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Abstract

We compare heteroskedasticity-robust inference methods with a large-scale Monte Carlo study
based on regressions from 155 reproduction packages of leading economic journals. The results
con�rm established wisdom and uncover new insights. Among well established methods HC2
standard errors with the degree of freedom speci�cation proposed by Bell and McCa�rey (2002)
perform best. To further improve the accuracy of t-tests, we propose a novel degree-of-freedom
speci�cation based on partial leverages. We also show how HC2 to HC4 standard errors can be
re�ned by more e�ectively addressing the 15.6% of cases where at least one observation exhibits a
leverage of one.

1 Main Results

In the era of AI, the value of lengthy introductions likely diminishes. Therefore, we begin with the key
�ndings presented in Figure 1. Explanations are provided in this and the following two sections, with
additional details available in several appendices.

Figure 1 shows the results of large-scale Monte Carlo simulations based on 608 OLS regressions
that have been originally estimated with heteroskedasticity-robust standard errors in 155 di�erent
reproduction packages of articles published in leading economic journals. Only regressions with a
sample size n below 1000 observations are considered. Appendix A provides details on the sample
selection criteria and also shows descriptive statistics on the usage of di�erent types of standard errors
using static code analysis of 4650 reproduction packages.

For each original regression of the form

yo = Xβo + εo,

we specify a custom data generating process

y = Xβ + ε

with the same n × K matrix of explanatory variables X as in the original regression. The true
coe�cients, β, are set to zero, and the error terms, ε, are assumed to satisfy εi ∼ N(0, σ2

i ) for each
observation i = 1, . . . , n. In this setup, the standard deviation σi of the error term εi is speci�ed using

*Special thanks to Lars Vilhuber, Ben Greiner and all other data editors: without your awesome work, studies like this
would not be possible. Also many thanks to James MacKinnon, Enrique Pinzone and Michael Vogt for great discussions.

�An updated future version of this paper is not unlikely. The large scale Monte Carlo simulations are performed in
R using a general toolbox called repbox, that I am developing with the goal to generally facilitate methodological meta
studies like this one. That is a complex endeavor. Thorough development, testing and robustness checks will take a lot
more time. Yet, I believe the main insights of this study are already robust enough to put them into a discussion paper
even if there might be some changes in future future versions. I would love that also a �nally published version can start
directly with the main results, but perhaps with age the paper will become more conventional in its style.
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Figure 1: Main Results of Monte Carlo Study

Note: Each pane shows for a di�erent speci�cation of standard errors and degrees of freedom the distribution
of rejection rate of t-tests with a 5% signi�cance level across 3280 di�erent regression coe�cients from 608
regressions taken from 155 di�erent reproduction packages. Red areas correspond to regression coe�cients
with excessive rejection rates (above 5%) and blue areas to those with lacking rejection rates (below 5%). For
each speci�cation the average excess and lack of the rejection rates across all regression coe�cients is reported.
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a random forest FGLS speci�cation, which is estimated separately for each original regression. Further
details on this procedure are provided in Appendix B.

For each original regression, we draw M = 10000 Monte Carlo samples and compute the p-values
for a t-test of the null hypothesis βk = 0 for up to 25 coe�cients, βk, per regression. Each of the 3280
tested coe�cients from the 608 original regressions constitutes a distinct test situation, indexed by s.

For each test situation, we compare di�erent speci�cations τ ∈ {IID, HC1, HC2, . . .}, which vary
by the type of standard error and the speci�cation of the degrees of freedom used in the t-distribution.
A refresher on the di�erent types of robust standard errors is provided in Section 3. Let pτ,s(m) denote
the realized p-value for Monte Carlo sample m = 1, . . . ,M in speci�cation τ and test situation s. Our
analysis focuses on the 5% signi�cance level. The simulated rejection rate is de�ned as the proportion
of Monte Carlo samples for which the p-value is below 0.05:

π0.05
τ,s =

1

M

M∑
m=1

I(pτ,s(m) ≤ 0.05)

where I(·) is the indicator function. Since the null hypothesis is true in all test situations, p-values
should be uniformly distributed under a correctly speci�ed t-test. Consequently, the ideal value of the
rejection rate π0.05

τ,s is 0.05.
We measure deviations from this ideal value using the excess and lack of the rejection rate, de�ned

as:
excessτ,s = max

(
π0.05
τ,s − 0.05, 0

)
,

lackτ,s = max
(
0.05− π0.05

τ,s , 0
)
.

While an excessive rejection rate increases the risk of false discoveries, lack in rejection rates can
lead to under-powered signi�cance tests. Excess is generally regarded as more problematic than an
equally high lack. However, opinions may di�er regarding acceptable levels of excess and the degree
of lack one is willing to tolerate for a given reduction in excess.

Figure 1 reports, for each speci�cation τ , the average excess and lack across all 3280 test situations.
Consistent with conventional wisdom, average excess decreases when moving in order from HC1, HC2,
HC4, to HC3 standard errors, while average lack correspondingly increases.

Surprisingly, in our sample of regressions with no more than 1000 observations, i.i.d. standard
errors, which are consistent only under homoskedasticity, are more conservative on average, in terms
of lower excess, than both HC1 and HC2 standard errors.1 The HC2-BM speci�cation corresponds to
HC2 standard errors with an alternative degrees-of-freedom adjustment for the t-test proposed by Bell
and McCa�rey (2002) and Imbens and Kolesár (2016).

Hereafter, we say that one speci�cation outperforms another on average if it has a lower weighted
sum of average excess and average lack, assuming the weight on excess is at least as large as the weight
on lack. By this criterion, HC2-BM outperforms HC1, HC2, HC3, and HC4 on average. This result
underscores the importance of correctly specifying degrees of freedom.

The HC1-PL and HC2-PL speci�cations employ a novel approach based on partial leverages to
determine degrees of freedom, as detailed in Section 2. Both speci�cations outperform all others on
average, with HC2-PL outperforming HC1-PL.

The last pane in Figure 1 corresponds to a simulated ideal case where the p-values of all t-tests are
uniformly distributed. Re�ecting the �nite number of Monte Carlo samples, there is positive average
excess and lack, both around 0.09%. While the average excess of HC2-PL closely approaches this ideal
case, its average lack remains more than �ve times higher.

In addition to average excess and lack, one may also be interested in the distribution of excess and
lack across test situations. Each pane of Figure 1 displays the rejection rates π0.05

τ,s of all 3280 test

1Thus, adding the robust option to a Stata regress command, such that HC1 standard errors are used, may, in smaller
sample sizes, misleadingly suggest that the resulting standard errors and test results are more conservative than without
the robust option. The descriptive statistics in Appendix A suggest that the use of HC1 standard errors in small samples
is still perfectly accepted by leading economic journals and the equilibrium choice of most authors.
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Figure 2: Rejection rates against sample size

situations, arranged in increasing order with the quantile level on the x-axis. Blue and red shaded
areas represent rejection rates π0.05

τ,s associated with positive lack and excess, respectively. The average
lack and excess for speci�cation τ correspond to the total size of the respective blue and red areas.

No speci�cation τ exhibits uniformly excessive or uniformly lacking rejection rates across all test
situations. As shown on the left-hand side of each pane, all speci�cations have rejection rates close to
zero in some test situations. Conversely, except for HC1-PL and HC2-PL, all speci�cations include a
few test situations with extremely high rejection rates exceeding 50%.

Figure 2 plots the rejection rates against the sample size of each test situation. While highly
excessive rejection rates are more likely for smaller sample sizes, we �nd them also in test situations
with moderate sample sizes.

Section 2 shows that highly excessive rejection rates are characterized by highly concentrated partial
leverages and introduces speci�cations HC1-PL and HC2-PL as a remedy. Section 3 provides a deeper
exploration of HC1 to HC4 standard errors and shows that inference can be improved by an alternative
handling of regressions that have at least one observation with leverage 1. Section 4 brie�y concludes
with additional observations, like the extension of some insights to cluster robust standard errors.
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Due to the signi�cant computational demands, wild bootstrap methods are analyzed for only a
subset of test situation, with the corresponding results presented in Appendix C. While wild bootstrap
speci�cations outperform the conventional HC1 and HC2 speci�cations, they are outperformed by the
HC2-BM, HC1-PL, and HC2-PL speci�cations that utilize customized degrees of freedom.

2 Specifying Degrees of Freedom with Partial Leverages

Various diagnostics have been proposed to ensure robust inference. One recommendation by MacKin-
non et al. (2023b) is to report partial leverages. Consider the linear regression model:

y = Xβ + ε, (1)

where y is the dependent variable, X is the matrix of explanatory variables, β is the vector of coe�-
cients, and ε represents the error term.

Using the Frisch-Waugh-Lovell (FWL) theorem, coe�cient βk can be estimated with the simpler
model:

ỹk = βkx̃k + ε̃k, (2)

where ỹk and x̃k are the residuals from regressing y and xk, respectively, on all other explanatory
variables in X except for xk. Estimation of model (2) yields the same OLS residuals ε̂ and estimator

β̂k as the original model (1).
2

The partial leverage for observation i with respect to explanatory variable xk is de�ned as:

h̃k,i =
x̃2k,i∑n
j=1 x̃

2
k,j

, (3)

where x̃k,i is the i-th element of x̃k.

Partial leverages satisfy 0 ≤ h̃k,i ≤ 1 and
∑n
i=1 h̃k,i = 1. Furthermore, for n ≥ 2, we have h̃k,i < 1

if the original regression model includes a constant.
To build intuition, consider an example where partial leverages are highly concentrated. Let xk be

a dummy variable such that x1,k = 1 and xi,k = 0 for all i = 2, . . . , n. Assume xk is uncorrelated with
other explanatory variables. As the sample size n grows, the partial leverage of the �rst observation
h̃k,1 converges to 1.

More intuition about partial leverages can be gained by reformulating the OLS estimator as follows:

β̂k = βk +

∑n
i=1

√
h̃k,i ε̃k,i√∑n

i=1 x̃
2
k,i

. (4)

We see that in the aforementioned example, where the partial leverage is concentrated on ob-
servation i = 1, the variation in β̂k will be predominantly driven by the realization of ε̃1. If high
concentrations of partial leverage are not adequately accounted for in t-tests, the resulting rejection
probabilities may deviate substantially from their nominal levels.

A widely used concentration measure in competition policy is the Her�ndahl-Hirschman index,
de�ned as the sum of the squared market shares of all competitors in a market. Analogously, in our
context, the concentration of partial leverages can be measured by the sum of squared partial leverages.
We denote the inverse of this measure as:

2To enhance computational e�ciency, the code for our Monte Carlo simulations and wild bootstrap speci�cations
also extensively utilizes the Frisch-Waugh-Lovell (FWL) representation. Although certain components, such as the hat
matrix H (see Section 3), cannot be derived from the FWL representation, these elements need to be computed only
once per original regression. The FWL representations are particularly advantageous for computations that must be
repeated for each Monte Carlo sample or each wild bootstrap sample.
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Figure 3: Rejection rates against partial-leverage-adjusted sample sizes

ñk =

(
n∑
i=1

h̃2k,i

)−1
(5)

We refer to ñk as the partial-leverage-adjusted sample size. It satis�es 1 ≤ ñk ≤ n. If all obser-
vations have the same partial leverage then ñk = n and in the limit case that the partial leverage
becomes concentrated in a single observation ñk → 1.

Figure 3 illustrates a clear pattern for standard errors HC1 through HC4, as well as for speci�cation
HC2-BM: all test situations with highly excessive rejection rates exhibit very small partial-leverage-
adjusted sample sizes. This observation motivates our novel speci�cations: HC1-PL and HC2-PL.
These methods specify the degrees of freedom in the t-test as ñk−1 and use HC1 and HC2, respectively,
as standard errors.

To understand why we specify the degrees of freedom as ñk−1 instead of ñk, consider the following.
As long as the original sample contains at least two observations, we have ñk > 1. Since a t-distribution
can be de�ned for any fractional degrees of freedom strictly greater than zero, this adjustment ensures
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properly de�ned degrees of freedom whenever n ≥ 2. In the degenerate case of a single observation,
no standard error can be computed, and the corresponding t-distribution with zero degrees of freedom
becomes degenerate. Using ñk − 1 as the degrees of freedom allows for continuous convergence to this
degenerate case as ñk → 1.

Moreover, non-reported Monte Carlo results suggest that the speci�cations using ñk − 1 perform
substantially better in test situations with low values of ñk.

Appendix D provides an additional justi�cation for the partial-leverage-based degree of freedom
adjustment by deriving it from a Satterthwaite approximation, similar to the approach of Bell and
McCa�rey (2002).

3 Speci�cation of Robust Standard Errors and Dealing with

Leverage of One

This section provides additional insights into the role of leverage, complementing the previous �ndings
on partial leverage. We �rst present the mathematical formulations of robust standard errors HC0 to
HC4. Consider the linear regression model:

y = Xβ + ε,

where the error terms εi are independently distributed with mean zero and variance σ2
i . The true

variance-covariance matrix of β̂ is given by:

Var(β̂) = (X>X)−1

(
n∑
i=1

σ2
i xix

>
i

)
(X>X)−1,

where xi denotes the i-th row of X.
Heteroskedasticity-robust variance estimators of types HC0 to HC4 can all be expressed in the

general form:

V̂ τ (β̂) = (X>X)−1

(
n∑
i=1

ατi ε̂
2
ixix

>
i

)
(X>X)−1,

where ε̂i is the OLS residual for observation i, and ατi is an adjustment factor that depends on the
speci�cation τ . The corresponding standard errors are obtained as the square roots of the diagonal
elements of V̂ τ (β̂).

The HC0 estimator, developed by Eicker (1967), Huber (1967), and White (1980), sets αHC0
i =

1. While consistent, HC0 can exhibit severe bias in small samples and is rarely used in practice.
MacKinnon and White (1985) introduced three variants, HC1, HC2 and HC3, with improved small-
sample properties.

The HC1 adjustment factor is:

αHC1
i =

n

n−K
.

This correction mirrors the degrees of freedom adjustment used in the unbiased estimator σ̂2 =
1

n−K
∑n
i=1 ε̂

2
i for the error variance σ

2 = E[ε2i ] under homoskedasticity.
The HC2 adjustment factor is given by:

αHC2
i =

1

1− hi
,

where hi is the leverage of observation i, de�ned as the i-th diagonal element of the hat matrix:

H = X(X>X)−1X>.
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Leverages satisfy 0 ≤ hi ≤ 1 and
∑n
i=1 hi = K. We address the special case where an observation

i has hi = 1 further below. HC2 can be motivated by the property that, under homoskedasticity,
E[ε̂2i ] = (1 − hi)σ2. Furthermore, in the homoskedastic case, V̂ HC2(β̂) is an unbiased estimator of

Var(β̂).
The HC3 adjustment factor is also based on leverages:

αHC3
i =

1

(1− hi)2
.

As shown in Hansen (2022), HC3-adjusted residuals
√
αHC3
i ε̂i are equivalent to the leave-one-out

prediction error yi−xiβ̂(i), where β̂(i) denotes the OLS estimator obtained from the regression excluding
observation i. The HC3 estimator can also be interpreted as a jackknife estimator, satisfying3

V̂ HC3(β̂) =

N∑
i=1

(β̂(i) − β̂)(β̂(i) − β̂)>.

The HC4 estimator, introduced by Cribari-Neto (2004), aims to better handle cases with high
leverages by modifying the adjustment factor to:

αHC4
i =

1

(1− hi)δ
,

where δi = min
{

4, nhi

K

}
.

Following common practice, we use n − K degrees of freedom in t-tests based on HC1 to HC4
standard errors.

The speci�cation HC2-BM combines HC2 standard errors with a degree of freedom adjustment
proposed by Bell and McCa�rey (2002) based on an approximation suggested by Satterthwaite (1946).
See Imbens and Kolesár (2016) for further exploration of this adjustment. Appendix D provides a
similar motivation for the novel degrees of freedom adjustments used in HC1-PL and HC2-PL.

15.6% of the regressions in our replication sample include at least one observation with hi = 1. In
such cases, the formulas for HC2, HC3, and HC4 variance estimators are not well-de�ned. Speci�cally,
if hi = 1, the corresponding OLS residual ε̂i is exactly zero, and ατi ε̂

2
i involves the mathematically

indeterminate form 0/0. A similar issue arises in the context of cluster-robust standard errors. Puste-
jovsky and Tipton (2017) theoretically justify using a generalized Moore-Penrose inverse, which Kolesár
(2023) adapts for HC2 heteroskedasticity-robust standard errors. The Moore-Penrose inverse of 1−hi
for hi = 1 is zero, implying that ατi ε̂

2
i is set to zero for observations with hi = 1. Pötscher and

Preinerstorfer (2023) adopt this convention for HC3 and HC4 as well. We follow this approach in our
Monte Carlo study presented in Section 1.

However, this handling of hi = 1 is not universal. For instance, the sandwich package in R (Zeileis,
2004) returns no value for standard errors (NaN ) if there is an observation with hi = 1. Stata's
approach is not yet well-documented, but experiments and personal communications suggest that if
hi = 1, Stata evaluates ατi ε̂

2
i = 0/0 numerically, which yields a result determined by rounding errors.

Let hmax = maxi=1,...,n hi denote the maximum leverage across all observations. Figure 4 plots
rejection rates against hmax for each speci�cation.

The results show that test situations with highly excessive rejection rates for HC1 to HC4 are mostly
characterized by very high hmax. In particular, for HC2-BM, and to a lesser extent for HC3 and HC4,

3See MacKinnon et al. (2023) for a derivation. MacKinnon and White (1985) introduced the jackknife formulation

V̂ JK =
N − 1

N

N∑
i=1

(β̂(i) − β̄JK)(β̂(i) − β̄JK)>

as the HC3 variance estimator where β̄JK denotes the mean of the leave-one-out estimators β̂(i). The current HC3
formulation was popularized by Davidson and MacKinnon (1993).
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Figure 4: Rejection rates against maximum leverage hmax
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cases of extremely excessive rejection rates almost exclusively occur when hmax = 1. For HC1 and
HC2, some fairly excessive rejection rates are observed even for lower values of hmax. Overall, a small
partial-leverage-adjusted sample size ñk and high maximum leverage hmax indicate similar problems
in rejection rates. The relationship between rejection rates and ñk appears slightly clearer, though.

Figure 4 further suggests that the HC1-PL and HC2-PL speci�cations, which use ñk − 1 degrees
of freedom in the t-test, exhibit almost no systematic relationship between rejection rates and hmax.
Thus, if concentrated partial leverages are appropriately accounted for, inference appears to be robust
even in the presence of large leverages.

Yet, for speci�cations other than HC1-PL and HC2-PL an alternative treatment for cases where
hi = 1 may yield improvements. Instead of setting ατi ε̂

2
i = 0, it seems natural to omit all observations

with hi = 1 entirely when computing standard errors. This approach also excludes those observations
from the computation of (X>X)−1. Figure 5 compares this treatment with the treatment of setting
ατi ε̂

2
i equal to zero if hi = 0.
Completely omiting observations with hi = 1 reduces average excess across all traditional speci-

�cations and also instances of extremely high excess are either completely removed or substantially
reduced. There is also no longer a clear ranking between HC2-BM and HC2-PL. For HC1-PL and
HC2-PL the treatment of cases with hi = 1 has little e�ect on the rejection rates.

Our overall recommendation for heteroskedastic robust inference is thus the following: either com-
pute degrees of freedom using the adjustment based on partial-leverages used in speci�cations HC1-PL
or HC2-PL, or apply a modi�ed version of the Bell & McCa�rey (2002) procedure that completely
omits observations with hi = 1.

4 Concluding Remarks

Our proposed degree of freedom adjustment can be directly applied to compute con�dence intervals.
Moreoever, following the approach of Imbens and Kolesár (2016), one could report adjusted standard
errors by multiplying the original standard errors with qtñk−1(0.975)/qtn−K(0.975) where qtν is the
quantile function of the t-distribution with ν degreess of freedom.

Since partial leverages are de�ned for a single explanatory variable xk only, it is not obvious how the
corresponding degrees of freedom adjustment can be extended to hypothesis tests involving multiple
coe�cients. In contrast, the degree of freedom formula proposed by Bell and McCa�rey (2002) does
not face this limitation.

In our Monte Carlo studies, HC1-PL was surprisingly close behind the performance of HC2-PL.
The reghdfe Stata command (Correia, 2017) and the �xest R package (Berge, 2018), which are widely
used for �xed e�ects regressions, provide heteroskedasticity-robust standard errors based solely on
HC1. This is likely because extending the performance gains from �xed-e�ects absorption to the
computation of hat values required for HC2-, HC3-, or HC4-based standard errors is non-trivial.4 In
contrast, absorbed �xed e�ects do not pose any challenges for computing partial leverages and HC1
standard errors. Therefore, HC1-PL might be a promising alternative speci�cation for regressions with
absorbed �xed e�ects.

This paper does not perform Monte Carlo analysis for the robust inference methods proposed by
Cattaneo et al. (2018) and by Pötscher, B. M., & Preinerstorfer, D. (2023). My limited econometric
expertise feels insu�cient to assess whether and how a su�ciently fast implementation for comprehen-
sive Monte Carlo studies could be achieved. I hope that once the repbox toolbox is fully developed
and documented, it will facilitate such studies by more skilled researchers in the future.

The introduced degree of freedom adjustment of HC1-PL and HC2-PL can be readily extended to
cluster-robust inference. The partial leverage of cluster g is de�ned as the sum of the partial leverages
of all observations within cluster g. The inverse Her�ndahl-Hirschman index is then computed by
treating each cluster as a single observation, yielding a partial-leverage-adjusted number of clusters,

4Personal communication and the inclusion of HC2 standard errors with absorbed �xed e�ects in the areg function
of Stata 18 suggest that StataCorp might have developed a yet unpublished, performant method for this computation.
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Figure 5: Comparing rejection rates for two di�erent treatments of cases with hi = 1
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G̃k. A comprehensive Monte Carlo assessment for cluster-robust inference is planned for a separate
paper.
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Appendix A: Standard errors used in reproduction packages and

selection of test situations for Monte Carlo studies

We base our code analysis on 4650 reproduction packages containing Stata scripts from articles pub-
lished in leading economic journals. We utilize a custom-designed parser to systematically extract
information from all code lines in the Stata scripts, with particular emphasis on lines containing re-
gression commands.

Table A1 reports the frequency of the 10 most common regression commands identi�ed in our
sample.
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Table A1: Top 10 of most used Stata regression commands

Regression command No. reproduction packages No. code lines
regress 3866 146847
areg 1416 41373
xtreg 859 19333
reghdfe 763 29921
ivregress 589 11975
ivreg2 498 11016
probit 474 4913
logit 371 3810
xtivreg2 213 5539
dprobit 165 2200

We restrict our analysis to OLS regressions performed using one of the following Stata commands:
regress, areg, xtreg, or reghdfe. These commands appear in a total of 240615 code lines across 4420
reproduction packages. Table A2 provides a detailed breakdown of their distribution across journals.

Table A2: Numbers of reproduction packages and regression commands by journal

Journal Reproduction packages Regression commands
aer 1085 57834
aejapp 552 37463
aejpol 503 31741
restat 497 25838
pandp 244 3026
ms 241 12600
aejmac 202 13052
restud 169 9822
jpe 152 9971
jole 143 9079
jeea 135 8069
aejmic 104 3004
ecta 92 5609
jep 86 2533
aeri 73 2749
qje 72 5305
jaere 70 2920
Total 4420 240615

The standard errors used in these regressions fall into three main categories: 17.1% heteroskedasticity-
robust, 61% cluster-robust, and 21.6% homoskedastic. Panel A of Table 1 reports the absolute numbers
for each category.5

For simplicity, we will often refer to heteroskedasticity-robust standard errors as robust standard
errors. Panel B of Figure 1 illustrates the frequency of speci�c types of robust standard errors: 98.1%
of regression commands use Stata's default robust standard error, HC1. This �nding suggests that
common recommendations, see, for example, MacKinnon andWhite (1985), Chesher and Jewitt (1987),
Chesher and Austin (1991), Long and Ervin (2000), or Cattaneo, Jansson, and Newey (2018), to adopt
more robust alternatives in smaller samples, such as HC3, are rarely followed.

5For 791 command lines, the type of standard errors cannot be determined through our static code analysis, as it
depends on Stata macros that are only resolved during runtime.

14



Table A3: Static Code Analysis: Frequency of Standard Errors

No. reproduction packages No. code lines
Panel A: Standard error category
cluster 3055 144882
iid 2937 51230
robust 1689 40571
unknown 47 791

Panel B: Type of heteroskedasticity robust standard error
hc1 1660 39782
bootstrap 54 765
hc3 3 24

From the reproduction packages containing an OLS regression with robust standard errors, we
select the underlying regressions for the Monte Carlo study based on the following criteria:

� The size of the reproduction package's ZIP �le is below 10 MB.

� The regression command can be successfully run. The most common cause of a run error is the
absence of con�dential or proprietary data sets in the reproduction packages.

� A successful run of an automatic translation of the regression to R, based on the extracted
information about the original regression. The second run must yield the same results as the
original Stata run, except for small numerical discrepancies.

� The entire reproduction, including the extraction and storage of regression related information
and the 2nd reproduction run in R for all regressions, takes less than 15 minutes for the whole
reproduction package. Reproduction runs that take longer are currently cancelled with a timeout.

� From each reproduction package with regressions meeting these criteria, at most four regressions
are selected for the Monte Carlo simulations.

� For each regression, t-tests are performed on at most 25 regression coe�cients. Each regression is
estimated with a Least Squares Dummy Variable (LSDV) speci�cation, even if the original Stata
command uses absorbed �xed e�ects, to enable the computation of proper HC2, HC3, and HC4
standard errors. t-tests are not performed for originally absorbed �xed e�ects. Additionally,
heuristics are used to identify dummy variable sets that are not absorbed but look like �xed
e�ects. For these dummy variables no t-tests are performed either.

It is somewhat disappointing that we currently end up with only 155 reproduction packages containing
at least one regression that satis�es all the criteria above. While some issues, such as missing data in
a reproduction package, cannot be resolved, there remain additional points of failure in the process of
reproducing the original Stata regression in R.

As noted in the inital footnote, I develop a general toolbox named repbox in R to facilitate meta
studies like the current one. Repbox does not only help to translate regression commands to R but also
attempts to store the datasets used in the regressions in a manner that allows the data preparation
steps to be automatically performed in R. This step is complex and provides another point of potential
failure.

Still, the 155 reproduction packages used as the basis for our Monte Carlo studies substantially
exceed the scale of similar studies in economics that we are aware of. For example, the large-scale study
by Young (2019) hand-collected reproducible regressions from 53 economic articles with experimental
studies, while Young (2022) conducted large-scale Monte Carlo studies based on instrumental variables
regressions from 30 economic articles.
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The number of test situations could be easily increased by selecting more than the current maximum
of four regressions from each reproduction package. However, this approach risks skewing the results,
as they may become more strongly in�uenced by a smaller number of reproduction packages that
contain a large number of regressions.

Appendix B: Specifying DGPs for our Monte Carlo Studies

Assume the model of the original regression r estimated in the reproduction package is given by

yr,o = Xβr,o + εr,o.

The corresponding Monte Carlo samples will be generated from the model:

yr = Xβr + εr.

The explanatory variables X remain unchanged from the original sample and we set βr = 0. To
determine the distribution of the error terms εr for each Monte Carlo model, we use the following
general procedure:

1. For each original regression r, we specify a set of C candiate modelsMr,c indexed by c = 1, ..., C
for the distribution of the error term. We only consider candidate models with independently
distributed error terms for Monte Carlo sample m satisfying εm,r,ci ∼ N(0, (σr,ci )

2
). This means

each candidate model is fully characterized by the speci�ed vector of standard errors σr,c of the
error term.

2. From each candidate model we draw m = 1, ...,M samples of the error term εm,r,c and compute
the corresponding OLS residuals ε̂m,r,c.

3. We then compute for each candidate model a distance dr,c between the original OLS residuals
ε̂r,o and the set of Monte Carlo residuals {ε̂m,r,c}Mm=1.

4. For each original regression r, we pick that candidate model for the Monte Carlo DGP that has
the lowest distance dr,c.

One candidate model assumes purely homoskedastic error terms, while all other candidate models
estimate error term standard errors σr,ci using a non-parametric FGLS speci�cation based on random
forests. The dependent variable of the random forest is the absolute value of the original OLS residuals,
|ε̂r,oi |.6 The explanatory variables of the random forest are the same as the explanatory variables in the
original regression. Compared to a feasible GLS speci�cation based on a log-linear regression model,
random forests o�er greater �exibility and are well-suited to capture non-linear e�ects and interactions
among explanatory variables in predicting heteroskedasticity. Since random forest predictions are
always computed as averages of the dependent variable in the training dataset, they cannot produce
negative standard errors.

Whether the random forest predicts larger or smaller degrees of heteroskedasticity (measured by
the variation in σi) depends on how the random forest is trained and how predictions are performed.
Ordered from typically larger to smaller predicted heteroskedasticity, we consider �ve di�erent can-
didates: in-sample prediction, out-of-bag prediction, out-of-bag prediction based on honest trees (see
Athey et al., 2019), an equally weighted linear combination of out-of-bag prediction for honest trees
and a homoskedastic model, and a purely homoskedastic model.

No single approach provides the best �t for all original regression speci�cations. One indicator of the
approximation quality is the similarity between the sample distribution of the original OLS residuals

6Alternative speci�cations for the dependent variable would also be reasonable, such as HC2- or HC3-adjusted resid-
uals. Additionally, observations with hi = 1, which have ε̂r,oi = 0, could be excluded when training the random forests.
However, due to computational constraints, we have not systematically explored these variations. Preliminary experi-
ments suggest that these variations have little impact on the main results.
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and the distribution of the Monte Carlo OLS residuals. To evaluate candidate models, we particularly
focus on the kurtosis of the OLS residuals: if the original error terms are i.i.d. and normally distributed,
the OLS residuals exhibit a kurtosis close to 3, whereas heteroskedasticity generally increases the
kurtosis.

More formally, let κm,r,c denote the kurtosis of the OLS residuals in Monte Carlo sample m for
candidate model c of original regression r. Let κ̄r,c and sr,cκ denote the corresponding mean and
standard deviation of the kurtoses across all M Monte Carlo samples. A basic distance measure for
candidate model c for original regression r is the standardized distance

δc,r =
|κ̄r,c − κr,o|

sr,cκ

where κr,o is the kurtosis of the original OLS residuals. To some extent, this distance measure may favor
data-generating processes that produce OLS samples with high variability in kurtosis. To counteract
this e�ect, we also consider a modi�ed distance measure:

δ̄c,r =
|κ̄r,c − κr,o|

s̄rκ

where s̄rκ denotes the median of the kurtosis standard deviations across all candidate models for the
original regression r. The �nal distance measure used is the average of these two measures:

dc,r = 0.5δc,r + 0.5δ̄c,r

The chosen DGP for original regression r is the candidate model c with the lowest distance dc,r.
We do not base the selection of DGP on the standard deviations of residuals. Instead, all candidate

models are calibrated to produce OLS residuals with standard deviations similar to those of the original
OLS residuals. This calibration is achieved by scaling the initially obtained values of σr,c by the ratio
of the standard deviations of the original residuals and the Monte Carlo residuals, sd(ε̂r,o)/sd(ε̂m,r,c).

Appendix C: Wild Bootstrap Inference

Wild bootstrap techniques have gained a lot of attention in the context of cluster robust inference, see
e.g. Roodman et al. (2019) and MacKinnon et al. (2023). For hetereoskedasticity-robust inference
they have been proposed already by Wu (1986). We compute wild bootstrap p-values for the t-test
with null hypothesis βk = 0 as follows:

1. Estimate the restricted regression model under the null hypothesis βk = 0 to obtain OLS residuals
er and predicted values ŷr.7

2. Generate bootstrap error terms εb =
√
αθer · vb, where αθ is an adjustement based on type

θ ∈ {HC1,HC2,HC3} as speci�ed in Section 3. The factor vb is an n × 1 vector of random
weights independently drawn from a Rademacher distribution

vbi =

{
−1 with probability 0.5

1 with probability 0.5

3. Form a bootstrap sample yb = ŷr + εb and re-estimate the model to obtain the OLS estimator
β̂bk and a corresponding variance estimator V̂ b,ηk of type η ∈ {HC1,HC2,HC3}. We then compute
the corresponding t-statistic for the null hypothesis βk = 0:

tb,ηk =
β̂bk√
V̂ b,ηk

7Notably, given the restriction βk = 0 the restricted OLS residuals e are simply the residuals of the OLS regression
that leaves out the regressor xk. Comparing to the FWL representation in Section 2, we �nd er = ỹk. There is also a
variant of wild bootstrap based on the unrestricted OLS residuals ε̂. To save computation time, we omit the analysis of
unrestricted wild bootstrap, as earlier studies have repeatedly shown that restricted wild bootstrap performs better.
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4. Repeat steps 2 and for 3 for B bootstrap replications to construct the bootstrap distribution of
the test statistic.

5. Calculate the bootstrap p-value as the proportion of bootstrap statistics tb,ηk that are as extreme
as or more extreme than the test statistic tηk from the original regression sample (also computed
using a standard error of type η):

p-value =
1

B

B∑
b=1

I(|tb,ηk | ≥ |t
η
k|), (6)

where I(·) is the indicator function.

We compare 9 di�erent speci�cations τ ∈ {WB-11,WB-21, ...,WB-33} of wild bootstrap p-values, one
for each combination (θ, η) ∈ {HC1,HC2,HC3} × {HC1,HC2,HC3}.

Similar to the previous Monte Carlo analysis we evaluate for each original regression M = 10000
Monte Carlo samples and we draw B separate wild bootstrap samples for each Monte Carlo sample m.
Ideally, we would prefer to set B to a large value in order to precisely estimate bootstrap p-values for
each Monte Carlo sample. However, this approach presents a practical challenge. While wild bootstrap
p-values can be computed signi�cantly faster than those based on the paired bootstrap, the combination
of a largeM and B, together with over a thousand test situations, renders the computational burden of
the Monte Carlo study infeasible within acceptable time frames given the limitations of our hardware.

We �rst derive a theoretical result that suggests that the rejection rate π0.05
τ,s for wild bootstrap meth-

ods can already be well approximated with a smaller number of bootstrap repetitions. Let pτ,s|B(m)
denote the bootstrap p-value for Monte Carlo sample m computed with B bootstrap repetitions and
let

π0.05
τ,s|B =

1

M

M∑
m=1

I(pτ,s|B(m) ≤ 0.05).

We de�ne the corresponding limit for in�nitely many wild-bootstrap replications as

Pτ,s(m) = plimB→∞pτ,s(m|B)

and by furthermore taking the limit of in�nitely many Monte Carlo replications, we de�ne

Π0.05
τ,s = plimM→∞

1

M

M∑
m=1

I(Pτ,s(m) ≤ 0.05).

Proposition 1. Assume p-values Pτ,s are standard uniformely distributed and B is chosen such that

0.05 · (B + 1) is an integer. Then

plimM→∞π
0.05
τ,s|B = Π0.05

τ,s

and

Var(π0.05
τ,s|B) ≤ 1

4M
.

Proof. First, note that under the assumption that the p-values Pτ,s(m) are independently and identi-
cally standard uniformely distributed, we have:

Π0.05
τ,s = 0.05.

Next, consider the bootstrap p-values pτ,s|B(m) computed with B bootstrap replications. For each
Monte Carlo sample m, the bootstrap p-value pτ,s|B(m) can be viewed as:

pτ,s|B(m) =
Km

B
, where Km ∼ Binomial (B,Pτ,s(m)) .
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Since we assume Pτ,s(m) ∼ U [0, 1], the unconditional probability mass function of Km is:

P(Km = k) =

∫ 1

0

(
B

k

)
pk(1− p)B−kdp =

(
B

k

)
· Beta(k + 1, B − k + 1)

Using the relationship between the Beta and Gamma functions and the de�nition of the binomial
coe�cient: (

B

k

)
=

B!

k!(B − k)!
, and Beta(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
,

we simplify:(
B

k

)
· Beta(k + 1, B − k + 1) =

B!

k!(B − k)!
· k!(B − k)!

(B + 1)!
=

B!

(B + 1)!
=

1

B + 1
.

Thus, we �nd that:

P(Km = k) =
1

B + 1
,

which means Km is uniformly distributed over {0, 1, . . . , B}. Consequently, pτ,s|B(m) is uniformly

distributed over the B+1 values
{

0, 1
B ,

2
B , . . . , 1

}
. Since we assume (B+1) ·0.05 is an integer, we know

that pτ,s|B(m) ≤ 0.05 if and only if pτ,s|B(m) takes one of the (B+1)·0.05 values {0, 1
B , ...,

(B+1)·0.05−1
B }.

Therefore

P
(
pτ,s|B(m) ≤ 0.05

)
=

(B + 1) · 0.05

B + 1
= 0.05 = Π0.05

τ,s .

For the following steps let us rename the indicator variable as following:

Zm = I(Pτ,s(m) ≤ 0.05)

It follows from the Law of Large Numbers that

plimM→∞π
0.05
τ,s|B = plimM→∞

1

M

M∑
m=1

Zm = E(Zm) = Π0.05
τ,s .

Finally, we note that the variance of a Bernoulli distributed random variable can never exceed 1
4

and thus

Var
(
π0.05
τ,s|B

)
=

1

M
Var(Zm) ≤ 1

4M
.

Although the wild bootstrap p-values Pτ,s(m) are not exactly uniformely distributed, Proposition 1
suggests that the rejection rates Π0.05

τ,s can be quite accurately estimated by π0.05
τ,s|B even with a moderate

number of bootstrap replications B if we draw a large number of Monte Carlo samples.
The Monte Carlo results shown in Figure C1 use B = 99 bootstrap replications and M = 10000

Monte Carlo samples. Since the computations remain time-intensive, we have reduced the number of
test situations to 1371 by limiting the tests to a maximum of three coe�cients per original regression.

Similar to the �ndings of MacKinnon et al. (2023) for the cluster-robust wild bootstrap, the
asymmetric speci�cations WB-31 and WB-13, which utilize HC3 exclusively for the adjustment of
the original OLS residuals or solely for the computation of standard errors, respectively, tend to
exhibit superior performance. However, the performance di�erences among the various wild bootstrap
speci�cations are relatively minor.
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Figure C1: Rejection rates for di�erent wild bootstrap speci�cations

20



Figure C2: Comparing rejection rates for wild bootstrap speci�cations with non-bootstrap speci�ca-
tions

Figure C2 compares the rejection rates of the three bootstrap speci�cations WB-11, WB-31, and
WB-13 with the alternative speci�cations, focusing on the 1371 test situations for which bootstrap
standard errors are evaluated. While the wild bootstrap speci�cations exhibit lower average excess in
rejection rates than the HC1 and HC2 speci�catons, their average excess remains higher than that of
HC2-BM, HC3, HC1-PL, and HC2-PL.
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Appendix D: Motivating HC1-PL and HC2-PL by a Satterth-

waite Approximation

This appendix provides an alternative motivation of the proposed degree of freedom adjustment of
HC1-PL and HC2-PL based on ñk. We start with the regression model

y = Xβ + ε

with independently, normally distributed, heteroskedastic errors

εi ∼ N(0, σ2
i ).

Let V̂ τk be a variance estimator of the coe�cient β̂k and consider the t-test for the null hypothesis
βk = 0 with test statistic

tk =
β̂k√
V̂ τk

Following the approximation proposed by Satterthwaite (1946) tk follows approximately a t-distribution
with vk degrees of freedom satisfying (see e.g. Christensen, 2018 for a derivation):

ντk =
2Var(β̂k)2

Var
(
V̂ τk

) (7)

We now show that the the partial-leverage adjusted sample size ñk approximates νHC0
k . Ding

(2021) con�rms that heteroskedasticity-robust HC0 variances can be directly computed from the FWL
representation of the regression:

ỹk = βkx̃k + ε̃k,

yielding

V̂ HC0
k =

∑n
i=1 ε̂

2
i x̃

2
k,i(∑n

i=1 x̃
2
k,i

)2 .
Recall that the original OLS residuals ε̂i are the same as in the FWL speci�cation. We �rst aim

to �nd

Var(V̂ HC0
k ) = Var

(∑n
i=1 ε̂

2
i x̃

2
i

(
∑n
i=1 x̃

2
i )

2

)
=

Var(
∑n
i=1 ε̂

2
i x̃

2
i )

(
∑n
i=1 x̃

2
i )

4 .

We approximate the variance of the sum in the numerator by the sum of variances

Var(

n∑
i=1

ε̂2i x̃
2
k,i) ≈

n∑
i=1

Var
(
ε̂2i x̃

2
k,i

)
=

n∑
i=1

x̃4k,iVar
(
ε̂2i
)
.

This approximation is not exact, as OLS residuals ε̂i can be correlated with each other, even though
the original error terms εi are assumed to be independently distributed. However, under the common
assumptions for a consistent OLS estimator, particularly strong exogeneity, E(ε | X) = 0, the OLS

estimator β̂ converges to β as the sample size increases, and the correlation of the OLS residuals ε̂i
and their squares ε̂2i vanishes.

We now further approximate

Var
(
ε̂2i
)
≈ Var

(
ε2i
)

= E
[
ε4i
]
−
(
E
[
εi

2
])2

= 3σ4
i − σ4

i = 2σ4
i

where we use the fact that normally distributed errors εi satisfy
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E
[
ε4i
]

= 3σ4
i

In a further simpli�cation, we follow Bell and McCa�rey (2002) and evaluate the resulting expres-
sions for the case of homoskedasticity

σi = σ ∀i = 1, ..., N

We then �nd

Var(V̂ HC0
k ) ≈ 2σ4

∑n
i=1 x̃

4
k,i(∑n

i=1 x̃
2
k,i

)4 .
The numerator of (7) under homoskedasticity is given by

2Var(β̂k)2 = 2σ4

(∑n
i=1 x̃

2
k,i

)2
(∑n

i=1 x̃
2
k,i

)4 .
We thus can approximate the degrees of freedom as

νHC0
k =

2Var(β̂k)2

Var
(
V̂ HC0
k

) ≈
(∑n

i=1 x̃
2
k,i

)2
∑n
i=1 x̃

4
k,i

= ñk

It is clear that this derivation involves several approximations, and we would not propose our degree
of freedom adjustment solely based on this result, especially since we suggest using ñk − 1 degrees of
freedom instead of ñk. Nonetheless, the derivation provides additional insight into why our proposal
may be a reasonable choice.

The main di�erences between this derivation and that of Bell and McCa�rey (2002) are as follows:
First, their computation of degrees of freedom is based on an HC2 correction. Second, they do not use
the Frisch-Waugh-Lovell (FWL) representation as the starting point for their approximation.
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