = 
𝑒𝑟−𝑑

𝑢−𝑑
 , 1 − 𝜋 =

𝑢−𝑒𝑟

𝑢−𝑑
 , and 𝒑 = (𝜋, 1 − 𝜋) is the probability measure governing the 

stochastic process.                   (2) 

 

Eq. (1) shows that it is a complete market. In a complete market, the complete set of possible bets on 

future states of the world can be constructed with existing assets without friction. For example, at 𝑡 = 0 

we can form a portfolio 𝑋(0) which contains ∆ shares of the stock and money 𝐵 in a bank with the 

continuously compounded risk-free rate of interest 𝑟 = 0.03 to replicate the call’s future payoff at 𝑡 = 𝑇 

(i.e., a hedging strategy):3    

 

         {
∆ ⋅ 𝑆0𝑢 + 𝑒

𝑟𝐵 = 𝑐𝑢 = 10      

∆ ⋅ 𝑆0𝑑 + 𝑒
𝑟𝐵 = 𝑐𝑑 = 0

,           (3) 

 

where ∆=
𝑐𝑢−𝑐𝑑

𝑆0𝑢−𝑆0𝑑
= 0.25 . Thus, 𝐵 = 𝑒−𝑟[𝑐𝑢 − ∆ ⋅ 𝑆0𝑢] = 𝑒−𝑟 [

𝑢⋅𝑐𝑑−𝑑⋅𝑐𝑢

𝑢−𝑑
] = −19.4089 , and with no 

arbitrage,  

   𝑐0 = 𝑋(0) = ∆ ⋅ 𝑆0 + 𝐵 = 𝑒
−𝑟 [

𝑒𝑟−𝑑

𝑢−𝑑
⋅ 𝑐𝑢 +

𝑢−𝑒𝑟

𝑢−𝑑
⋅ 𝑐𝑑] = 𝑒−𝑟[𝜋𝑐𝑢 + (1 − 𝜋)𝑐𝑑]  

= 𝑒−𝑟[𝜋(∆ ⋅ 𝑆0𝑢 + 𝑒
𝑟𝐵) + (1 − 𝜋)(∆ ⋅ 𝑆0𝑑 + 𝑒

𝑟𝐵)] = 5.5911.    

 

As in eq. (2), we have:   

(∆ ⋅ 𝑆0𝑢 + 𝑒
𝑟𝐵)(𝜋) + (∆ ⋅ 𝑆0𝑑 + 𝑒

𝑟𝐵)(1 − 𝜋) = 𝐸𝑷[𝑋(𝑇)|𝑋(0)] = 𝑒
𝑟𝑐0 = 𝑒0.035.5911 = 𝑒𝑟𝑋(0). (4)  

 

3 Alternatively, at 𝑡 = 0, we can buy ∆ shares of the stock and sell one call to construct a portfolio which gives a certain future 

payoff at 𝑡 = 𝑇, and {
120(∆) − 110 = 80(∆) − 0 ⇒ ∆= 0.25      
80(0.25)

1+0.1
= 100(0.25) − 𝑐0 ⇒ 𝑐0 = 5.5911

. That is, ∆ ⋅ 𝑆0𝑢 − 𝑐𝑢 = ∆ ⋅ 𝑆0𝑑 − 𝑐𝑑 ⇒ ∆=
𝑐𝑢−𝑐𝑑

𝑆0𝑢−𝑆0𝑑
, and 

hence, [𝑆0𝑢 ⋅
𝑐𝑢−𝑐𝑑

𝑆0(𝑢−𝑑)
− 𝑐𝑢]/(1 + 𝑟) = 𝑆0 ⋅

𝑐𝑢−𝑐𝑑

𝑆0(𝑢−𝑑)
− 𝑐0 ⇒ 𝑐0 = [𝜋𝑐𝑢 + (1 − 𝜋)𝑐𝑑]/(1 + 𝑟),   where 𝜋 =

𝑒𝑟−𝑑

𝑢−𝑑
, 1 − 𝜋 =

𝑢−𝑒𝑟

𝑢−𝑑
.   

 

https://en.wikipedia.org/wiki/Asset
https://en.wikipedia.org/wiki/Frictionless_market


 

3. Derivation of the Black-Scholes-Merton Model  

 

Case 1: Geometric Brownian motion process: {𝑋(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+𝛼𝑡, 𝑇 ≥ 𝑡 ≥ 0}.   

 

Denote the stock price at time 0 ≤ 𝑡𝑖 ≤ 𝑇  as 𝑆(𝑡𝑖)  where 𝑆(0) ≡ 𝑆0  and 0 = 𝑡0 < 𝑡1 <. . . <

𝑡𝑛−1 < 𝑡𝑛 = 𝑇. Let   

𝑆(𝑇) =
𝑆(𝑇)

𝑆(𝑡𝑛−1)
⋅
𝑆(𝑡𝑛−1)

𝑆(𝑡𝑛−2)
⋅ ⋅ ⋅

𝑆(𝑡2)

𝑆(𝑡1)
⋅
𝑆(𝑡1)

𝑆(0)
⋅ 𝑆(0),   

 

and 𝑦(𝑡𝑛) = 𝑆(𝑇)/𝑆(𝑡𝑛−1), …, 𝑦(𝑡𝑛−𝑖) = 𝑆(𝑡𝑛−𝑖)/𝑆(𝑡𝑛−𝑖−1), 𝑛 > 𝑖 ≥ 1,  

 

hence,  

 

𝑆(𝑇) = 𝑦(𝑡𝑛) ⋅ 𝑦(𝑡𝑛−1) ⋅ . . .⋅ 𝑦(𝑡1) ⋅ 𝑆(0)  or  𝑙𝑛𝑆(𝑇) = ∑ 𝑙𝑛(𝑦(𝑡𝑖)) + 𝑙𝑛(𝑆(0))
𝑛
𝑖=1 .  

 

Suppose that 𝑙𝑛(𝑦(𝑡𝑖)), 𝑖 ≥ 1, are independent and identically distributed. Then, assume 𝑦(𝑡𝑖), 𝑖 ≥

1, are log-normal (or with large n, and being suitably normalized approximately be Brownian motion with 

a drift), ∑ 𝑙𝑛(𝑦(𝑡𝑖)) ≡ 𝑌(𝑇)
𝑛
𝑖=1  is normally distributed, i.e., 𝜎 ∙ 𝑊(𝑇) + 𝛼𝑇 ≡ 𝑌(𝑇)~𝑁(𝛼𝑇, 𝜎2𝑇) , 

where 𝑊(𝑡), 𝑡 ≥ 0  is a Brownian motion and 𝑊(𝑡)~𝑁(0, 𝑡) . Also, 𝑆(𝑇) = 𝑒∑ 𝑙𝑛(𝑦(𝑡𝑖))+𝑙𝑛(𝑆(0))
𝑛
𝑖=1 =

𝑆0 ⋅ 𝑒
𝑌(𝑇) = 𝑆0 ⋅ 𝑒

𝜎∙𝑊(𝑇)+𝛼𝑇  where 𝑙𝑛(𝑆(0)) ≡ 𝑙𝑛𝑆0 . Thus, we have (𝑌(𝑇) − 𝑌(𝑆)) ∼ 𝑁(𝜇(𝑇 −

𝑆), 𝜎2(𝑇 − 𝑆)).  

We can show that {𝑋(𝑡) = 𝑆0 ⋅ 𝑒
𝑌(𝑡)−(𝛼𝑡+

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} = {𝑋(𝑡) = 𝑆0 ⋅ 𝑒

𝜎∙𝑊(𝑡)+𝛼𝑡−(𝛼𝑡+
1

2
𝜎2𝑡), 𝑇 ≥

𝑡 ≥ 𝑠 ≥ 0} is an exponential martingale:      



 

 𝐸[𝑋(𝑡)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠] = 𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)−(𝛼𝑡+

1

2
𝜎2𝑡)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

    = 𝑆0 ⋅ 𝑒
−(𝛼𝑡+

1

2
𝜎2𝑡) ⋅ 𝐸[𝑒𝑌(𝑡)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
−(𝛼𝑡+

1

2
𝜎2𝑡) ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)+𝑌(𝑠)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−(𝛼𝑡+

1

2
𝜎2𝑡) ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−(𝛼𝑡+

1

2
𝜎2𝑡) ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)] 

= 𝑆0 ⋅ 𝑒
𝑌(𝑠)−(𝛼𝑡+

1

2
𝜎2𝑡) ⋅ 𝑒𝛼(𝑡−𝑠)+

1

2
𝜎2(𝑡−𝑠)

   

       = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−(𝛼𝑠+

1

2
𝜎2𝑠)

   

= 𝑋(𝑠).   

 

Let 𝑠 = 0, the above equation becomes:    

𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)−(𝛼𝑡+

1

2
𝜎2𝑡)|𝑋(0)] =𝐸[𝑆(𝑡) ⋅ 𝑒−(𝛼𝑡+

1

2
𝜎2𝑡)|𝑋(0)] = 𝑆(0) = 𝑆0.   

 

Multiply both sides of the above equation by 𝑒𝛼𝑡+
1

2
𝜎2𝑡

. Then, as shown in eq. (2), i.e., with no arbitrage 

(the last equal sign), we have:   

 

𝑒𝛼𝑡+
1

2
𝜎2𝑡 ⋅ 𝐸[𝑆(𝑡) ⋅ 𝑒−(𝛼𝑡+

1

2
𝜎2𝑡)|𝑋(0)] = 𝐸[𝑆(𝑡)|𝑋(0)] = 𝑒𝛼𝑡+

1

2
𝜎2𝑡𝑆0 = 𝑒𝑟𝑡𝑆0.      (5)  

 

Thus, {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+𝛼𝑡, 𝑇 ≥ 𝑡 ≥ 0} and no arbitrage imply:  

 

      𝛼 +
1

2
𝜎2 = 𝑟.               (6)  



 

Case 2: Geometric Brownian motion process: {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡 − 

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0}.   

 

Suppose that {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} . Let 𝑌(𝑡)~𝑁(0, 𝜎2𝑡)  or 0 ∙ 𝑡 + 𝜎 ∙

𝑊(𝑡) ≡ 𝑌(𝑡)~𝑁(0, 𝜎2𝑡) where 𝑊(𝑡), 𝑡 ≥ 0 is a Brownian motion and 𝑊(𝑡)~𝑁(0, 𝑡). We can show 

that {𝑋(𝑡) = 𝑆0 ⋅ 𝑒
𝑌(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡, 𝑇 ≥ 𝑡 ≥ 𝑠 ≥ 0} is an exponential martingale:   

 

𝐸[𝑋(𝑡)|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠] = 𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]   

    = 𝑆0 ⋅ 𝑒
(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)+𝑌(𝑠)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
𝑌(𝑠)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)|𝑋(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                    = 𝑆0 ⋅ 𝑒
𝑌(𝑠)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)]  

= 𝑆0 ⋅ 𝑒
𝑌(𝑠)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡 ⋅ 𝑒0∙

(𝑡−𝑠)+
1

2
𝜎2(𝑡−𝑠)

  

     = 𝑆0 ⋅ 𝑒
𝑌(𝑠)+(𝛼𝑠−

1

2
𝜎2𝑠)−𝛼𝑠

 

= 𝑆(𝑠) ⋅ 𝑒−𝛼𝑠    

= 𝑋(𝑠).    

 

Let 𝑠 = 0, the above equation becomes: 

 

   𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡)−𝛼𝑡|𝑋(0)] = 𝐸[𝑆(𝑡) ⋅ 𝑒−𝛼𝑡|𝑋(0)] = 𝑆(0) = 𝑆0.   

 



Multiply both sides of the above equation by 𝑒𝛼𝑡. Then, as shown in eq. (2), i.e., with no arbitrage (the 

last equal sign), we have:  

 

  𝑒𝛼𝑡 ⋅ 𝐸[𝑆(𝑡) ⋅ 𝑒−𝛼𝑡|𝑋(0)] = 𝐸[𝑆(𝑡)|𝑋(0)] = 𝑒𝛼𝑡𝑆0 = 𝑒𝑟𝑡𝑆0.         (7)  

 

Thus, {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} and no arbitrage imply:  

 

      𝛼 = 𝑟.                 (8)  

 

Case 3: Geometric Brownian motion process: {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)−

1

2
𝜎2𝑡, 𝑇 ≥ 𝑡 ≥ 0}.  

 

Suppose that 𝑌(𝑡)~𝑁(0, 𝜎2𝑡) and 𝜎 ∙ 𝑊(𝑡) ≡ 𝑌(𝑡)~𝑁(0, 𝜎2𝑡) where 𝑊(𝑡), 𝑡 ≥ 0 is a Brownian 

motion and 𝑊(𝑡)~𝑁(0, 𝑡). Then {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝑌(𝑡)−

1

2
𝜎2𝑡 , 𝑇 ≥ 𝑡 ≥ 𝑠 ≥ 0} is an exponential martingale:   

 

𝐸[𝑆(𝑡)|𝑆(𝑢),0 ≤ 𝑢 ≤ 𝑠] = 𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)−

1

2
𝜎2𝑡|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

     = 𝑆0 ⋅ 𝑒
−
1

2
𝜎2𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                     = 𝑆0 ⋅ 𝑒
−
1

2
𝜎2𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)+𝑌(𝑠)|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                     = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−

1

2
𝜎2𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠]  

                     = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−

1

2
𝜎2𝑡 ⋅ 𝐸[𝑒𝑌(𝑡)−𝑌(𝑠)] 

= 𝑆0 ⋅ 𝑒
𝑌(𝑠)−

1

2
𝜎2𝑡 ⋅ 𝑒0∙

(𝑡−𝑠)+
1

2
𝜎2(𝑡−𝑠)

   

      = 𝑆0 ⋅ 𝑒
𝑌(𝑠)−

1

2
𝜎2𝑠

 



= 𝑆(𝑠).    

 

Let 𝑠 = 0, the above equation becomes: 

 

     𝐸[𝑆0 ⋅ 𝑒
𝑌(𝑡)−

1

2
𝜎2𝑡|𝑆(0)] = 𝐸[𝑆(𝑡)|𝑆(0)] = 𝑆(0) = 𝑆0.   

 

As shown in eq. (2), i.e., with no arbitrage (the last equal sign), we have:  

 

   𝐸[𝑆(𝑡)|𝑆(𝑢), 0 ≤ 𝑢 ≤ 𝑠] = 𝑒0⋅𝑡𝑆0 = 𝑒𝑟𝑡𝑆0.            (9)  

 

Thus, {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)−

1

2
𝜎2𝑡, 𝑇 ≥ 𝑡 ≥ 0} and no arbitrage imply:  

 

      𝑟 = 0.                   (10)  

 

We now adopt {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+𝛼𝑡, 𝑇 ≥ 𝑡 ≥ 0} in Case 1 as a stock price process.4 Let 𝑋(𝑡) =

𝜎 ∙ 𝑊(𝑡) + 𝛼𝑡 , and 𝑆(𝑡) = 𝑓(𝑋(𝑡)), where 𝑓(𝑥) = 𝑆(0) ⋅ 𝑒𝑥 , 𝑓′(𝑥) = 𝑆(0) ⋅ 𝑒𝑥  and 𝑓"(𝑥) = 𝑆(0) ⋅

𝑒𝑥. We have: 𝑑𝑋(𝑡) = 𝜎 ∙ 𝑑𝑊(𝑡) + 𝛼 ∙ 𝑑𝑡. By Ito’s lemma,    

 

4 In the literature, {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} in Case 2 is used. Let 𝑋(𝑡) = 𝜎 ∙ 𝑊(𝑡) + (𝛼𝑡 −

1

2
𝜎2𝑡). We 

have: 𝑑𝑋(𝑡) = 𝜎 ∙ 𝑑𝑊(𝑡) + (𝛼 −
1

2
𝜎2)𝑑𝑡. By Ito’s lemma,    

𝑑𝑆(𝑡) = 𝑑𝑓(𝑋(𝑡)) = 𝑓′(𝑋(𝑡)) ⋅ 𝑑𝑋(𝑡) +
1

2
𝑓"(𝑋(𝑡)) ⋅ 𝑑𝑋(𝑡) ⋅ 𝑑𝑋(𝑡) = 𝑆(𝑡) ⋅ 𝑑𝑋(𝑡) +

1

2
𝑆(𝑡) ⋅ 𝑑𝑋(𝑡) ⋅ 𝑑𝑋(𝑡)      

= (𝛼 −
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡) +

1

2
⋅ 𝑆(𝑡) ⋅ 𝜎2𝑑𝑡 =  𝛼 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡).   

  



 

𝑑𝑆(𝑡) = 𝑑𝑓(𝑋(𝑡)) = 𝑓′(𝑋(𝑡)) ⋅ 𝑑𝑋(𝑡) +
1

2
𝑓"(𝑋(𝑡)) ⋅ 𝑑𝑋(𝑡) ⋅ 𝑑𝑋(𝑡)   

= 𝑆(𝑡) ⋅ 𝑑𝑋(𝑡) +
1

2
𝑆(𝑡) ⋅ 𝑑𝑋(𝑡) ⋅ 𝑑𝑋(𝑡)    

= 𝛼 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡) +
1

2
⋅ 𝑆(𝑡) ⋅ 𝜎2𝑑𝑡  

= [𝛼 ⋅ 𝑆(𝑡) +
1

2
⋅ 𝑆(𝑡) ⋅ 𝜎2]𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡).            (11) 

and   

𝑑(𝑒−𝑟𝑡𝑆(𝑡)) = 𝑑𝑓(𝑡, 𝑆(𝑡))    

= 𝑓𝑡(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑡 + 𝑓𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑆(𝑡) +
1

2
𝑓𝑥𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑆(𝑡) ⋅ 𝑑𝑆(𝑡)   

= −𝑟𝑒−𝑟𝑡𝑆(𝑡) ⋅ 𝑑𝑡 + 𝑒−𝑟𝑡 ⋅ 𝑑𝑆(𝑡) + 0   

= (𝛼 +
1

2
𝜎2 − 𝑟)𝑒−𝑟𝑡 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑒−𝑟𝑡 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡).      (12)   

 

Since it is a complete market, as in the discrete time case (i.e., eq.’s (3) and (4)) we can also form a 

portfolio valued at 𝑋(𝑡) which contains ∆ shares of the stock and 𝑋(𝑡) − ∆(𝑡)𝑆(𝑡) invested in a bank 

with interest rate r to replicate the call. Then,    

 

  𝑑𝑋(𝑡) = ∆(𝑡) ⋅ 𝑑𝑆(𝑡) + 𝑟(𝑋(𝑡) − ∆(𝑡) ⋅ 𝑆(𝑡))𝑑𝑡    

= ∆(𝑡)((𝛼 ⋅ 𝑆(𝑡) +
1

2
⋅ 𝑆(𝑡) ⋅ 𝜎2)𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡)) + 𝑟(𝑋(𝑡) − ∆(𝑡) ⋅ 𝑆(𝑡))𝑑𝑡   

= 𝑟 ⋅ 𝑋(𝑡) ⋅ 𝑑𝑡 + ∆(𝑡) ⋅ (𝛼 +
1

2
𝜎2 − 𝑟) ⋅ 𝑆(𝑡)𝑑𝑡 + ∆(𝑡) ⋅ 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡)     (13)   

and   

𝑑(𝑒−𝑟𝑡𝑋(𝑡)) = 𝑑𝑓(𝑡, 𝑋(𝑡))  

= −𝑟𝑒−𝑟𝑡𝑋(𝑡) ⋅ 𝑑𝑡 + 𝑒−𝑟𝑡 ⋅ 𝑑𝑋(𝑡) + 0   



= ∆(𝑡) ⋅ [(𝛼 +
1

2
𝜎2 − 𝑟)𝑒−𝑟𝑡 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑒−𝑟𝑡 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡)] = ∆(𝑡) ⋅ 𝑑(𝑒−𝑟𝑡𝑆(𝑡)).  (14)  

 

Let the value of a European call option at time 𝑡 be 𝑐(𝑡, 𝑆(𝑡)). We have:  

 

𝑑𝑐(𝑡, 𝑆(𝑡)) = 𝑐𝑡(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑡 + 𝑐𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑆(𝑡) +
1

2
𝑐𝑥𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑆(𝑡) ⋅ 𝑑𝑆(𝑡)  

= [𝑐𝑡(𝑡, 𝑆(𝑡)) + (𝛼 +
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)) +

1

2
𝜎2 ⋅ 𝑆2(𝑡) ⋅ 𝑐𝑥𝑥(𝑡, 𝑆(𝑡))]𝑑𝑡   

            +𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑊(𝑡)              (15) 

and   

𝑑(𝑒−𝑟𝑡𝑐(𝑡, 𝑆(𝑡))) = 𝑑𝑓(𝑡, 𝑐(𝑡, 𝑆(𝑡)))  

= 𝑓𝑡(𝑡, 𝑐(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑡 + 𝑓𝑥(𝑡, 𝑐(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑐(𝑡, 𝑆(𝑡))  

+
1

2
𝑓𝑥𝑥(𝑡, 𝑐(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑐(𝑡, 𝑆(𝑡) ⋅ 𝑑𝑐(𝑡, 𝑆(𝑡)  

                  = 𝑒−𝑟𝑡[−𝑟 ⋅ 𝑐𝑡(𝑡, 𝑆(𝑡)) + 𝑐𝑡(𝑡, 𝑆(𝑡)) + (𝛼 +
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡))   

+
1

2
𝜎2 ⋅ 𝑆2(𝑡) ⋅ 𝑐𝑥𝑥(𝑡, 𝑆(𝑡))]𝑑𝑡 + 𝑒

−𝑟𝑡 ⋅ 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑊(𝑡).    (16)  

 

To equate the evolutions of the portfolio value and the call option value for all 𝑡, i.e.,    

 

     𝑋(𝑡) = 𝑒𝑟𝑡𝑋(0) = 𝑒𝑟𝑡𝑐(0, 𝑆(0)) = 𝑐(𝑡, 𝑆(𝑡)) or     

𝑒−𝑟𝑡𝑋(𝑡) = 𝑋(0) = 𝑐(0, 𝑆(0)) = 𝑒−𝑟𝑡𝑐(𝑡, 𝑆(𝑡)) for all 𝑡 ∈ [0, 𝑇],   

we need  

𝑑(𝑒−𝑟𝑡𝑋(𝑡)) = 𝑑(𝑒−𝑟𝑡𝑐(𝑡, 𝑆(𝑡))) for all 𝑡 ∈ [0, 𝑇)       (17)  

and  𝑋(0) = 𝑐(0, 𝑆(0)).   



 

Thus, by substituting eq. (14) and eq. (16) into eq. (17) we have:   

 

     ∆(𝑡) ⋅ (𝛼 +
1

2
𝜎2 − 𝑟) ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + ∆(𝑡) ⋅ 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡)  

= [−𝑟 ⋅ 𝑐(𝑡, 𝑆(𝑡)) + 𝑐𝑡(𝑡, 𝑆(𝑡)) + (𝛼 +
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡))  

+
1

2
𝜎2 ⋅ 𝑆2(𝑡) ⋅ 𝑐𝑥𝑥(𝑡, 𝑆(𝑡))]𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)) ⋅ 𝑑𝑊(𝑡).  

 

 For the 𝑑𝑊(𝑡) terms:  ∆(𝑡) = 𝑐𝑥(𝑡, 𝑆(𝑡)).      

 For the 𝑑𝑡 terms:  

 

∆(𝑡) ⋅ (𝛼 +
1

2
𝜎2 − 𝑟) ⋅ 𝑆(𝑡) = 𝑐𝑥(𝑡, 𝑆(𝑡)) ⋅ (𝛼 +

1

2
𝜎2 − 𝑟) ⋅ 𝑆(𝑡)                        

 = −𝑟 ⋅ 𝑐(𝑡, 𝑆(𝑡)) + 𝑐𝑡(𝑡, 𝑆(𝑡)) + (𝛼 +
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)) +

1

2
𝜎2 ⋅ 𝑆2(𝑡) ⋅ 𝑐𝑥𝑥(𝑡, 𝑆(𝑡)).   (18)   

 

By cancelling [(𝛼 +
1

2
𝜎2) ⋅ 𝑆(𝑡) ⋅ 𝑐𝑥(𝑡, 𝑆(𝑡)] or substituting 𝛼 +

1

2
𝜎2 = 𝑟 of eq. (6) into both sides of 

eq. (18), we have:5   

 

𝑟 ∙ 𝑐(𝑡, 𝑆(𝑡)) = 𝑐𝑡(𝑡, 𝑆(𝑡)) + 𝑟 ∙ 𝑆(𝑡) ∙ 𝑐𝑥(𝑡, 𝑆(𝑡)) +
1

2
𝜎2 ∙ 𝑆2(𝑡) ∙ 𝑐𝑥𝑥(𝑡, 𝑆(𝑡))   

             for all 𝑡 ∈ [0, 𝑇), 𝑆(𝑡) ≥ 0.          (19)   

 

5 Note that by adopting {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} and hence, 𝑑𝑆(𝑡) =  𝛼 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑡 + 𝜎 ⋅ 𝑆(𝑡) ⋅ 𝑑𝑊(𝑡) in 

the literature, we can use the non-arbitrage requirement 𝛼 = 𝑟 of eq. (8) to derive exactly the same eq. (19).  



 

Eq. (19) is the Black-Scholes-Merton partial differential equation.6    

 

4. Concluding Remarks   

 

In the continuous-time finance literature, it is claimed that the expected rate of return of underlying 

asset does not affect the option pricing model. This paper has shown that with no arbitrage, i.e., under the 

Arbitrage (Gordan) theorem, different underlying asset price processes used in the Black-Scholes-Merton 

partial differential equation and the Black-Scholes-Merton option pricing formula require that risk-free 

interest rate be a linear function of underlying asset’s expected rate of return (alpha) and variance of return, 

or (as in the literature) risk-free interest rate equal underlying asset’s alpha.      

 

  

 

6 See Appendix for using the no arbitrage requirement: 𝛼 +
1

2
𝜎2 = 𝑟 to derive the Black-Scholes-Merton option pricing 

formula.   
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Appendix  

 

We assume that as in Case 1, {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+𝛼𝑡, 𝑇 ≥ 𝑡 ≥ 0} is a stock price process, where 

𝜎𝑊(𝑡) + 𝛼𝑡 ≡ 𝑌(𝑡)~𝑁(𝛼𝑡, 𝜎2𝑡). At 𝑡 = 𝑇, the value of the call option 𝑐(𝑇, 𝑆(𝑇)) is:    

 

(𝑆(𝑇) − 𝐾)+ = {
𝑆(𝑇) − 𝐾  if  𝑆(𝑇) ≥ 𝐾
0                if  𝑆(𝑇) <  𝐾

      

 

As shown in Case 1, let 𝑋(𝑇) = 𝑆0 ⋅ 𝑒
𝑌(𝑇)−(𝛼𝑇+

1

2
𝜎2𝑇) = 𝑆0 ⋅ 𝑒

𝜎∙𝑊(𝑇)+𝛼𝑇−(𝛼𝑇+
1

2
𝜎2𝑇) = 𝑆(𝑇) ⋅ 𝑒−(𝛼𝑇+

1

2
𝜎2𝑇)

, 

and with no arbitrage we have eq. (5), i.e.,     

 

𝐸𝒑[𝑆(𝑇)|𝑋(0)] = 𝑒
𝑟𝑇𝑆0 and hence, 𝐸𝒑[(𝑆(𝑇) − 𝐾)

+|𝑋(0)] = 𝑒𝑟𝑇𝑐(0, 𝑆(0)),    

or  

0 = 𝐸𝒑[(𝑆(𝑇) − 𝐾)
+ − 𝑒𝑟𝑇𝑐(0, 𝑆(0))|𝑐(0, 𝑆(0))] = 𝐸𝒑[(𝑆(𝑇) − 𝐾)

+ − 𝑒𝑟𝑇𝑐(0, 𝑆(0))]  (A1)  

 

where 𝒑  is the probability measure governing the stochastic process. With 𝑆(𝑇) = 𝑆0 ⋅ 𝑒
𝑌(𝑇) and  

𝑌(𝑇) ∼ 𝑁(𝛼𝑇, 𝜎2𝑇), eq. (A1) can be shown as:     

 

𝑒𝑟𝑇𝑐(0, 𝑆(0)) = 𝐸𝒑[(𝑆(𝑇) − 𝐾)
+] = ∫ (𝑆0 ⋅ 𝑒

𝑦 −𝐾)+ ⋅
1

√2𝜋𝜎2𝑇
⋅ 𝑒

−(𝑦−𝛼𝑇)2

2𝜎2𝑇 𝑑𝑦
+∞

−∞
.    

 

Rewrite 𝑆0 ⋅ 𝑒
𝑦 − 𝐾 ≥ 0 as 𝑦 ≥ 𝑙𝑛(

𝐾

𝑆0
), we have:   

 

𝑒𝑟𝑇𝑐(0, 𝑆(0)) = ∫ (𝑆0 ⋅ 𝑒
𝑦 − 𝐾) ⋅

1

√2𝜋𝜎2𝑇
⋅ 𝑒

−(𝑦−𝛼𝑇)2

2𝜎2𝑇 𝑑𝑦
+∞

𝑙𝑛(
𝐾

𝑆0
)

.     

 



Let 𝑧 = (𝑦 − 𝛼𝑇)/𝜎√𝑇. We have: 𝑑𝑦 = 𝜎√𝑇𝑑𝑧 and      

 

𝑒𝑟𝑇𝑐(0, 𝑆(0)) = 𝑆0 ⋅ 𝑒
𝛼𝑇 ⋅

1

√2𝜋
∫ 𝑒𝜎𝑧√𝑇
+∞

𝑎
⋅ 𝑒

−𝑧2

2 𝑑𝑧 − 𝐾 ⋅
1

√2𝜋
∫ 𝑒

−𝑧2

2
+∞

𝑎
𝑑𝑧  (A2) 

 

where 𝑎 = [𝑙𝑛(
𝐾

𝑆0
) − 𝛼𝑇]/𝜎√𝑇, and     

 

1

√2𝜋
∫ 𝑒𝜎𝑧√𝑇 ⋅ 𝑒

−𝑧2

2
+∞

𝑎
𝑑𝑧 = 𝑒

𝑇𝜎2

2 ⋅
1

√2𝜋
∫ 𝑒

−(𝑧−𝜎√𝑇)2

2
+∞

𝑎
𝑑𝑧   

= 𝑒𝑇𝜎
2/2 ⋅ Prob{𝑁(𝜎√𝑇, 1) ≥ 𝑎} = 𝑒𝑇𝜎

2/2 ⋅ Prob{𝑁(0,1) ≥ 𝑎 − 𝜎√𝑇}    

= 𝑒𝑇𝜎
2/2 ⋅ Prob{𝑁(0,1) ≤ 𝜎√𝑇 − 𝑎} = 𝑒𝑇𝜎

2/2 ⋅ 𝜑(𝜎√𝑇 − 𝑎).   

 

Thus, eq. (A2) becomes:   

 

    𝑒𝑟𝑇𝑐(0, 𝑆(0)) = 𝑆0 ⋅ 𝑒
(𝛼+𝜎2/2)𝑇 ⋅ 𝜑(𝜎√𝑇 − 𝑎) − 𝐾 ⋅ 𝜑(−𝑎).    (A3)  

 

By substituting the no arbitrage requirement: 𝛼 +
1

2
𝜎2 = 𝑟 of eq. (6) into eq. (A3), we have the Black-

Scholes-Merton model:    

 

𝑐(0, 𝑆(0)) = 𝑆0 ⋅ 𝜑(𝜎√𝑇 − 𝑎) − 𝐾 ⋅ 𝑒
−𝑟𝑇 ⋅ 𝜑(−𝑎) = 𝑆0 ⋅ 𝜑(𝑑1) − 𝐾 ⋅ 𝑒

−𝑟𝑇 ⋅ 𝜑(𝑑2)  (A4)  

where 𝑑1 =
𝑙𝑛(

𝑆0
𝐾
)+(𝑟+

𝜎2

2
)𝑇

𝜎√𝑇
,  𝑑2 = 𝑑1 − 𝜎√𝑇.    

 

Note that if we assume, as in the literature, that {𝑆(𝑡) = 𝑆0 ⋅ 𝑒
𝜎∙𝑊(𝑡)+(𝛼𝑡−

1

2
𝜎2𝑡), 𝑇 ≥ 𝑡 ≥ 0} is a stock 

price process (where 𝜎 ∙ 𝑊(𝑡)~𝑁(0, 𝜎2𝑡)), then with the no arbitrage requirement: 𝛼 = 𝑟 of eq. (8), we 

will still get the same eq. (A4).    

 


