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Abstract 

The present research has delved deeper into the complex relationship of customer care calls with 
purchasing behavior in a WM system and has developed actionable insights to optimize operations. 
In this regard, the following critical factors have been considered: product attributes-cost, weight, and 
discount-on one hand, and delivery performance in terms of timeliness and reliability on the other, 
with a view to understand their impacts on customer satisfaction and interactions. Key takeaways are 
that high volumes of customer care calls reflect operational failure; there is a delay or expectation 
mismatch, and hence one needs strong process optimization. Also, heavy products, since perceived 
to be reliable, have fewer customer enquiries; lighter, cheap products cause more frequent queries 
since impulsive buying and lack of information occur. It further identifies timeliness of delivery as a 
main determinant of customer satisfaction while delays in delivery result in heightened discontent 
and rising demands for support. The study underlines the strategic relevance of advanced analytics, 
machine learning, and real-time monitoring to finally resolve the recurring inefficiencies. This may 
also be a good basis on which recommendations could be made concerning the use of predictive 
analytics for demand forecasting, effective logistical frameworks, and methods of customer service 
that would be in line with product-specific needs. Discounts become a two-edged factor: enhancing 
satisfaction but threatening brand value when used too frequently. In the end, strategies with discounts 
should be put into balance, proactive customer engagement should be there, with crystal clear 
communications with them, and the products to be more correctly described. The given study also 
identified how a warehouse clears the expectation from customers by applying data-driven strategies 
for better efficiency, customer satisfaction, and long-term loyalty. The above findings provide a 
comprehensive road map on how to integrate technology and customer-centric strategies in modern 
warehouse management. 

JEL CODE: L9, L90, L91, L92, L93. 

Keywords: e-Commerce, Warehouse, Logistics, Machine Learning, Tobit.  

 

1. Introduction  

This research paper goes deeply into the dynamics of calls about customer care and their purchase 
behavior in a warehouse management system. The study investigates how such issues as prior 
purchases, product cost, weight, discounts, and timely delivery bear on customer calls and their 
satisfaction level. The centrepiece of the paper is its connection of the efficiency of warehouse 
operations with customer behaviour, downplaying how advanced technologies, data analytics, and 
customer-oriented approaches are crucial elements for process optimisation that enhance customer 
experience. This paper outlines the growing importance of warehouse management in contemporary 
supply chains within the context of rapidly changing global markets. It is indicated that customer-
driven behavior has shaped key operational strategies to meet the growing demands on timely 
delivery, order accuracy, and reliability of service. Business is encouraged to apply innovative 
technologies and data-oriented approaches in dealing with inherent complexities at both inbound and 
outbound levels. Some of the key variables analyzed in the paper are frequency of customer care 



2 
 

calls, product characteristics including cost and weight, and delivery metrics including timeliness. It 
relates the variables to one another; for instance, an increased frequency of customer care calls could 
point out certain "hidden" inefficiencies in the warehouse operations, such as delays in delivery, 
misunderstanding about product information, or a shortfall in expectation. A lesser frequency of the 
calls, on the other hand, may indicate good customer relationship management, reliable service, and 
high satisfaction. The econometric models and statistical analyses that detail these relationships go 
into the methodology section, thus showing that these are not loose concepts or ideas, but rather a 
well-structured study of how things really are. This study extracts, through large-scale data and 
advanced analytics, important insights that enable warehouse optimization and improve customer 
satisfaction. Based on the findings, recommendations are made for the stated operational objectives, 
considering customers' needs in an integrated strategy touching on technological innovation, process 
smoothing, and customer-centric strategies. 

2. Literature Review 

Song and Hua (2022) say, "In Bonded warehouse operations, most of data mining technology has 
transformed and is continuously optimizing ". By this fact, their work testifies that with data-driven 
approaches, friction in the motion of goods will reduce, errors will fall off, and efficiency in trade 
will grow. The authors strongly raise arguments for predictive analytics and real-time monitoring 
when espousing the need to avail means of technological tools towards meeting the dynamic demands 
of international trade. More than anything else, the value of this paper lies in the fact that bonded 
warehouses comprise a niche yet substantial component of worldwide supply chains and really show 
what data mining can do in terms of precision related to customs clearances and/or inventory 
management. Odunjo (2020) draws on the presentation of an empirical evaluation of inbound and 
outbound logistics operations at Dangote Cement Industries, given that these operations have direct 
contact with organizational performance. This places the analysis in an industry with high stakes and 
logistical precision forming the very backbone of competitive advantage. The dissertation enumerates 
a few of the operational challenges faced, such as delays on the part of material delivery agencies and 
inefficiency in the distribution channels, while it advocates strategic investments in infrastructure and 
technology. Odunjo's (2020) study further supports the work of Song and Hua by adding weight to 
the improvement aspect of logistics through technology as the success factor for an organization. It 
adds another touch in underpinning challenges specific to the industry. Problems that Phan and Tran 
(2022) discuss as being covered in the development of a warehouse management information system 
underline that substantial attention has recently focused on how such practical software solutions will 
help improve operational transparency and efficiency. This is also very unique in giving a hands-on 
view of how the system was designed to actually work, both in theory and importantly in practice. It 
falls in the niche discussed by Song and Hua (2022) but narrows down into the development of the 
system, hence giving a prolific view of how technology can be tailored towards specific operational 
demands. This paper gives practical recommendations on what to do for any organization looking to 
implement or improve its WMS. The analysis by Hu and Weisel (2020) gave a more general strategic 
setting for optimizing inbound logistics. Indeed, their work probes how optimization in supplier 
relationships, transportation routes, or inventory could yield cost economies and customer 
satisfaction. Though their work has been less focused on technological interventions compared to the 
other articles mentioned above, their emphasis on process optimization bridges the gap from manual 
operations to digital transformations. This also extends the work of Phan and Tran (2022) by 
explaining in detail the areas within which technology can contribute to the traditional structure of 
logistics. Polim and Lestari (2023) have explained BPR in regards to achieving excellence in 
warehouse management, and their case study is about retail. The pragmatism inducted in the case 
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study attests to the fact that reengineering the existing processes provides an insight into the 
estimation for running the warehouse operations in harmony with the organizational objectives. The 
present study represents a balanced view of the challenges and opportunities involved and brings to 
light the role of stakeholder involvement in implementing change initiatives. These series of articles 
put together give a comprehensive view of how modern logistics and warehouse management 
integrity blend with technology, process optimization, and industry-specific solutions to bring about 
operational excellence in the field. They recommend a strategic combination of technological 
innovation with process refinement to match demands that keep on growing from the supply chains 
of the world. Review articles allow reading innovation into warehouse management in all its diversity 
for industries that merge technological innovation, process optimization, and customer-oriented 
approaches. Put together, it reflects the state of evolution and modernization of logistics systems with 
their new demands determined by global supply chains. Praptodiyono et al. (2023) have conducted a 
study on the design of RFID-based WMS for AgroHUB Banten by concentrating on peculiarities 
related to the agricultural supply chain. This paper gives a glimpse into how RFID technologies can 
revolutionize inventory tracking and save manikins from operating inefficiencies within AgroHUB. 
The proposed system supports the concept of precision agriculture and smart chains through real-time 
capture and automation of processes. Thus, this is the real value of bespoke technological solutions: 
being able to attend to the needs of one industry in particular and, as such, standing perhaps as a 
beacon toward digitization in warehouses within the agrifood industry. Li et al. (2024) used Flexsim 
to simulate the process at the ZTO Distribution Center for both the inbound and outbound areas. In 
this regard, their work segregated in this succession by the connection of theory into practice through 
simulation to find bottlenecks and optimization of workflow for a complex logistics system. These 
findings are particularly crucial with respect to the fact that its insights drawn herein have practical 
significance in throughput improvement and lead time reduction, particularly for organizations 
operating high-volume distribution centers. Complementing the work of Praptodiyono et al. (2023) 
this manuscript will try to explore how the simulation tools could be adapted with RFID systems for 
complete end-to-end warehouse optimization. Münsberg et al. (2022) again take the customer-
focused view by investigating the onboarding of new customers to a 3PL warehouse. The research 
responds to a call for process standardization through spread collaboration among stakeholders for 
onboard operations to happen seamlessly. Although unrelated to technological innovation, this 
research underlines the adaptable means in the context of the 3PL sector facing challenges related to 
diversity and customization across customers. Therefore, that brings another dimension into the 
discussion-that operational efficiency needs not be related to technology but equally to strategic 
process design. The discussion by Satish et al., (2023), was around warehouse managing and material 
handling practices at Polkart Logistics. This paper insists on the interaction between manual and 
automated operations, including the best combination thereof for better productivity with minimum 
cost. Again, this focuses on yet another very important but mostly discussed lesser area of the overall 
functions of the warehouse, thereby underlining the role of physical infrastructure and people 
management in pursuit of excellence in operations. A case study by Apolonio and Norona (2021) 
looks at inventory management automation in the FMCG sector, placing their discussion in the wider 
context of Supply Chain 4.0. Work such as that, for example, tested insight into how automation, IoT 
devices, and data analytics would prove to be highly transformative in inventory control related to 
high-demanding industries. This all befits complementary insights from RFID focus into wider 
implications for automation, such as inventory accuracy, replenishment cycles, and eventually 
customer satisfaction. In other words, for proper management to take place within the warehouse, the 
best technologies-ranging from RFID to simulation tools-must be integrated with strategic-level 
process enhancement and customer-centric approaches. The challenges thrown up by modern 
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logistics are answered with applications related to industry-specific solutions, simulation-based 
planning, and integration of automation. The selected articles discuss various trends in developments 
related to warehouse management systems-from studying cloud-based architectures and machine 
learning applications, going further into the operational frameworks for leaner logistics operations. 
All these collectively indicate an increasing role of technology in causing changes in the process of 
warehousing and logistics across industries. Chen and Liu (2024) propose a state-of-the-art cloud-
native architecture for AS/RS warehouses. Other key areas of the work involve developing how the 
cloud-based platform will facilitate the centralization of warehouse management and control systems 
for scalability, flexibility, and cost efficiency. This research work uses containerized services and 
microservice architecture to provide an effective means toward the delivery of real-time decision-
making and operational adaptability. Also, with AS/RS-an automated system of warehousing-this 
automatically places the research at the bleeding edge of Industry 4.0 initiatives, showing just how 
traditional supply chain management can be changed through the integration of cloud-native 
technologies. To handle the demands imposed by FIFO and FEFO, Hietasari et al. (2024) proposed a 
conceptual model of WMS with auto-suggestions. Their work emphasizes lean warehousing through 
the removal of waste, intensification of inventory turnover, and timely use of stock. The framework 
automates decision-making processes for inventory allocation; hence, it contributes to solving some 
of the difficulties faced in perishable goods industries and others that require precision in stock 
management. This work thus complements the study of Chen and Liu (2024) by offering a more 
focused approach toward operational efficiency, targeting the aspect of inventory flow management. 
Albadrani et al. (2020) explore machine learning algorithms that can be utilized for the optimization 
of inbound logistics processes. Their work represents how predictive analytics and optimization 
models can mitigate costs of transportation, improve supplier selection, and develop smooth 
procurement processes. This study, through the amalgamation of machine learning, has revealed the 
potential of data-driven insights into transforming inbound logistics, a major but often neglected 
component of supply chain management. It goes well with the solutions of cloud-native approaches, 
with Chen and Liu illustrating the synergies between automation, advanced analytics, and real-time 
data processing. Dewi and Shofa (2023) introduce a WMS to manage the operation of warehouses 
effectively. This paper presents the design and implementation of an integrated system for addressing 
issues related to mismanagement of items in inventory and processing customer orders. Other than 
the general architectural or conceptual framework that many articles have been discussing, this study 
presents very handy insights into constructing user-friendly systems that can be implemented in 
medium to large-scale operations. Wahyuni et al. (2021) review logistics management in the 
contemporary retail market using operational modeling, taking Indonesia as a case study. Their work 
stresses how atypical such logistics challenges are in a retail context and thus require special solutions 
capable of balancing cost efficiency with customer satisfaction effectively. Although this study is less 
focused on technological interventions than the majority of other articles, it conveys an important 
perspective on the operational dynamics of logistics in a competitive market that complements the 
technological innovations discussed in the other articles. Entirely, these articles insist on the 
integration of heavyweight technologies like cloud computing, machine learning, and customized 
WMS frameworks within warehouse and logistic operations. This set of studies allows for further 
responsiveness, efficiency, and sustainability within the supply chain ecosystem through automation, 
data-driven decision-making, and operational modelling. It chooses diversified points of view-from 
digital transformation and frameworks for decision making to operational efficiency and logistics 
optimization. Put together, they help bring out a rich comprehension of the complications and 
development seen enlarged in the realm of warehousing practices. Kumar and Asthana  (2023) have 
referred to the transformation of warehousing on Ekart from old-fashioned conventional godowns to 
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state-of-the-art, technologically driven warehouse management systems. The above case study quite 
clearly describes how digitalization can help with inventory accuracy, operational efficiency, and 
scalability. The authors have amply explained on this platform how one of the e-commerce giants, 
eKart, put technology to use in satisfying consumer demand that is growing with each passing day. 
Such a transformation only modernized their operations but also aligned warehousing practices with 
the expected agility in fast-moving environments such as e-commerce. Gegeleso (2020) discusses the 
warehousing operation of the South Western Nigeria Fast-moving consumer goods industry 
performance talking about its inbound logistics. This paper realizes that good practices in 
warehousing will improve the relationship between supply and transportation efficiency among other 
activities believed to constitute inbound logistics. While doing this, those complications brought forth 
by deficiencies in infrastructure and resource constraints were region-specific; however, at the same 
turn, urged for strategic investments in those areas. This hence would complement the work done by 
Kumar and Asthana by taking into consideration some of the operational nuances of the work in the 
emerging markets since logistical inefficiencies are considered important in determining overall 
performance. Kara et al. (2023) also considered warehouse management in light of decision analysis-
that is, through the suggested hybrid of CRITIC-MULTIMOORA with regard to choosing a 
warehouse manager. These authors have integrated single-valued neutrosophic sets into the provision 
of complex evaluation modeling about the candidates according to several criteria such as experience, 
leadership skill, and technical expertise. The comprehensive study shall find their significance in the 
fact that they are extending the scope of warehouse management in optimizing human resources-
important but almost entirely ignored elements toward operational excellence. Rigor in methodology 
to make sure actionable insights are created for an organization on how to improve its leadership in 
the field of warehousing. Maheshwari et al. (2023) thought about a 'twin' digital version of the WMS 
and came up with the idea of a conceptual toolbox that can be used in future research. The related 
work this might involve could be done in the digital twin warehouse model for real-time simulation, 
monitoring, and optimization. It becomes capable of unparalleled efficiency and speed in managing 
the warehouse, having those advanced technologies like IoT, AI, and simulation models embedded; 
hence, the digital twin in that way. The present study lays a conceptual foundation in that regard; 
hence, it stands out among its peers of studies being prospective in this domain. This supports the 
themes of digital transformation discussed in the case by Kumar and Asthana. De Oliveira et al. made 
improvements to the logistics of receiving in warehouses in 2022. It involves data analysis and 
process mapping methodologies to identify bottlenecks and suggest improvements. Emphasizing that 
the receiving stage is so crucial and has been usually very much disregarded, the given study points 
to how smoothing initial logistics flows can make a difference in enhancing the general performance 
of the warehouse. It stands in concert with the theoretical insight of Maheshwari et al. (2023) in as 
much as concrete solutions have been provided in order to improve the concerns of operational flow. 
These papers finally reflect many-faceted dimensions of warehouse management, especially in 
driving home the imperative of technology, human capital, and operational efficiency in mobilizing 
large wheels of contemporary warehousing systems. This would, in turn, present an avenue to the 
readers for addressing theoretical and practical aspects that could hopefully be presented as a holistic 
roadmap on how best practices can be optimally enhanced and challenges heeded in the global 
dynamic supply chain. The selected articles explore diverse aspects of warehouse and inventory 
management, focusing on technology adoption, performance measurement, and process 
improvement. Collectively, they highlight how modern supply chain challenges can be addressed 
through strategic interventions, technological implementations, and operational redesigns. Corrêa 
(2023) examines the concept of the Supply Chain Control Tower, providing an analytical framework 
for its definition and application gaps. The study underscores the role of the control tower in offering 
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real-time visibility and decision-making capabilities across supply chains. Despite its promise, the 
paper highlights significant gaps between theoretical concepts and practical implementation in 
industries, such as integration challenges and data standardization issues. This research emphasizes 
the need for technological advancements and cross-functional collaboration to unlock the full 
potential of control towers. By linking strategic oversight with operational execution, it lays the 
groundwork for future developments in supply chain management. Pereira et al. (2022) focus on the 
implementation of a Warehouse Management System (WMS) in a Danish logistics company. The 
study presents a detailed case of how WMS adoption improved inventory accuracy, workflow 
efficiency, and overall organizational performance. By leveraging automation and intelligent 
systems, the implementation addressed inefficiencies in warehouse operations, particularly in order 
processing and stock tracking. The practical insights from this study illustrate how companies can 
transition from manual to digital processes, aligning with broader trends in Industry 4.0. This 
complements Corrêa’s (2023) research by demonstrating how operational-level interventions feed 
into the larger supply chain ecosystem. Karim et al. (2021) revisit warehouse productivity indicators, 
proposing ratio-based benchmarks to evaluate performance. Their study addresses a key challenge in 
warehouse operations: the lack of standardized metrics for productivity. By developing a 
comprehensive framework that considers space utilization, labor efficiency, and order fulfillment 
accuracy, the authors provide actionable tools for organizations to benchmark and improve their 
warehouse performance. This research is particularly valuable for managers seeking data-driven 
insights to enhance operational efficiency. Its focus on measurement aligns well with other articles 
discussing process improvements but adds a quantifiable layer to understanding warehouse 
effectiveness. Rector and Scott (2021) explore inbound inventory management system improvements 
at Hoffman. Their study identifies inefficiencies in the existing system, including delayed supplier 
communication and mismanaged stock levels. Through targeted interventions, such as enhanced 
supplier integration and automation of key processes, the study demonstrates measurable 
improvements in inventory turnover and accuracy. This case study offers a pragmatic approach to 
refining inbound logistics, bridging the gap between theoretical strategies and their practical 
application. Mane et al., (2020) focus on the implementation of the 5S methodology and an HTML-
coded inventory control system. Their study demonstrates how structured workplace organization can 
streamline inventory processes, reduce waste, and improve productivity. The integration of a coded 
spare management system further illustrates how digital tools can complement lean practices to 
achieve operational excellence. This research showcases the value of combining traditional lean 
methods with modern technology to optimize warehouse operations. The selected articles introduce 
innovative means and unique challenges found in warehouse management, supply chain optimization, 
and inventory control. They provide a deeper understanding of how technological development, 
operational strategy, and context-specific factors affect the shaping of modern logistics systems. 
Indriyani (2020), in turn, examines the implementation of a WMS. She analyzes factors like how well 
it smooths out operational efficiency. Some of the identified key issues include inaccuracies in 
inventory, delayed shipment, and improper utilization of space. Based on such insufficient analysis, 
recommendations provided by the author include recommending the implementation of modern 
WMS tools and staff training to increase the efficiency of operations in a warehouse. This study 
shows practices within a warehouse must be re-aligned toward organizational objectives, with 
particular reference to the traditional logistic industry transiting into digitized systems. It therefore 
provides a better setting for further identification of how small-scale operations can adopt advanced 
WMS technologies in order to stay competitive. Herbe et al. (2024) develop the potentials of DLTs 
in managing the supply chain. This study explains how DLTs, such as blockchain, enable supply 
chains to adopt improved traceability and enhance the transparency and security of information. It is 
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also being promoted as a means to enhance operational reliability by tacking common fraud and 
consistency problems in data. Meanwhile, the authors indicate implementation barriers due to a task's 
expensive cost and technological difficulty. The latter thus has specific significance for such 
industries, which require powerful authentication systems, and as one of the ways to prospectively 
view the integration of decentralized technologies within warehouse and logistic operations. Guo et 
al. (2024) discuss advanced machine learning applied to warehouse prediction tasks, such as using a 
CNN-BiLSTM-Attention model, indicating how AI is supposed to predict the move-ins and move-
outs of silica powder into and out of a warehouse with very high accuracy. This represents a very 
good example of the growing role of AI in inventory management, especially for those industries 
concerned with special or high-value materials. The accuracy and efficiency of the model proposed 
herein represent how predictive analytics can reduce storage costs, increase order fulfillment, and 
optimize supply chain responsiveness. This research acts as a complement to traditional WMS studies 
by showing the capability of AI-based systems in improving operational forecasting. Bottani et al. 
(2020) present a simulation model to optimize storage space assignment in an e-commerce 
warehouse, particularly within the fashion supply chain. It also determines how to minimize the 
retrieval time by simulating various storage configurations of items in the warehouse, aiming to arrive 
at an efficient method of order processing. This hence creates the case that, in an e-commerce 
business, delivery speed coupled with correct order handling is vital to customer satisfaction and thus 
requires an industry-specific solution. Guided by the simulation approach, this work presents a model 
that can easily be replicated in other industries, by emphasizing scenario analysis as one of the key 
functions of warehouse optimization. Ahmed and Mohamed (2023) discuss the fragility of supply 
chains operating in a post-conflict environment using Somalia as a case experience. The authors have 
contextualized inbound and outbound disturbances, such as infrastructure deficiencies and security 
exposure to categorical disruptions within the operators of supply chains. It also focuses on resilient 
strategies that firms may adopt, such as local sourcing, risk-sharing agreements, or adaptive logistics 
practices. The research develops a critical stance towards contextual organizational dilemmas set in 
volatile regions and deepens the general discussion on warehouse and supply chain management 
(Table 1). 

Table 1. References by methodologies, applications and results.  

Authors Methodologies Applications Results 

Praptodiyono et al. (2023) RFID technology 
implementation 

AgroHUB warehouse 
management 

Increased traceability and 
efficiency 

Li et al.,(2024). Simulation using Flexsim Inbound/outbound process 
in ZTO Distribution 
Center 

Improved process flow efficiency 

Satish et al., (2023). Operational analysis Warehouse management 
at Polkart Logistics 

Improved material handling 
processes 

Hietasari et al., (2024) Conceptual framework 
development 

FIFO/FEFO in lean 
warehousing 

Enhanced warehousing efficiency 
 

Albadrani et al. (2024). Machine learning algorithms Inbound logistics 
optimization 

Predicted future process 
improvements 

Wahyuni et al., (2021).  Modeling and simulation Logistics in retail markets Improved logistical operations 

Gegeleso (2020) Impact assessment Consumer goods industry 
logistics 

Optimized inbound logistics 
practices 

Kara et al., (2023). CRITIC-MULTIMOORA 
hybrid method 

Warehouse manager 
selection 

Improved decision-making process 

Maheshwari et al., (2023).  Digital twin concept Future warehouse 
management 

Theoretical guidance for innovation 

de Oliveira et al., (2022) Process improvement Warehouse receiving 
processes 

Enhanced efficiency 

Corrêa (2023) Literature review and gap 
analysis 

Supply chain control 
towers 

Identified practical application gaps 
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Pereira et al., (2022).  WMS implementation Danish logistics company Operational improvements 

Karim et al., (2021).  Benchmark revision Warehouse productivity 
measurement 

Defined ratio-based indicators 

Mane 5S implementation Inventory control system Improved inventory  management 

Indriyani (2020) Operational analysis Warehouse system at Pt. 
Pos Manado 

Identified inefficiencies 

Herbe et al.,  (2024).  Distributed ledger technology Supply chain management Secured and transparent operations 

Guo et al., (2024).  CNN-BiLSTM-Attention 
model 

Silica powder movement 
prediction 

Improved accuracy 

Bottani et al., (2024).  Simulation modeling E-commerce fashion 
warehouse 

Optimized storage assignment 

 

3. Data and descriptive statistics  

 

The database used in this study is a public database present on the Kaggle.com website. The database 
is entitled “E-Commerce Shipping Data” and takes into account some variables related to warehouse 
operations, logistics, with attention also to consumer responses in terms of satisfaction and ability to 
purchase the same products. It should be noted that this database does not offer information regarding 
the technical characteristics of the products that are stored, sold, shipped and in which consumers 
show interest. Therefore, this data has been used as an example to analyze some characteristics of 
warehouse management, logistics, shipping and customer satisfaction (Table 2).  

Table 2. Variables of the model.  

Variable Definition Source 
Prior purchases The number of times the customer has previously 

purchased the product or any related products. 
 

Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

Discount offered The percentage or amount of discount provided 
on the product's original price for the customer. 
 

Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

Weight in gms The weight of the product in grams. Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

Cost of the 
Product 

The total price or cost of the product, often 
excluding any applied discounts or taxes. 
 

Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

Customer care 
calls 

The number of times a customer has contacted 
customer support or customer care regarding 
inquiries or issues about the product. 
 

Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

Reached on time Indicates whether the product was delivered to 
the customer within the expected or scheduled 
time frame. 

Kaggle, E-Commerce Shipping Data, 
https://www.kaggle.com/datasets/prachi13/cus
tomer-analytics, accessed 10/10/2024 

 

3.1 Descriptive Statistics  

Customer Care Calls. The Customer care calls variable has a mean of approximately 4.05, with a 
median and mode of 4. This distribution suggests a relatively balanced trend around 4 calls per 
customer, with some customers contacting customer service more frequently than others. The 
minimum value of 2 and the maximum of 7 calls indicate that some customers might need more 
support, potentially signaling issues with product satisfaction or service complexity. The standard 
deviation of 1.14 is moderate, showing some variability but not extreme deviation from the mean. 
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The concentration around four calls may imply that customers typically reach out to customer care a 
few times, potentially to address common questions or minor concerns. Understanding the nature of 
these calls could help identify patterns and improve customer service operations, especially if high 
call volumes are linked to specific products or issues. 

Cost of the Product. The Cost of the Product variable presents an average cost of about 210.2 units, 
with the median close to 214, and a mode of 245. The distribution shows a minimum of 144 and a 
maximum of 310, indicating a considerable range of product prices. The standard deviation is 48.34, 
highlighting some variability in pricing. This variance could be due to different product categories or 
customer segments within the dataset. The concentration around the median and mean values suggests 
a relatively stable pricing structure, though some products may fall into higher or lower price brackets. 
Analyzing the relationship between cost and customer satisfaction (perhaps through customer ratings 
or customer care calls) could provide insights into whether higher-priced items correlate with better 
or worse customer experiences. This information could guide pricing strategies and inform discount 
offerings. 

Customer Rating. Customer rating has a mean of 2.09, with a median of 3 and a mode of 3, indicating 
a skew toward lower ratings. The minimum is 1, and the maximum is 5, with a standard deviation of 
1.10. The ratings’ concentration around the lower end (with a notable cluster at 3) may suggest 
customer dissatisfaction with certain aspects of the product or service. This distribution could indicate 
areas where improvements are needed, either in product quality, customer service, or value for 
money. Investigating the factors leading to lower ratings might reveal actionable insights. For 
instance, products with frequent customer care calls or delayed deliveries might correspond to lower 
ratings. A deeper dive into specific customer complaints could also help companies address pain 
points and enhance customer satisfaction. 

 

Prior Purchases. The Prior purchases variable shows a mean of 3.59, a median of 3, and a mode of 
3, indicating that most customers have purchased around three products previously. The range spans 
from a minimum of 2 to a maximum of 10, with a standard deviation of 1.02. This suggests a fair 
amount of customer retention or loyalty, as customers have purchased multiple products on average. 
However, there may be opportunities to further improve customer retention by examining the factors 
that encourage repeat purchases. For instance, analyzing if higher repeat purchases correlate with 
product quality, customer service, or discounts could inform strategies to increase repeat sales. 
Additionally, cross-referencing with customer ratings might show whether loyal customers are more 
likely to give positive ratings or if frequent buyers still experience similar pain points as one-time 
buyers. 

Discount Offered. Discount offered has a mean of 13.37, with a median of 7 and a mode of 10, 
showing a right-skewed distribution. The maximum discount offered is 84, while the minimum is 1. 
The standard deviation is 13.68, indicating a substantial variability in discount rates. This variation 
suggests a differentiated discount strategy, potentially based on customer segments, product 
categories, or purchase behaviors. Higher discounts might be used to attract new customers or retain 
existing ones, while lower discounts could apply to premium products or high-demand items. It would 
be interesting to analyze the impact of discount levels on prior purchases and customer satisfaction. 
For instance, customers who received higher discounts might exhibit higher satisfaction or repeat 
purchase rates. On the other hand, significant discounts might sometimes correlate with lower ratings 
if they are tied to clearance items or products with known quality issues. 
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Weight in Grams. The Weight in gms variable has a mean weight of 3634 grams, with a median of 
4149 and a mode of 4833, covering a range from 1001 to 7846 grams. The standard deviation of 
1558.85 shows substantial variability, indicating that products vary widely in weight. This variability 
could be due to different product types, with lighter items potentially being accessories or smaller 
products, and heavier items being larger goods. Understanding the distribution of product weights 
and correlating them with other variables like customer satisfaction, delivery time, or cost could 
provide actionable insights. For instance, heavier products might face more logistical challenges, 
leading to delays or higher delivery costs. Examining the relationship between weight and customer 
ratings might reveal if heavier items are more prone to delivery issues or if they meet customer 
expectations differently than lighter items. 

 

Reached on Time. The Reached on Time Y N variable indicates whether the product was delivered 
on time, with a mean of 0.597, suggesting that around 60% of deliveries were timely. The binary 
nature of this variable (0 = not on time, 1 = on time) allows us to quickly identify potential logistic 
issues. The mode and median are both 1, suggesting that most products did arrive on time, though a 
significant proportion did not. This could reflect operational inefficiencies or external factors 
affecting delivery times. Given that timely delivery is crucial to customer satisfaction, analyzing the 
impact of delayed deliveries on customer ratings and care calls could uncover areas for improvement. 
Timely delivery might correlate positively with higher customer ratings, while delays could lead to 
dissatisfaction and increased customer care interactions. 

The dataset reveals several key insights and potential areas for improvement. Customer care calls 
show a moderate level of customer engagement, but there may be opportunities to reduce these calls 
by addressing recurring issues. Product cost appears fairly stable, but variability in customer ratings 
and the skew towards lower ratings suggest room for improvement in customer satisfaction. The 
discount strategy seems varied, which might effectively target different customer segments but could 
benefit from further optimization. The wide range in product weight highlights diversity in product 
offerings, with implications for logistics and customer satisfaction. Finally, ensuring timely delivery 
remains a challenge, as around 40% of deliveries appear to be delayed (Figure 1). 

Figure 1. Descriptive Statistics.  
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3.2 Frequencies 

Customer Care Calls. The Customer care calls variable indicates the number of times customers have 
contacted customer service. Here, the most common number of calls is 3 (29.25%), followed closely 
by 4 calls (32.34%) and then 5 calls (21.17%). A smaller percentage of customers made 6 or 7 calls 
(9.21% and 2.24%, respectively), while only 5.80% of customers contacted customer service twice.  
This distribution suggests that customers typically reach out multiple times, with the majority 
contacting customer care around 3-5 times. The relatively high frequency of calls may indicate 
recurring issues or a need for further assistance, either with product information or order support. 
This could signify potential areas of improvement in either the products themselves or the clarity of 
information available to customers pre-purchase. Companies may wish to investigate the nature of 
these calls to identify any common concerns or recurring issues, potentially reducing the need for 
repeated customer service interactions. 

Customer Rating. The Customer Rating variable is spread fairly evenly across the five rating 
categories, with all ratings between 1 and 5 receiving close to 20% each. Specifically, 1-star ratings 
account for 20.32%, 2-stars for 19.68%, 3-stars for 20.36%, 4-stars for 19.90%, and 5-stars for 
19.73%. This even distribution might indicate varied customer satisfaction levels, suggesting that 
while some customers are highly satisfied, an equally large portion is dissatisfied. The relatively high 
percentage of low ratings (1 and 2 stars) alongside the moderate number of high ratings (4 and 5 stars) 
points to inconsistency in customer experience or product quality. This could be due to variations in 
product types, different customer expectations, or quality control issues. Analyzing the factors 
associated with these ratings, such as product category, delivery timeliness, or frequency of customer 
care interactions, might help identify and address the root causes of dissatisfaction. 

Prior Purchases. The Prior Purchases variable reveals that most customers have made relatively few 
previous purchases, with 2 prior purchases representing 23.63% and 3 prior purchases the most 
common with 35.96%. This gradually decreases with higher prior purchase counts, with only a small 
percentage of customers (less than 2%) having made 8 or more prior purchases. This trend suggests 
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that a large portion of the customer base consists of relatively new or occasional buyers. The gradual 
drop in frequency as the number of prior purchases increases indicates that customer retention may 
be limited. Efforts to increase repeat purchases, perhaps through loyalty programs or improved post-
purchase engagement, could help encourage more repeat customers and build a more loyal customer 
base. Understanding what drives repeat purchases, such as product satisfaction or effective customer 
support, could inform targeted retention strategies. 

Reached on Time. The Reached on Time variable shows that 40.33% of deliveries did not reach the 
customer on time, while 59.67% did. This relatively high rate of delayed deliveries may impact 
overall customer satisfaction and could be a significant factor in the lower ratings observed in the 
Customer_rating variable. Timely delivery is often crucial for positive customer experiences, and 
delays can contribute to dissatisfaction and negative reviews. This delay rate suggests potential 
operational challenges in the delivery process, whether due to logistical issues, product availability, 
or external factors like shipping delays. Addressing these delays could be a high-impact area for 
improving customer satisfaction. Companies could consider optimizing inventory management, 
enhancing logistics, or setting more accurate delivery expectations to reduce the frequency of late 
deliveries. 

In summary, this dataset reflects both strengths and areas for improvement. While there is a consistent 
frequency of customer care calls, the even distribution of customer ratings suggests mixed satisfaction 
levels. Many customers are new or infrequent buyers, with limited repeat purchases, and a significant 
percentage of orders are delayed. Addressing these challenges, particularly by enhancing delivery 
reliability and reducing customer service needs, could improve overall customer satisfaction, increase 
retention, and strengthen customer loyalty (Figure 2).  

Figure 2. Frequencies.  
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3.3 Distributions 

In the following paragraph the distributions of the variables are analyzed.  

Customer Care Calls. The distribution of  Customer care calls shows a peak around 3-4 calls, with 
fewer customers making 6 or 7 calls. This pattern suggests that most customers make a moderate 
number of calls to customer service, likely for standard inquiries or follow-ups. However, there are 
fewer extreme cases, indicating that, while some customers may have recurring issues, they are not 
widespread. Reducing the need for repeated calls through enhanced FAQs, proactive support, or 
improved product instructions could potentially decrease customer care calls and improve customer 
satisfaction. 
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Cost of the Product. The Cost of the Product distribution is relatively normal with a few peaks, 
indicating that most products fall within a similar price range, with a central tendency around 200-
250 units. The distribution is slightly skewed, showing that while there are some higher-priced items, 
most products are priced near the average. This balanced pricing structure may reflect a standardized 
product range with limited luxury or budget options. Companies could explore offering products at 
different price points to appeal to a broader customer base or meet various budget requirements. 

Customer Rating. The Customer Rating  plot is almost uniform across all rating levels from 1 to 5. 
This distribution indicates that customer satisfaction is mixed, with each rating from 1 (lowest) to 5 
(highest) receiving similar counts. This balanced yet varied distribution could mean that customer 
experiences are inconsistent, possibly due to variability in product quality, service, or delivery. 
Improving consistency in product quality and customer experience could help shift this distribution 
toward higher ratings, indicating better overall customer satisfaction. 

Prior Purchases. The Prior Purchases plot shows a skewed distribution, with most customers having 
made only 2-3 prior purchases and significantly fewer customers making a high number of repeat 
purchases (6 or more). This suggests that customer retention may be a challenge, as few customers 
make frequent repeat purchases. Strategies like loyalty programs, targeted marketing for previous 
customers, or personalized recommendations could help increase repeat purchase rates and build a 
more loyal customer base. 

Discount Offered. The Discount_offered distribution is highly skewed, with most discounts clustered 
around the lower end, likely between 1 and 20%, with a few cases of higher discounts. This pattern 
indicates that while some discounts are offered, they are generally modest. Higher discounts may be 
offered selectively, perhaps to clear inventory or attract new customers. Analyzing the effectiveness 
of different discount levels on customer purchasing behavior could help refine the discount strategy, 
potentially leading to increased sales without needing significant markdowns. 

Weight in Grams. The Weight in gms plot shows a bimodal distribution, indicating two main clusters 
of product weights. This could suggest two distinct types of products, one lighter and one heavier, 
possibly representing different product categories or types. For instance, the lighter products might 
be smaller items or accessories, while the heavier items could be more substantial goods. This 
distinction is important for logistical planning and could influence customer expectations, especially 
for delivery timelines and costs. Optimizing logistics based on product weight categories could 
improve efficiency and customer satisfaction. 

Reached on Time. The Reached on Time variable is binary, indicating whether products were 
delivered on time (1) or not (0). The plot shows that about 60% of deliveries were on time, while 40% 
were delayed. This relatively high rate of delays could negatively impact customer satisfaction and is 
likely correlated with lower customer ratings. Addressing these delays, whether through better 
inventory management, streamlined logistics, or more accurate delivery estimates, could improve 
customer satisfaction and potentially reduce negative reviews. 

The distribution plots reveal several patterns in customer behavior, product attributes, and operational 
efficiency. Customer satisfaction appears mixed, with uniform ratings distribution and a relatively 
high number of customer care calls. Limited repeat purchases indicate potential challenges with 
customer retention, while the high rate of delayed deliveries suggests logistical issues. Addressing 
these factors, such as by improving product consistency, enhancing delivery reliability, and 
encouraging repeat purchases, could strengthen customer loyalty and satisfaction, ultimately leading 
to better business performance (Figure 3). 
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Figure 3. Distribution plots.  

 

 

3.4 Q-Q plots 

In the following paragraph the Q-Q plots are analyzed.  

Customer Care Calls. The Customer Care Calls Q-Q plot shows clear deviations from the normal 
line, with data points clustering at specific values along the y-axis, creating a stair-step pattern. This 
suggests that the variable is discrete rather than continuous and does not follow a normal distribution. 
This pattern is expected because customer care calls are typically limited to integer values (e.g., 2, 3, 
4 calls), making it non-normal. The distribution is skewed, indicating that most customers make a 
similar number of calls, with fewer outliers. 

Cost of the Product. The Cost of the Product Q-Q plot shows a closer fit to the normal line than some 
of the other variables, with points following the line reasonably well in the middle. However, 
deviations are seen at both ends, with the tails deviating from the line, indicating that the cost 
distribution has some skewness or kurtosis, with a few products priced significantly higher or lower 
than the central tendency. This suggests a relatively normal distribution with potential outliers on 
both ends. 

Customer Rating. The Customer Rating plot exhibits a stair-step pattern similar to Customer Care 
Calls due to the discrete nature of this variable, with ratings typically limited to integer values from 
1 to 5. The data points do not follow a normal distribution and deviate significantly from the red line, 
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especially at the tails. This non-normality reflects the ordinal nature of customer ratings and the fact 
that ratings are not continuous values, thus making them inherently non-normal. 

Prior Purchases. The Prior Purchases Q-Q plot also displays a non-normal, discrete distribution, with 
data points clustering in a stair-step fashion along certain quantile values. This pattern suggests that 
prior purchases are limited to integer counts, with most customers having a lower number of prior 
purchases and fewer with high counts. The clear deviation from the normal line confirms that this 
variable does not follow a normal distribution, as it is heavily skewed with more values concentrated 
at the lower end. 

Discount Offered. The Discount Offered plot deviates from normality, with most points diverging 
from the line, especially in the tails. The points display a right-skewed pattern, indicating that most 
discounts are on the lower end, with a few outliers where high discounts are offered. This skewed 
distribution likely results from a discount strategy focused on smaller discounts for most products, 
with only occasional high discounts. 

Weight in Grams. The Weight in Grams plot shows significant deviation from normality, particularly 
with heavy tails on both ends. The points do not follow the normal line closely and appear clustered 
in specific regions, suggesting the presence of different product types with distinct weight ranges. 
This bimodal or multimodal distribution indicates that product weights vary widely, likely due to 
different product categories (e.g., lighter versus heavier products), making the distribution far from 
normal. 

Reached on Time. The Reached on Time plot demonstrates a clear departure from normality, with 
only two distinct levels (0 and 1), representing a binary outcome. This plot is expected to show a non-
normal distribution as it is categorical. Points are clustered at two points on the y-axis, indicating that 
this variable does not fit a normal distribution and represents an outcome rather than a continuous 
metric. 

In summary, these Q-Q plots reveal that most variables do not follow a normal distribution due to 
their discrete or categorical nature. Variables such as Customer care calls, Customer rating, Prior 
purchases, and Reached on Time are inherently non-normal as they are either ordinal or binary. Cost 
of the Product and Discount Offered show slight normality but have skewed distributions, while 
Weight in Grams appears bimodal, indicating distinct product groups. Understanding these 
distributions is essential for selecting appropriate statistical analyses, as many traditional tests assume 
normality, which is not the case for most of these variables (Figure 4). 

Figure 4. Q-Q plots.   
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3.5 Correlation 

The following paragraph analyses the correlations among the variables.  

Customer Care Calls. The density plot for Customer Care Calls shows multiple peaks, suggesting 
that there are several common levels at which customers reach out, likely due to recurring issues or 
support needs. In the scatterplots involving Customer Care Calls, there doesn’t appear to be a strong 
linear relationship with any other variables, as most of the points are scattered. This may imply that 
the number of customer care calls is influenced by factors not directly shown in this dataset or is 
impacted by multiple independent factors. 

Cost of the Product. The density plot for Cost of the Product. shows a somewhat normal distribution 
but with slight skewness, indicating a typical pricing range with some higher-priced products. When 
examining its relationships with other variables, there are no significant trends in the scatterplots. 
This suggests that product cost does not strongly correlate with other variables like customer rating, 
prior purchases, or discount offered. It’s possible that customer satisfaction, as represented by ratings 
or calls, is not strongly impacted by the price of the product alone. 

Customer Rating. The Customer Rating density plot shows distinct peaks at each rating level, as 
expected for an ordinal variable. The scatterplots involving Customer Rating reveal no strong patterns 
or linear relationships with other variables. This lack of correlation could indicate that customer 
ratings are influenced by a wide range of factors beyond those captured in the dataset, such as 
customer expectations or external factors not related to the variables shown. 

Prior Purchases. The Prior Purchases density plot has a peak at lower purchase counts, suggesting 
that most customers have only made a few prior purchases. This variable doesn’t exhibit any clear 
relationship with other variables in the scatterplots. The lack of correlation may imply that the number 
of previous purchases does not significantly affect variables like customer rating, calls, or discount 
received, possibly due to diverse purchasing patterns or customer preferences. 

Discount Offered. The Discount Offered density plot shows a high concentration at the lower end, 
with most discounts clustered around small values. In the scatterplots, Discount Offered does not 
exhibit any strong correlations with other variables, indicating that discounts are likely distributed 
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independently of customer ratings, prior purchases, or product cost. This pattern might suggest a 
general discount strategy that is not tailored to individual customer profiles or purchase histories. 

Weight in Grams. The Weight in Grams density plot is bimodal, reflecting two primary weight 
categories, which could indicate distinct types of products (e.g., lightweight items versus heavier 
products). However, scatterplots do not reveal any clear linear relationships between Weight in Grams 
and other variables. This lack of correlation could mean that product weight does not directly 
influence customer care calls, ratings, or discounts offered, although it may indirectly affect logistics 
or delivery times. 

Reached on Time. Reached on Time is a binary variable with two possible values (0 and 1), 
representing whether the product was delivered on time. The density plot shows two distinct points, 
reflecting this binary nature. In the scatterplots, there is no strong relationship between Reached on 
Time and other variables. This lack of correlation may suggest that on-time delivery is influenced by 
external logistical factors rather than by customer behavior, product cost, or other characteristics 
within this dataset. 

Overall, the pair plot matrix shows limited linear relationships or strong correlations between most 
variables, indicating that many of these factors operate independently or are influenced by external 
elements not captured in the dataset. Key takeaways include: 

 Customer Care Calls and Customer Rating show no strong dependencies on factors like 
product cost, discount, or prior purchases, suggesting that customer satisfaction may be 
influenced by other factors. 

 Discount Offered and Weight in Grams appear distributed independently of other 
variables, suggesting broad discounting practices and diverse product types. 

 Reached on Time does not correlate strongly with other factors, which might reflect 
logistical or operational influences on delivery times rather than product or customer 
characteristics. 

See Figure 5. Correlations.   
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3.6 Pareto distributions 

The following paragraph analyses the characteristics of Pareto distributions.  

Customer Care Calls: 

 Description: This plot shows the count of customer care calls made by customers. 
 Observation: Most customers made between 4 to 6 calls, with a sharp drop in the frequency 

for 7 or more calls. 
 Cumulative Percentage: The cumulative line indicates that approximately 80% of calls are 

covered by up to 6 calls (marked by the orange dashed line). 
 Implication: Limiting the number of customer care calls to 6 could address most cases, 

suggesting that focusing on customers who exceed this threshold might help in improving 
service efficiency. 
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Customer Rating: 

 Description: This plot shows the distribution of customer satisfaction ratings. 
 Observation: Ratings are clustered around 3 to 5, with each rating having a similar frequency. 
 Cumulative Percentage: Around 80% of ratings are covered up to a score of 5 (again 

highlighted by the orange dashed line). 
 Implication: Since most customers rate between 3 and 5, improving customer satisfaction 

efforts for this segment could enhance overall ratings. The plot also suggests limited 
occurrences of very low or very high ratings. 

Prior Purchases: 

 Description: This plot displays the count of prior purchases made by customers. 
 Observation: A high frequency is observed for 3 to 4 prior purchases, with counts diminishing 

rapidly for higher numbers of purchases. 
 Cumulative Percentage: The cumulative line shows that up to 6 purchases account for around 

80% of cases (indicated by the orange dashed line). 
 Implication: Since most customers have made 3 to 4 prior purchases, strategies like loyalty 

rewards or targeted promotions for this group could help retain these high-frequency buyers. 

Reached On Time: 

 Description: This plot illustrates the count of on-time versus delayed deliveries (1 = on time, 
0 = not on time). 

 Observation: There is a higher count of deliveries marked as "1" (on time) than "0" (not on 
time). 

 Cumulative Percentage: The orange dashed line indicates that around 80% of deliveries were 
made on time. 

 Implication: Since the majority of deliveries are on time, the company performs well in terms 
of delivery timeliness. However, addressing the delayed deliveries could help improve 
customer satisfaction. 

Each of these Pareto plots highlights areas where the 80-20 rule applies. For example, in customer 
care calls, focusing on those with more than 6 calls, improving satisfaction among mid-level ratings 
(3-5), engaging customers with frequent prior purchases, and ensuring timely delivery could all 
contribute to improving service quality and customer satisfaction. The cumulative lines and dashed 
thresholds in each plot are instrumental in identifying where 80% of the issues or opportunities lie 
(Figure 6) 

Figure 6. Pareto Plots.  
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4. Econometric Models 

We have estimated the following equation:  

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶𝑎𝑟𝑒𝐶𝑎𝑙𝑙𝑠

= 𝑎ଵ + 𝑏ଵ(𝑃𝑟𝑖𝑜𝑟𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠) + 𝑏ଶ(𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑂𝑓𝑓𝑒𝑟𝑒𝑑) + 𝑏ଷ(𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝐼𝑛𝐺𝑚𝑠)

+ 𝑏ସ(𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) 

A synthesis of the analysis is in the following table 3.  

Table 3. Results of the econometric analysis.  

 Heteroskedasticity-corrected, using observations 
1-10999 

LAD, using observations 1-10999 

 Coefficient Std. Error t-ratio Coefficient Std. Error t-ratio 
const 3.46645*** 0.0682722 50.77 3.53223*** 0.119979 29.44 

Prior_purchases 0.0589729*** 0.00651735 9.049 0.0640725*** 0.00779334 8.221 
Discount_offered -0.0137017*** 0.000696367 -19.68 -0.0154269*** 0.00119056 -12.96 
Weight_in_gms -0.000204920*** 6.47845e-06 -31.63 -0.000229838*** 7.45585e-06 -30.83 

Cost_of_the_Product 0.00604065*** 0.000235451 25.66 0.00625005*** 0.000437141 14.30 
 WLS, using observations 1-10999 (n = 6563) OLS, using observations 1-10999 
 Coefficient Std. Error t-ratio Coefficient Std. Error t-ratio 

const 3.23718*** 0.0760699 42.56 3.59481*** 0.0639107 56.25 
Prior_purchases 0.0806730*** 0.00849277 9.499 0.0612760*** 0.00656531 9.333 

Discount_offered -0.0116684*** 0.000735365 -15.87 -0.0145194*** 0.000666951 -21.77 
Weight_in_gms -0.000175986*** 8.83984e-06 -19.91 -0.000215029*** 6.66901e-06 -32.24 

Cost_of_the_Product 0.00610642*** 0.000267495 22.83 0.00578807*** 0.000208647 27.74 

 

Positive relationship between customer care calls and prior purchases. The positive relationship of 
customer care calls and prior purchases shows that with higher purchases made by customers, they 
interact more with customer care. This dynamic might reveal a multitude of facets with regard to 
customer behavior and interaction. First, repeat customers are more acquainted with the company and 
probably feel their problems can be readily addressed to the customer support. Thus, with increased 
involvement with the brand, they may also develop higher expectations regarding service quality and 
product performance, possibly leading to more interactions with customer care. In addition, these 
very frequent buyers could feel more invested in the brand-financially and emotionally-and are, 
therefore, more apt to pursue assistance when something does not meet their expectations. This 
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broader product experience may lead them to customer care for assistance in features, product care, 
or troubleshooting. Besides, if there is some inconsistency in product quality or consistency, frequent 
buyers would be more likely to come across these inconsistencies and hence feel the need to reach 
out for support. Another reason for this relationship could be the retention and loyalty efforts of the 
company. Customer service teams could provide more attentive support toward repeat buyers, thereby 
increasing interaction rates as part of a strategy for building loyalty. This proactive engagement may 
favorably affect the relationship in which customers will feel valued and bond with the brand. This 
would therefore establish a relationship between customer care calls and previous purchases, 
indicating that much valuable information can be obtained. It would also show that the customers are 
highly active, with a greater proportion of repeated buyers. On the other hand, it could also indicate 
sources of friction in product quality or unclear information. By delving deeper into exactly what 
such interactions entailed, the company would be in a position to determine with more specific detail 
if there was some kind of common problem with repeat buyers and take actionable steps to diminish 
unnecessary frequency of support. With these loyal customers in mind, more self-service resources 
can be developed through enhancements in the form of FAQs or tutorials and knowledge bases; these 
will definitely help customers solve on their own some of the very general issues. Indeed, 
personalized support for regular buyers could also enrich their experience and allow businesses to 
show appreciation for buyers' loyalty. Also, gathering feedback from these interactions may shed 
light on certain product consistency issues and serve as a driver for improvement efforts that make 
the experience seamless for loyal customers. In all, frequent customer care calls from repeat buyers 
may reflect the best engagement, but it also is an opportunity for the company to sharpen support 
resources and root out the problems. Once done, the company can refine the experience, thus fueling 
stronger loyalty and satisfaction with its most engaged customers (Khatoon et al., 2020; Yaqub et al., 
2023; Sharma and Singh, 2023). 

The negative relationship between customer care calls e discount offered. The negative association 
of customer care calls and discount offered: probably indicates for increased discounts; the frequency 
of customer care calls tends to go down. The interpretation for this may be varied and could draw 
some inferences related to customer behavior, expectation, and satisfaction. One probable explanation 
is that the availability of discounts has some kind of psychological effect, raising customer tolerance 
and putting them in a state where they feel satisfied. In certain occurrences, customers who receive a 
fat discount will be more tolerant to small issues or inconveniences, thinking they have gotten good 
value for money. In this way, discounts revolve around dissatisfaction by reducing cases where 
customers reach customer support over minor complaints. Additionally, deeper discounts would 
capture more price-conscious customers who may have lower expectations about premium service. 
These may weigh more on the deal they got as opposed to receiving faultless service or the best 
product quality, which could reduce the likelihood of their reaching out for support should minor 
issues arise. On the other hand, customers paying closer to full price may have higher expectations 
and thus be more willing to contact customer care if their experience doesn't meet those expectations. 
In addition, the discounts may also see quick purchasing decisions consequently potentially reducing 
customer care calls. Such customers, seeing that they are getting a really good deal, would likely be 
focused more on immediate benefits of having the discount rather than scrutiny into product details 
or specifications. Because they feel better value, this means they are less likely to call in customer 
support with questions or to complain. In that respect, the discounts can shift their attention to the 
deal and away from minor shortcomings. This might also mean that discounts are given for products 
that are simple and less likely to raise inquiries from customers. If the company selectively applies 
discounts to products that have fewer known issues or simpler use, there would naturally be fewer 
reasons for customers to call customer care. Whereas, complex or higher-priced products that do not 
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usually have discounts may cause more questions or concerns; this would, in turn, increase the 
number of customer care interactions. Although discounts have a positive effect on customer 
satisfaction and decrease the need for customer care, they should be taken up cautiously. Where 
companies become dependent on discounts, they risk only attracting price-sensitive buyers, yet a 
factor which may degrade the brand's value over time. In other words, when customers frequently 
receive discounts, they will perceive value only if a discount is offered, thus depressing full-price 
sales. This is further supported by the negative relationship between customer care calls and discounts 
wherein, by offering a discount, it creates a value perception in the mind of the consumer whereby a 
person is unlikely to call if minor dissatisfaction occurs. Companies must avoid being too generous 
with discounts, though-they can have an unpredictable effect on customer expectations and behaviour 
(Yanchenko and Repilova, 2023; Troebs et al., 2021; Liu et al., 2021).  

The negative relationship between Customer care calls and weight in gms.  This negative correlation 
of Customer care calls and weight in gms might be interpreted as meaning there is a drop in the 
frequency of customer calls with increased weight of a particular product. This relationship is 
interesting with respect to expectations from customers regarding the nature of the product and the 
kind of issues that generate calls for support. Higher levels of weight could lead customers to perceive 
the products as more substantial or even reliable, probably lowering their need for support since they 
are less likely to have problems or questions about the product's quality or performance. The heavier 
products may also be those products in which customers have more confidence and understanding, 
usually because more research is conducted or much contemplation occurs over shipping costs or 
how much logistics it would take, as the costs associated with them are usually higher than other 
items. Taking a large appliance or furniture item as an example, these are typically big and heavy 
items in which lots of research is often done by the customer before buying, leaving them with only 
a few questions or misunderstandings that are normally left post-consumption. Such products 
themselves are more likely to have minor problems, breakages, or operational questions from 
customers who may call customer support more often. Lighter items might also be purchased more 
on impulse, with less prior research, thus leading to more questions or uncertainties afterward and 
higher customer care needs. Besides, logistics behind the transportation of heavier products may also 
be an issue. Heavier products are also sent out with special treatment, so to say, maybe by offering 
value-added services in the way of installation or assembling within a customer's home, which in turn 
might reduce the likelihood of confusion from the customer's end or troubleshooting that has 
specifically to be done. Again, these value-added services may avoid many frequently asked questions 
by the customers because customers get more support with heavier objects than with lighter ones. On 
the other hand, it is possible that the negative relationship between customer care calls and product 
weight may indicate selective customer behavior or a different set of expectations. The buying 
consumers who purchase heavier items may be more deliberate and patient, and they might expect 
minor difficulties arising from the nature of the product itself. For this reason, they are less likely to 
call customer support for small inconveniences or challenges, since they can undertake resolving such 
issues on their own. The negative relation of customer care calls to the product weight might be due 
to conceptual durability, better confidence among customers, extensive research before buying, or 
even extra support services for heavier products. On the other hand, this inversely related relationship 
indicates that heavier products contribute less to after-care needs of customers; however, companies 
are called upon to make sure a smaller, lighter weighted product satisfies the need of customers 
through smooth information and support resources to minimize any postpurchase assistance needs 
(Garver and Williams, 2020; Qin,  et al., 2021; Du et al., 2022). 
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The positive relationship between customer care calls and cost of the product. The positive relation 
of customer care calls to cost of the product infers that when the price of a product increases, so does 
the number of customer care calls. This relationship describes a number of concepts in regard to 
customer expectations, the level of difficulty with a product, and the level of service customers are 
hoping for in relation to higher-priced products. Customers who purchase high-dollar products expect 
better quality, performance, and customer support. Spending a lot on a product makes customers more 
uptight for any issue or inconvenience; after all, they expect value from the product amounting to the 
price they paid for. This rise in expectation may make them more eager to finally contact customer 
support even on minor issues, since they don't want anything that will make the product not live up 
to their expectations regarding quality and functionality. The higher cost, in other words, gives a 
reason to feel entitled for premium service, encouraging customers to ask for help where and when 
needed. Second, the more expensive a product is, the more sophisticated it generally becomes: 
advanced features, installation requirements, and use by specialists. Sophistication and complexity 
mean that customers will most likely place themselves in situations where they have to seek assistance 
or advice, assuming that the product requires the customer to learn something new. This will probably 
lead to longer support interactions whereby customers seek the intervention of customer care for 
setting up, troubleshooting, or even locating certain features. They are usually higher-end electronics, 
appliances, and equipment where customers might require additional assistance because of how 
complex the product is. Apart from that, a customer buying expensive items may have more needs 
for investment protection. They would like to contact customer care about the proper usage of the 
product, warranty information, or maintenance advice for the product to last long and serve to its 
fullest capacity. The desire to maximize longevity and performance can therefore cause one to seek 
reassurance and advice through increased frequency of customer care contacts on how well their 
investments are protected. The positive relationship of the customer care calls with the cost of a 
product perhaps underlines the company's proactive support approach for high-value customers. 
Companies may consider such customers to be of higher financial value and offer them more 
personalized or attentive customer care, thereby encouraging frequent communication. This level of 
support is very conducive to relationships and customer satisfaction, reflecting upon the fact that a 
company is behind its high-value customers in helping them derive necessary assistance from what 
they have purchased. Although this relationship underlines the need for customer support for high-
value items, it also gives a hint of areas where companies can optimize the customer experience. 
Clearer product documentation, comprehensive user guides, or instructional resources could help 
address common questions and reduce the need for frequent calls. Offering value products with 
premium support channels, such as a dedicated hotline for hotline service or priority service, will 
enhance customer satisfaction since the support accorded is in tandem with what customers perceive 
for that class of product or service (Supriyanto et al., 2021; Nguyen et al.,  2020; Lim et al., 2021). 

 

4.1 Estimation of operational efficiency in delivery and company customer care 

Furthermore to have a measure of the efficiency in the delivery of the products towards consumers 
we have estimated the following equation:  

𝑅𝑒𝑎𝑐ℎ𝑒𝑑𝑂𝑛𝑇𝑖𝑚𝑒

= 𝑎ଵ + 𝑏ଵ(𝑃𝑟𝑖𝑜𝑟𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠) + 𝑏ଶ(𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑂𝑓𝑓𝑒𝑟𝑒𝑑) + 𝑏ଷ(𝑊𝑒𝑖𝑔ℎ𝑡𝐼𝑛𝐺𝑚𝑠)

+ 𝑏ସ(𝐶𝑜𝑠𝑡𝑂𝑓𝑇ℎ𝑒𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) + 𝑏ହ(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶𝑎𝑟𝑒𝐶𝑎𝑙𝑙𝑠) 
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The results of the econometric analysis is showed in the following Table 4.  

Table 4. Results of the econometric analysis for the estimation of the level of Reached on Time.  

 Interval estimates, using observations 1-10999 Tobit, using observations 1-10999 
 Coefficient Std. Error z Coefficient Std. Error z 
const 0.878303*** 0.0316364 27.76 0.865857*** 0.0519022 16.68 
Prior_purchases -0.0146037*** 0.00287517 -5.079 -0.0235274*** 0.00483894 -4.862 
Discount_offered 0.00953356*** 0.000297134 32.09 0.0138165*** 0.000479534 28.81 
Weight_in_gms -5.33283e-05*** 3.04351e-06 -17.52 -8.70940e-05*** 5.09204e-06 -17.10 
Cost_of_the_Product -0.000300506*** 9.41451e-05 -3.192 -0.000416307*** 0.000157158 -2.649 
Customer_care_calls -0.0246753*** 0.00416022 -5.931 -0.0393050*** 0.00696097 -5.646 

 

The negative relationship between Reached on Time and Prior Purchases. Items being delivered on 
time-or "Reached on Time"-in respect to the volume of prior purchases made by the customer. 
Otherwise, the higher the count of a customer's past purchases, the less the probability of timely 
delivery. Several factors can be responsible for this unexpected fit, among them issues of operational 
complexity, demand expectations, and challenges in prioritizing customers. One explanation for this 
negative correlation exists in the operational complexities that often characterize frequent purchasers. 
High-value or frequent customers may also have orders that are larger, more varied, or more 
complicated, thus taking more time in processing and handling. For example, one simple order is 
easier to handle than multiple items that entail variable packaging and delivery needs. Added 
complexity will be certain to create delays, especially in the peak periods of a business cycle. 
Moreover, repeat customers may expect quicker and more personalized service, which could make 
them even more aware of delays and report them, therefore further skewing the delivery times of 
repeat customers. Another reason that explains an inverse association of on-time delivery with the 
previous purchases is that with more purchased items, the supply chain bears greater service stress. 
Companies often invest much of their resources in attracting new customers and delivering efficiently 
to them the first time, since the quality of the first impression is crucial. Repeat customers may 
therefore be given less priority for speeding up order fulfillment, especially during peak periods, 
which then affects on-time delivery rates. Although repeat customers are appreciated, the resource 
function sometimes unconsciously goes to the new customers with a view to expanding the customer 
base at the cost of marginally less reliable service for frequent purchasers. Moreover, high-frequency 
customers may start to be quite demanding because of the confidence built over time and might thus 
comment more likely when this expectation is not met. In other words, a repeat buyer familiar with 
on-time deliveries is more aware of-and apt to complain about-delays when those happen and reports 
them more frequently compared with casual buyers. This may create a perception-justified by 
complaint or feedback data-that returning customers are experiencing degraded service quality in 
delivery timeliness. This, therefore, can lead to a negative relationship between the frequency of past 
purchases and timely delivery rates, and can be a consequence of actual operational difficulties 
combined with resource allocation strategies and increased customer expectations. The solution might 
be in rationalizing the respective logistics strategies so that the service consistency balance is 
maintained between new and old customers, while the loyal purchasers get timely delivery, which 
they expect and deserve (Supriyanto et al., 2021; Nguyen et al., 2020; Lim et al., 2021).  

 
The positive relationship between Reached on Time and Discount Offered. In the study of consumer 
behavior and business strategy, questions about timing and discount incentives are often interrelated 
in their capabilities for driving both customer satisfaction and brand loyalty. Perhaps one of the more 
interesting dynamics in this regard is indeed the positive relationship that exists between products or 
services arriving on time for the customer and the effectiveness of the discount offer. When 
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companies can deliver on time, the perception of added value with discounts is furthered, ultimately 
contributing to customer trust and increasing the likelihood of making purchase decisions. The 
reliability of on-time delivery is a very important parameter that helps build trust among customers. 
Once the company promises to deliver on time and always meets this expectation, then there is a 
better chance for the customer to perceive the brand positively. Trust is one of the main aspects of 
consumer loyalty, and discounts given with such a feeling of trust will add value to the whole 
transaction. For example, if the product arrives with the customer in the estimated time, then the 
consumer is more likely to view the discount as a real discount that created a superior shopping 
experience. In this way, on-time delivery enhances a discount offer by making it valid through the 
company's commitment to satisfying the customer. Discount as Incentive to Loyalty and Repurchase 
Discounts on their own can be considered a means by which companies can rid themselves of 
unwanted stock or entice new customers. Discounts, coupled with timely delivery however, are used 
more strategically to ensure customer loyalty and repeat purchase. Customers will begin using the 
discounts offered by companies they learn to consider reliable, especially when these same companies 
demonstrate time and time again that they can keep their promises of good service. This can bring 
about a snowballing effect between timely delivery and discounts to ensure repeated purchases, since 
customers would always want to come back for more when businesses give them a quality service 
with sufficient and reasonable financial reasons. It has been evidenced by available studies, showing 
that customers are more open to promotional offers made through businesses which, in the past, have 
successfully met or exceeded customer delivery expectations. These are the companies that can 
always retain timely delivery with discounts in order to be a step ahead within the market compared 
to their competition. This is because such a combination enables them to attain a unique standing, 
different from the competitors that might be less reliable or less transparent in regards to the delivery 
process. Offers like these of discounts with ensured delivery create a competitive advantage by first 
meeting and then outpacing customer expectations. For instance, e-commerce platforms that provide 
swift delivery and discounts often see higher retention rates, as customers value the convenience and 
savings that such companies offer. In sum, the positive correlation between arriving on schedule and 
giving discounts manifests in building trust, enhancing customer satisfaction, and gaining an 
advantage over competitors. This dynamic-sixteenth century reflects an effective business strategy 
where the operational reliability and financial incentives work together to raise the level of customer 
experience and foster long-term loyalty (Yildiz and Savelsbergh, 2020; DÜNDAR and ÖZTÜRK, 
2020; Chen et al., 2023). 
 
The negative relationship between Reached on Time and Weight in Gms.  In this regard, the scientific 
observation of transport and delivery information systems indicates that there is a negative 
relationship between "Reached on Time" and "Weight in Gms", which, out of logic, would suggest 
that the greater the weight, the less likelihood that these items would reach a destination on time. It 
is also generally expected that across logistics and supply chain processes, the physical characteristics 
of an item, in particular weight, would strongly relate to the delivery speed and the precision of timing. 
This inverse relationship is underpinned by a number of factors: mainly, the constraints of heavy 
weights on transportation modes, handling requirements, and the timeliness of delivery networks. 
The heavier the load, usually it means delivery speed suffers due to weight affecting the ease and cost 
of transport. Heavier parcels require handling processes that are more careful and often slower. For 
instance, heavier packages may require specialized equipment or a number of personnel in order for 
the packages to be loaded, unloaded, or transshipped from one mode of transportation to another. 
This in turn increases the time taken at every transit point and usually leads to delays. In a delivery 
system that is supposed to be very efficient and on time, especially when lighter packages can easily 
be moved in bulk and fast, heavier packages act as a bottle-neck, disturbing this flow. In addition, 
weight limits affect the very transportation vehicles. For example, in air transport, aircraft subject 
heavy items to strict weight limits. An intention to move heavier parcels will require proper planning 
in relation to fuel efficiency, balance, and space utilization. Heavy items in the cargo may cause 
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increased fuel usage and hence affect not only cost-efficiency but also scheduling of transport. Such 
weighty logistical headaches have repercussions on on-time delivery since heavy-laden vehicles may 
have to travel at reduced speeds or be subject to additional safety checks. Moreover, heavier goods 
are regularly classified as falling into slower shipping classes that emphasize cost over speed, making 
them less likely to meet tight delivery windows. This relationship may again reflect decisions in 
supply chain management to then favor lighter packages, as these will still be processed faster and 
hence can deliver a high volume of shipments within stressed time frames. In such an environment, 
where throughput will be maximized, this would be the strategic choice where "Reached on Time" 
shows a negative correlation with "Weight in Gms.". Therefore, the overall negative relationship 
between "Reached on Time" and "Weight in Gms" may be because of physical and logistical bondage 
that relates with weightier packages. These definitely increase the time required to process and 
handle, decrease efficiency in transportation, and lower the chances of delivery on time (Ricardianto, 
2023; Zhao et al., 2021; Brylla and Walsh, 2022).  
 
The negative relationship between Reached on Time and Cost of the Product.  The relationship 
between reaching on time and the cost of a product is typically negative, meaning that as the emphasis 
on timeliness increases, so does the cost associated with achieving it. This relationship is especially 
evident in industries where tight delivery schedules are crucial, such as manufacturing, retail, and 
supply chain logistics. When companies prioritize timely delivery, they must adopt practices that 
often drive up costs, such as expedited shipping, increased labor, and enhanced inventory 
management systems. Each of these factors requires substantial investment, which subsequently 
impacts the product’s overall cost. One of the primary reasons for the increase in cost is the reliance 
on expedited shipping methods. To ensure that products reach customers on time, companies may 
resort to air freight or express courier services, both of which are significantly more expensive than 
standard shipping options. By opting for quicker delivery methods, firms can meet customer 
expectations for timely delivery, but they incur higher costs that are often passed onto consumers. 
Additionally, to guarantee on-time delivery, companies might invest in more sophisticated logistics 
technology, such as real-time tracking systems and predictive analytics. While these tools increase 
the efficiency and accuracy of delivery estimates, they also add to the product’s cost due to the 
technology's implementation and maintenance expenses. Labor costs also play a significant role in 
the negative relationship between timeliness and cost. Companies that prioritize on-time delivery 
often need to maintain a more flexible workforce, with employees ready to work additional hours or 
adapt to changing schedules to meet tight deadlines. Such flexibility frequently involves overtime 
pay or hiring temporary workers, both of which increase operational costs. For businesses in sectors 
such as manufacturing, where tight schedules are common, this could mean higher labor expenses 
that are ultimately reflected in the final price of the product. Another contributing factor is inventory 
management. Companies aiming for timely delivery might invest in buffer stocks or safety inventory 
to mitigate delays. Maintaining this surplus inventory requires additional storage space, insurance, 
and handling, which adds to the product’s cost. Moreover, having excess inventory ties up working 
capital, making it a costly strategy despite its role in ensuring timeliness. These expenses directly 
impact the cost structure of products, making them more expensive for the end consumer. In 
conclusion, the negative relationship between reaching on time and the cost of a product reflects the 
significant financial investments required to meet tight deadlines. From expedited shipping and 
advanced logistics technology to flexible labor and safety inventory, the various factors that enable 
on-time delivery come at a high cost. Thus, as the demand for punctuality grows, so does the 
economic burden placed on companies and, subsequently, on consumers (Niemi et al., 2020; 
Ricardianto et al., 2023; Liu and Yang, 2022).  
 
The negative relationship between Reached on Time and Customer Care Calls. This important 
attribute of customer satisfaction or operational efficiency in service-oriented businesses is 
supplemented as the frequency of calls for customer care by and large inversely correlates with timely 



28 
 

service. Generally, where services have been delivered on time, customers are more satisfied, thus 
reducing their need to call the customer care. The motivation for this negative correlation follows 
logically from the psychology of customer expectations and service reliability: on-time delivery of 
services builds trust and dispels uncertainty, hence reduces motivational need for contact on the part 
of customers through complaints or inquiries. Delays are usually the leading cause of customer 
dissatisfaction in industries for which timeliness is a critical service metric, such as logistics, 
telecommunications, and public transportation. As is more often than not the case in the logistics 
industry, when deliveries do not turn up as promised, clients call the customer care lines to find out 
the status of their orders, to complain, or seek compensation. Every delayed delivery does not only 
add operational costs but also has a bearing on the reputation of a company. When companies manage 
to attain high levels of on-time delivery, the customer gets a much more seamless service, less 
frustration, therefore fewer calls into customer support. Lack of this very same expectation causes 
disruption in customers' experiences, which is generally marked by anxiety or disappointment, and 
heightens the chances of customer contact with support. On the business side, if a business meets or 
exceeds these expectations with on-time arrivals, customers are reassured and there is typically lower 
anxiety about their transactions, effectively reducing the need for further communication. This not 
only helps in reducing costs associated with customer care but also improves overall customer 
experience-maturing support resources for complex issues rather than issues related to time. It follows 
that the inverse relation between on-time reach and frequency of customer care calls clearly indicates 
timeliness is an important determinant of customer satisfaction and operational effectiveness. Indeed, 
reaching clients on time contributes to the expectations of customers and helps the cause of cost-
saving by allowing for better resource allocation in customer service departments. Therefore, it stands 
to reason that this is one of the main factors driving customer loyalty and improvement in company 
reputation (Ricardianto et al.,  2023; Candra et al., 2022;  Ridho et al., 2021). 
 
 
5. Machine Learning Regressions 

5.1 Boosting 

The model is built using 88 trees, a relatively modest number that balances the depth and complexity 
of the model, potentially reducing the risks of overfitting or underfitting. The learning rate, or 
shrinkage, is set to 0.1, controlling the impact of each tree in the model. Lower learning rates typically 
improve generalization but require more trees to achieve accurate results. The model employs a 
Gaussian loss function, which is well-suited for continuous targets in regression tasks and assumes 
that errors follow a normal distribution. The dataset is divided into three parts: a training set with 
7040 samples, a validation set with 1760 samples, and a test set with 2199 samples. This split allocates 
about 64% of the data to training, 16% to validation, and 20% to testing, which is common in machine 
learning practice. The model’s validation mean squared error (MSE) is 0.727, while the test MSE is 
0.724, indicating similar performance on both validation and test sets. This consistency between the 
validation and test MSE suggests that the model is likely generalizing well to new data. Additionally, 
the note mentions that the model is optimized with respect to the "out-of-bag mean squared error," 
implying the use of ensemble techniques or resampling to enhance accuracy and reduce bias. In terms 
of evaluation metrics, the mean squared error (MSE) for the model is 0.724, representing the average 
squared difference between predicted and actual values. The root mean squared error (RMSE) is 
0.851, providing an estimate of average prediction error on the same scale as the original data. The 
mean absolute error (MAE), or mean absolute deviation (MAD), is 0.69, indicating the average 
absolute difference between predictions and actual values. This is often more interpretable than MSE 
as it is less affected by large errors. The model also has a mean absolute percentage error (MAPE) of 
238.86%, suggesting substantial deviation between predictions and actual values, possibly due to 
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non-linear relationships not fully captured by the model. Finally, the R-squared value (R²) is 0.285, 
indicating that the model explains only about 28.5% of the variance in the target variable. This 
relatively low R² suggests that the model may be underfitting and not fully capturing patterns in the 
data. The relative influence of features in the model reveals that "Cost of the Product" is the most 
significant predictor with an influence of 48.396, indicating it has the strongest impact on the target 
variable. "Prior Purchases" has the second-highest influence at 30.594, demonstrating the importance 
of purchase history in the model’s predictions. "Weight in grams" has an influence of 16.316, and 
"Discount Offered" has the lowest influence at 4.695, making it the least impactful predictor. This 
ranking provides insight into which variables the model relies on most heavily to make predictions. 
In summary, this Boosting Regression model is moderately complex with consistent performance 
across validation and test sets but limited predictive power, as reflected in the low R² and high MAPE. 
The main drivers of the model’s predictions are the cost of the product and prior purchases, 
highlighting these factors as key to the target outcome. Although the model performs consistently 
across different data subsets, the high MAPE suggests areas for improvement in capturing the 
underlying relationships within the data (Chicco et al., 2021; Kaliappan et al., 2021; Ali, 2020) 
(Figure 7).  

Figure 7. Boosting Regression.  

 

The series of plots in Figure 8 provides insights into the performance and behavior of the Boosting 
Regression model. The "Out-of-bag Improvement Plot" in the upper left shows the change in 
Gaussian deviance across the number of trees for the training set. Initially, there is a significant 
improvement in out-of-bag (OOB) deviance as more trees are added, but this improvement tapers off 
around 50 trees, suggesting that additional trees have a diminishing impact on reducing deviance. The 
"Predictive Performance Plot" in the upper right compares predicted test values against observed test 
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values. The red line represents the ideal scenario where predictions perfectly match actual values. 
However, the dispersion of points around the line indicates that there is considerable variability in the 
model's predictions, with predictions often deviating from the actual test values. This variability 
suggests some limitations in the model’s predictive accuracy. The "Relative Influence Plot" in the 
lower left illustrates the relative importance of each predictor variable in the model. "Cost of the 
Product" is the most influential feature, followed by "Prior Purchases," which also plays a significant 
role. "Weight in grams" and "Discount Offered" have much lower relative influence scores, indicating 
they contribute less to the model's predictions. This ranking of feature importance aligns with the 
model summary, highlighting which features the model relies on most heavily.  Finally, the "Deviance 
Plot" in the lower right tracks Gaussian deviance against the number of trees. The plot shows a gradual 
decline in deviance as more trees are added, though the rate of improvement slows over time. This 
curve reinforces the findings from the out-of-bag improvement plot, confirming that additional trees 
have a limited effect on improving model performance after a certain point. Overall, these plots 
collectively indicate that while the model does improve with more trees, its predictive performance 
has limitations, particularly in terms of accuracy and consistency with the test data. The high relative 
influence of "Cost of the Product" and "Prior Purchases" suggests that these features are key drivers 
in the model's predictions, even though the model itself may not fully capture the underlying 
complexity of the data (Plevris et al., 2022; Correndo et al., 2022; Suh et al., 2021). 

Figure 8. Insights into the performance and behavior of the Boosting Regression model. 

 

5.2 Decision Tree 
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The model was constructed with 44 splits and was trained on 8800 samples, with an additional 2199 
samples allocated for testing. The test mean squared error (MSE) is reported as 0.635, indicating the 
average squared error of predictions on the test set. The data split section confirms that the majority 
of the data (80%) is used for training, with the remaining 20% used for testing, a common practice to 
ensure robust evaluation. In terms of evaluation metrics, the model’s performance is characterized by 
an MSE of 0.635 and a root mean squared error (RMSE) of 0.797, both of which measure the error 
in prediction with RMSE providing a more interpretable scale. The mean absolute error (MAE), also 
called mean absolute deviation (MAD), is 0.646, which represents the average absolute difference 
between predicted and actual values. The mean absolute percentage error (MAPE) is 212.21%, 
suggesting that, on average, predictions differ significantly from actual values in relative terms. The 
R-squared (R²) value of 0.339 indicates that the model explains about 33.9% of the variance in the 
target variable. This relatively low R² suggests that while the model has captured some predictive 
patterns, it may have limitations in fully explaining the data. The feature importance section provides 
insight into the variables that most influence the model’s predictions. "Cost of the Product" is the 
most significant feature with a relative importance score of 46.396, indicating it plays the largest role 
in determining the target variable. "Prior Purchases" is the second most influential feature with a score 
of 28.593, followed by "Weight in grams" at 20.497. These three features together account for the 
bulk of the predictive power in the model. "Discount Offered" has a much lower importance at 3.824, 
while "Reached on Time (Y/N)" and "Customer Rating" contribute minimally with scores of 0.636 
and 0.053, respectively. This distribution of feature importance suggests that the model’s predictions 
rely heavily on product cost, purchase history, and weight, while factors like delivery timeliness and 
customer ratings have little impact. Overall, this Decision Tree Regression model shows moderate 
predictive capability with reasonably low error metrics but limited explanatory power as reflected by 
the R² value. The feature importance analysis highlights which attributes are most influential, offering 
insights into areas that may be key for improving model performance or refining business strategies 
based on these influential factors (Wong et al., 2023; Kaliappan et al., 2021). 

Figure 9. Decision Tree Regression.  
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In Figure 10, At the top left, the "Splits in Tree" table outlines the primary splits made by the model 
to improve predictive accuracy. Each row lists a feature, the number of observations at that split, the 
specific split point, and the associated improvement in deviance. For instance, the first split on "Cost 
of the Product" with a split point at 1.359 yields a deviance improvement of 0.137. As the tree 
progresses, further splits are made based on features such as "Prior Purchases" and "Weight in grams," 
with each split contributing varying levels of improvement. This table shows that the tree prioritizes 
splits that maximize reduction in deviance at each step. The "Decision Tree Plot" on the top right 
visually represents the structure of the tree, starting with the root node split on "Cost of the Product." 
Each subsequent split directs observations through nodes that further divide based on conditions 
related to "Prior Purchases" and "Weight in grams." For example, after the initial split on "Cost of 
the Product," the tree splits based on "Prior Purchases" for a large subset of observations and then 
further splits on "Weight in grams." The nodes at the end of each branch represent final predictions 
made by the model, with each terminal node displaying the predicted value and the number of 
observations it contains. This structure illustrates the hierarchical approach taken by the decision tree 
to classify and predict values based on feature thresholds. The "Predictive Performance Plot" at the 
bottom left compares predicted test values to observed test values. The diagonal red line represents 
an ideal match between predicted and observed values, where all points would lie along the line in a 
perfectly accurate model. In this case, points are scattered around the line, indicating variability and 
some deviation between predictions and actual values. This dispersion suggests that the model is not 
perfectly accurate, with some predictions differing considerably from observed values, especially for 
extreme values. Overall, these visualizations indicate how the Decision Tree Regression model relies 
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on specific features like "Cost of the Product," "Prior Purchases," and "Weight in grams" to make 
predictions, with each split aiming to maximize reduction in prediction error. The structure of the tree 
and the predictive performance plot together reveal both the logic of the model’s decisions and the 
areas where predictive accuracy may be limited. The model’s ability to segment the data into smaller 
groups based on the most impactful variables demonstrates its interpretability, though the spread in 
the predictive performance plot suggests that it may not fully capture all complexities in the data 
(Osojnik et al., 2016; Nissa et al., 2024; Zhang and Gionis, 2023).  

Figure 10. Split in Tree.  

 

 

 

5.3 K-Nearest Neighbours 

The model showed in Figure 11 uses 10 nearest neighbors and applies the Epanechnikov kernel as a 
weighting function. The Epanechnikov function assigns higher weights to closer neighbors, with 
weights decreasing as the distance approaches the maximum. This weighting function helps prioritize 
nearby points, which is advantageous for local predictions. The model employs the Manhattan (or 
"city block") distance metric to measure proximity between data points, a common choice in KNN 
that sums the absolute differences across each dimension. The data is split into training, validation, 
and test sets, with 7040 samples allocated for training, 1760 for validation, and 2199 for testing. This 
split aligns with standard practices, reserving a substantial portion for training while ensuring enough 
data for validation and testing. The model was optimized based on the mean squared error (MSE) in 
the validation set, as noted in the text. The Validation MSE is 0.742, while the Test MSE is slightly 
higher at 0.756, indicating a small increase in error when applied to unseen data, suggesting 
reasonably stable performance but some room for further improvement. The "Epanechnikov Weight 
Function" plot below illustrates the decay in weight as the distance from a target point increases. The 
relative weight starts at 1.0 for points very close to the target and gradually decreases, reaching zero 
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at the maximum distance. This characteristic of the Epanechnikov kernel helps limit the influence of 
more distant neighbors, making the model more sensitive to local patterns and reducing the impact 
of potentially irrelevant or far-off data points. Overall, this KNN Regression model is configured to 
prioritize closer neighbors with diminishing weights for more distant ones. The modest increase in 
error from the validation to the test set suggests reasonable generalization, though the performance 
metrics indicate that further tuning could potentially enhance accuracy. The choice of the 
Epanechnikov kernel with Manhattan distance reflects an approach focused on emphasizing the 
influence of proximity in the model’s predictions, aiming for local rather than global accuracy. 

Figure 11. K-Nearest Neighbors Regression with Epanechnikov kernel as a weighting function 

 

The "Mean Squared Error Plot" on the left illustrates the mean squared error (MSE) across different 
values of "Number of Nearest Neighbors" for both the training set (dotted line) and the validation set 
(solid line). As the number of neighbors increases, the training error rises slightly, while the validation 
error decreases up to around 10 neighbors, which is marked with a red dot. This trade-off between 
training and validation error reflects the typical behavior in KNN models, where increasing the 
number of neighbors smoothens predictions, reducing variance but increasing bias. The "Predictive 
Performance Plot" on the right compares predicted test values with observed test values. The red 
diagonal line represents an ideal scenario where predictions perfectly match actual values. However, 
the dispersion of points around this line indicates variability and notable deviations, showing that the 
model’s predictions are not highly accurate, particularly for extreme values. The clustering of points 
away from the line suggests that the model struggles with capturing certain patterns or outliers in the 
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data. The evaluation metrics below further quantify the model's performance. The mean squared error 
(MSE) is 0.756, and the root mean squared error (RMSE) is 0.869, both measuring prediction 
accuracy, with RMSE providing an interpretable scale. The mean absolute error (MAE or MAD) is 
0.694, indicating the average absolute difference between predictions and actual values. However, 
the mean absolute percentage error (MAPE) is quite high at 302.61%, suggesting that the model has 
substantial relative errors, particularly for smaller values in the target range. The R-squared (R²) value 
of 0.253 indicates that the model explains only about 25.3% of the variance in the target variable, 
reflecting a limited ability to capture the underlying structure of the data. In summary, while the KNN 
model demonstrates a trend of decreasing validation error with more neighbors, the predictive 
performance plot and evaluation metrics suggest that it has limited accuracy and generalizability. The 
high MAPE and low R² values indicate that the model may not be fully capturing complex 
relationships in the data, leading to inconsistent predictions, especially for values that deviate from 
the mean (Tigga et al., 2023; Nedel'Ko Victor, 2023). 

5.4 Neural Networks 

The model in Figure 12 consists of 3 hidden layers with a total of 17 nodes, designed to capture 
complex, non-linear relationships in the data. The training, validation, and test sets contain 7040, 
1760, and 2199 samples, respectively. The data split allocation follows a typical setup, with a large 
portion reserved for training and smaller portions for validation and testing, to allow robust evaluation 
of the model’s generalization ability.  The model is optimized based on the mean squared error (MSE) 
on the validation set. The validation MSE is 0.780, while the test MSE is 0.762, indicating that the 
model performs similarly across these sets, with a slight improvement in error on the test data. This 
suggests a relatively stable model with minimal overfitting. The evaluation metrics show an MSE of 
0.762 and a root mean squared error (RMSE) of 0.873, which measure the magnitude of prediction 
errors, with RMSE providing an interpretable scale. The mean absolute error (MAE or MAD) is 
0.689, representing the average absolute difference between predictions and actual values. The mean 
absolute percentage error (MAPE) is 133.97%, indicating that the model’s predictions vary 
significantly relative to the true values, especially for smaller target values. The R-squared (R²) value 
is 0.334, which means that the model explains about 33.4% of the variance in the target variable. This 
R² value suggests limited explanatory power, indicating that the model does not capture all underlying 
patterns in the data. In summary, the Neural Network Regression model exhibits moderate prediction 
accuracy with stable performance across validation and test sets. However, the high MAPE and 
relatively low R² indicate that the model may still have limitations in capturing complex relationships 
or outliers in the data. This performance profile suggests that while the neural network can handle 
non-linearity to some extent, further tuning or additional data might be needed to improve accuracy 
and explanatory power (Rahman and Asadujjaman, 2021; Caballero et al., 2020). 

Figure 12. Neural Network Regression.  
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In Figure 13, on the right, the "Network Structure Plot" shows the neural network architecture. It 
consists of an input layer with multiple nodes corresponding to input features, three hidden layers 
with several interconnected nodes, and a single output layer node. Each hidden layer node is densely 
connected to nodes in the next layer, illustrating the fully connected nature of this neural network. An 
intercept node is also included, which feeds into each hidden layer to adjust biases and improve the 
network's ability to fit complex patterns in the data. The plot at the bottom left shows the "Logistic 
Sigmoid Activation Function," which is used within the network's nodes. This function maps input 
values into a range between 0 and 1, helping the model introduce non-linearity, which is crucial for 
capturing complex relationships. The sigmoid function’s characteristic S-shape allows the model to 
smoothly transition between different activation levels, but it can also lead to vanishing gradients for 
extreme input values, potentially affecting training efficiency. The "Predictive Performance Plot" in 
the top left displays predicted test values against observed test values. Ideally, all points would lie 
along the red diagonal line, representing perfect prediction accuracy. However, the scattering of 
points around this line indicates some deviations between predictions and actual values, especially 
for extreme observed values, suggesting that the model struggles with certain data points. This spread 
highlights areas where the model may have difficulty capturing all underlying patterns in the data, 
despite its complex architecture. In summary, this neural network model, with three hidden layers 
and a sigmoid activation function, is designed to capture non-linear relationships. The network 
structure plot emphasizes its depth and connectivity, supporting its capacity for modelling 
complexity. However, the predictive performance plot indicates variability in prediction accuracy, 
pointing to possible limitations in fully capturing the range of data patterns or handling outliers 
effectively. The model’s use of the sigmoid function aids in non-linearity but may also contribute to 
challenges with gradient-based optimization, especially in deeper layers (Pratiwi et al., 2020; Langer, 
2021; Mulindwa and Du, 2023). 

Figure 13. Neural Network Resutls.  
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5.5 Random Forest 

 

The dataset is divided into training, validation, and test sets, with 7040 samples in training, 1760 in 
validation, and 2199 in testing. The model is optimized based on the out-of-bag (OOB) mean squared 
error, which allows it to estimate generalization error without requiring a separate validation set. The 
OOB error is reported as 0.658, close to the test mean squared error (MSE) of 0.671, indicating good 
consistency in performance. The evaluation metrics further detail the model's accuracy. The test MSE 
of 0.671 and root mean squared error (RMSE) of 0.819 reflect the average squared and root-squared 
deviations of predictions from actual values. The mean absolute error (MAE) of 0.661 shows the 
average absolute difference between predicted and actual values, while the mean absolute percentage 
error (MAPE) of 238.31% suggests substantial relative prediction errors, likely due to extreme values 
in the data. The R-squared (R²) value of 0.312 indicates that the model explains approximately 31.2% 
of the variance in the target variable, suggesting limited explanatory power and room for 
improvement in capturing the full range of patterns within the data. The feature importance section 
provides insights into which variables most strongly influence the model’s predictions. "Cost of the 
Product" has the highest importance based on node purity (906.706), followed by "Weight in grams" 
(826.336) and "Prior Purchases" (495.563). "Discount Offered" also has a notable contribution 
(362.878). These variables collectively hold substantial predictive power, while "Customer Rating" 
and "Reached on Time (Y/N)" contribute minimally, indicating they are less influential in the model’s 
structure. The mean decrease in accuracy for each feature aligns with these rankings, confirming the 
importance of cost, weight, and prior purchases as primary drivers in prediction accuracy. In 
summary, the Random Forest Regression model demonstrates stable performance across OOB, 
validation, and test sets but has limitations in fully explaining variance, as shown by the relatively 
low R² and high MAPE. The feature importance metrics highlight which attributes the model relies 
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on most heavily, with product cost, weight, and purchase history being the key predictors, while 
customer rating and timeliness have minimal impact. This suggests that further refinement or 
additional feature engineering could be beneficial for improving model accuracy and interpretability 
(Kaliappan et al., 2021; Agarwal et al., 2023; Han and Kim, 2021) (Figure 14).  

Figure 14. Random Forest Regression.  

 

 

This set of visualizations in Figure 15 provides detailed insights into the performance and feature 
importance of a Random Forest Regression model. In the upper left, the "Out-of-bag Mean Squared 
Error Plot" shows the out-of-bag (OOB) mean squared error as the number of trees in the model 
increases. The plot indicates a steep decline in error with the addition of the first 20-30 trees, after 
which the error stabilizes around 0.65. This trend suggests that the model reaches optimal 
performance with around 30 trees, and adding more trees provides diminishing returns in terms of 
reducing the OOB error. The "Predictive Performance Plot" in the upper right compares the predicted 
test values to the observed test values, with the red diagonal line representing an ideal fit where 
predictions would match the actual values perfectly. However, the spread of points around this line, 
especially for extreme values, indicates variability and errors in predictions. This dispersion suggests 
that while the model is capturing some patterns in the data, it still struggles with precise predictions, 
particularly for certain ranges of values. The two bottom plots display the feature importance metrics. 
The "Mean Decrease in Accuracy" plot on the bottom left shows how each feature contributes to 
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model accuracy. "Weight in grams" has the highest importance in terms of mean decrease in accuracy, 
followed closely by "Cost of the Product" and "Prior Purchases." "Discount Offered" has a moderate 
impact, while "Reached on Time (Y/N)" and "Customer Rating" contribute minimally. This plot 
highlights which features the model relies on most for making accurate predictions. The "Total 
Increase in Node Purity" plot on the bottom right further confirms feature importance based on how 
much each feature increases node purity. "Cost of the Product" and "Weight in grams" are again the 
most influential features, followed by "Prior Purchases" and "Discount Offered." "Customer Rating" 
and "Reached on Time (Y/N)" have minimal impact on node purity, underscoring their lower 
predictive relevance in this model. In summary, these plots reveal that while the Random Forest 
model stabilizes in performance after around 30 trees, there are still limitations in prediction accuracy, 
especially for extreme values. The feature importance metrics consistently show that "Cost of the 
Product," "Weight in grams," and "Prior Purchases" are the primary drivers in the model’s 
predictions, while "Customer Rating" and "Reached on Time (Y/N)" play a negligible role. This 
analysis suggests that focusing on the most impactful features could further refine the model's 
predictive power (Agarwal et al., 2023). 

Figure 15 provides detailed insights into the performance and feature importance of a Random Forest 
Regression model. 

 

 

5.6 Regularized Linear 

Figure 16 shows Regularized Linear Regression model uses Lasso (L1) regularization. The data is 
split into 7040 training samples, 1760 validation samples, and 2199 test samples. The model is 
optimized based on the mean squared error (MSE) on the validation set, with the validation MSE at 
0.787 and the test MSE at 0.780, indicating consistent performance across different data subsets. The 
evaluation metrics provide further insight into the model's accuracy. The MSE is 0.78, and the root 
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mean squared error (RMSE) is 0.883, both of which measure the average deviation of predictions 
from actual values, with RMSE on the same scale as the original data. The mean absolute error (MAE) 
is 0.718, representing the average absolute error between predictions and actual values. The mean 
absolute percentage error (MAPE) is 256.93%, suggesting that the model's relative prediction error 
is high, likely due to variation in the target values. The R-squared (R²) value is 0.2, which means that 
the model explains only 20% of the variance in the target variable. This low R² indicates that the 
model has limited predictive power and may not fully capture the underlying relationships in the data. 
The regression coefficients provide insight into the contribution of each predictor variable. "Cost of 
the Product" has a positive coefficient (0.246), meaning that higher product costs are associated with 
higher predicted values. "Prior Purchases" also contributes positively with a coefficient of 0.072, 
suggesting that a higher purchase history is linked to an increase in the target. In contrast, "Discount 
Offered," "Weight in grams," and "Reached on Time (Y/N)" have negative coefficients (-0.174, -
0.312, and -0.053, respectively), indicating that increases in these variables lead to a decrease in the 
target prediction. "Customer Rating" has a coefficient of 0.000, meaning it has no impact on the 
prediction due to the regularization effect of Lasso, which shrinks insignificant coefficients to zero. 
In summary, this Regularized Linear Regression model shows stable but limited performance, as 
evidenced by its low R² and high MAPE. The Lasso regularization has effectively reduced the 
influence of less significant variables, with "Customer Rating" having no effect on the model's 
predictions. The most influential predictors are "Cost of the Product," "Weight in grams," and 
"Discount Offered," with the latter two having a negative impact on the target variable. This suggests 
that while Lasso regularization has simplified the model by eliminating irrelevant features, the model 
may still need further refinement or additional features to improve its predictive accuracy and 
explanatory power (Guo et al., 2021; Omer, 2022; Takada et al., 2020). 

Figure 16. Regularized Linear Regression.  
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The Figure in 17 shows "Predictive Performance Plot" on the top left shows predicted test values 
plotted against observed test values, with a red line representing perfect prediction accuracy. The 
dispersion of points around this line indicates variability in the model’s predictions, suggesting that 
while it captures general trends, there are errors, especially for extreme values. This spread suggests 
limitations in the model’s ability to fully capture the underlying data patterns. The "Variable Trace 
Plot" on the top right displays how each variable’s coefficient changes as the regularization parameter 
𝜆 increases. Lasso regularization gradually shrinks coefficients towards zero, with less influential 
variables dropping off as 𝜆 increases. For example, "Customer Rating" and "Reached on Time (Y/N)" 
quickly shrink towards zero as 𝜆 grows, indicating minimal influence on the model. In contrast, "Cost 
of the Product" and "Weight in grams" retain significant coefficient values even at higher levels of 
regularization, highlighting their importance in the model. This plot illustrates Lasso’s ability to 
simplify the model by eliminating or minimizing the impact of less important features. The "Lambda 
Evaluation Plot" at the bottom shows the cross-validated mean squared error (MSE) across a range 
of 𝜆 values. The MSE initially decreases as 𝜆 increases, reaching a minimum around 0.04, where the 
model achieves optimal balance between bias and variance. Beyond this point, as 𝜆 increases further, 
the MSE begins to rise, indicating that the model is becoming too biased as more coefficients are 
reduced, ultimately leading to underfitting. The vertical lines indicate key values for 𝜆: the minimum 
cross-validated MSE (Min. CV MSE) and one standard error above it (λ 1 SE), often used to select a 
simpler model with minimal loss of accuracy. In summary, these plots illustrate that while the Lasso 
regularization effectively reduces the influence of less important features, the model’s prediction 
accuracy is moderate, with some variability in performance. The Variable Trace Plot confirms that 
"Cost of the Product" and "Weight in grams" are the most impactful features, while other variables 
have little to no influence at optimal regularization levels. The Lambda Evaluation Plot helps identify 
the ideal 𝜆 value for balancing model complexity and predictive accuracy, reinforcing the benefits of 
regularization in preventing overfitting while maintaining important predictors (Machkour et al., 
2020; Kayanan and Wijekoon, 2020; Iparragirre et al., 2023). 

Figure 17. Regularized Linear Regression.  
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5.7 Support Vector Machines 

The model showed in Figure 18 was trained using 8800 support vectors, with the data split into 8800 
samples for training and 2199 samples for testing, totalling 10,999 data points. The model's 
performance is measured with a test mean squared error (MSE) of 611,702.097, which is 
exceptionally high and suggests poor prediction accuracy. The evaluation metrics provide further 
insights into the model's limitations. The root mean squared error (RMSE) is 782.114, indicating 
substantial error magnitude in the same units as the target variable. The mean absolute error (MAE) 
is 639.141, showing that, on average, predictions deviate by a large amount from actual values. The 
mean absolute percentage error (MAPE) is an extremely high 478,256.69%, which implies that the 
model’s predictions are highly inaccurate relative to the actual values, with prediction errors far 
exceeding the target values in proportional terms. Finally, the R-squared (R²) value is 0.002, which 
means that the model explains only 0.2% of the variance in the target variable. This extremely low 
R² value indicates that the model fails to capture any meaningful patterns or relationships in the data. 
In summary, this SVM Regression model exhibits very poor performance, with high error metrics 
and an almost negligible R² value, indicating that it is not a suitable fit for the data. The high error 
values suggest that the model’s predictions are far off from the actual values, likely due to 
inappropriate parameter tuning, a poor choice of kernel, or the inherent unsuitability of SVM for this 
particular dataset (Doganer et al., 2020; Xu, 2022). 

Figure 18. Support Vector Regression.  
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6. Machine Learning Classification  

6.1 Decision Tree 

The model showed in Figure 19 was built with 28 splits and trained on 8800 samples, with 2199 
samples used for testing, resulting in a total of 10,999 data points. The model's test accuracy is 0.151, 
or 15.1%, which is notably low, indicating poor performance in correctly classifying the data. The 
confusion matrix further illustrates the model’s performance by showing the distribution of predicted 
versus actual classifications across categories labeled 2, 3, 4, 5, and 6. Each row represents the 
observed class, while each column shows the predicted class. For example, in the row for observed 
class 3, only 21% of instances were correctly predicted as class 3, while the rest were misclassified 
across other classes. Similarly, the correct classification rates for other observed classes (4, 5, 6, etc.) 
are also low, with the model frequently misclassifying instances into incorrect categories. The 
dispersion across the matrix highlights the model’s struggle with accurately differentiating between 
classes, as it frequently assigns incorrect labels. In summary, this Decision Tree Classification model 
has a very low classification accuracy of 15.1%, with substantial misclassification observed across 
all classes in the confusion matrix. This poor performance suggests that the model is not well-suited 
to the dataset or that the data may require additional preprocessing or feature engineering. 
Adjustments to the model's parameters, such as increasing the depth or experimenting with alternative 
classification algorithms, could potentially improve its performance (Krstinić et al., 2020; Zhao et al., 
2021). 

Figure 19. Decision Tree Classification.  
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In the Figure 20 the Evaluation Metrics section, performance metrics are calculated separately for 
each class (labeled 2, 3, 4, 5, 6, and 7) across 2199 test samples. Each class has specific metrics for 
accuracy, precision, recall, F1 score, and more. For instance, the precision for class 3 is 0.355, 
indicating that 35.5% of the instances classified as class 3 are true positives, while the recall for this 
class is 0.714, showing that 71.4% of actual class 3 instances were correctly identified. The average 
F1 score across all classes is 0.337, reflecting a generally low balance between precision and recall. 
Additionally, the Area Under Curve (AUC) varies across classes, with class 6 achieving the highest 
AUC of 0.794, suggesting better discrimination for this class compared to others. The Average/Total 
column provides an overview across all classes, with overall accuracy at 0.793 and average precision 
and recall at 0.363 and 0.380, respectively. The low Matthews Correlation Coefficient (MCC) and 
varying precision and recall scores indicate that the model may be struggling to consistently classify 
instances across all classes. In the Feature Importance section, the relative importance of each feature 
in the model is displayed. "Prior Purchases" has the highest importance with a score of 44.926, 
followed closely by "Cost of the Product" at 39.020. "Weight in grams" has moderate importance at 
15.860, while "Discount Offered" has minimal impact at 0.194. These scores indicate that the model 
heavily relies on purchase history and product cost when making classification decisions. The Splits 
in Tree section provides information on the most impactful splits in the decision tree. For example, 
the first split is based on "Cost of the Product" with a split point at 1.359, which leads to an 
improvement in deviance of 206.554, indicating a substantial reduction in error. Subsequent splits 
based on "Prior Purchases" (split point -0.044) and "Weight in grams" (split point -0.972) contribute 
further, though with diminishing improvements. This table highlights the model’s decision-making 
process, with initial splits based on high-impact features, followed by additional splits that refine the 
model’s classifications. In summary, this classification model has varying performance across 
classes, with generally low precision, recall, and F1 scores. The model’s reliance on "Prior Purchases" 
and "Cost of the Product" as key predictors is evident in both the feature importance rankings and the 
choice of initial splits. However, the low scores in key metrics like precision and recall indicate that 
the model may need further tuning or adjustments to handle classification more effectively across all 
classes (Dai et al., 2023; Riyanto et al., 2023; Obi, 2023). 
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Figure 20. Evaluation Metrics of Decision Tree Classification.  

 

 

The Figure 21 shows ROC Curves Plot in the upper left shows the Receiver Operating Characteristic 
(ROC) curves for each class of "Customer Care Calls" labeled 2 through 7. Each curve plots the true 
positive rate (sensitivity) against the false positive rate, providing a measure of the model's ability to 
distinguish between classes. A curve closer to the top-left corner would indicate better performance. 
In this case, the curves for classes 2 and 3 show a somewhat stronger performance, while other classes, 
such as class 7, have ROC curves closer to the diagonal, indicating weaker discrimination and 
suggesting that the model struggles to accurately classify instances of those classes. The Decision 
Tree Plot in the upper right visualizes the structure of the decision tree used in the model. The tree 
starts with a split on "Cost of the Product" with a threshold of 1.36, dividing the dataset based on this 
value. Subsequent splits are made on "Prior Purchases" and "Weight in grams," with the tree further 
branching according to these features and specific thresholds (e.g., -0.0444 for "Prior Purchases" and 
-0.972 for "Weight in grams"). The nodes at the bottom of the tree represent final classifications, with 
each leaf node labeled by the predicted class and the number of samples it contains. This hierarchical 
structure shows how the model makes decisions based on key features, with "Cost of the Product" 
and "Prior Purchases" playing central roles in the classification process. The Andrews Curves Plot in 
the lower left visualizes patterns in the dataset for each class of "Customer Care Calls" using a 
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continuous curve for each instance. Andrews curves map data to functions, enabling visualization of 
high-dimensional relationships. Here, each class (2 through 7) is represented by different colors. 
Although there is considerable overlap, some differences in the curves for each class may indicate 
subtle separations among classes, though the overlap suggests that classes may not be highly distinct. 
This visualization reinforces the idea that the classes are not easily separable, which could explain 
the classification challenges observed in the ROC curves. In summary, these plots provide insights 
into the classification model's limitations and decision-making process. The ROC curves reveal 
variability in performance across classes, with some classes, like 7, being particularly challenging to 
distinguish. The Decision Tree Plot highlights the central role of "Cost of the Product" and "Prior 
Purchases" in the classification process, while the Andrews Curves Plot suggests that, despite some 
separation, there is significant overlap between classes, making classification more difficult. These 
visualizations indicate that the model may benefit from further refinement, feature engineering, or 
exploration of alternative classification approaches to improve accuracy (Verbakel et al., 2020; 
Gajowniczek and Ząbkowski, 2021; Pendrill et al.,  2023). 

Figure 21. Decision Tree Classification Analysis.  

 

The pair plot in Figure 22 visualizes the relationships between six variables—"Cost of the Product," 
"Prior Purchases," "Customer Rating," "Discount Offered," "Weight in grams," and "Reached on 
Time (Y/N)"—with data points color-coded by "Customer Care Calls" classes (2 through 7). Each 
scatterplot cell illustrates the pairwise relationship between two variables, while the diagonal cells 
display the distribution of individual variables. The plot of "Cost of the Product" against "Prior 
Purchases" shows some separation between classes, with specific clusters for classes 2 and 3 within 
certain ranges, though there remains significant overlap, indicating that these features alone may not 
be highly effective for distinguishing customer care call classes. Similarly, the relationship between 
"Weight in grams" and "Discount Offered" reveals dense overlap among all classes, though some 



47 
 

specific regions show slightly higher densities for certain classes, hinting at weak class trends. The 
plots involving "Customer Rating" suggest limited variability, as ratings are clustered around a few 
discrete values, which implies that "Customer Rating" likely does not play a substantial role in 
predicting customer care call classes due to the lack of clear separation between them. Additionally, 
the binary nature of "Reached on Time (Y/N)" results in minimal spread across the scatterplots, with 
substantial class overlap, further indicating that this feature alone has limited predictive power in 
distinguishing between customer care call categories. Overall, while certain pairs, such as "Cost of 
the Product" and "Prior Purchases," show slight separation among some classes, the pervasive overlap 
across all features suggests that none of these variables alone can distinctly classify the different 
levels of customer care calls. This visualization implies that complex interactions between features 
likely drive customer care call classes, and further modeling techniques or feature engineering may 
be needed to improve predictive accuracy and class differentiation (Bernard et al.,  2021; Ma and 
Maciejewski, 2020; Luque et al., 2022). 

 

Figure 22. Relationships among variables.  
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6.2 k-Nearest Neighbors 

The model showed in Figure 23 uses 10 nearest neighbors with a rectangular weighting function and 
the Euclidean distance metric. The data is split into 7040 training samples, 1760 validation samples, 
and 2199 test samples. The model's performance, optimized for validation set accuracy, achieved a 
validation accuracy of 36.8% and a test accuracy of 38.8%, indicating relatively low classification 
effectiveness. The confusion matrix further illustrates the model’s performance by showing the 
distribution of predictions across classes. The observed classes (rows) are compared to the predicted 
classes (columns) for each category, labeled 2 through 7. The matrix indicates a high level of 
misclassification, with low accuracy across all classes. For example, in the row for observed class 3, 
only 12% of instances were correctly classified as class 3, with the remainder misclassified into other 
classes. Similarly, other classes (e.g., 4, 5, and 6) also show low correct classification rates, with 
predictions frequently scattered across multiple incorrect classes. Overall, the model's low validation 
and test accuracies, along with the high level of misclassification in the confusion matrix, suggest 



49 
 

that this KNN model is not well-suited for distinguishing between the classes in this dataset. This 
underperformance may be due to overlapping feature distributions among classes or insufficiently 
distinct data points for effective classification by the KNN algorithm. To improve results, additional 
tuning of the number of neighbors, exploration of alternative distance metrics, or the use of different 
classification algorithms may be needed (Sugriyono and Siregar, 2020; Hinterreiter et al., 2020; 
Bajpai and He, 2020). 

Figure 23. K-Nearest Neighbors Classification.  

 

 

In the Class Proportions section, each class (labeled 2 through 7) is represented by its proportion in 
the full dataset as well as in the training, validation, and test sets. The proportions are fairly consistent 
across all subsets, with class 4 being the largest at approximately 32%, followed by class 3 at around 
29%, while class 7 is the smallest, making up only about 2% of the dataset. These class distributions 
indicate an imbalanced dataset, where certain classes have significantly fewer instances than others, 
potentially affecting the model’s performance for minority classes. The Evaluation Metrics section 
provides detailed performance metrics for each class individually, as well as overall averages. Metrics 
include accuracy, precision, recall, F1 score, Matthews Correlation Coefficient (MCC), Area Under 
Curve (AUC), and others. For class 2, the accuracy is high at 94.2%, but both precision and recall are 
zero, indicating that while the model rarely misclassifies other classes as class 2, it struggles to 
identify true class 2 instances. In contrast, class 6 has a high accuracy of 97.9% with moderate 
precision (0.200) and recall (0.559), reflecting better classification but still significant room for 
improvement in identifying all true positives. The average F1 score across all classes is 0.362, which 
reflects the balance between precision and recall and highlights the model's overall struggle to 
maintain high performance for each class. The AUC values vary across classes, with class 7 achieving 
the highest AUC at 0.885, indicating relatively good discrimination between true and false instances 
for this class, while class 2 has a lower AUC of 0.603. The MCC, which measures the quality of 
classifications, is low across most classes, with an average of 0.028, showing weak correlation 



50 
 

between predicted and actual classifications. Additional metrics such as the False Discovery Rate, 
False Negative Rate, and Statistical Parity provide further insight into the model's error rates and 
potential bias. Notably, the overall high false discovery rate and variable precision and recall values 
indicate that the model has difficulty consistently classifying all classes correctly, likely due to the 
class imbalance. In summary, this classification model shows varying performance across different 
classes, with generally low precision, recall, and F1 scores indicating limited effectiveness in 
accurately identifying each class. The imbalanced class distribution and low MCC values further 
highlight the model's challenges in delivering robust classification performance across all categories. 
Addressing the class imbalance, possibly through resampling or adjusting class weights, and refining 
the model could improve its overall accuracy and reliability (Leevy et al., 2022; Hancock et al., 2022; 
Riyanto et al., 2023), (Figure 24).  

Figure 24. Evaluation Metrics of K-Nearest Neighbors Classification.  

 

 

This pair plot in Figure 25 visualizes the relationships between six features—"Customer Rating," 
"Cost of the Product," "Prior Purchases," "Discount Offered," "Weight in grams," and "Reached on 
Time (Y/N)"—with points color-coded by "Customer Care Calls" classes (2 through 7). Each 
scatterplot cell displays the pairwise relationship between two features, while the diagonal cells show 
the distribution of individual features. The background shading represents class regions to indicate 
where different "Customer Care Calls" classes tend to cluster within the feature space. Examining the 
relationships, we see that "Cost of the Product" and "Prior Purchases" show some mild separation for 
specific classes, though there is substantial overlap, particularly in regions with high densities of 
classes 3, 4, and 5, which suggests these features alone are insufficient for strong class discrimination. 
Similarly, the relationship between "Discount Offered" and "Weight in grams" reveals considerable 
overlap among all classes, with dense regions suggesting that these features also lack clear class 
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separation, although certain class clusters, such as classes 2 and 7, are more distinct in some localized 
regions. The "Customer Rating" and "Reached on Time " features display limited variability, with 
data points clustered at a few specific values, indicating that these features are not likely to provide 
strong predictive power for distinguishing between customer care call classes. For instance, "Reached 
on Time (Y/N)" is binary, creating limited spread and class distinction in plots involving this feature. 
Overall, this pair plot indicates significant overlap across all classes within the feature space, 
suggesting that no single feature or pair of features provides a clear boundary for distinguishing 
customer care call classes. The color-coded scatter points show that while there are some areas with 
mild class clustering, the extensive overlap implies that more complex interactions between features 
are likely needed to achieve effective classification. This visualization suggests that additional feature 
engineering, dimensionality reduction, or more sophisticated modeling approaches may be required 
to improve class separability and predictive accuracy (Ma and Maciejewski, 2020; Bernard et al., 
2021). 

Figure 25. Relationships among the variables.  
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6.3 Linear Discriminant  

The model showed in Figure 26 uses five linear discriminants with the "Moment" method for feature 
extraction and dimensionality reduction. The dataset is split into 8800 training samples and 2199 test 
samples, totaling 10,999 observations. The model achieves a test accuracy of 35.4%, indicating 
relatively low effectiveness in correctly classifying instances across the test set. The Confusion 
Matrix provides a detailed view of the model's classification performance for each class (labeled 2 
through 7). The rows represent the observed classes, while the columns represent the predicted 
classes. Each cell shows the proportion of observations in each class that were classified as a specific 
class. For example, in the row for observed class 3, only 12% of instances were correctly classified 
as class 3, while the remaining instances were misclassified into other classes, with predictions 
scattered across classes 2, 4, and 5. Similarly, for observed class 4, only 18% were correctly classified, 
with a high proportion misclassified into other categories. This widespread misclassification across 
classes suggests that the LDA model struggles to differentiate between them effectively, likely due 
to overlapping feature distributions and insufficient class separation in the feature space. The overall 
test accuracy of 35.4%, combined with the high level of misclassification seen in the confusion 
matrix, indicates that LDA may not be a suitable choice for this dataset. The model's performance 
could potentially be improved by trying alternative classification algorithms that capture non-linear 
relationships or by performing additional feature engineering to enhance class separability (Li et al., 
2023; Zorarpacı, 2021; Chandrasekar and Geetha, 2021). 

Figure 26. Linear Discriminant Classification.  

 

In the Class Proportions section, the distribution of each class (labeled 2 through 7) is shown for the 
entire dataset as well as for the training and test sets. The proportions are consistent across splits, with 
class 4 being the largest (32.3%) and class 7 the smallest (2.2%). This class imbalance suggests that 
the model may struggle with accuracy for minority classes due to limited representation in the data. 
The Evaluation Metrics section provides detailed performance metrics for each class and an overall 
average. Accuracy varies widely across classes, with class 7 achieving the highest accuracy at 97.9% 
and class 5 having a relatively high accuracy at 85.3%. In contrast, class 4 has low accuracy (53.1%) 
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and recall (0.403), indicating difficulty in correctly identifying instances of this class. The overall 
average F1 score of 0.306 reflects the balance between precision and recall across classes and 
indicates that the model has limited effectiveness in achieving accurate and balanced classifications. 
The Area Under Curve (AUC) values also vary, with class 7 having the highest AUC of 0.953, 
showing better discrimination for this class, while class 3 has a lower AUC of 0.546. The Matthews 
Correlation Coefficient (MCC) is also generally low, averaging 0.078, further indicating weak 
correlations between observed and predicted classifications. In the Linear Discriminant Coefficients 
section, coefficients for each feature across the five linear discriminants (LD1 to LD5) are presented. 
These coefficients indicate the contribution of each feature to each discriminant function. For 
instance, "Cost of the Product" has negative coefficients in LD1, LD2, and LD5, suggesting a negative 
relationship with these discriminants, while "Discount Offered" shows high positive coefficients in 
LD1 and LD4, indicating a stronger influence on these discriminants. The varying signs and 
magnitudes of these coefficients reflect how each feature contributes differently to the linear 
discriminants, which are used to separate classes. Overall, this LDA model demonstrates inconsistent 
performance across classes, with low precision, recall, and F1 scores for many classes, indicating 
limited classification effectiveness. The class imbalance may be affecting performance, especially for 
minority classes like class 7. The discriminant coefficients show that certain features, such as 
"Discount Offered" and "Cost of the Product," have a more substantial impact on classification, while 
other features, like "Customer Rating," exhibit smaller coefficients and are less influential. These 
results suggest that the LDA model may benefit from further tuning, addressing class imbalance, or 
considering non-linear classification methods to improve performance (Chandrasekar and Geetha, 
2021; Thölke et al., 2023; Mirza et al., 2021), (Figure 27). 

Figure 27. Metrics of Linear Discriminant Classification. 
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The Prior and Posterior Class Probabilities section lists the probabilities for each class (labeled 2 
through 7) before and after considering the data. The prior and posterior probabilities are nearly 
identical for each class, indicating that the class distribution in the training data aligns closely with 
the model’s classifications. Class 4 has the highest probability (32%), while class 7 has the lowest 
(2.3%), reflecting the class imbalance in the dataset. The Class Means in Training Data section shows 
the mean values of each feature for each class within the training data. This table helps to highlight 
any distinct patterns or differences in feature values across classes. For instance, "Cost of the Product" 
varies significantly between classes, with class 7 having a mean of 1.416 compared to -0.413 for class 
2, indicating that this feature might be an important differentiator between classes. Similarly, "Weight 
in grams" also shows a noticeable difference, with a mean of -1.315 for class 7 compared to near-
zero values for classes 2 and 4, suggesting potential class-specific distinctions in this feature. The 
Tests of Equality of Class Means section presents the results of F-tests to determine whether the 
means of each feature significantly differ across classes. High F-values and low p-values (p < .001) 
for most features, including "Cost of the Product," "Prior Purchases," "Discount Offered," "Weight 
in grams," and "Reached on Time (Y/N)," indicate statistically significant differences in these features 
among classes. This suggests that these features contribute to distinguishing between classes. 
However, "Customer Rating" has a much lower F-value and a non-significant p-value (p = 0.200), 
implying that it does not differ significantly across classes and is therefore less useful for 
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classification. The Tests of Equality of Covariance Matrices section reports Box's M test, which 
evaluates whether the covariance matrices are equal across classes, an assumption of LDA. The 
extremely high chi-square value (3522.523) and significant p-value (p < .001) indicate that the null 
hypothesis of equal covariance matrices is rejected. This suggests that the covariance structures differ 
significantly across classes, violating a key assumption of LDA and potentially impacting the model’s 
performance. In summary, this analysis shows that features like "Cost of the Product," "Prior 
Purchases," and "Weight in grams" have significant mean differences across classes, making them 
valuable for classification. However, the unequal covariance matrices, as indicated by Box’s M test, 
violate LDA assumptions, potentially limiting the model's effectiveness. The non-significance of 
"Customer Rating" further suggests that this feature may not provide meaningful separation between 
classes in this model. Addressing the class imbalance and potentially exploring alternative models 
that do not rely on equal covariance assumptions could improve classification performance (Mirza et 
al., 2021; Brzezinski et al., 2019; Thölke et al., 2023), (Figure 28).  

Figure 28. Tests and Probabilities.  

 

The Pooled Within-Class Matrices Correlations section shows the correlations between features after 
pooling across classes, offering insights into the relationships between variables within the context 
of each class. "Cost of the Product" has a strong negative correlation with "Weight in grams" (-0.793) 
and a moderate negative correlation with "Discount Offered" (-0.322), suggesting that higher product 
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costs tend to be associated with lighter products and lower discounts. "Discount Offered" and "Weight 
in grams" also have a substantial negative correlation (-0.672), indicating that higher discounts tend 
to be given to lighter products. Meanwhile, "Customer Rating" and "Prior Purchases" have relatively 
low correlations with other variables, suggesting limited relationships between these features and the 
rest of the dataset. The ROC Curves Plot in the bottom left evaluates the model's ability to 
discriminate between classes of "Customer Care Calls" (labeled 2 through 7). Each curve represents 
a class, plotting the true positive rate against the false positive rate. The ROC curve for class 7 stands 
out as it is closer to the top-left corner, indicating better discriminability for this class, while other 
classes, such as 4 and 5, have ROC curves closer to the diagonal, suggesting lower discrimination 
and more classification overlap. This indicates that the model performs better for some classes, like 
class 7, than others. The Andrews Curves Plot in the bottom right visualizes patterns in each 
"Customer Care Calls" class by mapping instances to continuous functions, with each class 
represented by a different color. The curves overlap considerably, indicating limited separation 
between classes in the feature space. This overlap suggests that the classes are not easily 
distinguishable based on the given features, making it challenging for the model to achieve high 
accuracy. In summary, the correlation matrix reveals notable relationships, such as the negative 
correlation between "Cost of the Product" and "Weight in grams," which may influence classification. 
The ROC curves highlight variability in classification performance, with class 7 showing better 
discrimination than others. The significant overlap in the Andrews curves plot underscores the 
difficulty in separating classes based on the current feature set, indicating that additional feature 
engineering or alternative modeling techniques may be necessary to improve classification accuracy 
and separability among classes (Ruisánchez et al., 2021; Aceved et al., 2022; Feng and Tian, 2021), 
(Figure 29).  

Figure 29. Correlations, ROC and Andrews curve.  

 

In Figure 30 Each point represents an instance, color-coded by "Customer Care Calls" classes (2 
through 7), while the density plots along the diagonal illustrate the distribution of each class within 
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individual discriminants. In the Density Plots on the diagonal, each linear discriminant (LD1, LD2, 
etc.) has its own density distribution for each class. LD1 shows some separation, with distinct peaks 
for different classes, particularly for classes 2 and 7, which appear to have their own density peaks. 
This suggests that LD1 may capture meaningful class separation. However, for other discriminants 
like LD3, LD4, and LD5, the distributions of different classes overlap substantially, indicating limited 
class separation within these discriminants. The Scatter Plots for each pair of discriminants (off-
diagonal) reveal how classes are spread across the feature space defined by these discriminants. Most 
scatter plots, such as those between LD2 and LD3 or LD4 and LD5, show dense overlap among 
classes, with points from all classes densely clustered together. This overlap indicates that the linear 
discriminants do not provide clear separation between classes when combined, making it challenging 
for the LDA model to effectively distinguish among the customer care call categories based on these 
features. Overall, this plot suggests that while LD1 might contain some discriminatory power, the 
remaining discriminants (LD2 to LD5) do not contribute significantly to class separation. The 
substantial overlap in the scatter plots and density distributions indicates that the LDA model 
struggles to separate classes based on the current feature set. This result implies that additional feature 
engineering, alternative dimensionality reduction methods, or a non-linear classification approach 
may be needed to improve class separability and predictive performance (Ghiasi-Shirazi, 2022; Liu 
et al., 2023; Yan et al., 2020). 

Figure 30. Relationship among variables.  
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This Decision Boundary Matrix shows pairwise decision boundaries between six features—
"Customer Rating," "Cost of the Product," "Prior Purchases," "Discount Offered," "Weight in grams," 
and "Reached on Time (Y/N)"—for a classification model that aims to predict "Customer Care Calls" 
classes (2 through 7). Each scatter plot cell represents a pair of features, with the background color 
representing the decision boundaries of the model, while each data point is color-coded according to 
its class. From the pairwise boundaries, we can observe that in most feature pairs, the decision 
boundaries are not well-separated, and there is considerable overlap in data points from different 
classes within each region. For instance, in the plot of "Cost of the Product" against "Prior Purchases," 
while there are some decision boundary regions colored to indicate different classes, the data points 
from classes 3, 4, and 5 are densely clustered together with significant overlap, suggesting that these 
features do not effectively separate the classes. Similarly, in the plot of "Discount Offered" versus 
"Weight in grams," data points from all classes cluster densely within a few regions, making it 
difficult for the model to distinguish between them based solely on these two features. The feature 
"Reached on Time (Y/N)" also shows minimal variability, as it is binary, leading to simple vertical 
or horizontal decision boundaries that divide classes into regions without substantial separation. In 
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plots involving this feature, classes remain largely overlapping, indicating that it provides limited 
discriminatory power. Overall, this Decision Boundary Matrix highlights that no single pair of 
features provides clear separability between classes. The decision boundaries show that the model 
has defined regions for each class; however, the extensive overlap of data points across these 
boundaries suggests that the classes are not easily distinguishable with the current feature set. This 
extensive overlap implies that additional feature engineering, the introduction of non-linear decision 
boundaries, or the use of more complex classification algorithms may be necessary to improve class 
separability and the predictive accuracy of the model (Del Moral et al., 2022; Bemporad, 2022; 
Firdausanti et al., 2022), (Figure 31).  

Figure 31. Decision Boundary Matrix.  

 

 

6.4 Neural Network  

The Neural Network Classification section outlines that the model has 5 hidden layers with 5 nodes 
each, trained on 8800 samples and tested on 2199 samples. The model's accuracy on the test set is 



60 
 

only 5.8%, indicating very poor classification performance. This low accuracy suggests that the 
model struggles significantly to distinguish between classes in this dataset. The Confusion Matrix 
provides further insight into the model's classification errors. The matrix shows that, regardless of the 
true class, the model consistently predicts class 4 for almost all samples. For example, 0.06 (or 6%) 
of class 2 instances and 0.3 (or 30%) of class 3 instances were predicted as class 4. This pattern is 
repeated across all observed classes, indicating that the model has failed to learn meaningful patterns 
and instead defaults to a single class prediction, which is a common symptom of a model failing to 
generalize, possibly due to inadequate training, insufficient data, or issues with model complexity. 
The Class Proportions section shows the distribution of each class in the dataset, training set, and test 
set. The proportions are consistent across splits, with class 4 being the most prevalent (32.3%) and 
class 7 the least prevalent (2.2%). The class imbalance, particularly the dominance of class 4, might 
be contributing to the model’s tendency to predict class 4 for most samples, as it may be biased toward 
the majority class. In summary, this Neural Network Classification model shows extremely poor 
performance, with a test accuracy of only 5.8% and a tendency to predict class 4 regardless of the 
input. This failure may be due to the model’s structure, an imbalance in class representation, or 
inadequate training. To improve performance, it would be necessary to address class imbalance, 
adjust the model's architecture, or explore additional training techniques (Bemporad, 2022; 
Firdausanti et al., 2022; Del Moral et al., 2022), (Figure 32).  

Figure 32. Neural Network Classification.  
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The Evaluation Metrics section summarizes various performance metrics for each class (2 through 7) 
as well as overall averages across the test set, which includes 2199 samples. The metrics show 
considerable variation across classes, with class 2 achieving high accuracy (94.2%) and class 7 also 
performing well (97.6%). However, other classes, such as class 4, have very low accuracy (33.0%), 
and many metrics are labeled as "NaN," indicating they may not have been computed due to limited 
or absent predictions for those classes. Overall, the average precision, recall, and F1 scores are low, 
suggesting that the model struggles to balance performance across all classes. This is further 
highlighted by the Matthews Correlation Coefficient (MCC), which is "NaN" for most classes, 
indicating weak correlations between predicted and actual classifications, likely due to the model’s 
over-reliance on certain classes and underperformance on others. The Network Weights section lists 
the weights between nodes in the neural network. The model has an intercept node and six input 
features: "Customer Rating," "Cost of the Product," "Prior Purchases," "Discount Offered," "Weight 
in grams," and "Reached on Time (Y/N)," which connect to the nodes in the hidden layers. The 
weights vary significantly, with some being highly positive (e.g., 3.277 for "Intercept" to Hidden 
Node 2) and others highly negative (e.g., -3.268 from "Prior Purchases" to Hidden Node 1). These 
weights indicate the relative influence of each feature on different hidden nodes. For instance, 
"Discount Offered" has a positive weight of 0.701 to Hidden Node 1, suggesting it contributes 
positively to this node’s activation, while "Prior Purchases" has a large negative weight to the same 
node (-3.268), indicating a strong negative influence. The weights from the hidden nodes to the output 
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layer also vary, with some being highly positive (e.g., 3.008 from Hidden Node 1 to Output) and 
others highly negative (e.g., -1.199 from Hidden Node 7 to Output). These weights determine the 
final classification decision based on the activations from the hidden layers. Overall, this model 
exhibits poor and inconsistent performance across classes, as indicated by the evaluation metrics. The 
network weights show the structure and strength of connections within the model, but the varied  and 
sometimes extreme weights suggest that the model may be overfitting certain features or struggling 
with class balance. Improvements could involve adjusting the network architecture, rebalancing the 
data, or tuning hyperparameters to enhance the model's generalizability across all classes (Barulina, 
et al., 2023; Sun et al., 2023; GONZALEZ-RAMIREZ et al., 2021). 

Figure 33. Evaluation Metrics.  
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The ROC Curves Plot (top left) displays the true positive rate against the false positive rate for each 
class (2 through 7). The single diagonal line suggests that the model's performance is equivalent to 
random guessing, as there is no area under the curve for any specific class. This indicates that the 
model is unable to effectively distinguish between the different classes, achieving no better than a 
random classifier. This poor performance is consistent with low test accuracy and suggests that the 
model is not capturing any meaningful patterns in the data. The Logistic Sigmoid Activation Function 
plot (bottom left) illustrates the behavior of the activation function used in the neural network. The 
sigmoid function maps input values to an output range between 0 and 1, which is suitable for binary 
classification and is often used in hidden layers to introduce non-linearity. However, while the 
sigmoid function is shown here, the model's poor performance suggests that the activation function 
alone is not sufficient to enable effective classification, likely due to limitations in the network’s 
structure or the feature set. The Network Structure Plot (right) visualizes the architecture of the neural 
network. The network has an input layer with six nodes (one for each feature), an intercept node, and 
five hidden layers with a single node each, connected sequentially. The final layer is an output layer 
with six nodes, representing the possible classes (2 through 7) for "Customer Care Calls." This 
simplistic structure with only one node per hidden layer is unusual and may be a key reason for the 
model's poor performance, as it lacks the complexity and capacity to capture patterns in the data. 
Neural networks typically require more nodes per hidden layer to learn intricate relationships, 
especially for multi-class classification problems. In summary, this neural network model shows 
severe limitations. The ROC curve indicates performance no better than random chance, while the 
simplistic structure of the network likely lacks the capacity to learn from the data. To improve this 
model, it would be necessary to increase the complexity by adding more nodes to each hidden layer, 
reconsider the activation function, or potentially redesign the architecture to better capture patterns 
in the data for effective multi-class classification (Aguilar-Ruiz and Michalak, 2022; Barulina, et al., 
2023; Pawara et al., 2020), (Figure 34). . 

Figure 34. Evaluation of Neural Networks. 
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This Decision Boundary Matrix visualizes pairwise decision boundaries between six features—
"Customer Rating," "Cost of the Product," "Prior Purchases," "Discount Offered," "Weight in grams," 
and "Reached on Time (Y/N)"—for a classification model that predicts "Customer Care Calls" classes 
(labeled 2 through 7). Each plot in the matrix represents a pair of features, where data points are color-
coded by their actual class, and the background color indicates the model’s predicted class for 
different regions in the feature space. From this matrix, it is evident that there is significant overlap 
among the data points from different classes within each decision boundary region. For example, in 
the scatter plots for "Cost of the Product" vs. "Prior Purchases" and "Discount Offered" vs. "Weight 
in grams," points from multiple classes (especially classes 3, 4, and 5) are densely clustered together 
in overlapping regions, making it difficult for the model to establish clear, distinct boundaries 
between classes. This overlap suggests that these features alone may not have strong predictive power 
for class differentiation. Additionally, some of the feature pairs, such as "Reached on Time (Y/N)" 
versus "Cost of the Product" or "Prior Purchases," show simple vertical or horizontal boundaries due 
to the binary nature of "Reached on Time (Y/N)." However, even in these cases, data points from 
different classes are mixed, indicating limited effectiveness in separating classes based on this feature. 
For example, "Reached on Time (Y/N)" creates clear-cut decision regions, but due to significant 
overlap, it does not provide a meaningful distinction among the classes. Overall, this Decision 
Boundary Matrix highlights that no single pair of features offers a strong basis for separating the 
classes clearly. The extensive overlap of data points across most feature pairs indicates that the model 
struggles to classify "Customer Care Calls" accurately with the current feature set. This visualization 
suggests that the model may benefit from additional feature engineering, more complex classification 
methods, or a different model that can handle non-linear relationships and overlapping class 
boundaries more effectively (Gong et al., 2020; Oliveira et al., 2022), (Figure 35)..   

Figure 35. Decision Boundary Matric- Neural Networks.  
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6.5 Random Forest 

The model has been trained with 86 trees and considers 2 features per split. The dataset includes 7040 
training samples, 1760 validation samples, and 2199 test samples, totaling 10,999 observations. The 
model's test accuracy is 38.0%, with a validation accuracy of 38.2% and an out-of-bag (OOB) 
accuracy of 4.6%. The low accuracy values across validation and test sets indicate limited 
performance in correctly classifying instances across the test set. 

Confusion Matrix. The Confusion Matrix shows that the model struggles to make accurate 
predictions, with predictions for each class largely scattered across the other classes. For example, 
only 15% of class 3 instances are correctly classified as class 3, while other class predictions are 
scattered across multiple categories, indicating poor class separation. This widespread 
misclassification suggests that the model is unable to capture the distinctions between classes 
effectively. 

Class Proportions. The Class Proportions section details the distribution of each class in the full 
dataset, training set, validation set, and test set. The class proportions are consistent across these 
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subsets, with class 4 being the largest (32.3%) and class 7 the smallest (2.2%). The class imbalance, 
especially the dominance of class 4, may contribute to the model's tendency to misclassify instances, 
as it may bias the model towards the majority class. 

Evaluation Metrics. The Evaluation Metrics section provides a detailed breakdown of the model's 
performance for each class, including precision, recall, F1 score, accuracy, and other statistical 
measures. Notable observations include: 

- The average precision is low at 0.398, and the average recall is 0.389, indicating poor 
performance in correctly identifying true positives across classes. 

- The F1 scores are also low across all classes, with an average F1 score of 0.339, reflecting a 
weak balance between precision and recall. 

- Area Under Curve (AUC) values vary across classes, with an average AUC of 0.689. This 
indicates that the model has some capability in distinguishing between positive and negative 
instances, but it is not highly effective for multi-class classification. 

- The Matthews Correlation Coefficient (MCC) values are also low, with an average of 0.067, 
further indicating weak correlation between predicted and actual classes. 

These metrics highlight the model’s limited classification ability, with poor performance in precision, 
recall, and overall accuracy. 

Feature Importance. The Feature Importance section shows the importance of each feature in the 
model. The values are measured in terms of mean decrease in accuracy and total increase in node 
purity: 

- "Weight in grams" has the highest mean decrease in accuracy and node purity, suggesting it 
is the most influential feature in the model’s decision-making process. 

- "Prior Purchases" and "Cost of the Product" also contribute modestly to the model’s 
performance. 

- "Reached on Time (Y/N)" shows a very low importance, indicating it has minimal impact on 
the model's classification results. 

In summary, this Random Forest model demonstrates weak classification performance, with low 
accuracy, poor recall, and scattered predictions across classes. The confusion matrix and low 
precision/recall scores suggest that the model struggles with class distinction, likely due to 
overlapping feature distributions and class imbalance. Feature importance indicates that only a few 
features, such as "Weight in grams," play a notable role in classification. To improve model 
performance, it may be beneficial to consider additional preprocessing steps, address class imbalance, 
or explore more complex classification methods (Shu et al., 2020; Salekshahrezaee et al., 2022; Wu 
et al., 2023) (Figure 36).  

Figure 36. Random Forest Classification.  
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- Out-of-Bag Classification Accuracy Plot (top left): This plot tracks the model’s out-of-bag 
accuracy against the number of trees in the forest. The accuracy plateaus around 38%, 
indicating that adding more trees does not significantly improve the model’s classification 
accuracy. This relatively low out-of-bag accuracy suggests that the model may not be 
effectively capturing patterns in the data, possibly due to overlapping classes or limited feature 
differentiation. 

- Mean Decrease in Accuracy and Total Increase in Node Purity** (top right): These bar charts 
illustrate the importance of each feature based on two metrics: mean decrease in accuracy and 
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total increase in node purity. "Weight in grams" is the most important feature by both metrics, 
contributing significantly to the model’s predictive power. "Prior purchases" and "Cost of the 
Product" are also influential, although to a lesser extent. "Reached on Time (Y/N)" and 
"Customer Rating" show minimal importance, indicating they have little impact on the 
model’s ability to differentiate between classes. 

- ROC Curves Plot (middle left): This plot displays the ROC curves for each "Customer Care 
Calls" class (2 through 7), which show the model’s ability to distinguish between positive and 
negative instances for each class. While some classes, such as class 7, achieve relatively high 
true positive rates, others, such as classes 4 and 5, follow a line close to the diagonal, 
indicating poor discrimination between these classes and others. The overall performance 
suggests that the model has difficulty separating certain classes, likely due to feature overlap. 

- Andrews Curves Plot (bottom left): Andrews curves visualize class separability by 
representing each instance as a continuous curve. The significant overlap of curves across all 
classes indicates limited separability in the feature space. This overlap suggests that the 
classes are not well-differentiated based on the provided features, contributing to the model’s 
low accuracy and difficulty in achieving clear class distinctions. 

In summary, these plots indicate that while features like "Weight in grams" and "Prior purchases" 
contribute meaningfully to the model, overall class separability is poor. The out-of-bag accuracy 
remains low, and the ROC and Andrews curves confirm that the model struggles with class 
distinction, particularly for classes 4 and 5. The results suggest that further feature engineering, 
balancing class distributions, or exploring more complex models might be necessary to improve 
classification performance (Janitza and Hornung, 2018; Ouma et al., 2022; Loecher, 2022) (Figure 
37). 

Figure 37. Characteristics of Random Forest.  
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The Decision Boundary Matrix visualizes pairwise decision boundaries for a classification model 
applied to six features: "Customer Rating," "Cost of the Product," "Prior Purchases," "Discount 
Offered," "Weight in grams," and "Reached on Time (Y/N)." Each scatter plot in the matrix shows 
the decision boundaries for a specific pair of features, with data points color-coded according to 
"Customer Care Calls" classes (2 through 7). The background colour in each plot represents the 
regions where the model predicts each class, based on the distribution of feature values. The 
visualizations reveal substantial overlap between classes in almost every feature pair, indicating that 
the model struggles to distinguish between classes with the current feature set. For instance, in the 
plot for "Cost of the Product" vs. "Prior Purchases," classes are densely clustered together across most 
regions, with points from classes 3, 4, and 5 overlapping extensively. This overlap makes it difficult 
for the model to define clear boundaries, resulting in inaccurate or uncertain classifications. The 
binary feature "Reached on Time (Y/N)" also fails to provide substantial class separation. In plots 
involving this feature, vertical or horizontal boundaries are visible due to its binary nature, yet there 
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is still a significant mix of classes on either side of the boundary, indicating that this feature alone 
does not offer a strong distinction between classes. In general, the background colors in each plot 
reflect the model's decision boundaries, but the overlapping data points show that these boundaries 
do not align well with class separations. This lack of clear separability suggests that these features 
may not be sufficiently informative for accurately predicting customer care call categories. The 
extensive overlap implies that the model may benefit from more informative features, additional 
feature engineering, or possibly a more complex model that can handle the non-linear and overlapping 
class boundaries present in this dataset (Gong et al., 2020; Ma and Maciejewski, 2020; Paranjape et 
al., 2021), (Figure 38). 

Figure 38. Random Forest Classification.  

 

 

 

6.6 Support Vector Machine   



71 
 

The SVM model is trained with 8,800 observations and uses 8,782 support vectors. It is tested on 
2,199 samples, achieving a low test accuracy of 35.4%, indicating limited effectiveness in classifying 
instances across the test set. 

Data Split. The data is divided into 8,800 training samples and 2,199 test samples out of a total of 
10,999 observations. The training set is used to learn the decision boundaries, while the test set 
evaluates the model's generalization ability. 

Confusion Matrix. The Confusion Matrix shows significant misclassification across classes, with 
many instances being incorrectly predicted as class 4. For example: 

- Only 2% of true class 2 instances are correctly classified as class 2, while most are classified 
incorrectly, particularly as class 4. 

- Similarly, for class 3, only 7% of instances are correctly classified, while 22% are 
incorrectly classified as class 4. 

- Across other classes, there is a similar pattern where predictions are heavily biased towards 
class 4, indicating that the model is unable to separate the classes effectively and has a 
strong bias toward the majority class. 

This misclassification pattern suggests that the model struggles with class distinction, likely due to 
overlapping feature distributions or insufficient class-specific information in the feature set. 

Class Proportions. The Class Proportions table shows the distribution of each class across the data 
set, training set, and test set. The proportions are consistent across splits, with class 4 being the 
largest (32.3%) and class 7 the smallest (2.2%). The imbalance, particularly the high prevalence of 
class 4, may contribute to the model's bias toward predicting class 4, as the model tends to favor the 
majority class in the absence of strong distinguishing features. 

In summary, the SVM model demonstrates poor classification performance with substantial 
misclassification and a strong bias toward class 4, likely due to class imbalance and overlapping 
feature distributions. The low test accuracy (35.4%) and misclassification patterns suggest that the 
model cannot capture meaningful class distinctions. To improve performance, addressing class 
imbalance, using more informative features, or tuning the SVM parameters may be necessary. 
Additionally, exploring more complex models or feature engineering may help achieve better class 
separation and overall accuracy (Choudhary and Shukla, 2022; Naboureh et al, 2020; Cao et al., 
2020), (Figure 39).  

Figure 39: Support Vector Machine 
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The following metrics include accuracy, precision, recall, F1 score, Matthews Correlation Coefficient 
(MCC), and other statistical measures, giving insight into the model's performance for each class 
individually. 

Key Observations: 

 Accuracy: The accuracy varies widely across classes, from 44.1% for class 4 to 97.1% for 
class 7, with an overall average accuracy of 78.5%. This variability suggests that the model 
performs well for some classes (e.g., classes 2 and 7) but struggles with others, particularly 
class 4. 

 Precision and Recall: The precision and recall values are inconsistent across classes, with 
some metrics labeled as "NaN" (not a number), indicating they could not be computed, 
possibly due to limited or absent predictions for those classes. Precision is relatively low for 
most classes, with an overall average of 32.0%, indicating that when the model predicts a 
class, it is often incorrect. Recall averages at 35.4%, meaning that the model fails to capture 
a substantial portion of the true instances for each class. 

 False Positive Rate (FPR) and False Discovery Rate (FDR): The FPR and FDR values are 
high for certain classes, such as class 3, where FPR is 18.4% and FDR is 66.7%. This indicates 
a high rate of false positives for this class, contributing to the model's poor precision. 

 F1 Score: The F1 score, which balances precision and recall, is also low, averaging at 27.7%. 
Class 6 achieves the highest F1 score (45.5%), while other classes, like class 5, have 
particularly low F1 scores (1.3%), indicating that the model fails to consistently balance true 
positives against false positives and negatives across classes. 

 Matthews Correlation Coefficient (MCC): MCC values, which reflect the quality of binary 
classifications for each class, are generally low or "NaN," indicating that there is little to no 
correlation between predicted and actual classes for many categories. This further supports 
the model's weak classification performance. 
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 Area Under Curve (AUC): The AUC values are all 0.500, which is equivalent to random 
guessing. This indicates that the model does not effectively distinguish between positive and 
negative instances for any of the classes. 

 Negative Predictive Value (NPV) and True Negative Rate (TNR): The NPV and TNR are 
relatively high, with averages of 84.9% and 84.4%, respectively. This suggests that the model 
is generally better at identifying true negatives than true positives, possibly due to class 
imbalance. 

 False Negative Rate (FNR) and False Omission Rate (FOR): The FNR is particularly high, 
with an average of 77.0%, indicating that the model frequently fails to detect true instances of 
each class. The FOR is also relatively high, averaging 15.1%, which suggests that many 
instances not predicted as a specific class are actually positive instances of that class. 

 Threat Score and Statistical Parity: The Threat Score, which reflects the proportion of true 
positives relative to the sum of true positives, false negatives, and false positives, is low across 
all classes, averaging at 11.9%. Statistical Parity is maintained, with a value of 1.000, 
indicating balanced predictions across classes without bias toward any particular group. 

In summary, this model demonstrates poor classification performance across most evaluation metrics. 
High false positive and false negative rates, low precision, recall, and F1 scores, and the random-
guess AUC of 0.500 for all classes suggest that the model is largely ineffective in distinguishing 
between classes. Improvements could include addressing class imbalance, using more informative 
features, or exploring alternative models to improve classification accuracy and overall performance 
(Belinda et al., 2023; Sitarz, 2022; Carrington et al., 2022), (Figure 49).  

Figure 49. Evaluation Metrics.  

 

ROC Curves Plot (Left). The ROC Curve Plot displays the true positive rate (TPR) against the false 
positive rate (FPR) for each class. However, the ROC curve for each class is essentially a diagonal 
line, indicating that the model’s classification performance is no better than random guessing for all 
classes. A random classifier, or a model with no discriminatory ability, would produce an ROC curve 
along this diagonal, resulting in an area under the curve (AUC) of 0.5. This suggests that the model 
fails to distinguish between positive and negative instances for any of the classes effectively. Such a 
result typically indicates severe limitations in the model’s capacity to learn class distinctions, possibly 
due to overlapping feature distributions or insufficient feature informativeness. 
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Andrews Curves Plot (Right). The Andrews Curves Plot is a way to visualize the separability of 
different classes by mapping each observation into a continuous curve. In this plot, each class (2 to 
7) is represented by a different color, with each instance within a class mapped to a specific curve. 
However, there is substantial overlap between the curves of different classes, which indicates poor 
class separability. Ideally, distinct classes should have clearly separated curves with minimal overlap, 
which would indicate that the model could potentially distinguish between them. In this case, the high 
degree of overlap suggests that the feature set does not allow for clear differentiation between classes, 
leading to the model’s difficulty in achieving accurate classification. 

Overall, both plots indicate significant issues with the model’s performance. The ROC Curve Plot 
demonstrates that the model’s predictions are equivalent to random guessing, while the Andrews 
Curves Plot shows extensive overlap among classes, indicating poor class separability. These issues 
suggest that the model may need additional or more informative features, improved class balancing, 
or more complex modeling techniques to achieve better classification performance (Verbakel et al., 
2020; Carrington et al.,  2020; Namdar et al., 2021) (Figure 50) 

Figure 50. Support Vector Machine.  

 

 High Class Overlap: The plots indicate a high degree of overlap among classes in most feature 
pair combinations. For example, in the plots involving "Cost of the Product" and "Prior 
Purchases," multiple classes are mixed within the same regions, with no clear separation 
between them. This suggests that the model struggles to find distinctive boundaries, likely due 
to similar feature distributions across classes. 

 Limited Class Separability: For certain feature pairs, such as "Discount Offered" vs. "Weight 
in grams," the decision boundaries are complex and irregular. This complexity suggests that 
the model may be attempting to fit to noise or minor variations in the data, further limiting its 
effectiveness in drawing clear separations among classes. The plots do not show distinct 
regions where only a single class is dominant, indicating poor class separability. 

 Binary Feature Patterns: The binary feature "Reached on Time (Y/N)" creates rigid, binary 
boundaries in plots involving this feature. However, these boundaries do not appear to 
contribute meaningful class separation; instances from multiple classes are distributed 
similarly on both sides of the binary split, indicating that this feature is not providing 
substantial information for differentiating classes. 

 Class Imbalance Effects: Classes with higher frequencies appear more dominant in the 
decision boundary regions, while less frequent classes are scattered across the plots, often 
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without clear regions of their own. This dominance suggests that the model may be biased 
towards predicting the majority classes, possibly due to imbalanced class distributions. 

Overall, the Decision Boundary Matrix reveals that the current feature set does not effectively 
differentiate the "Customer Care Calls" classes. The high degree of overlap and lack of distinct 
decision regions across most feature pairs suggest that the model struggles with class separability, 
likely due to insufficiently informative features. To improve model performance, additional feature 
engineering, such as creating new features that capture underlying patterns, or exploring alternative 
classification techniques, may be necessary to achieve clearer class boundaries and enhance 
predictive accuracy (Kim and Kim, 2020; Vuttipittayamongkol et al., 2021; Fu et al., 2020), (Figure 
51.. Decision Boundary Matrix). 

Figure 51. Decision Boundary Matrix.  

 

7. Machine Learning Clustering  
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7.1 Hierarchical Clustering optimized with respect to the BIC (Bayesian Information 
Criterion) value 

The model partitions the data into 10 clusters, with a total of 10,999 observations and an R² value of 
0.838, indicating that 83.8% of the total variance is explained by the clustering solution. The AIC 
(Akaike Information Criterion) and BIC values for this model are 5419.010 and 5638.170, 
respectively, and the silhouette score is 0.380, suggesting moderate cluster cohesion and separation. 

Cluster Information. Each of the 10 clusters varies significantly in size and internal structure: 

 Size: Cluster sizes range from 6 observations in Cluster 10 to 3,880 observations in Cluster 9, 
showing a highly imbalanced distribution across clusters. 

 Explained Proportion of Within-Cluster Heterogeneity: Cluster 9 explains the largest 
proportion of within-cluster heterogeneity (41.3%), while Cluster 10, with only 6 
observations, explains virtually none of it (4.582×10⁻⁴). 

 Within Sum of Squares (WSS): This metric shows the variation within each cluster, with 
higher values indicating more dispersed clusters. Cluster 9 has the largest WSS (2212.018), 
suggesting it has the most internal variance, while Cluster 10, being extremely small, has the 
lowest WSS (2.456). 

 -Silhouette Score: The silhouette score measures how similar each point is to its own cluster 
compared to other clusters. Cluster scores range from 0.046 in Cluster 4, indicating poor 
cohesion, to 0.624 in Cluster 10, suggesting better-defined boundaries. 

 

Evaluation Metrics. The Evaluation Metrics provide additional insights into the clustering quality: 

 Maximum Diameter: The largest distance within any cluster is 3.050, indicating the maximum 
spread of observations within a cluster. 

 Minimum Separation: The smallest separation between clusters is 0.045, which indicates a 
close proximity between certain clusters, potentially leading to overlap. 

 Pearson's γ (Gamma) and Dunn Index: Pearson's γ is 0.628, suggesting moderate cluster 
separation, while the Dunn index is very low at 0.015, indicating poor separation between the 
closest clusters relative to the within-cluster spread. 

 Entropy: The entropy value of 1.834 measures the diversity within clusters, with lower values 
indicating more homogeneous clusters. 

 Calinski-Harabasz Index: The Calinski-Harabasz index is high at 6296.379, generally 
indicating well-defined clusters, although other metrics suggest some issues with cluster 
separation. 

In summary, this hierarchical clustering model demonstrates a moderate level of cohesion and 
separation, as shown by an average silhouette score of 0.380 and an R² of 0.838. The model has well-
separated clusters based on the Calinski-Harabasz index, but low values for the Dunn index and some 
clusters with minimal separation indicate potential overlap. Cluster sizes are highly imbalanced, with 
some clusters containing thousands of observations and others containing very few, which could 
impact the interpretability and stability of the clustering solution. Adjusting the number of clusters or 
experimenting with different clustering algorithms might yield a more balanced and clearly defined 
structure (Da Silva et al., 2020; Laskowski and Tomiło, 2023; Liu, 2022), (Figure 51).  

Figure 51. Hierarchical clustering.  



77 
 

 

Elbow Method Plot (Top Left). The Elbow Method Plot shows within-cluster sum of squares (WSS) 
and its change as the number of clusters increases. The plot includes AIC and BIC metrics, with the 
lowest BIC identified at 10 clusters, suggesting this as the optimal number of clusters. The plot 
indicates a diminishing improvement in WSS beyond 10 clusters, supporting the choice of 10 clusters 
as a point where adding more clusters yields minimal additional benefit. 

Dendrogram (Top Right). The Dendrogram illustrates the hierarchical structure of the clustering, 
showing how individual observations or smaller clusters merge into larger clusters as the threshold 
distance increases. The branching structure provides insight into the relationship and similarity 
between clusters. Observations that merge early in the dendrogram are more similar, while those 
merging at higher levels represent larger, more generalized groupings. This hierarchical view helps 
visualize the nested clustering structure and the relative distance between clusters. 

Cluster Mean Plots (Bottom Left). The Cluster Mean Plots depict the mean values of each feature 
("Cost of the Product," "Discount Offered," and "Weight in grams") within each of the 10 clusters. 
Different colors represent different clusters, and bars show mean values, highlighting the variation in 
feature distributions across clusters. For example, "Cost of the Product" has both positive and negative 
means across clusters, suggesting that this feature helps differentiate clusters. Similarly, "Discount 
Offered" and "Weight in grams" show distinct mean values in certain clusters, indicating these 
features also contribute to defining cluster characteristics. 

Cluster Density Plots (Bottom Right). The Cluster Density Plots show the distribution of values for 
each feature ("Discount Offered," "Cost of the Product," and "Weight in grams") within each cluster. 
Each cluster’s density curve is color-coded, representing the frequency of feature values within that 
cluster. This visualization helps identify overlaps and unique distributions, showing how well each 
feature separates clusters. For example, "Discount Offered" and "Cost of the Product" exhibit 
distinctive peaks for some clusters, while other clusters overlap significantly, indicating areas where 
clusters may not be well-separated. 
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In summary, these plots provide a comprehensive view of the hierarchical clustering model with 10 
clusters. The Elbow Method Plot and Dendrogram support the choice of 10 clusters as optimal based 
on WSS and BIC. The Cluster Mean and Density Plots show that the features "Cost of the Product," 
"Discount Offered," and "Weight in grams" contribute to cluster differentiation, though some clusters 
exhibit overlapping feature distributions, indicating potential areas where the clustering may benefit 
from additional or alternative features to improve separation (Aksan et al., 2021; Li and Wei,  2022; 
Onumanyi et al., 2022), (Figure 52).  

Figure 52. Hierarchical Clusterting.  

 

 

This Cluster Matrix Plot provides a visual representation of the hierarchical clustering across three 
features: "Cost of the Product," "Discount Offered," and "Weight in grams." Each point is color-
coded according to its cluster (from clusters 1 to 10).  In the plot for Cost of the Product vs. Discount 
Offered (top left), clusters occupy different vertical regions, suggesting that "Discount Offered" 
contributes to differentiating clusters. However, there is overlap among clusters along the "Cost of 
the Product" axis, indicating that this feature alone may not fully separate some clusters. The plot for 
Cost of the Product vs. Weight in grams (bottom left) shows a more stratified distribution, with 
clusters occupying distinct areas along the "Weight in grams" axis, indicating this feature's 
importance in separating clusters. Some clusters are closely packed, suggesting partial overlap in 
feature space. Lastly, the Discount Offered vs. Weight in grams plot (bottom right) highlights a clear 
separation of clusters, with most clusters occupying distinct blocks. However, some clusters, 
particularly 8 and 10, are more spread out, suggesting that within-cluster variance is high for these 
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clusters, especially in the "Discount Offered" dimension. Overall, this Cluster Matrix Plot 
demonstrates how these three features contribute to distinguishing clusters, with "Weight in grams" 
and "Discount Offered" playing a significant role in cluster differentiation, while "Cost of the 
Product" provides limited separation. There is also evidence of overlap among clusters in certain 
regions, indicating potential improvements in clustering quality if additional distinguishing features 
were available (Wei, 2023; van Dongen, 2022;  Guénard and Legendre, 2022), (Figure 53). 

Figure 53. Cluster Matrix Plot.  

 

8. Warehouse Management: Lesson Learned  

This paper represents an in-depth analysis of the relationship developed between customer care calls 
and buying behavior in a warehouse management system. Such valuable insights from this research 
would go a long way in optimizing warehouse operations and help in documenting key drivers of 
customer satisfaction and operational efficiency. Several lessons can be identified from the study 
regarding the integration of advanced analytics and customer-centric strategies in order to bring 
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change to the logistical processes, as well as customer experiences. One important conclusion seems 
to be that customer care calls have something to do with operational inefficiencies. In fact, analysis 
has been able to establish that more customers contact the company when there are delays or 
misunderstandings about products or when expectations go unmet. The generation of these 
inefficiencies through process optimization can improve service reliability and reduce the complaints 
received from customers substantially. It points out the need for finding robust means of data 
collection and analysis in finding and eliminating recurring problems within the warehouse systems. 
Businesses can also avoid major grievances among customers through proactive measures like clear 
communication channels, facilitation in processing orders, and accuracy in product descriptions. A 
second key insight is the nature and type of the underlying product attributes driving changes in 
customer behavior and operational performance. For example, the study indicates that heavier 
products tend to translate into fewer customer-care calls, either because customers are confident about 
substantial items or because installation or delivery support comes with big items. Lighter or 
inexpensive items could spur more questions and complaints because people are buying on impulse 
or with insufficient product information. It indicates that warehouses will be obliged, through 
inventory nature, to modify their handling and support strategies, further extending the gamut of 
tailored services to match the profile of customer expectations. It also emerges from the findings that 
timely delivery remains one of the most key determinants of customer satisfaction. Besides, delayed 
delivery tends to erode customer trust and may also increase the chances of customer calls to care. 
On the other hand, on-time delivery creates a positive attitude toward reliability with less post-
purchase support. Again, this brings in the requirement for an effective logistical network, helped 
with predictive analytics in demand forecasting to avoid delays.Warehouse managers should put more 
focus on real-time tracking, ensuring efficient inventory management, and improving coordination 
with transporters to ensure timely deliveries that guarantee customer loyalty. Discounts come out as 
another critical determinant of customer service. This is evidenced by the study that the discount rate 
is inversely proportional to customer care interactions, probably because the value that customers 
perceive is well worth minor inconveniences. However, a high reliance on discounting can devalue a 
brand and ultimately eat away at profitability over time. A balance has to be achieved whereby 
strategic discounts are given out without compromising product quality or levels of service. Data 
analytics can be used in warehouses to personalize the discount strategy by customer segment; hence, 
they are winning price-sensitive buyers without decreasing the brand's value. Finally, this here shows 
how different data-driven decisions can actually be in business. The application of econometric 
models and statistical analyses gives an actionable understanding of customer behavior and holds up 
a mirror to operational bottlenecks. Therefore, it will be easy to have warehouses matching their 
strategies with the expectations of their customers, whereby all would be working toward efficiency 
and satisfaction. Predictive analytics, machine learning, and real-time monitoring systems are some 
of the key investments that can drive businesses to better anticipate challenges, smoothen operations, 
and offer superior customer experiences. In a nutshell, the article has much to teach on warehouse 
management. It identifies key data-driven strategies, customer-oriented approaches, and customized 
operational practices that are essential in negotiating the challenges of fragmented supply chains in 
the modern context. Efficiency improvement, use of technology, and customer satisfaction are three 
promoting elements, which, with time, will help businesses reach operational excellence and 
command long-term customer loyalty (Martínez et al.,  2020; Sharma, et al., 2022; Luo et al., 2020). 

9. Conclusion  

This study investigates the complex link between customer care calls and purchase behavior in the 
context of a warehouse management system to deliver the major insights of the dynamics of 
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operational efficiency and customer satisfaction. This research, by analyzing the interplay of product 
attributes, delivery performance, and customer engagement, underlines the role of advanced analytics 
and technology in modern logistical operations. It notices that product attributes like price have 
weight and discount have different impacts on said customer contact and satisfaction scores. Heavier 
products, seen as durable and lasting longer, tend to be marked by lower volumes of calls to the 
customer care whereas lighter and cheaper items, often purchased on impulse, tend to be reflective of 
more calls due to lack of information prior to buying or perceived faults at the time of delivery. 
Likewise, discounting again shows up as a two-edged sword-while value for money boosts 
satisfaction, it erodes the brand upon overuse. It points out that timely delivery has been a cornerstone 
in building customer satisfaction, while delays notably increase dissatisfaction and fire customer care 
interactions. These findings bring into light that these difficulties are increased by operational 
inefficiencies such as delays in delivery, misaligned customer expectations, or poor product 
information. This also tends to establish that the price of a product is positively related to frequency 
in customer care interactions, as a reflection of higher expectations by customers when products are 
priced high. These insights then suggest the need for businesses to apply differentiated strategies of 
customer engagement across different product types and levels of customer expectations. This begets 
the use of advanced analytics, machine learning, and real-time monitoring as a key recommendation 
that would solve the recurring efficiencies. Of these, predictive analytics offers great potential in 
demand forecasting, logistical optimization, and proactive customer care. Such tools would enable 
companies to proactively address delays, prevent overstocking or understocking of inventory, and 
time customer engagement for greater operational efficiency and higher levels of customer 
satisfaction. The research also advocates transparency in communication with customers about 
timelines of deliveries to avoid mismatched expectations leading to resultant calls to customer care 
for help. The findings imply, from a practical standpoint, the need to balance the discount strategy to 
attract customers with the long-run brand equity. Based on this, businesses are suggested to find data-
driven approaches through which customer grouping would be done based on purchasing pattern and 
product characteristics so that restoration offers that result in customer loyalty can be designed 
without hurting profitability. Alternatively, strategic relevance of Warehouse Management Systems 
using technological innovations like RFID and simulation tools that could streamline operations and 
mitigate inefficiencies should be pursued. Although the research provides a sound structure for 
understanding customer behavior dynamics and operational efficiencies, it recognizes certain 
limitations. The lack of detailed product-specific attributes in the dataset restricts the depth of 
analysis, especially with respect to correlating technical features with customer satisfaction. Further 
research can expand this study to include variables such as customer demographics, geographic 
influences, and competitor benchmarks to better probe into customer behavior related to warehouse 
operations. In addition, it would be very valuable for future research to understand how customer care 
interactions influence retention and loyalty over an extended period of time. The study, in essence, 
maps out an all-inclusive route that combines technology, customer-focused approach, and 
operational enhancements in the management of a modern warehouse. It identifies areas where 
efficient processes are going on, further aligns customer expectations, and identifies predictive 
analytics to improve customer satisfaction and loyalty. The strategies, in this respect, are not only 
scheduled to make instantaneous impacts on customer experiences but also achieve long-term growth 
rates and competitive advantage in dynamic market settings. 
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