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Abstract

This paper investigates the existence of sector-specific Environmental Kuznets Curves
(EKC) in Croatia from 1995 to 2021. Using Autoregressive Distributed Lag (ARDL)
and Error Correction Models (ECM), the relationship between greenhouse gas (GHG)
emissions and Gross Domestic Product (GDP) is analysed across key climate-policy
relevant sectors (CPRS). A stable long-term relationship with significant short-term
adjustments was found in the energy-intensive sector, which is regulated under the Eu-
ropean Union Emissions Trading System (EU ETS). Long-term cointegration, but with
non-significant short-term adjustments, was observed in the buildings, transportation,
and utility/electricity sectors. Among sectors with a significant long-term relationship,
an inverted U-shaped Environmental Kuznets Curve (EKC)—where emissions initially
rise and then, after reaching a certain GDP threshold, decline—was identified in the
buildings and energy-intensive sectors. In contrast, a U-shaped relationship was found
in the utility/electricity sector, where emissions initially decrease but start to increase
again as GDP grows. The transportation sector shows a positive linear relationship with
GDP, with emissions rising consistently with economic growth, highlighting the need
for targeted interventions like carbon pricing. Conversely, the fossil fuel sector shows
no significant GDP-emissions relationship, pointing to external factors like geopolitical
risks as primary influences.
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1 Introduction
The interaction between economic growth and environmental quality remains a pivotal area
of research, sparking debates on the sustainability of economic development models. Seminal
works by Simon Kuznets and Gene M. Grossman & Alan B. Krueger have laid foundational
theories in this field. Kuznets, in "Economic Growth and Income Inequality," hypothe-
sises that in the early stages of economic growth, income inequality tends to widen due to
rapid industrialisation and urbanisation. This phase is characterised by significant shifts in
population and industry that favour higher-income groups. However, as a country matures
economically, factors such as political interventions, demographic changes, and the levelling
influence of urban populations begin to narrow this inequality (Kuznets, 1955). Grossman
and Krueger expand this inquiry into the environmental arena, and reveal a pattern where
environmental quality initially deteriorates with economic growth but improves after reach-
ing a certain income level, forming an inverted U-curve. The critical income levels for these
turning points vary but are generally below 8,000 per capita. This research suggests that the
relationship between economic development and environmental health is not linear or solely
negative, highlighting the importance of economic growth for environmental protections once
certain thresholds are surpassed (Grossman & Krueger, 1995).

Building upon this conceptual framework, the Environmental Kuznets Curve (EKC)
hypothesis has been extensively tested, including within the Croatian context. Ahmad et al.
(2016), who analysed the period from 1992 to 2011, provide empirical support for the EKC
in Croatia, showing a long-run inverted U-shaped relationship between CO2 emissions and
economic growth, indicating that after reaching a certain level of economic output, further
growth leads to environmental improvements. However, studies like those by Škrinjarić
(2019) and Zmajlović and Pavelić (2019) suggest that the relationship is not uniform across
all pollutants or waste outputs, with no clear EKC pattern found in all cases.

This paper contributes to the existing literature by applying a sector-specific approach
to examine the EKC in Croatia, rather than relying solely on aggregate national data.
This method enables a detailed assessment of the impact of environmental policies at the
micro-level, pinpointing sectors that are particularly responsive to these policies. The core
objective is to identify sectors in need of stricter environmental controls or enhanced miti-
gation strategies. Up to our knowledge, it is the first attempt to test sector-specific EKC for
Croatia.

In assessing the EKC hypothesis across different sectors in Croatia, the Autoregressive
Distributed Lag (ARDL) by Pesaran et al. (2001) was conducted to investigate the long-run
relationship between greenhouse gas (GHG) emissions and economic growth (GDP) across
climate-policy relevant sectors (CPRS), including agriculture, buildings, energy-intensive in-
dustries, fossil fuels, transportation, and utility/electricity. Furthermore, to explore how
deviations from the long-run equilibrium are corrected over time, an Error Correction Model
(ECM) was estimated to capture short-term dynamics. Following the methodology by Ah-
mad et al. (2016), several diagnostic tests were employed to ensure the robustness and
reliability of the models (Breusch-Godfrey, Breusch-Pagan, Ramsey RESET, Jarque-Bera,
CUSUM and CUSUM of Squares).

Studying Croatia’s sector-specific EKC is internationally significant due to its unique
position as a post-socialist transition economy that joined the European Union in 2013 and
the EU ETS. Croatia’s experience offers insights into managing economic growth alongside
environmental sustainability, particularly relevant for other post-socialist nations in Eastern
Europe, such as Bulgaria, Romania, and the Baltic states. These countries share similar
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economic structures and challenges, including industrial modernisation and integration into
the EU’s regulatory framework.

Additionally, Croatia’s thriving tourism industry, a major contributor to its economy,
provides a model for Mediterranean and other coastal nations dependent on tourism, such
as Greece, Spain, and Portugal. These nations face the challenge of maximising tourism’s
economic benefits while mitigating its environmental impacts. Croatia’s journey in align-
ing with EU environmental standards provides a model for how these nations can balance
economic development with ecological commitments like those under the Paris Agreement.

The paper is organised as follows. Section 2 outlines the methodology, detailing the data
and variables specification and the empirical strategy used to assess the EKC hypothesis
across various sectors in Croatia. Section 3 presents the results of the analysis, highlighting
sector-specific findings. Section 4 includes a robustness check, ensuring the reliability of the
results through various statistical tests. Finally, Section 5 summaries the key findings and
concludes with policy recommendations and suggestions for future research.

2 Methodology

2.1 Data and Variables Specification

Our analysis of sector-specific Environmental Kuznets Curves (EKC) begins by identifying
relevant sectors. Following Battiston et al. (2017), we categorise economic activities into Cli-
mate Policy Relevant Sectors (CPRSs). CPRSs are essential for assessing climate transition
risks—risks associated with the potential disruptions caused by transitioning to a low-carbon
economy. These sectors are integral in evaluating both economic and financial risks for busi-
nesses and industries that may not comply with climate and decarbonization targets, such
as those established by the Paris Agreement.

The identification of CPRSs is based on several key criteria:

1. Their direct and indirect contributions to greenhouse gas (GHG) emissions.

2. Their significance in the implementation of climate policies, particularly their cost
sensitivity to changes in climate policy or regulation, such as the Carbon Leakage
Regulation.

3. Their role within the energy value chain.

Using the NACE sector classification as a framework, we identify six primary CPRSs:
fossil fuels, utilities, energy-intensive industries, buildings, transportation, and agriculture.
These sectors are essential for understanding climate risk assessment and the strategic tran-
sition towards sustainable, low-carbon economies.

The CPRS methodology has been utilised in various studies, including those by Bat-
tiston et al. (2020), Battiston et al. (2019), Jun et al. (2020), and by financial regulatory
bodies to assess climate-related transition risks on financial stability. For instance, the Euro-
pean Central Bank incorporated this methodology into its 2019 Financial Stability Report,
which highlighted the exposure of financial institutions to CPRSs (European Central Bank,
2019). Similarly, the European Insurance and Occupational Pensions Authority (EIOPA)
used the CPRSs methodology in its 2020 sensitivity analysis report to evaluate transition
risks in sovereign bond portfolios (European Insurance and Occupational Pensions Author-
ity, 2020). By adopting CPRS, regulators aim to identify potential vulnerabilities within
financial systems arising from disorderly transitions in response to evolving climate policies.
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After defining CPRSs, we collect emissions data for these sectors from the United Na-
tions Framework Convention on Climate Change (UNFCCC), measured in millions of metric
tonnes of CO2-equivalent (Table 1). This data is then grouped according to the CPRSs clas-
sification. Additionally, we take Eurostat data on annual gross domestic product (GDP) in
2015’s chain-linked volumes, measured in millions of euros.

Table 1: Mapping of CPRS, EUROSTAT NACE, and UNFCCC Classifications

CPRS EUROSTAT NACE UNFCCC

Agriculture A01, A02, A03 3 Agriculture

Buildings F, L68 1.A.4.a Commercial/Institutional
1.A.4.b Residential

Energy-intensive C10-C12, C13-C15, C20, C21, C22, C23, 1.A.2 Manufacturing Industries and Construction
C24, C25, C26, C27, C28, C31-C32 2 Industrial Processes and Product Use

Fossil fuel B, C19, D35, H49, H50 1.A.1.b Petroleum Refining
1.A.1.c Manufacture of Solid Fuels and Other Energy Industries

Transportation H49, H50, H51, H52, H53 1.A.3 Transport

Utility/electricity D 1.A.1.a Public Electricity and Heat Production

2.2 Model

The Environmental Kuznets Curve (EKC) general form can be expressed as:

GHGit = β0 + β1GDPt + β2(GDPt)
2 + ϵi (1) (1)

where GHGit represents the dependent variable indicating the total emissions for a spe-
cific sector i and time period t, GDPi is the independent variable reflecting the economic
growth, and (GDPt)

2 is added to capture the potential non-linear effects. ϵi is a white
noise error term, with properties ensuring that it does not follow a predictable pattern and
does not systematically influence the dependent variable, thus allowing for more accurate
identification and assessment of the main effects within the model.

The coefficients β1 and β2 are pivotal in determining the shape of the curve: β1 captures
the initial linear impact of economic activity on emissions for the sector, while β2, being
the coefficient of the quadratic term, is essential for identifying the presence of an inverted
U-shape as per the EKC hypothesis for each sector. If β1 = β2 = 0, it indicates a constant
relationship. If β1 < 0 and β2 = 0, or β1 > 0 and β2 = 0, the relationship linearly decreases
or increases, respectively. For β1 < 0 and β2 > 0, there is a U-shaped relationship, and for
β1 > 0 and β2 < 0 it forms an inverted U-shape, typical of the EKC (Ahmad et al., 2016).
The turning point, or peak, of real income is calculated as:

GDP = − β1

2β2

(2) (2)

This equation helps identify the level of economic growth at which the environmental impact
begins to decline, in line with the EKC hypothesis.

2.3 Empirical strategy

2.3.1 Dynamic ARDL Bounds testing for cointegration

Many economic and environmental variables, such as GDP and emissions, are non-stationary,
meaning their mean and variance change over time. These variables often exhibit upward
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or downward trends, rather than fluctuating around a fixed mean. Applying traditional
regression models to non-stationary variables can lead to spurious results. However, when
non-stationary variables share a cointegration relationship—a stable relationship between
two or more non-stationary time series over the long term—it suggests that, despite short-
term fluctuations, these variables move together in a way that maintains a consistent and
predictable relationship over time, i.e., they share a common stochastic trend. In other
words, if two or more non-stationary variables are cointegrated, it implies that some linear
combination of them is stationary.

In the context of EKC analysis, finding a long-run cointegration relationship would indi-
cate that GDP and emissions maintain a stable equilibrium over time. The Autoregressive
Distributed Lag (ARDL) model, introduced by Pesaran et al. (2001), is commonly used
to identify such cointegration relationships and to estimate both short-term and long-term
effects, as demonstrated by Ahmad et al. (2016).

The ARDL model is applicable when variables are stationary at level, i.e., I(0), purely
I(1), or a mixture of both I(0) and I(1). It is rare for variables to require second differencing,
i.e., I(2), and particularly in small samples, determining if a variable is second-difference
stationary can be challenging. If a variable is found to be I(2), the solution is to take its
difference and make it first-difference stationary. This flexibility allows ARDL to handle a
wide range of variables, helping to avoid the need for traditional unit root testing. Moreover,
ARDL models can be easily estimated even if all explanatory variables are endogenous, which
is a significant advantage. Endogeneity is a common problem in econometrics, often leading
to biased estimates. One of the most effective ways to address endogeneity is by introducing
lags, which make the model dynamic (Borensztein et al. (1998)). The ARDL approach
overcomes this issue by incorporating lags into the model, thus addressing endogeneity and
ensuring more robust and reliable results.

To analyse the ARDL model and examine cointegration, we initially check for the sta-
tionarity of the variables involved. Stationarity in time series signifies that the statistical
properties such as mean, variance, and covariance remain consistent over time, indicating
the absence of trends, seasonal variations, or cycles within the observed period. We employ
the Augmented Dickey-Fuller (ADF) test for testing stationarity, which effectively handles
autocorrelation by incorporating lagged terms of the dependent variable and time trends in
its regression model.

When a time series is non-stationary, it is standard to apply differencing or transfor-
mations like logarithmic and Box-Cox to achieve stationarity. Logarithmic transformations
are employed for strictly positive data that exhibits exponential growth or heteroskedastic-
ity; this approach is frequently used in Environmental Kuznets Curve (EKC) analyses to
stabilize variance. In cases where logarithmic transformation is insufficient, the Box-Cox
transformation, which both stabilizes variance and normalizes distribution, is used.

In this study, we applied logarithmic transformations to GDP and all greenhouse gas
(GHG) emissions data, except for those from energy-intensive sectors and fossil fuels. The
data from energy-intensive sectors were left unchanged, while GHG emissions from fossil
fuels were subjected to Box-Cox transformations. These transformations were essential to
achieve stationarity. We then conducted the ADF test to verify stationarity. The results
indicated that all variables were stationary at level I(0), except for log-transformed GHG
in agriculture, Box-Cox transformed GHG from fossil fuels, and GHG from energy-intensive
sectors. For these, we applied first differencing to eliminate trends and achieve stationarity,
after which log-transformed GHG from agriculture and Box-Cox transformed GHG from
fossil fuels became stationary at I(1). GHG emissions from energy-intensive sectors required
second differencing to reach stationarity at I(2). However, if any variable requires differencing
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to the second order to achieve stationarity, the solution involves taking its first difference to
ensure it becomes stationary at the first difference level. Due to the loss of one data value
with each differencing, we omitted the first observation from the GDP series to align the
time series data for further analysis. The results of the stationarity tests are presented in
Table A1.

Another aspect we addressed in our study involves tackling the issue of multicollinearity,
which is common in EKC models. To mitigate this, we adjusted the data by subtracting the
mean from GDP prior to creating polynomial terms. This method effectively reduces multi-
collinearity without compromising the integrity of the EKC relationship Kennedy (2008).

In mathematical terms, the ARDL model for the long-run relationship may be expressed
as:

∆GHGit = α3 +
n∑

k=1

β1k∆GHGit−k +

n∑
k=0

β2k∆GDPt−k +

n∑
k=0

β3k∆GDP2
t−k

+∆GHGi(t−1) +∆GDPt−1 +∆GDP2
t−1 + ϵ3t (3)

In this equation, ∆GHGit represents the change in greenhouse gas emissions for the sector
i at time t. The symbols β1k, β2k, and β3k are the coefficients corresponding to the lagged
changes in GHGt−k, GDPt−k, and (GDP2)t−k respectively, capturing the impact of past
values of these variables. The variable k represents the lag order of the variables. The terms
GHGt−1, GDPt−1, and (GDP2)t−1 refer to the lagged levels of greenhouse gas emissions, GDP,
and the square of GDP, representing the long-term relationship in the model. The coefficients
∆1, ∆2, ∆3 capture the adjustment dynamics for the lagged levels of these variables. The
term ϵ3t is the error term representing unexplained variations. In essence, the equation
models how both the short-term changes and the long-term relationships between GDP, its
squared values, and GHG emissions influence the overall change in emissions over time.

To conduct the ARDL model analysis and assess cointegration, we first employ vector
autoregression (VAR) to determine the appropriate lag length. This selection is guided by
the Akaike Information Criterion (AIC) and the Schwarz Bayesian Criterion (SBC/BIC). If
the AIC and BIC suggest different lag orders, we select the BIC’s recommendation, as it is
generally more conservative and better suited for small sample sizes (Lütkepohl, 2005, 2006).

Secondly, we estimate the ARDL model using the identified lag structure. Thirdly, we
calculate F-statistics to test the null hypothesis that there is no cointegration. The critical
values for this test, as outlined by Pesaran et al. (2001), are set as follows: at the 1%
level between 4.13 and 5.00, at the 5% level between 3.10 and 3.87, and at the 10% level
between 2.63 and 3.35. If the statistic exceeds the upper bound, it suggests the presence of
cointegration. If it falls below the lower bound, there is no cointegration. If the statistic lies
between these bounds, the results are inconclusive, necessitating further investigation into
the significance of the error correction term (ECT).

2.3.2 Error Correction Model Testing

If cointegration is established, an Error Correction Model (ECM) can be employed to model
the adjustments towards long-run equilibrium following short-term deviations. This ap-
proach illustrates the rate at which the system returns to equilibrium after a disturbance.
To estimate the ECM, the initial step involves calculating the error correction term (ECT),
which represents deviations from the long-run equilibrium.
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The general form of the ECM can be expressed as follows:

∆GHGit = α3+
n∑

k=1

β1k∆GHGit−k+
n∑

k=0

β2k∆GDPt−k+
n∑

k=0

β3k∆(GDP2)t−k+θ6ECTt−1+ϵ3t

(4)
In this equation, ∆GHGit represents the change in greenhouse gas emissions for the sec-

tor or group at time t. The terms β1k, β2k, and β3k are the coefficients corresponding to the
lagged changes in GHGit−k, GDPt−k, and (GDP2)t−k, capturing the short-run dynamic rela-
tionships between these variables. The summation symbols indicate that the model includes
multiple lagged values (up to n) of these variables to capture their short-term impacts on
the dependent variable. Additionally, the term ECTt−1 represents the error correction term,
which reflects the deviation from the long-run equilibrium. The coefficient θ6 associated
with ECTt−1 shows how quickly the system adjusts back to its long-run equilibrium after a
disturbance. The larger the magnitude of θ6, the faster the adjustment towards equilibrium.

2.3.3 Diagnostic Tests

Finally, to validate the models, we perform several diagnostic tests. The Breusch-Godfrey
test is used to check for serial correlation in the residuals. To assess whether the model is
correctly specified, we apply the Ramsey RESET test. The Jarque-Bera test is employed
to verify if the residuals are normally distributed, while the Breusch-Pagan test is used to
check for heteroskedasticity in the residuals. Lastly, the CUSUM and CUSUMSQ tests
are conducted to evaluate the stability of the coefficients over time and ensure the overall
stability of the model.

3 Results

3.1 ARDL and ECM Results

The ARDL cointegration results are reported in Fig. 1, with model information (F-statistic,
R-squared, and adjusted R-squared) available in Table A2. The ECM results, including
coefficients and p-values for each sector’s equation, are presented throughout the text, and
additional model information is available in Table A3.

In the agriculture sector, the ARDL model did not indicate long-run cointegration among
the variables (F-stat: 2.17), suggesting the absence of stable long-term equilibrium relation-
ships. However, short-term dynamics assessed through the ECM highlighted significant
adjustments towards equilibrium (ECT coeff: 1.0352, p-v: 0.031), indicating a robust short-
term correction process despite the long-term absence.

The building sector showed a contrasting scenario. The ARDL results show a strong long-
run cointegration (F-stat: 9.32), suggesting that variables move together over a longer period
and maintain a stable relationship. However, the ECM results demonstrated that short-term
deviations from this equilibrium are not significantly corrected (ECT coeff: 1.4012, p-v:
0.330), pointing to possible delays in adjustments following short-term shocks.

Similar robust long-term relationships were evident in the energy-intensive and util-
ity/electricity sectors, where the ARDL models substantiated long-run cointegration with
F-statistics of 6.49 and 11.84, respectively. The ECM for the energy-intensive sector notably
corrected deviations efficiently (ECT coeff: 0.3969, p-v: 0.002), whereas the utility/electricity
sector showed an insignificant short-term correction mechanism (ECT coeff: 0.0857, p-v:
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0.915), suggesting that short-term fluctuations might persist without prompt alignment to
the long-run equilibrium.

Conversely, the fossil fuel sector presented a unique case where neither long-term coin-
tegration nor effective short-term error correction was evident (ARDL F-stat: 1.36, ECT
p-value: 0.277). This lack of significant relationships in both long and short terms might
reflect underlying structural differences in the sector or model specification issues.

Lastly, the ARDL model’s high F-statistic of 151.83 (well above the upper bound) con-
firms a long-run cointegrating relationship among variables in the transportation sector.
ECM results reinforce this, with an R-squared of 0.965 (adjusted R-squared: 0.958), indicat-
ing the model explains 96.5% of the variance in GHG emissions—a strong fit. The model’s
overall significance is underscored by an F-statistic of 137.1 (p-v: 3.09 × 10−14). The ECT
coefficient is 0.3448, implying that 34.48% of disequilibrium is corrected each period, though
the ECT’s p-value of 0.393 suggests this short-run adjustment lacks statistical significance.

3.2 Sectoral EKC Curves: Identifying GDP Turning Points

To understand how GDP impacts each sector based on the quadratic equations, we need to
interpret the coefficients β1 for GDP and β2 for GDP squared and consider the shape of the
curves (U-shaped or inverted-U-shaped), as shown in Figure 1. Moreover, we are now able to
calculate the turning points. By examining both the shape of the curves and the calculated
TPs, we can observe how different sectors respond to economic growth.

Analyzing each sector’s curve, we see that Agriculture, Buildings, Energy-intensive, and
Fossil fuels sectors all have negative β2 coefficients, forming inverted-U-shaped curves. For
these sectors, GHG emissions initially rise with GDP growth, reach a peak (the TP), and then
begin to fall as GDP continues to grow. For instance, in the Agriculture sector, emissions
reach a peak around a GDP of 60.2 billion euros; above this GDP level, emissions are
expected to decrease. Similarly, Energy-intensive emissions peak around 50.3 billion euros,
suggesting that further GDP growth in this sector may result in lower emissions, possibly
due to technological advancements or more efficient energy usage.

In contrast, Transportation and Utility/electricity sectors have positive β2 values indi-
cating as GDP continues to increase, demands on transportation and utility services grow,
leading to renewed emission increases. The Transportation sector also shows a TP at a neg-
ative GDP level, indicating emissions increasing steadily with GDP growth, likely driven by
rising transportation needs in a growing economy.

3.3 Model diagnostics

Figure 1 illustrates an intriguing trend in GHG emissions variability as GDP increases,
particularly for sectors Agriculture, Buildings, Energy-intensive, and Fossil-fuels. For these
sectors, we observe emissions initially show a predictable pattern in response to GDP growth,
as evidenced by the relatively narrow error bands on the left side of each graph. However,
beyond the turning point, the error bands begin to widen significantly. This suggests that,
up to a certain point, GDP alone is a strong explanatory variable for emissions in these
sectors but beyond the TP, the widening of error bands indicates increased uncertainty or
unexplained variability in emissions. In other words, while GDP growth remains a factor,
it becomes less sufficient to explain changes in emissions. This suggests that, beyond a
certain economic threshold, other factors begin to play a more significant role in influencing
emissions levels.
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Figure 1: ARDL test results for different sectors

(a) Agriculture (b) Buildings

(c) Energy-intensive sectors (d) Fossil Fuels

(e) Transportation (f) Utility/Electricity

Note: P-values for key terms in each sector’s equation: Agriculture (GHG diff lag1: 0.029, GDP: 0.072,
GDP2: 0.502); Buildings (GHG lag1: 0.018, GDP: 0.588, GDP2: 0.508); Energy-intensive (GHG diff lag1:
0.012, GDP: 0.029, GDP2: 0.051); Fossil fuels (GHG diff lag1: 0.009, GDP: 0.305, GDP2: 0.248);
Transportation (GHG lag1: 0.172, GDP: 0.004, GDP2: 0.928); Utility (GHG lag4: 0.080, GDP: 0.967,
GDP2: 0.856). P-values less than 0.05 are marked as significant.
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For instance, in Energy-intensive sectors, changes in production processes, shifts toward
energy-efficient technologies, or regulatory interventions might contribute to emissions vari-
ability. In Buildings, factors such as the adoption of energy-saving technologies, building
materials, and new construction standards may become more significant influences on emis-
sions independently of GDP growth.

The widening error margins underscore the limitations of using GDP as the sole explana-
tory variable for emissions, especially beyond certain economic thresholds. In high-GDP
contexts, emissions models could benefit from incorporating additional variables, such as en-
ergy efficiency improvements, regulatory impacts, or sector-specific influences, to capture the
true dynamics of emissions. This insight suggests that emissions reduction strategies may
need to consider these other influencing factors, tailoring approaches to the unique drivers
within each sector as GDP continues to grow.

In the Transportation sector, emissions increase in a linear pattern with GDP, with
relatively narrow error bands throughout the range of GDP. This steady relationship implies
that GDP remains a strong predictor of transportation emissions across all levels of economic
growth, with fewer influential external factors impacting emissions. The lack of a turning
point in this sector indicates that, unlike other sectors, transportation emissions continue to
rise consistently with GDP without significant shifts or increased uncertainty.

The results of the model diagnostic tests are presented in Table A4. In summary, all
models passed the diagnostic tests, indicating they are well-specified. The residuals are nor-
mally distributed, with no evidence of serial correlation or heteroskedasticity. Additionally,
the CUSUM and CUSUMSQ tests, shown in Figure A1, confirm that the models remain
stable over time, as both tests fall within the critical bounds.

4 Discussion
The ARDL cointegration test was conducted to investigate the long-run relationship be-
tween greenhouse gas (GHG) emissions and economic growth (GDP) across climate policy
relevant sectors (CPRS), including agriculture, buildings, energy-intensive industries, fossil
fuels, transportation, and utility/electricity. A statistically significant long-term relationship
between GDP and sector-specific GHG emissions was identified in the transportation, util-
ity/electricity, energy-intensive, and buildings sectors. In this relationship, transportation
and GDP exhibit a positive linear trend, energy-intensive and buildings sectors follow an
inverted U-shaped curve, and the utility/electricity sector displays a U-shaped relationship
with GDP.

To explore how deviations from the long-run equilibrium are corrected over time, an
Error Correction Model (ECM) was estimated to capture short-term dynamics. The ECM
accounts for short-run deviations and the speed at which variables return to their long-run
equilibrium. A significant Error Correction Term (ECT) was found in both the energy-
intensive and agriculture sectors. In the energy-intensive sector, which is covered by the
European Union Emissions Trading System (EU ETS), the significant ECT suggests that
short-term deviations from the long-run equilibrium are corrected relatively quickly. The EU
ETS, as a market-based approach to controlling industrial GHG emissions, imposes a cap on
emissions and requires companies in energy-intensive industries to buy or trade allowances
for their emissions. The presence of long-term cointegration and meaningful short-term
adjustments in this sector indicates that emissions respond effectively to changes in economic
activity, likely driven by the EU ETS’s carbon pricing mechanism (Dechezleprêtre et al.,
2023).
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This suggests that policies targeting economic growth and emissions reductions within
the framework of the EU ETS could be highly effective in managing emissions in energy-
intensive sectors. The system already provides a financial incentive to reduce emissions,
and additional short-term interventions—such as increasing the price of carbon allowances
or gradually reducing the number of free allowances—could further accelerate emissions
reductions. By tightening the allowance cap or adjusting market regulations, policymakers
could create stronger incentives for industries to invest in cleaner technologies and energy
efficiency.

Indeed, the study by Dechezleprêtre et al. (2023) shows that regulated entities under the
EU ETS achieved emissions reductions of roughly 10% without significant negative impacts
on economic performance, reinforcing the effectiveness of market-based mechanisms like the
EU ETS in driving both emissions control and economic stability. This finding supports the
argument that policies targeting economic growth and emissions reductions within the EU
ETS framework can be highly effective for managing emissions in energy-intensive sectors.

Another study that provides evidence regarding the role of non-GDP factors like regu-
latory policies and technological improvements that influence emissions is by Shapiro and
Walker (2018) on pollution reduction in U.S. manufacturing. Shapiro and Walker (2018)
highlight that the 60% reduction in air pollution emissions from U.S. manufacturing from
1990 to 2008 was primarily driven by within-product reductions in emissions intensity, rather
than by changes in output or the composition of products. This trend reflects that as in-
dustries reach certain productivity or regulatory thresholds, further emissions reductions are
achieved largely through improvements in pollution abatement techniques and regulatory
pressures. They argue that environmental regulations, such as those under the Clean Air
Act, significantly increased the implicit cost or "shadow price" of pollution for manufac-
turers, thus encouraging them to adopt cleaner production methods. This further aligns
with Škrinjarić (2019) where technological changes (like emission control in refineries) had a
substantial impact on SO2 emissions.

The agriculture sector exhibited significant short-term adjustments in response to eco-
nomic changes, though it did not display a long-term cointegration with GDP. This indicates
that while economic shocks and rapid GDP changes may lead to temporary fluctuations in
agricultural emissions, these effects do not persist over the long run. This pattern sug-
gests that emissions in the agriculture sector are more sensitive to immediate economic
conditions rather than sustained economic growth. Consequently, implementing targeted,
short-term policies—such as promoting sustainable farming practices and improving resource
efficiency—could be effective strategies for managing and reducing emissions in this sector.

The transportation sector exhibits a statistically significant positive relationship with
GDP, which has important policy implications. The European Environment Agency (EEA)
Report (2021) highlights that road transport remains one of the most difficult sources of
emissions to manage and that, without aggressive, targeted policy interventions, short-term
adjustments in emissions are unlikely to occur.

Supporting this, Andersson (2019) found that in Sweden, carbon pricing for road trans-
port, which had previously been outside the EU ETS, led to notable emissions reductions.
This evidence strengthens the argument that expanding carbon pricing to cover road trans-
port across the EU could significantly reduce emissions in this sector.

Similarly, the slow adjustment in the utility/electricity and buildings sectors may point
to the need for more aggressive policies promoting energy efficiency and the adoption of
renewable energy. These trajectories have been recognized by the EU, which is why the ETS2,
a new emissions trading system, was created. ETS2, which will become fully operational in
2027 and operate separately from the existing EU ETS, will cover GHG emissions from fuel
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combustion in buildings, road transport, and additional sectors (mainly small industries not
currently covered by the existing EU ETS).

The fossil fuel sector shows no significant long-term or short-term link between GDP and
emissions, likely due to external factors like global market fluctuations, geopolitical insta-
bility, and transitional risks from the shift to a low-carbon economy. One critical external
factor has been the Russia-Ukraine conflict, which has significantly impacted energy markets.
In response to the conflict, the European Union has accelerated efforts to reduce reliance
on Russian energy imports, advancing initiatives for energy diversification and the adoption
of renewable energy sources. Jin et al. (2023) further substantiate this by demonstrating
the significant dynamic spillover effects between geopolitical risk, climate risk, and energy
markets. Their study shows that geopolitical events, particularly involving Russia, have an
immediate and pronounced impact on energy prices and market stability, suggesting that
energy sector emissions are closely tied to external geopolitical factors rather than solely to
economic growth metrics. Zhigolli and Fetai (2024) found similar patterns in the Western
Balkans, where CO2 emissions were more influenced by external pressures than by GDP or
production levels, supporting the idea that fossil fuel emissions are driven largely by external
factors.

5 Conclusions
In light of these external factors, policymakers in Croatia must carefully navigate the chal-
lenges of energy security and the low-carbon transition. The war in Ukraine and its associated
energy disruptions have highlighted the importance of energy independence and the need to
accelerate the transition to renewable energy. However, the path forward is complicated by
the transitional risks faced by fossil fuel industries.

To mitigate these risks, Croatia could focus on diversifying its energy sources to reduce
its reliance on volatile fossil fuel markets. Increased investments in renewable energy infras-
tructure and energy efficiency would help buffer the economy from global market fluctuations
and support long-term emissions reductions. Additionally, policies that provide clear guid-
ance for industries on how to transition away from fossil fuels—such as phased reductions
in fossil fuel subsidies, clearer timelines for decarbonization, and incentives for clean energy
investments—would help businesses manage transitional risks more effectively.

To enhance the understanding of the EKC and the effectiveness of policy interventions,
future research should expand the study to include additional socio-economic and envi-
ronmental variables, such as population density, technological innovation, and regulatory
changes, using more sophisticated models such as Bayesian Model Averaging (see, for exam-
ple, Aller et al. (2021); Gravina and Lanzafame (2024)). This approach will help in better
identifying the factors influencing the relationship between economic growth and emissions.
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A Appendices

Table A1: Stationarity test results

Variable ADF Statistic p-value Critical Values Stationary
log_GHG_Agriculture -0.9979 0.7540 {’1%’: -3.7112, ’5%’: -2.9812, ’10%’: -2.6301} FALSE
log_GHG_Buildings -2.8643 0.0497 {’1%’: -3.8591, ’5%’: -3.0420, ’10%’: -2.6609} TRUE
log_GHG_Energy_Intensive -0.6282 0.8645 {’1%’: -3.7112, ’5%’: -2.9812, ’10%’: -2.6301} FALSE
log_GHG_Fossil 3.6248 1.0000 {’1%’: -3.8092, ’5%’: -3.0216, ’10%’: -2.6507} FALSE
log_GHG_Transportation -3.2807 0.0158 {’1%’: -3.7884, ’5%’: -3.0131, ’10%’: -2.6464} TRUE
log_GHG_Utility -3.5478 0.0068 {’1%’: -3.8893, ’5%’: -3.0544, ’10%’: -2.6670} TRUE
log_GDP -3.8785 0.0022 {’1%’: -3.8893, ’5%’: -3.0544, ’10%’: -2.6670} TRUE
log_GDP_Squared -3.8785 0.0022 {’1%’: -3.8893, ’5%’: -3.0544, ’10%’: -2.6670} TRUE
log_GDP_Cubed -3.8785 0.0022 {’1%’: -3.8893, ’5%’: -3.0544, ’10%’: -2.6670} TRUE
log_GHG_Agriculture_Diff -6.9721 8.610e-10 {’1%’: -3.7239, ’5%’: -2.9865, ’10%’: -2.6328} TRUE
log_GHG_Energy_Intensive_Diff -1.3983 0.5831 {’1%’: -3.8591, ’5%’: -3.0420, ’10%’: -2.6609} FALSE
log_GHG_Fossil_Diff 1.1370 0.9955 {’1%’: -3.8893, ’5%’: -3.0544, ’10%’: -2.6670} FALSE
GHG_Energy_Intensive -0.7530 0.8325 {’1%’: -3.7112, ’5%’: -2.9812, ’10%’: -2.6301} FALSE
GHG_Energy_Intensive_Diff -1.3822 0.5908 {’1%’: -3.8591, ’5%’: -3.0420, ’10%’: -2.6609} FALSE
GHG_Energy_Intensive_Diff2 -6.1853 6.310e-08 {’1%’: -3.7529, ’5%’: -2.9985, ’10%’: -2.6390} TRUE
GHG_Fossil_Boxcox -1.1252 0.7049 {’1%’: -3.7239, ’5%’: -2.9865, ’10%’: -2.6328} FALSE
GHG_Fossil_Boxcox_Diff -9.2429 1.565e-15 {’1%’: -3.7239, ’5%’: -2.9865, ’10%’: -2.6328} TRUE
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A.1 Table A2: ARDL results of F-test for the existence of cointe-
gration

Sector F-Statistic R-squared Adjusted R-squared
Agriculture 2.1666 0.3631 0.1955
Buildings 9.3225 0.8234 0.7350
Energy-intensive 6.4925 0.9735 0.8236
Fossil fuels 1.3643 0.5770 0.1541
Transportation 151.8318 0.9743 0.9679
Utility 11.8393 0.9805 0.8977

Note: The critical value ranges of F-statistics according to Pesaran et al. are 4.13-5.00,
3.10-3.87, and 2.63-3.35 at 1%, 5%, and 10% levels of significance, respectively.

Table A3: The ECM Results of F-test

Sector F-Statistic R-squared Adjusted R-squared
Agriculture 2.3249 0.3286 0.1873
Buildings 19.9623 0.8078 0.7673
Energy-intensive 3.4361 0.4782 0.3390
Fossil fuels 3.2382 0.4324 0.2989
Transportation 137.1493 0.9648 0.9578
Utility 23.9512 0.8569 0.8211
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Table A4: Diagnostic Tests Results

Sector Test Test Statistic p-value F-Statistic F-test p-value
Agriculture Breusch-Godfrey 2.9394 0.2300 1.1863 0.3294

Ramsey RESET 2.4890 0.1146 2.4890 -
Jarque-Bera 1.0221 0.5999 - -
Breusch-Pagan 4.4286 0.3511 1.0748 0.3965

Buildings Breusch-Godfrey 0.9654 0.6171 0.3563 0.7054
Ramsey RESET 0.4873 0.4851 0.4873 -
Jarque-Bera 1.5900 0.4516 - -
Breusch-Pagan 7.3271 0.1196 2.0874 0.1225

Energy-intensive Breusch-Godfrey 1.2822 0.5267 0.4453 0.6501
Ramsey RESET 4.9988 0.0254 4.9988 -
Jarque-Bera 0.2717 0.8730 - -
Breusch-Pagan 3.0201 0.5545 0.6670 0.6247

Fossil fuels Breusch-Godfrey 2.0843 0.3527 0.7849 0.4740
Ramsey RESET 0.0401 0.8414 0.0401 -
Jarque-Bera 0.6417 0.7255 - -
Breusch-Pagan 3.4548 0.4848 0.7917 0.5466

Transportation Breusch-Godfrey 0.2660 0.8755 0.0968 0.9082
Ramsey RESET 0.5263 0.4682 0.5263 -
Jarque-Bera 1.4851 0.4759 - -
Breusch-Pagan 6.9203 0.1402 1.9138 0.1474

Utility Breusch-Godfrey 5.8115 0.0547 2.6784 0.1035
Ramsey RESET 0.0346 0.8524 0.0346 -
Jarque-Bera 0.1041 0.9493 - -
Breusch-Pagan 2.0626 0.7242 0.4357 0.7810
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