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Abstract

A common explanation for the inability of the monetary model to beat
the random walk in forecasting future exchange rates is that conventional
time series tests may have low power, and that panel data should generate
more powerful tests. This paper provides an extensive evaluation of this
power argument to the use of panel data in the forecasting context. In
particular, by using simulations it is shown that although pooling of the
individual prediction tests can lead to substantial power gains, pooling
only the parameters of the forecasting equation, as has been suggested in
the previous literature, does not seem to generate more powerful tests.
The simulation results are illustrated through an empirical application.
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1 Introduction

Since the seminal article by Meese and Rogoff (1983), showing that forecasts
based on the monetary model could not outperform those of a simple ran-
dom walk, exchange rate predictability has been a major enterprise among
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economists. Because of its strong intuitive appeal, and because monetary fun-
damentals are likely to influence exchange rate changes, the poor forecasting
performance of the monetary model has puzzled economic theoreticians for
many years. It has also spawned an enormous amount of empirical research
dedicated to explaining why the random walk is so difficult to beat in terms
of forecasting accuracy.

The single most noticeable study within this latter field of research is that
of Mark (1995), who tested the predictive ability of the monetary model rel-
ative to the random walk using quarterly data for Canada, Germany, Japan
and Switzerland covering the period 1973:Q2 to 1991:Q4. To evaluate the
forecasts, Mark (1995) used both the Theil U statistic and the S statistic of
Diebold and Mariano (1995). Unfortunately, tests such as these are compli-
cated by various econometric problems, such as overlapping observations and
bias, which make inference unreliable. To account for this, Mark (1995) sug-
gested bootstrapping the tests under the null hypothesis of no predictability.
Based on the bootstrapped tests, the author found strong evidence favoring
the forecast accuracy of the monetary model relative to the random walk. The
author also found that the evidence tended to increase with the forecasting
horizon.

The positive empirical results, coupled with the innovative use of the boot-
strap, caused renewed interest in the monetary model and its predictive ability.
However, although some confirmatory evidence were found, it was soon clear
that the study of Mark (1995) suffered from several econometric deficiencies
that made the conclusions highly questionable.

For example, the Mark (1995) bootstrap assumed that the exchange rate
and monetary fundamentals were cointegrated as predicted by the monetary
model. Berben and van Dijk (1998) proved that the failure of this assump-
tion rendered the estimated forecasting equation biased in such a way that
predictability would be found even though none existed. They also found
that the bias was increasing in the forecasting horizon, which explained why
Mark (1995) found more predictive evidence at longer horizons. Similarly,
Berkowitz and Giorgianni (2001) derived bootstrap critical values for the U
and S statistics under the assumption of no cointegration, and showed that
falsely imposing cointegration can make the tests biased toward rejecting the
null of no predictability. The authors also demonstrated that the evidence of
predictability found by Mark (1995) was weakened when the critical values
were generated under the null of no cointegration.

Kilian (1999) took the cointegration restriction imposed by Mark (1995)
at face value and focused instead on the bootstrap data generating process
and on whether longer horizons truly could generate more powerful tests. In
particular, Kilian (1999) showed that the restrictive nature of the bootstrap
procedure used by Mark (1995) resulted in inefficient estimates of the process
generating the bootstrap thus making the ensuing prediction statistics flawed.



Based on a less restrictive data generating process and an updated data set,
Kilian (1999) found only weak evidence in favor of exchange rate predictability.
The author also showed that the better predictability at long horizons found
by Mark (1995) could be explained in terms of larger size distortions rather
than better power, which corroborated the Berben and van Dijk (1998) results.

The pioneering study of Mark (1995), and the critique that followed, have
left the predictability of exchange rates an open question. Starting with Groen
(2000) and Mark and Sul (2001), this has inspired several authors to employ
larger panel data sets in order to illuminate the issue. Mark and Sul (2001)
used quarterly observations for 19 countries between 1973:Q1 and 1997:Q1,
and found support in favor of cointegration for all countries regardless of the
choice of numeraire country considered. The authors then tested the pre-
dictability of the monetary model using bootstrap inference with the coin-
tegration restriction superimposed. In so doing, they assumed that the pa-
rameters of the forecasting equation could be pooled, which should enable
better estimation precision. Based on these estimates, 16 quarter ahead fore-
casts were generated and evaluated using the Theil U statistic applied to each
country individually. The results were very encouraging and suggested that
the monetary model is better at predicting future exchange rate movements
than the random walk model.

Given that the monetary model perform so poorly on an individual country
basis, these results are noteworthy. The most popular explanation for this is
that the use of panel data leads to increased estimation precision and thus
also to greater discriminatory power between the monetary and random walk
models. However, for an explanation so commonly held, it is surprising that
there is so little evidence to support it. In fact, to the best of our knowledge,
there is presently no study that shows that pooling actually leads to better
power in terms forecasting accuracy.

In this paper, we undertake an extensive evaluation of the power argument
to panel data tests of forecasting performance. The way we do this is to
first provide some Monte Carlo evidence on the power properties of several
pooled versions of the U and S prediction test statistics and then we illustrate
these findings through an empirical application. We consider two types of
pooling. The first is that of Mark and Sul (2001) and involves pooling only
the parameters of the forecasting equation. The second is to pool not only the
forecasting parameters but also the individual prediction statistics.

The Monte Carlo evidence suggests that, while pooled estimation of the
forecasting equation does not result in any power gains, pooling the individual
test statistics usually results in large gains in terms of power, especially at long
forecast horizons. Thus, the inability of the monetary model to outperform the
random walk in the previous literature may be attributed in part to insufficient
power. In the empirical part of the paper, we employ the same data set used
by Mark and Sul (2001). It is shown that pooling the individual test statistics



results in more evidence in favor of the monetary model.

The rest of the paper is organized as follows. Section 2 outlines the mone-
tary model and how it can be used in forecasting future exchange rate move-
ments. Sections 3 and 4 are then concerned with the econometric issues, while
Sections 5 and 6 present the Monte Carlo and empirical study, respectively.
Section 7 concludes.

2 Forecasting the monetary model

Consistent with the standard monetary model of exchange rate determination,
we assume that both purchasing power parity (PPP) and uncovered interest
parity (UIP) is satisfied. We further assume that expectations are rational
and that the demand for log real money balances is static and linearly related
to log real income and the nominal interest rate. Under these conditions, if we
let e;; denote the log nominal exchange rate expressed as the number of units
of the domestic currency per unit of foreign currency, then the log nominal
exchange rate can be written as

1 00 ; k
o = 13> (12) B 0

k=0

It is assumed that the exchange rate is observable for ¢t = 1,...,T time series
and ¢ = 1,..., N cross-sectional observations. The expectation conditional on
the information set available at time t is denoted by FE; and the variable fj,
representing the monetary fundamentals, is defined as

fit = (mig —my) — ¢i(yie — vr), (2)

where m;; and y;; are the log of the domestic money stock and the log of
domestic real income, respectively. The foreign country is treated as the ref-
erence country and is given the star superscript. The parameter ¢; in (2) is
income elasticity and w; in (1) is the interest rate semi-elasticity. Both pa-
rameters are assumed to be positive. Now, let us subtract f;; from both sides
of (1) and rearrange. This implies that z; = e;; — fit, the deviation of the
exchange rate from the monetary fundamentals, can be written as

G = i( - )kEtme. (3)

Pt 1+ w;

Provided that f;; is stationary in first difference, then (1) implies that e;; must
be nonstationary while (3) implies that z; must be stationary. Therefore, the
monetary model implies that e;; and f;; are cointegrated with cointegrating
vector (1,—1)". Under these circumstances, f;; may be interpreted as the
long-run equilibrium, or the fundamental, value of the log nominal exchange
rate.



It is well known that cointegration implies, and is implied by, an error
correction model. Therefore, given that z;; is stationary, (3) can be written as

Cit+k — €it = ik + BirZit + Witk (4)

where e;;41 —e;t is the k period ahead change in the log exchange rate, oy is an
individual specific constant term and w;4 is an I(0) idiosyncratic disturbance
term. The key parameter in (4) is (;,, which governs the error correction of
the log exchange rate towards its fundamental value. For the stability of
(4), it is necessary to assume that this parameter is negative. A negative
Bir implies that present day deviations from the fundamental exchange rate
value will be reversed in the future. Of course, such predictable movements
directly contradicts the conventional view that floating exchange rates are best
described by a random walk process.

It follows that the error correction model in (4) can be regarded as a test of
whether the monetary model can outperform the random walk forecast, which
can be written as follows

€it+k — €t = MNik T Vit+k, (5)

where 7;; is an individual specific drift term and v, is a stationary error
term. The mean squared error of (4) and (5) based on a sequence of recursive
forecasts may be evaluated using the Theil U statistic or the S statistic of
Diebold and Mariano (1995). A formal test compares the null hypothesis
of equal forecast accuracy against the one-sided alternative that the forecast
obtained from (4) is more accurate than that obtained from (5). Unfortunately,
asymptotic critical values for this type of tests can be severely biased in small
samples because of the overlapping observations when k& > 1.

In order to mitigate this bias, studies such as Mark (1995), Kilian (1999)
and Groen (1999) have turned to the bootstrap approach and calculated crit-
ical values based on the empirical distribution of the tests under the null of
equal exchange rate predictability. Unlike asymptotic critical values, boot-
strapped critical values adjust for the serial correlation induced by the pres-
ence of overlapping observations and should thus enable valid inference even
in the case when k£ > 1. Unfortunately, the results have been mixed and far
from convincing.

In response to these findings, a number of recent studies, such as those
of Groen (2000), Mark and Sul (2001) and Rapach and Wohar (2004), have
turned away from pure time series tests and towards tests based on panel
data. The argument being that the conventional country-by-country analysis
may not be informative enough to reject the null of equal forecast accuracy,
especially considering the short time span of the data available on the post
Bretton Woods float. If this is the case, then panel data should enable re-
searchers to improve upon the country specific forecasts by taking account of
the cross-sectional information.



The way Mark and Sul (2001) make use of the cross-sectional information
is by pooling the individual slope parameters (3;; in the estimation of (4).
Although arguably more powerful than the pure time series based tests, the
resulting panel S and U tests of Mark and Sul (2001) provided only weak
support in favor of the monetary model. There are essentially two possible
explanations to these poor findings. One explanation is that the monetary
model does not work and that exchange rates are completely unrelated to
monetary fundamentals. The other explanation is that the empirical method-
ology applied so far has not been powerful enough to separate the monetary
model from the random walk.

In this paper, we argue that the inability of the monetary model to out-
perform the random walk forecast can in part be explained by the low power
inherent in the methodology used and that it seem reasonable to investigate
this possibility before embarking on a major revision of the economic theory.

3 The bootstrap

In this section, we propose a bootstrap algorithm that accounts for the fact
that data is usually available for more than one country, and that is general
enough to encompass the key features of the bootstrap algorithms of most
earlier studies. This algorithm will then be used to evaluate the small-sample
properties of the bootstrap U and S prediction test statistics in the panel data
setting.

As in the previous literature, the bootstrap is generated under the null
hypothesis that the accuracy of the monetary model and random walk forecasts
are equal. For convenience of comparison, we use the same bootstrap process
proposed by Mark and Sul (2001), which is also very similar to those used in
many other studies. The particular algorithm opted for in this paper proceeds
as follows.

The first step involves obtaining least squares (LS) regression

Aeyy = [+ Uy,
p —~ p —~

Azy = 0 +%izir—1 + E dinAej—1 + E GikAzit—, + Wi,
k=1 k=1

where the cointegration constraint and the null hypothesis of no predictability
has been superimposed.! Given ¥;; and Wy, we then construct the residual
vector ﬁt = (?)\2,1/132)/, where @\t = ({)\115, ...,@\Nt)/ and ﬁ}\t = (’&J\lt, ...,@Nt)/. The
observations of this vector are then divided into overlapping blocks of length

!The estimation can be performed using either LS as in Mark (1995) and Rapach and
Wohar (2002) or seemingly unrelated regressions as in Mark and Sul (2001). However,
because the point that we are trying to make in this paper does not hinge on the choice of
estimator, we can just as well use LS, which is computationally more convenient.



L. These blocks are subsequently resampled with replacement to generate the
bootstrapped vector u; = (v}, w;’)’.

The second step is to construct the bootstrap sample e}, and z;, which
can be done using the following recursion

* * -~ *
€t = €1t i T Vg,

P p
* * ~ ~ % < * "N * *
Zig = Zyg—1 T 0+ Yizy 1+ E dipAes_j + § ik Az + wiy,

k=1 k=1

where the starting values can be obtained by simply resampling the original
data.

In the third step, €}, and 2}, are used to generate bootstrapped forecasts.
This is done by sequential estimation of (4) and (5) whereby only the first
K < T observations on e, and z, are employed. These estimates are then
used to generate a k period ahead forecast of e};,. If we repeat this exercise
for each subsample in the sequence K + 1, K + 2,..., K — k, we obtain the
bootstrapped forecasts. These are then used to obtain the bootstrapped S
and U statistics, which are constructed exactly as their sample counterparts
but with the bootstrapped forecasts in place of the sample forecasts.

The final step is to repeat the above procedure a large number of times to
obtain the bootstrapped distribution of S and U.

Some remarks are in order. Firstly, cointegration between e;; and f;; re-
quires that v; < 0 so that z; is error correcting. It follows that the above
bootstrap algorithm can be readily manipulated to allow the relationship be-
tween e;; and f;; to be spurious. Indeed, all one needs to do is to set y; to zero
so that z;; is no longer error correcting.

Secondly, note that by resampling the stacked vector u; rather than vy
and w;; separately, the cross-sectional dependence structure of the estimated
residuals can be preserved.? This property is very convenient since e; and
fit are likely to be cross-sectionally correlated. In addition, note that by
resampling blocks rather than individual values of 4y, we are able to preserve
the serial correlation properties of the data as well.

Thirdly, the estimation of (4) can be performed in two ways depending
on whether the slope parameters (;; are assumed to be equal across ¢ or not.
Mark and Sul (2001) assume that the slopes take on a common value, [
say, for all 4, in which case the estimation can be performed using the least
squares dummy variable (LSDV) estimator. The argument being that pooling
the data in this way should enable higher power through increased estimation
precision. Similar arguments have been put forth by for example Groen (2000)
and Rapach and Wohar (2004). The alternative approach would be to follow

20f course, this presumes that the structure of the dependence is purely contemporaneous.
Thus, dependence in the form of the cross-cointegration type analyzed by Gengenbach et al.
(2006) and Banerjee et al. (2004, 2005) cannot be accommodated.



Mark (1995), Kilian (1999) and Rapach and Wohar (2002), and allow the
slopes to vary, in which case the estimation can be performed using LS.

Finally, it should be noted that whatever the restrictions imposed when ob-
taining the bootstrapped tests, it is important to verify that they are in fact
satisfied by the data. For example, one should never assume cointegration
unless the cointegration restriction has actually been tested beforehand. Oth-
erwise, if cointegration is erroneously imposed, this will render the subsequent
bootstrap tests inconsistent.

4 Pooled tests

Note that, by pooling the individual slope parameters 3;;, as suggested by
Mark and Sul (2001), we are essentially assuming that the predictability of
exchange rates is homogenously distributed across the individuals of the panel.
Yet, when constructing the actual test of the forecasting ability of the mone-
tary model, we ignore this piece of information by performing the tests indi-
vidually. One solution to this would be to pool not only the slopes but also
the individual test statistics.

The pooled forecasting test statistics considered in this paper are based
on the S statistic by Diebold and Mariano (1995). The S statistic for each
cross-sectional unit is given by

Si = &' D;, (6)

(2

where 83 is the estimated long-run variance of D; based on the Bartlett kernel
and a bandwidth of £ — 1. The variable D; is the time series average of the
differentials between ﬂ?t 4, and @.Qt 41> Where U1 and vy, are the estimated
forecast errors from equations (4) and (5), respectively. We are interested in
testing the null hypothesis of equal forecast accuracy between the monetary
and random walk models, which is equivalent to the statement Hy : D; = 0.
As shown by Diebold and Mariano (1995), under this null, if we let = denote

convergence in distribution, then
S; = N(0,1) as T — oc. (7)

The alternative hypothesis is that the forecasts obtained from the monetary
model is more accurate than those obtained from the random walk, in which
case we get D; < 0. For the panel tests considered in this section, we shall
consider three hypotheses. The first hypothesis to be tested is formulated as
H§ : D; = 0 for all ¢ versus H{ : D; < 0 for all ¢ while the second is formulated
as Hg : D; = 0 for all ¢ versus H f : D; < 0 for some ¢. For the third hypothesis,
H§:D; =0fori=1,..,M with M € [1, N] is tested versus H{ : D; < 0 for
all members .

The first two hypotheses have the same null, which imply that the mone-
tary and random walk models have equal forecast accuracy for all individuals



in the panel. However, their null hypotheses compete with different alterna-
tives. In the first, the null is tested against the alternative that the monetary
model beats the random walk in the whole panel, while in the second, the
null is tested against the alternative that the monetary model beats the ran-
dom walk for at least some individuals.®> By contrast, the null in the third
hypothesis holds as long as there exist at least M individuals where the fore-
cast accuracy is equal. The alternative hypothesis is formulated as that the
monetary model outperforms the random walk for all individuals in the panel.

To test these hypotheses, we propose three panel statistics. The precise
form of these statistics is given as follows

N
Soum = \/1N ; Siy  Smin = zern[ll,r]{/} S and Spaz = lg[llé}])\(f] Si.
The Ssum statistic is comparable to most existing panel data unit root and
cointegration tests, and is proposed here for the test of H§ versus H{. The
Smin Statistic is more appropriate for the test of Hg versus Hf . Of course,
Ssum can also be used to test this hypothesis.* However, it is not difficult
to see that Sy, should dominate Sy, in terms of power for the test of Hg
versus Hf The Sy, statistic can be used to test H§ versus Hf.

Given (7), the asymptotic distributions for the panel statistics are easily
derived. To this end, let F' denote the distribution function of the standard
normal distribution and let « be the size of the test. The critical values for
Ssum, Smin and Spaz, denoted Cgym, Crin and Chpqz, respectively, are defined
in the following way

F(Coum) =0, 1—(1=F(Cnin))N =a and F(Cpaez)™ = a.

As pointed out in Section 2, one complication with these tests is that the
individual Diebold and Mariano (1995) statistics are known to suffer from
size distortions in small samples. This problem arises because extending the
forecast horizon beyond the sampling interval induces serial correlation of
order £ — 1 in the forecasting errors under the null hypothesis. When the
overlap is large relative to the sample, then 82-2 will tend to be too small causing

3Note that, as with conventional panel unit root testing, a rejection of HY can be difficult
to interpret since it is not clear for which of the panel members the monetary model outper-
forms the random walk. In the sense, H{ and H{ are more straightforward. On the other
hand, since interest usually lies in testing whether the monetary model has at least some
predictive ability beyond that of the random walk, a test of HS versus H? is still informative.

4In fact, this is often the way that the null and alternative hypotheses are formulated
for average type panel unit root and cointegration tests. See for example Taylor and Sarno
(1998) for a good discussion of this issue in the context of testing for PPP. They propose a
average type panel unit root test with the alternative hypothesis formulated as that there
is at least some panel members that are stationary, which is in the same spirit as H?.
Interestingly, analogous to H{, they also propose a test for the alternative that all members
are stationary, which, unlike Ssum, is based on rank arguments.



the test to reject too often. To alleviate this problem, we suggest bootstrapping
the variance of D; using the same bootstrap algorithm developed in Section
3. The panel statistics can then be implemented by replacing 52 in (6) by its
bootstrapped counterpart.

5 Monte Carlo simulations

In this section, we evaluate the small-sample properties of the different panel
versions of the U and S test statistics presented in this paper. The process
considered for generating the Monte Carlo experiments can be described by
the following two equations

Zit = pPZit—1 + Vi,

eitr1 = e+ a+ Bz + uipr.

The errors are generated as v;y ~ N(0,1) and u;z ~ N(0,1), and we use the
value zero to initiate z;; and e;. Without loss of generality, we set a = 1.
The parameter p determines the persistency of the equilibrium error. If p = 0,
then z; is stationary so e;; and f;; are cointegrated with cointegration vector
(1,—1)". By contrast, if p = 1, then z;; has a unit root, in which case e;; and
fit are no longer cointegrated. Note that p = 1 captures both the case when
e;r and f;; are not cointegrated and the case when they are cointegrated but
the cointegration vector is different from (1,—1)".

The parameter 3 governs the predictability of the exchange rate. If 3 = 0,
there is no predictability so the forecasts generated by (4) and (5) should
be equally accurate. On the other hand, if 8 > 0, then z; will be useful
in predicting e;; suggesting that the forecast based on (4) should be more
accurate than that based on (5). For brevity, results are only reported for the
case when 3 = 0.2.

For each experiment, we generate 1,000 panels with N cross-sectional and
T+ 50 time series observations. The first 50 observations for each cross-section
is then disregarded in order to attenuate the effect of the initial condition. For
brevity, we present only the size and raw power at the nominal 5% level of
significance. All simulations are based on 500 bootstrap replications.

The estimation of the data generating process in the first step of the boot-
strap algorithm requires that the lag order p has been chosen appropriately to
whiten the remaining error term. A common way of doing this is to choose p as
some fixed function of T'. Therefore, in this paper, we choose p to the largest
integers less than 4(7/100)%/9. Also, in order to start up the forecast recur-
sion in third step of the bootstrap algorithm, K must be chosen appropriately.
Because there is no obvious choice, in the simulations we set K arbitrarily to
half the sample. Also, the S),q. statistic is computed with M equal to N. All
computational work was performed in GAUSS.

10



The results of the size of the tests are reported in Table 1. The results are
organized according to whether the individual test statistics are pooled or not,
and according to whether the slopes in (4) are estimated homogenously using
LSDV or heterogeneously using LS. Results are reported for both the boot-
strapped and asymptotic tests. Looking first at the results of the asymptotic
tests, we see that the size is generally quite decent but that there is an upward
bias when k& = 10, which is presumably a reflection of the overlapping obser-
vations problem. We also see that the bias has a tendency of accumulating
and to become rather serious as N grows, especially for the pooled tests.

Consider next the results of the bootstrapped tests. In this case, we note
that the size of the pooled tests can be quite unreliable in some cases. In
particular, it is seen that the bootstrapped S,,;, statistic tends to reject the
null hypothesis too frequently when & = 1. However, the results look more
promising when k£ = 10, in which case the size appears to be quite close to
the nominal 5% level. For the other tests, the results suggest that the size
is generally accurate with only small distortions at all horizons even in the
smallest panels considered. Of course, this is not unexpected as the bootstrap
is designed to account for the overlapping observations problem when k > 1.

The results of the power of the tests are presented in Table 2. There are
several features that are noteworthy. First, the power is generally good and
increases steadily as T grows. However, the power is not necessarily increasing
in N. In particular, the power of the individually computed tests displays
no tendency of increasing as N grows. Of course, this casts doubts on the
argument that pooling the data in the way suggested by Mark and Sul (2001)
should generate more powerful tests.

Second, there is generally no advantage to pooled LSDV estimation of the
slope parameters in the forecasting equation. In fact, the power of the tests
based on heterogenous LS estimated slopes can at times be higher than for
those based on pooled slopes, especially when T" = 100, which is often satisfied
in applied work. Of course, this result further reinforces the evidence against
the claim that pooled estimation of the forecasting equation should generate
more power.

Third, the power of the tests falls markedly as k& grows. In fact, it is
not unusual for the power to fall by as much as 50% when k increases from
one to 10. This effect becomes even more pronounced as (§ departs from its
hypothesized value of zero. For example, when 8 = 1, the results suggest that
the power can fall by nearly 90% in some cases as k goes from one to 10.
Hence, one explanation for the inability of the monetary model to outperform
the random walk forecast could be that the tests are not powerful enough to
detect it.

Fourth, the power can typically be increased significantly by pooling the
individual test statistics. Because this effect is particularly pronounced when
k > 1, this suggests that the pooled tests should be well suited for testing

11



the predictive ability of the monetary model, especially at longer horizons.
The overall best power is obtained when using the S, statistic, which is
not unexpected given the homogenous alternative hypothesis considered in
the simulations. In fact, the results suggest that the power of this test is
effectively one in almost all experiments considered.

In summary, the Monte Carlo evidence provided in this section suggests
that the power argument to pooling only the parameters of the forecasting
equation is overstated and that it might be better to pool also the individual
Diebold and Mariano (1995) statistics. The implication is that the inability
of the monetary model to beat the random walk in previous work can be
attributed in part to insufficient power.

6 Empirical results

This section reevaluates the empirical results of Mark and Sul (2001). The
aim is to examine to what extent these hinge on pooling. Based on the results
presented in the previous section, we hypothesize that pooling the parameters
of the forecasting equation should not result in more frequent rejections of the
equal predictability null.

As Rapach and Wohar (2004), we use the same data set used by Mark
and Sul (2001). It comprises quarterly observation on nominal money supply,
industrial production and nominal US dollar denominated exchange rates for
19 countries between 1973:Q1 and 1997:Q1. The data is mostly taken from the
International Financial Statistics database of International Monetary Fund.
For more details on the data, we make reference to Mark and Sul (2001).

Since the purpose is to reevaluate the forecasting results of Mark and
Sul (2001), we will take their cointegration and homogeneity restrictions at
face value. In fact, Rapach and Wohar (2004) examine the validity of these
conditions and find that they appear to be quite realistic. Thus, the error
coming from making the analysis conditional upon these restrictions should
be relatively small.?

As in Mark and Sul (2001), we generate out-of-sample forecasts at two
horizons, ¥ = 1 and k£ = 16. In the case of pooled estimation, we initiate
the forecasting recursion by fitting (4) using the LSDV estimator on the ob-
servations available up until 1983:Q1 whereas, in the case of heterogenous
estimation, the equation is fitted using LS. In either case, the k = 1 forecast-
ing regression is used to forecast the exchange rate return in 1983:Q2 while

5 Although this paper relies on the results of Rapach and Wohar (2004) indicating that
the panel seem to be both cointegrated and homogenous, readers should be aware that in
general one should never conduct the analysis conditionally in this way without first testing
if the cointegration and homogeneity restrictions are actually satisfied by the data at hand.
Indeed, as pointed out earlier in Section 3, falsely imposing cointegration and homogeneity
of the forecast equation is likely to render the forecast tests biased with misleading inference
as a result.

12



the k = 16 regression is used to forecast the exchange rate return in 1987:Q1.
The sample is then updated by one period at the time and the forecasting
procedure is repeated. This gives us 57 forecasts at the k = 1 horizon and 41
forecasts at the k£ = 16 horizon. These forecasts are then compared with those
generated by the random walk model in (5).

To measure the relative forecast accuracy, we use both the individual and
pooled bootstrap U and S statistics. As before, the null hypothesis is formu-
lated so that the monetary and random walk models provide equally accurate
forecasts in which case U = 1 and .S = 0. The null hypothesis is tested against
the one-sided alternative that the forecast produced by the monetary model
is more accurate than that produced by the random walk model. Thus, under
the alternative hypothesis, we have U < 1 and S < 0.

For convenience of comparison with the Mark and Sul (2001) results, we
use seemingly unrelated regressions to estimate the bootstrap data generating
process and we augment the forecasting equation with common time effects
to account for at least some cross-sectional dependency. All results are based
on 1,000 bootstrap replications. As in Mark and Sul (2001), the results for
the individual test statistics are organized based on the choice of numeraire
country. There are three such countries, US, Japan and Switzerland.

The forecasting results based on US as numeraire are presented in Table
3. Based on the S statistic, the null of equal forecasting accuracy cannot be
rejected at any conventional significance level for any of the countries. Thus,
based on this statistic, there appears to be no advantage to pooled LSDV
estimation of the forecast equation. The results for the U statistic are quite
different. At the & = 1 horizon, we see that, while the equal forecast null
cannot be rejected for any of the countries on the 10% level for the LS based
forecasts, it is rejected eight times for the LSDV forecasts. At the k = 16
horizon, the null is rejected on 15 occasions for the LSDV based forecasts
and on six occasions for the LS based ones. Thus, based on the U statistic,
we actually do end up rejecting the null more frequently when pooling the
parameters of the forecasting equation.

Table 4 contains the results with Japan as numeraire. In this case, the
equal forecast null can be rejected on two occasions on the 10% level when
using the S statistic, for Austria and Italy at the £ = 16 horizon. As in the
US case, the results for the U statistic are more significant. When k = 1, the
null is rejected three times with all rejections being for the LSDV forecasts.
When k = 16, the null is rejected four times for the LSDV based forecasts and
three times for the LS based ones. Thus, in this case, there is little evidence
to suggest that the tests based on LSDV estimation should be more powerful
than those based on LS estimation.

The results based on Switzerland as numeraire country are reported in
Table 5. This is the only case when S leads to more than two rejections.
The null is rejected three times based on the LSDV forecasts and four times
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based on the LS forecasts. All seven rejections occur at the k& = 16 horizon.
Moreover, at the k = 1 horizon, the U statistic leads to 16 rejections for the
LSDV based forecasts and to four rejections for the LS based ones. At the
k = 16 horizon, we count 14 rejections for the LSDV forecasts and 10 rejections
for the LS forecasts. Hence, as in the US case, we find some evidence that
pooling the forecasting equation can lead to more powerful tests.

The results of the Diebold and Mariano (1995) statistic reported so far
seem to provide no evidence of predictability. However, as illustrated in Sec-
tion 5, the fact that rejecting the equal predictability null is difficult need not
reflect the actual data but rather the low power of the test itself. If this is
the case, then pooling the individual test statistics should lead to augmented
power.

The results on the pooled statistics are reported in Table 6. We see that
the null can be safely rejected on all conventional significance levels for US
and Switzerland when using the bootstrap Sy, and S, statistics. For
the Spin statistic, the null is also rejected on the 10% level for Japan. The
interpretation is that the null can be rejected for all countries when using US
and Switzerland as numeraire countries, and that it can be rejected for at least
one country when using Japan as numeraire, which corroborate our earlier
findings based on the U statistic.® The results for S,,q, are less encouraging,
which is not unexpected given the results presented in Section 5 suggesting
that the power of this test can sometimes be quite poor. Moreover, although
somewhat less significant, we see that the results for the asymptotic tests
generally corroborate those for the bootstrapped ones.

To summarize, the results presented in this section provide little evidence
to support the argument that pooled estimation of the forecast equation should
lead to more powerful tests. Of course, this finding is well in line with the
Monte Carlo evidence provided in Section 5, and so are the relative rejec-
tion frequency between the S and U statistics. Consistent with the Monte
Carlo results, we find that the evidence of predictability becomes clearer when
pooling the individual test statistics. Thus, unlike Mark and Sul (2001), who
report only weak evidence in favor of the monetary model, our results are more
encouraging, which is interesting in view of the recent research that purport

5Thus, in agreement with the results reported by Mark and Sul (2001), we find less evi-
dence in favor of the monetary model when using Japan as numeraire. Although a complete
explanation of this difference is beyond the scope of this paper, we can think of several pos-
sibilities for a partial explanation. For example, several studies such Papell and Theodoridis
(2001) have shown that PPP holds better for exchange rates that use European instead of
non-European countries as numeraire. A common explanation for this behavior is that the
former is easier to evidence because of lower exchange rate volatility. Another explanation
is that European countries are more open to international trade than the US and Japan.
Also, the geographical proximity of European countries makes goods arbitrage more effective
since transaction costs are lower. Since PPP is one of the building blocks of the monetary
exchange rate model, we suspect that some of these explanations may apply also in the
present context.
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to shed light on exchange rate predictability by exploiting recent advances in
panel data econometrics.

7 Conclusions

The difficulty in predicting future exchange rate movements based on the mon-
etary model has been a longstanding problem in the international economics
literature. One explanation as to why the monetary model seem to be unable
to beat the simple random walk forecast is that conventionally applied time
series tests may not be powerful enough to reject the null of equal forecast
accuracy, especially considering the short time span of the data available on
the post Bretton Woods float. If this is the case, then the use of larger panel
data sets should be able to generate more powerful tests. However, for an
explanation so commonly held, it is surprising that there is so little evidence
to support it.

This paper undertakes an extensive evaluation of the power argument to
panel data tests of forecast accuracy. This is accomplished by first providing
Monte Carlo evidence on the power properties of several pooled versions of
the Theil U statistic and the .S prediction statistics of Diebold and Mariano
(1995). These findings are then illustrated through an empirical application.
Two types of pooling are considered. The first is that of Mark and Sul (2001)
and involves pooling only the parameters of the forecasting equation. The
second is to pool not only the forecasting parameters but also the individual
prediction statistics.

The Monte Carlo evidence suggests that, while pooled estimation of the
forecasting equation does not lead to any gains in power, pooling the indi-
vidual test statistics usually results in large gains in power, especially at long
forecast horizons. This suggests that the inability of the monetary model to
outperform the random walk in forecast competitions may be attributed in
part to insufficient power. In the empirical part of the paper, the data set of
Mark and Sul (2001) is employed. It is shown that pooling the individual tests
results in more evidence in favor of the monetary model.

Although this study shows that the monetary model seem to be helpful in
predicting exchange rates, it certainly has its limitations and so one should
be careful in generalizing these results too broadly. For example, as pointed
out by Engel (2000), the monetary model hinges critically on the validity of
its three building blocks, money demand, PPP and UIP. Similar to Mark and
Sul (2001), we did not explicitly test these relationships but rather imposed
them from the outset. Although the results of Rapach and Wohar (2004)
seem to indicate that they are valid, a failure of any of these relations will
obviously cast some doubts on our results. Another limitation of this study
is that it rests on the the implicit assumption of parameter stability, which
is not necessarily true. For example, given the extensive evidence of PPP
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instability, there is a possibility that there are breaks in the data that we have
not accounted for. Again, the results of Rapach and Wohar (2004) indicate
that this is not the case. Yet another limitation is the assumed presence of
cointegration but, as pointed out earlier, this restrictions has also been shown
to hold.”

"It might also be mentioned that it is mainly the economic interpretation of the results
that risk being impaired by these limitations. The forecasting ability of the alternative model
over the random walk should not be affected. The question is whether this alternative model
can indeed be interpreted as the monetary model.
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Table 1: Size at the 5% level.

Individual statistics Pooled statistics
k T N Sisdv Slasd'u Ulasdv Sis Sﬁe Ulas Ssum Sgum Smin Sf;zin Smaz Sg@ax
b
p=0

1 50 10 0.040 0.039 0.055 0.006 0.013 0.025 0.000 0.010 0.050 0.130 0.000 0.040

1 100 10 0.035 0.040 0.072 0.003 0.017 0.027 0.000 0.010 0.020 0.187 0.007 0.047

1 50 20 0.045 0.043 0.071 0.008 0.018 0.026 0.003 0.010 0.047 0.240 0.007 0.107

1 100 20 0.041 0.042 0.067 0.005 0.014 0.024 0.007 0.027 0.030 0.227 0.010 0.160
10 50 10 0.213 0.015 0.020 0.140 0.010 0.028 0.170  0.000 0.747 0.030 0.000 0.070
10 100 10 0.143 0.017 0.026 0.064 0.007 0.050 0.100 0.003 0.427 0.047 0.003 0.043
10 50 20 0.255 0.013 0.012 0.142 0.010 0.034 0.217 0.000 0.917 0.010 0.000 0.100
10 100 20 0.156 0.019 0.015 0.059 0.007 0.046 0.153 0.003 0.607 0.053 0.003 0.110
p=1°

50 10 0.036 0.037 0.066 0.007 0.019 0.028 0.010 0.023 0.050 0.153 0.010 0.047
100 10 0.031 0.037 0.068 0.006 0.014 0.024 0.003 0.017 0.013 0.193 0.007 0.023

50 20 0.043 0.043 0.065 0.007 0.021 0.025 0.003 0.007 0.033 0.263 0.013 0.097
100 20 0.037 0.042 0.066 0.007 0.017 0.029 0.007 0.023 0.043 0.233 0.013 0.103
10 50 10 0.243 0.017 0.021 0.149 0.009 0.034 0.220 0.003 0.757 0.047 0.007 0.093
10 100 10 0.134 0.015 0.024 0.062 0.011 0.052 0.087 0.007 0.387 0.090 0.003 0.067
10 50 20 0.247 0.016 0.012 0.145 0.014 0.034 0.200 0.000 0.913 0.013 0.000 0.107
10 100 20 0.160 0.016 0.016 0.059 0.007 0.050 0.143 0.003 0.607 0.077 0.000 0.107

e e e

Notes: The value k refers to the forecast horizon and p refers to the autoregressive parameter of z;;. The superscripts
of the individual statistics indicate whether the forecasts are based on LSDV or LS estimation. Unless otherwise
stated the critical values are taken from the normal distribution.

%The test is based on the bootstrapped distribution.

®The bootstrap is generated under the assumption of cointegration.

“The bootstrap is generated under the assumption of no cointegration.
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Table 2: Raw power at the 5% level.

Individual statistics

Pooled statistics

kT N Sisdv Stgy  Ulgw  Sis Se Ug Soum  Sgum  Smin  Spin  Smaz  Swas
p=0

1 50 10 0.458 0.432 0.839 0.370 0.438 0.673 1.000 1.000 0.867 1.000 0.737 0.510

1 100 10 0.798 0.759 0.967 0.775 0.804 0.946 1.000 1.000 1.000 1.000 0.957 0.873

1 50 20 0.469 0.433 0.841 0.379 0.444 0.662 1.000 1.000 0.953 1.000 0.740 0.243

1 100 20 0.780 0.746 0.965 0.757 0.804 0.936 1.000 1.000 1.000 1.000 0.963 0.790
10 50 10 0.534 0.128 0.352 0.359 0.086 0.215 0.950 0.963 0.987 0.993 0.133 0.233
10 100 10 0.667 0.336 0.858 0.628 0.322 0.781 1.000 1.000 0.993 1.000 0.623 0.547
10 50 20 0.543 0.142 0.366 0.357 0.081 0.203 0.993 0.997 1.000 0.997 0.097 0.150
10 100 20 0.656 0.322 0.840 0.622 0.306 0.769 1.000 1.000 1.000 1.000 0.500 0.357
p=1°

1 50 10 0.464 0.400 0.804 0.371 0.417 0.648 1.000 1.000 0.897 1.000 0.643 0.423

1 100 10 0.784 0.708 0.955 0.767 0.782 0.926 1.000 1.000 1.000 1.000 0.933 0.880

1 50 20 0.462 0.388 0.812 0.370 0.412 0.646 1.000 1.000 0.963 1.000 0.700 0.263

1 100 20 0.783 0.702 0.957 0.766 0.782 0.928 1.000 1.000 1.000 1.000 0.957 0.793
10 50 10 0.539 0.150 0.338 0.348 0.085 0.193 0.957 0.960 0.987 0.983 0.147 0.297
10 100 10 0.667 0.322 0.852 0.635 0.306 0.785 1.000 1.000 1.000 1.000 0.597 0.523
10 50 20 0.549 0.144 0.359 0.360 0.083 0.200 1.000 1.000 1.000 1.000 0.083 0.170
10 100 20 0.664 0.329 0.858 0.633 0.315 0.786 1.000 1.000 1.000 1.000 0.553 0.417

Notes: See Table 1 for an explanation of the various features of the table.
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Table 3: Forecasts with US as numeraire country.

k=1 k=16
LSDV LS LSDV LS
Country S p-val U  p-val S p-val U  p-val S p-val U  p-val S p-val U  p-val
UK —0.58 0.63 0.98 0.08 —-0.22 052 0.99 0.28 —1.14 0.27 0.57 0.00 —-0.31 0.39 095 0.29
Austria —-0.70 0.78 0.98 0.04 —-0.59 0.50 0.99 0.49 —-0.67 0.39 0.84 0.06 —-1.13 0.23 0.83 0.11
Belgium —0.05 0.86 1.00 0.75 —-0.56 0.61 0.99 0.57 —1.43 0.22 0.41 0.00 1.28 0.67 1.26 0.84
Denmark 0.52 0.91 1.01 1.00 1.71 090 1.00 0.80 —-0.41 040 0.86 0.07 0.08 0.46 1.02 0.50
France —-0.27 095 0.99 0.40 —-091 064 099 0.14 —-1.29 0.25 0.58 0.00 1.17 0.71 1.06 0.70
Germany —-0.52 095 0.99 0.05 0.83 0.50 1.06 1.00 —-1.28 0.27 0.52 0.00 —-0.76 0.38 0.71 0.00
Netherland —-0.64 0.83 0.99 0.06 —0.47 049 0.99 0.50 —-1.02 0.32 0.70 0.00 —-1.13 0.28 0.76 0.04
Canada —0.36 0.53 0.99 0.08 1.61 071 1.04 0.51 —2.09 0.13 0.55 0.00 —-0.57 0.26 0.83 0.15
Japan 0.08 0.96 1.00 1.00 —-045 045 099 0.23 —-0.02 0.51 1.00 0.50 —-0.37 045 0.92 0.22
Finland 0.04 0.77 1.00 0.83 0.65 0.73 1.02 0.96 —-0.72 0.35 0.86 0.09 —-1.07 0.28 0.86 0.13
Greece 0.86 0.89 1.02 0.99 282 094 1.22 1.00 0.17 0.50 1.05 0.63 3.58 095 1.53 0.99
Spain —0.12 0.88 1.00 0.52 0.72 0.79 1.04 0.84 —-1.11 0.26 0.67 0.00 —0.50 041 0.82 0.06
Australia 0.85 0.97 1.02 1.00 292 030 1.22 0.23 —-041 041 0.86 0.10 1.61 066 152 0.81
Italy —-0.12 0.83 1.00 0.54 0.42 0.74 1.01 0.93 —-1.10 0.29 0.75 0.01 —-1.04 031 0.85 0.05
Switzerland —0.92 083 0.98 0.03 0.07 0.67 1.00 0.68 —-198 0.18 0.75 0.01 —-1.12 0.26 0.83 0.06
Korea —-1.70 0.27 091 0.01 0.85 0.45 1.09 0.73 -1.79 0.14 0.49 0.00 —-1.77 0.14 0.66 0.03
Norway —0.07 0.81 1.00 0.68 0.68 0.72 1.01 0.84 —-1.64 0.22 0.54 0.00 —0.08 0.50 0.99 0.47
Sweden —1.08 0.61 0.98 0.02 0.42 0.78 1.01 0.83 —-1.61 0.20 0.37 0.00 —-2.16 0.11 0.87 0.16

Notes: The out-of-sample forecasts for the monetary model are compared to those for the random walk model. The p-values are computed as the

proportion of the bootstrap distribution that lie to the left of the statistic calculated from the observed data.
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Table 4: Forecasts with Japan as numeraire country.

k=1 k=16
LSDV LS LSDV LS
Country S p-val U  p-val S p-val U  p-val S p-val U  p-val S p-val U  p-val
US 0.22 1.00 1.01 1.00 0.67 0.60 1.03 1.00 0.29 0.57 1.08 0.76 1.47 0.78 1.80 1.00
UK 0.84 0.92 1.05 1.00 1.51 086 1.06 1.00 359 096 2.09 1.00 453 0.98 228 1.00
Austria —0.13 0.86 1.00 0.68 —0.25 0.40 0.99 0.41 —0.46 048 0.95 0.34 -3.57 0.03 0.86 0.17
Belgium 0.90 096 1.04 1.00 —-0.13 0.67 1.00 0.65 143 082 1.55 1.00 145 0.76 2.81 1.00
Denmark —0.13 0.75 1.00 0.49 —0.16 0.55 1.00 0.55 —-0.65 042 0.83 0.07 —0.20 046 0.95 0.34
France 0.14 099 1.01 1.00 0.23 0.67 1.01 0.97 —-0.09 051 0.97 0.43 —-0.32 048 0.93 0.23
Germany 0.24 1.00 1.01 1.00 1.70 0.58 1.11 1.00 1.83 0.89 1.34 0.98 398 098 191 1.00
Netherland 0.02 094 1.00 0.96 0.00 0.50 1.00 0.50 0.00 0.57 1.00 0.57 —-1.33 0.19 0.85 0.14
Canada 0.42 0.99 1.02 1.00 0.37 0.77 1.01 0.73 —-042 042 091 0.19 0.00 0.47 1.00 047
Finland —0.65 0.67 0.98 0.03 —0.53 0.52 0.98 0.11 —2.15 0.13 0.66 0.00 —-1.89 0.16 0.86 0.12
Greece —0.26 0.69 099 0.34 3.82 099 1.42 1.00 —0.50 046 091 0.24 —-1.15 0.33 0.88 0.18
Spain —0.89 0.87 0.98 0.00 —0.10 0.75 1.00 0.72 —1.89 0.17 0.56 0.00 —1.72 0.20 0.54 0.00
Australia —0.15 094 1.00 0.62 1.00 048 1.09 0.53 —-0.26 044 096 0.34 3.00 091 172 0.98
Ttaly —0.51 0.87 0.98 0.01 —1.02 0.57 0.98 0.17 —1.24 027 0.77 0.03 —2.74 0.08 0.78 0.02
Switzerland 0.20 0.95 1.01 0.99 0.82 0.68 1.05 0.70 0.20 0.59 1.02 0.61 0.40 0.45 1.05 047
Korea —-0.30 0.90 0.99 0.13 1.07 0.88 1.09 0.99 —0.30 047 091 0.22 —1.18 0.25 0.67 0.03
Norway 0.80 0.95 1.04 1.00 0.85 0.74 1.01 0.93 2.76 094 1.77 1.00 1.59 081 1.26 0.93
Sweden 0.44 0.96 1.02 1.00 141 096 1.05 0.99 250 0.92 1.57 1.00 0.00 0.46 1.00 0.46

Notes: See Table 3 for an explanation of the various features of the table.



€¢

Table 5: Forecasts with Switzerland as numeraire country.

k=1 k=16
LSDV LS LSDV LS
Country S p-val U  p-val S p-val U  p-val S p-val U  p-val S p-val U  p-val
US —-0.98 0.79 0.98 0.01 —0.60 048 0.99 0.09 —1.54 0.20 0.78 0.02 1.24 071 137 0.98
UK —-0.96 0.84 0.97 0.00 —-0.18 0.59 0.99 0.30 2.32 090 147 1.00 2.85 0.93 1.89 1.00
Austria —1.52 0.72 0.98 0.00 —1.45 0.70 0.98 0.54 —2.30 0.18 0.65 0.00 —-2.32 0.15 0.75 0.01
Belgium —1.00 0.86 0.95 0.00 —0.24 084 1.00 0.73 —2.13 0.16 0.65 0.00 1.19 0.72 2.16 1.00
Denmark —1.42 0.63 0.96 0.00 1.00 0.77 1.01 0.87 —-1.77 0.19 0.70 0.00 —-1.71 019 0.84 0.07
France —-2.36  0.15 0.92 0.00 —2.10 0.18 0.94 0.00 —4.68 0.02 0.32 0.00 —-3.50 0.04 0.64 0.00
Germany —-0.76  0.68 0.98 0.00 1.18 0.69 1.11 1.00 —2.84 0.12 0.49 0.00 0.49 0.67 1.12 0.86
Netherland —2.05 0.60 0.96 0.00 —1.87 035 0.94 0.68 —-2.90 0.11 0.38 0.00 —2.80 0.07 0.53 0.00
Canada —-0.35 0.94 1.00 0.36 048 1.00 1.01 1.00 —-1.78 0.17 0.59 0.00 —-1.03 0.27 0.81 0.03
Japan 0.15 0.91 1.00 0.99 0.88 0.57 1.01 0.81 0.07 0.56 1.01 0.57 —-1.20 030 0.91 0.25
Finland —2.03 0.62 0.96 0.00 —2.76  0.21 0.95 0.00 -3.22  0.06 0.70 0.00 —2.76 0.07 0.88 0.12
Greece —1.01 0.84 0.99 0.02 1.82 043 1.16 1.00 —-0.61 0.45 0.85 0.09 —-1.07 035 0.77 0.05
Spain —1.66 0.85 0.96 0.00 —-1.12 092 0.95 0.72 —2.18 0.13 0.48 0.00 —-1.74 0.16 0.48 0.00
Australia —0.90 0.93 0.99 0.01 0.06 0.99 1.00 0.99 —0.86 0.32 0.80 0.02 1.85 0.85 143 0.98
Italy —1.79 0.10 0.97 0.00 —-149 0.14 0.98 0.04 —2.71 0.09 0.58 0.00 —-2.77 0.08 0.74 0.02
Korea —1.27 0.90 0.98 0.00 —0.51 0.82 0.98 0.48 —2.07 0.17 0.38 0.00 —2.10 0.15 0.40 0.00
Norway —1.29 0.81 0.95 0.00 —0.04 0.62 1.00 0.60 0.79 0.65 1.38 0.98 2.73 092 1.50 0.99
Sweden —1.33 0.87 0.95 0.00 —0.91 085 0.96 0.23 —-0.21 047 095 0.33 —1.57 0.23 0.62 0.00

Notes: See Table 3 for an explanation of the various features of the table.



Table 6: Pooled predictability tests.

Asymptotic tests Bootstrap tests
Numeraire k Seum  Smin  Smaz Ssum  Smin  Smaz
UsS 1 0.130 0.557 0.016 0.000 0.000 1.000
16 0.000 0.285 0.000 0.000 0.000 0.000
Japan 1 0.611 0.976 0.021 1.000 0.001 1.000

16 0.863 0.248 0.997 1.000 0.099 1.000
Switzerland 1 0.000 0.151 0.000 0.000 0.000 0.003
16 0.000 0.000 0.822 0.000 0.000 0.978

Notes: The values reported in the table are the p-values. See Tables 1
and 3 for an explanation of the various features of the table.
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