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Stablecoins and credit risk: when do they stop being stable?

Elena Korobova* Dean Fantazzinif

Abstract

Stablecoins are a pivotal and debated topic within decentralized finance (DeF1i), attracting signif-
icant interest from researchers, investors, and crypto-enthusiasts. These digital assets are designed to
offer stability in the volatile cryptocurrency market, addressing key challenges in traditional financial
systems and DeF1i, such as price volatility, transparency, and transaction efficiency. This paper con-
tributes to the existing literature by estimating the credit risk associated with stablecoins, marking
the first study to focus exclusively on this market. Our findings reveal that a substantial portion of
stablecoins have failed, aligning with existing literature. Using Feder et al.’s (2018) methodology, we
observed that 21% of stablecoins were ”abandoned” at least once, with only 36% being later ”resur-
rected,” and just 11% maintaining their ”resurrected” status. These results support the hypothesis
that stablecoins rarely recover once they break their peg, often due to technical issues or loss of user
trust. We also found that the time between a statistically significant break in the stablecoin’s peg and
its subsequent collapse or stabilization averages approximately 10 days. We estimated probabilities
of default (PDs) for stablecoins based on market capitalization using various forecasting models. A
robustness check further indicated that stablecoins on the Ethereum blockchain are less prone to
default, likely due to Ethereum’s robust ecosystem and the established presence of older stablecoins.
Despite the study’s limitations, including a limited dataset of 121 stablecoins and missing market
capitalization data, the findings offer practical applications for investors and traders. The techniques
and models applied in this research provide tools for evaluating credit risks in the stablecoins market,
aiding in portfolio management and investment strategies.
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1 Introduction

The issue of stablecoins and digital assets has generated significant interest lately due to their potential to
transform financial transactions and the financial system. Stablecoins, pegged to fiat currencies or other
assets, aim to provide stability and predictability compared to conventional cryptocurrencies like Bitcoin.
Their fewer restrictions relative to Central Bank Digital Currencies (CBDCs) make them attractive to
mainstream investors and businesses. Stablecoins can lower transaction costs, broaden financial access,
and serve as a medium for international transfers, remittances, and small-scale transactions, contributing
to the DeFi landscape. The relevance of this research is underscored by the growing stablecoin market,
and numerous regulatory reports focused on digital assets and stablecoins.

However, stablecoins face risks, including credit risks and stability issues that may cause them to
deviate from their peg. Existing studies on stablecoins can be grouped into three categories: those cate-
gorizing digital assets and stablecoins (Mita et al., 2019; Bullmann et al., 2019; Moin et al., 2020; Quarles,
2021; White et al., 2022; Baughman et al., 2022); those addressing regulatory and risk issues (Zhang et
al., 2018; Brent et al., 2019; Adrichem, 2019; Arner et al., 2020; Bellasio et al., 2020; Inozemtsev, 2021;
Chen et al., 2022); and those examining concepts like ” dead coins” and forecasting default probabilities
(Feder et al., 2018; Fantazzini, Zimin, 2020; Grobys, Sapkota, 2020; Fantazzini, Calabrese, 2021; Gandal
et al., 2021; Briola et al., 2023).

While insightful, these studies do not focus specifically on stablecoins’ credit risk. This paper ad-
dresses this gap by evaluating the credit risk associated with stablecoins using various models, including

several types of regression and hazard models. The study aims to:

1. Identify the proportion of “dead” and “resurrected” stablecoins by replicating Feder et al.’s (2018)E|

methodology.

2. Determine the time between a statistically significant break in the stablecoin’s peg and its subse-
quent collapse or stabilization. Having a potential warning system that allows investors to exit a

position in advance and cut losses is of great importance for any crypto-asset investor.

3. Calculate the market-implied probabilities of default/death (PDs) for stablecoins using the ZPP
method and the Cox Proportional Hazards model and perform an out-of-sample forecasting anal-

ysis.

This study’s findings could prove very valuable to investors seeking to safeguard their assets from the
risk of stablecoins deviating from their peg. Assessing the credit risk of stablecoins is crucial for investors

as it helps in gauging the stability and reliability of these digital assets. This assessment directly impacts

I This paper was later published as Gandal et al. (2021).
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investor protection by ensuring transparency and reducing the likelihood of value fluctuations or defaults
that could affect their investments. Understanding credit risk safeguards investors against potential
losses and promotes a more secure environment for their financial transactions.

The remainder of the paper is organized as follows. Section 2 reviews the literature devoted to the
assessment of stablecoin credit risks. Section 3 discusses the models used to evaluate the credit risk
associated with stablecoins, starting from the identification of ”"dead” and “resurrected” stablecoins,
followed by the determination of the time between a statistically significant break in a stablecoin’s
peg and its subsequent collapse or stabilization, and concludes with the computation of market-implied
probabilities of default/death. Section 4 describes the empirical results, while a robustness check is

discussed in Section 5. Section 6 concludes.

2 Literature review on the assessment of stablecoin credit risks

We will first examine the key factors that cause stablecoins to struggle in maintaining their intended
peg, along with some real-world examples. Then, we will review the research focused on the collapse of
stablecoins and the estimation of their default probabilities. For readers seeking a broader introduction
to stablecoins, including their mechanisms and types, a detailed overview is provided in the Technical

Appendix available on the authors’ website.

2.1 Challenges and instances of stablecoins deviating from their peg

While stablecoins are typically pegged to specific assets or algorithms, they face various risks, including
stability or run risks, transfer risks, concentration risks, regulatory risks, cybersecurity and operational
risks, market risks, and credit risks, among others (Parma et al., 2022). Among these, credit risk
is particularly significant, with components such as the probability of default (PD) receiving special
attention in this paper.

In terms of credit risk, stablecoins are generally considered less risky compared to traditional cryp-
tocurrencies due to their association with stable assets, which helps mitigate the potential for significant
price swings. This characteristic often makes stablecoins an attractive option for diversifying a cryp-
tocurrency portfolio effectively (Wang, et al., 2020). However, credit risks associated with stablecoins
remain, particularly concerning their collateralization.

As previously mentioned, stablecoins often rely on reserves of assets held by an intermediary (cus-
todian). If this custodian or the issuer encounters financial difficulties or collapses, it may undermine
confidence in the stablecoin and expose stablecoin holders to potential losses (Cermak et al., 2021). Ad-

ditionally, certain stablecoins use unstable and volatile cryptocurrencies or, in some cases, algorithms as
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collateral, which can increase the risk of credit defaults or other credit-related concerns. Furthermore,
since stablecoins are not subject to the same regulations as currencies within the traditional financial sys-
tem, particularly concerning anti-money laundering and combating the financing of terrorism standards
(AML/CFT - US Treasury, 2021), there may be an increased risk of fraudulent behavior or mismanage-
ment by the stablecoin issuer or involved third parties, such as custodians.

The potential for stablecoins to deviate from their peg is a consequence of credit risk, but it is
distinct from credit risk itself. Credit risk refers to the probability of losses resulting from the default
of the stablecoin’s issuer or custodian. Factors such as insufficient backing assets, mishandling of assets
held as reserves in bank accounts, or fraudulent activities by the issuer or custodian can lead to credit
risk (BIS, 2021).

Stablecoins break their peg when their value diverges from the asset they are collateralized by, such
as the US dollar. For example, when a stablecoin is pegged to the US dollar, it should remain valued
at one dollar. However, if its value falls below one dollar, it is considered to have broken the peg
(Moin et al. 2020). Numerous factors, ranging from market volatility or insufficient backing assets
to malfunctioning algorithmic mechanisms (including bugs in the algorithm itself or issues with smart
contract specifications), can contribute to the risk of breaking the peg (Klages-Mundt et al., 2020).
Although the deviation of stablecoins from their peg is usually a result of credit risk, this is not always
the case. Factors like market volatility can cause a stablecoin to deviate from its peg, even if the financial
stability of the issuer or custodian is not in question. Similarly, a stablecoin can maintain its peg despite
concerns regarding the issuer’s or custodian’s creditworthiness.

There have been instances where stablecoins have deviated from their peg due to specific events:

1. DAI: On March 12, 2020, DAT faced issues when Ethereum’s value dropped sharply, causing network
congestion and liquidity problems. An emergency auction of collateral was initiated to stabilize its

value, see Berentsen and Schér (2019), Klages-Mundt (2020) and Kjder et al. (2021).

2. Basis: This algorithmic stablecoin ceased operations in April 2018 due to regulatory concerns. The
SEC classified its stabilization mechanism as involving unregistered securities, leading to a decline

in confidence (Piech, 2022).

3. Steem Dollar: It lost its peg in December 2018 due to system debt and experienced further deval-

uation in 2020 following a hostile takeover of the Steem blockchain (Guidi, 2021).

4. Tether (USDT): In 2017 and in 2018, Tether briefly lost its peg, raising concerns about its reserves
and stability. Market skepticism grew due to newly minted Tether and the broader crypto market
crash (Bolger and Hon, 2022).



5. TerraClassicUSD: In May 2022, Terra lost its peg when the value of supporting cryptocurrencies
plummeted. This led to a loss of trust in its governance, resulting in a downward spiral for both
Terra and its asset, LUNA, see Hileman (2019) and Lyons and Viswanath-Natraj (2023). Moreover,
Briola et al. (2023) provided a detailed analysis of events leading to the Terra collapse, highlighting

broader economic factors and market dependencies, while ruling out coordinated attacks.

2.2 Studies on stablecoins’ death and their probability of default

Research specifically focused on the probability of death for cryptocurrencies or predicting their collapse
is relatively scarce. Most studies in this field tend to address the broader cryptocurrency market rather
than concentrating on stablecoins. Feder et al. (2018) made a significant contribution by introducing
the concept of a ”dead coin” and distinguishing between active and abandoned cryptocurrencies. Their
study, which was the first to define cryptocurrency ”death,” used a dataset of 1,082 cryptocoins and
found that cryptocurrencies with lower trading volumes were more prone to abandonment. Their work
explored the dynamics of ” creation, competition, and destruction” in the cryptocurrency ecosystem by
introducing the concepts of abandoned cryptocurrencies and those later ”resurrected”. Feder et al.
(2018) developed methodologies for identifying peaks in price and trade volume over a five-year period,
covering a wide array of cryptocurrencies. Their findings revealed that 44% of the cryptocoins analyzed
experienced temporary abandonment, with 71% eventually being recovered and 18% failing permanently.
Furthermore, the study examined the relationship between a cryptocurrency’s market entry and exit, its
price, volume, and market capitalization to provide insights into the factors influencing cryptocurrency
performance. Cryptocurrencies with higher trading volumes were found to be less likely to default,
while those with lower volumes were more susceptible to abandonment but also showed greater potential
for price spikes. The study also observed that both newly introduced and resurrected cryptocurrencies
benefited from the overall growth trajectory of the cryptocurrency market, despite increasing competition.

In a related study, Fantazzini and Zimin (2020) pioneered models for predicting cryptocurrency de-
faults or deaths. They explored various approaches to modeling and estimating market and credit risks
within the cryptocurrency market. To validate their findings, they used two distinct datasets: one com-
prising 5 and 15 cryptocurrencies for market risk forecasting and another including 42 cryptocurrencies
for credit risk forecasting. The study applied several methods to evaluate credit risk, including the Zero-
Price-Probability (ZPP) method, which estimates default probabilities solely based on market prices, as
initially proposed by Fantazzini et al. (2008). Classical credit scoring models such as logit and probit
were also employed. The results indicated that the ZPP method was the most effective for estimating

credit risk compared to other models.



Further expanding on this topic, Fantazzini and Calabrese (2021) conducted a comprehensive study
focusing on cryptocurrency exchanges and the credit risks associated with them. Analyzing a dataset of
144 crypto exchanges operating from 2018 to the first quarter of 2021, they employed a series of models
that combined traditional credit scoring techniques with machine learning to predict the probability of
exchange closures. Their findings suggested that the presence of a public developer team was the key
determinant of exchange closure. Other significant factors included the CER cybersecurity grade, the ex-
change’s age, and the number of traded cryptocurrencies. These factors were consistent in both in-sample
and out-of-sample forecasts. The research advised investors to choose exchanges with public developer
teams, high CER cybersecurity grades, long operational histories, and a diverse range of tradable crypto-
assets to ensure substantial transaction volumes and enhanced security. Robustness checks confirmed
that variables such as centralization, decentralization, and compliance with local regulations regarding
AML/CFT did not significantly impact the model’s performance. Although the study acknowledged the
limitation of a relatively small dataset, the researchers were confident that expanding the dataset would
not compromise the robustness of their findings.

Finally, Fantazzini (2022) conducted a study assessing credit risk across over 2,000 crypto-assets
from 2015 to 2020. This study focused on predicting the likelihood of cryptocurrencies ”dying” using a
variety of models, three definitions for dead crypto-assets, and different forecasting horizons. The analysis
employed credit-scoring models, machine-learning models, and time-series methods based on the ZPP
model. The study’s key findings indicated that the definition of a "dead” cryptocurrency influenced the
selection of the most effective forecasting models, though the top-performing models remained generally
consistent across different definitions. The analysis identified the cauchit and the ZPP models based on
a random walk or MS-GARCH(1,1) as optimal for newly established coins, while credit-scoring models
and machine-learning techniques proved more effective for mature cryptocurrencies. Robustness checks
were conducted to ensure the reliability and comparability of results across different data samples. It was
found that the cauchit model performed best for cryptocurrencies with limited time series data or low
trading volumes and Google searches. For short-term forecasting with extensive datasets, the random
forests model was most effective. For long-term forecasting, ZPP-based models using either the simple

random walk or the MS-GARCH(1,1) were favored.

3 Methodology

This paper aims to evaluate the credit risk associated with stablecoins by employing various models.
The analysis begins by identifying the proportion of "dead” and "resurrected” stablecoins, followed by

determining the time between a statistically significant break in a stablecoin’s peg and its subsequent
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collapse or stabilization, and concludes with the computation of market-implied probabilities of default

(PDs) to perform an out-of-sample forecasting analysis.

3.1 Proportion of "dead” and ”resurrected” stablecoins

To address the first goal —identifying the proportion of “dead” and “resurrected” stablecoins and distin-
guishing between these concepts— we adopted the approach proposed by Feder et al. (2018) and Gandal
et al. (2021). The process begins by identifying a “candidate peak,” defined as the day when the 7-day
rolling average closing price surpasses any value within a 30-day window (both forward and backward).
These peaks are then filtered to include only those that are at least 50% higher than the minimum value
observed in the preceding 30 days and represent at least 5% of the stablecoin’s maximum peak value.
Each of the peak values are then compared to all of the subsequent daily volume values, and a stablecoin
is subsequently categorized as “dead/abandoned” if its average daily trading volume falls below 1% of its
peak volume. Conversely, a “dead” stablecoin is reclassified as “resurrected” if its average daily trading
volume exceeds 10% of its peak value.

This methodology provides critical insights into the stability of the stablecoin market by calculating
the proportion of “dead” (or “abandoned”) stablecoins. More importantly, it also reveals whether stable-
coins commonly recover by calculating the proportion of “resurrected” stablecoins among those classified
as “dead” or “abandoned”. Understanding these dynamics is essential because it offers insights into
market trends and investor sentiment, enables stakeholders to assess risks and make informed decisions,
supports regulatory efforts to protect investors and maintain stability, identifies areas for improvement
in stablecoin design and governance, and enhances transparency, thereby boosting investor confidence in
the cryptocurrency ecosystem.

Overall, this approach provides a comprehensive overview of the stablecoin framework, particularly
concerning “abandoned” and “resurrected” stablecoins, and it can contribute to a more robust and

resilient stablecoin ecosystem.

3.2 Time Between Significant Peg Break and Stablecoin Collapse/Stabilization

To address the second goal of this study, we examined the presence of any significant structural break
in a stablecoin’s price peg using a simple linear regression model, where the price was regressed against
a constant of 1 to detect any substantial deviation from the peg. As most stablecoins are pegged to
the U.S. dollar at a 1:1 ratio, this model was deemed appropriate for our study framework. In this
regard, generalized fluctuation tests can be used to test for structural stability. Generalized fluctuation

tests involve fitting a model to the data and generating an empirical process that reflects fluctuations in



either the residuals or the parameter estimates. The limiting processes for these empirical processes are
well-defined, allowing for the calculation of boundaries with a crossing probability of « under the null
hypothesis. If the empirical process exceeds these boundaries, it indicates that the observed fluctuations
are unusually large, leading to the rejection of the null hypothesis of structural stability at the « signifi-
cance level. We note that if the price of a stablecoin were to decrease from 1 to 0.95, for instance, but
no significant break was detected by the previous tests, this price movement would not be considered a
depeg but rather an insignificant price fluctuation.

The first type of process that can be computed for a generalized fluctuation test is the cumulative
sum (CUSUM) process, which involves the cumulative sums of standardized residuals. Alternatively,
structural changes can be detected by analyzing moving sums of residuals (MOSUM) rather than cumu-
lative sums. A third approach involves using fluctuation processes based on estimates of the unknown
regression coefficients. These coeflicients can be estimated either recursively as the number of obser-
vations grows or within a moving data window of fixed bandwidth h, and then compared to estimates
derived from the entire sample. Detailed discussions on generalized fluctuation tests are available in
works like Kuan, Hornik (1995), Zeileis et al. (2002), Zeileis et al. (2005). Empirical processes such as
CUSUM, MOSUM, and other variants, as well as generalized fluctuation tests based on these processes,
are implemented in the R strucchange package.

We employed generalized fluctuation tests to determine the number of days before the official collapse
of the stablecoin or its price recovery, when a significant break in the peg occurs. In our work, we used
three types of processes to perform generalized fluctuation tests for structural change: the empirical
process based on recursive estimates (RE), an OLS-based CUSUM process, and an empirical process
based on moving estimates (ME).

The central concept of all generalized fluctuation tests is that the null hypothesis of no structural
change in the price peg should be rejected when the fluctuation of the empirical process at time ¢, e fp(t),
becomes improbably large compared to that of the limiting process. For one-dimensional residual-based
processes, this comparison is made using an appropriate boundary b (t), which the limiting process crosses
with a given probability «. If the empirical process exceeds b (t) or falls below — b (¢) at any time ¢, it
indicates that the fluctuation is unusually large, leading to the rejection of the null hypothesis at the «
significance level. A similar approach is used for k-dimensional estimate-based processes, but instead of
setting a boundary for the process itself, a boundary is applied to ||efp;(t)||, where ||-|| is an appropriate
functional applied to each component. Common functionals include 'max’ or 'range’. In our analysis we
set the confidence level o at 5%.

Testing for structural change in the price peg is crucial for the following reasons:



1. It allows us to identify breakpoints, i.e., pinpoint the exact moment when a stablecoin’s peg begins
to break down. This information is essential for investors and market participants to make informed

and timely decisions about their investments.

2. Detecting structural changes early can serve as an early warning system for investors, allowing
them to take proactive measures to manage risks associated with holding or trading stablecoins,

mitigate potential losses, and adjust their investment strategies accordingly.

3. By analyzing structural changes, researchers can gain insights into the underlying market dynamics
that contribute to stablecoin instability. This understanding can contribute to regulatory efforts

aimed at stabilizing the stablecoin market as well as improving stablecoin design.

3.3 Computation of market-implied probabilities of default (PDs)

The last goal of our work was to calculate the market-implied probabilities of default/death (PDs) for
stablecoins using a set of competing models to perform an out-of-sample forecasting analysis.

We first computed market-implied probabilities of default or ”death” (PDs) using the Zero Price
Probability (ZPP) method, as described in detail by Fantazzini (2022, 2023). However, instead of relying
on prices as in the original approach, we used the asset’s market capitalization. Market capitalization
was chosen over price because it represents the total value of a stablecoin, reflecting both its price and
circulating supply. This makes market capitalization a more comprehensive measure of market sentiment
and valuation, making it a suitable metric for assessing stability. In contrast, volume only represents
the total number of coins traded within a specific timeframe, which can fluctuate significantly and may
not accurately reflect the overall market sentiment or stability of the stablecoin. Therefore, market
capitalization is preferred over volume for computing the market-implied probability of default/ death
of stablecoins. Using the ZPP has several advantages: we can employ more realistic distributions than
the log-normal distribution and compute estimations for any future time period. This method estimates
the market-implied probability that the market capitalization of a stablecoin will be less than or equal
to zero, P (MCap, <0), within a specified time horizon (¢t < 7 < t + T'), considering that the market
capitalization (and the price) of a traded stablecoin is a truncated variable that cannot drop below zero.
The Zero Price Probability (ZPP) reflects the likelihood of the price/market capitalization reaching or
falling below the truncation level of zero, thereby acting as an indicator of default. For more details, see
Fantazzini et al. (2008).

The method involves three main steps:

1. First, use a general conditional model for the differences in market capitalizations (MCap):



Xy = m+e where, X, = MCap; — MCap,_1,

Et = @Zﬁ, Zt ™~ ud(O, 1) (1)

where p; and o; are the conditional mean and standard deviation, respectively.

2. Generate multiple trajectories N for market capitalizations up to time ¢ +7 using the model

estimated in the previous step.

3. Finally, calculate the probability of default/death P (MCap, < 0) as the ratio of n to N, where n
represents the number of instances out of N when the market capitalization fell to zero along the

simulated trajectory.

We considered the 1-day-ahead, 30-day-ahead, and 365-day ahead probability of death for each sta-
blecoin, that is, T' = {1,30,365}. The rationale for using different forecast horizons stems from the
possibility that distinct factors drive the collapse of different stablecoins over varying time intervals. For
instance, one stablecoin might experience a long-term fraud, while another might face technical issues
over a short period. In this context, Fantazzini et al. (2008) found that the default probabilities estimated
with the ZPP model for a set of bankrupt Italian stocks exceeded 50% well before the defaults —sometimes
even years in advance—while for a set of American defaulted stocks, this increase only occurred in the final
100 trading days. They explained this difference by referencing justice probes conducted at the time,
which revealed that large-scale illegal schemes to siphon money from the Italian companies were set up
much earlier, as far back as the 1990s, unlike the American cases. Similar variations are also possible
among stablecoins, as our review in Section 2 highlighted, making the use of different forecasting time
horizons, computed at various points before the default, a sensible approach.

Additionally, we also considered the Coz Proportional Hazards Model (CPHM ), a widely used model
in survival analysis, see Cox (1972), Breslow (1975) and Kalbfleisch and Schaubel (2023) for more details.
As a survival model, the CPHM analyzes the time until a specific event occurs in relation to various
covariates and examines the impact of these covariates on the likelihood of this event. In this setting,
the effect of a one-unit increase in a covariate is multiplicative on the hazard rate, indicating how the
risk of the event changes over time. In our study, the event could be the death of the stablecoin or a
significant break in its peg. The impact of different factors is measured by ”hazard ratios” (HR). The

CPHM uses a function, denoted as the hazard function A (¢), which represents the likelihood of an event,
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such as death (risk of death) in our case, occurring at time ¢:

h(t‘X) = ho(t) . exp(blxl + b21’2 + ...+ bpl'p), (2)

where the vector X is a vector of covariates, while hg (¢)is the baseline hazard, corresponding to the
function value when all covariates equal to zero.

The Hazard ratios (HR), denoted by exp(b;) for each covariate, indicate the relationship between the
covariate iand the likelihood of a particular event, such as the death of a stablecoin in our case. A HR
greater than 1 suggests a positive association with the event, while a HR less than 1 indicates a negative
association. If HR equals 1, no effect is indicated. The use of the Cox Proportional Hazards Model
offers several advantages, including its compatibility with both categorical and quantitative predictors.
Recently, Gatabazi et al. (2022) used the hazard model to assess the risk of cryptocurrencies based
on factors such as their blockchain platform (Ethereum or Standalone), regional origin, and period of
existence (2009-2013 or 2013-2017). Their findings showed that cryptocurrencies issued between 2013
2017 faced higher risks compared to those issued between 2009—2013. Additionally, the model identified
crypto-assets with undisclosed headquarters as being at increased risk. This model can be computed
using the survival or survminer R packages. We employed the Cox Proportional Hazards Model with
each stablecoin over time to assess its probability of death, given the occurrence of a peg break. As with
the ZPP method, we estimated the probabilities of death for three forecasting horizons: 1-day-ahead,
30-days-ahead, and 365-days-ahead.

3.4 Forecasting model evaluation

The predictive accuracy of different models regarding the probability of death was assessed by comparing
the predicted probabilities of default (PDs) with the actual outcomes of the stablecoins. Traditional
forecast evaluation metrics, including the Area Under the Receiver Operating Characteristic Curve (AUC
or AUROC), Brier Score, accuracy, sensitivity, and specificity, were then computed.

The AUC measures a binary classification model’s ability to distinguish between positive and negative
classes. It is derived from the area under the ROC curve, which plots the true positive rate against the
false positive rate at various classification thresholds. The AUC value ranges from 0 to 1, with higher
scores indicating better model performance. For more information, refer to Sammut and Webb (2011),
pp. 86975, and the references therein.

The Brier Score represents the mean squared error (MSE) applied to binary outcomes, as outlined by
Brier (1950). This score can be combined with the Model Confidence Set (MCS) method by Hansen et al.
(2011) to identify the best forecasting models at a specified confidence level. In this regard, consider the
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difference between the MSEs of models ¢ and j at time ¢, that is, d; j = MSE;; — MSE;,. The MCS
approach involves testing the hypothesis of equal predictive ability Ho ar : E(d; j,+) = 0, across all models
i, j in the set M. First, t-statistics are computed for each model i € M, denoted as t;. = d;. /var(d;.),
where d;. = m™! ZJEM Jij is the simple loss of model 7 relative to the average losses across models in
M, d;; =T7! Zthl dij+ represents the sample loss differential between models i and j, and var(d;.)
is an estimate of var(d;.). Next, the test statistic Tinax = max;cpr(t;.) is computed to evaluate the
null hypothesis. This statistic follows a non-standard distribution, so its distribution under the null
hypothesis is estimated using bootstrap methods with 1,000 replications and a minimum block length
of 7 days. If the null hypothesis is rejected, one model is removed from the analysis, and the testing
procedure is repeated.

Accuracy refers to the rate of correct classifications, calculated as the ratio of correct predictions to
the total predictions made. Although it is a commonly used metric for evaluating binary classification
models, it can be misleading when dealing with imbalanced datasets. Sensitivity, also known as recall,
indicates the percentage of true positive predictions among all actual positive instances in the dataset.
In our context, it reflects how effectively the model identifies dead stablecoins. Specificity, on the other
hand, represents the percentage of true negative predictions among all actual negative instances, assessing

the model’s ability to correctly identify stablecoins that are still functioning.

4 Empirical analysis

4.1 Data

The dataset used for the analysis was obtained from CoinMarketCap.com. This platform is a widely
recognized resource in the cryptocurrency space, providing comprehensive information on various crypto
assets, including cryptocurrencies, stablecoins, collectibles, and NFTs. The dataset includes historical
data on prices (open, close, high, and low), market capitalization, and trading volume. CoinMarketCap
offers real-time data on thousands of cryptocurrencies and tokens, making it an invaluable resource
for researchers, investors, traders, and enthusiasts. Additionally, the platform provides news, analysis,
educational content, and tools to help users monitor and understand the cryptocurrency market. We
compiled a dataset of 121 stablecoins, with the complete list presented in Table 1. For further analysis,

we used daily data of close prices, market capitalization, and trading volume for these stablecoins.
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N. Abbreviation Full Name ‘ N. Abbreviation Full Name ‘ N. Abbreviation Full Name
1 AGEUR Angel Protocol 41 mCUSD Moola Celo USD 81 USX sForce USD
2 BAC Basis Cash 42 MIM Magic Internet Money | 82 UUSDS SpiceUSD
3 BIDR BIDR 43 MIMATIC MAI 83 v1JPYC JPY Coin vl
4 BITCNY bitCNY 44 MONEY Moremoney USD 84 VAI Vai
5 BRCP BRCP TOKEN 45 MSUSD mStable USD 85 vBUSD Venus BUSD
6 BUSD Binance USD 46 MTR Meter Stable 86 vDAI Venus DAI
7 CADC CAD Coin 47 MUSD Mad USD 87 vUSDC Venus USDC
8 cCUSD Coin98 Dollar 48 MXNT Mexican Peso Tether 88 vUSDT Venus USDT
9 CEUR Celo Euro 49 nUSD nUSD (HotBit) 89 WANUSDT wanUSDT
10 COFFIN Coffin Finance 50 ONC One Cash 90 XCHF CryptoFrank
11 CUSD Celo Dollar 51 ONEICHI ONEICHI 91 xDAI xDAI
12 CUSDT Compound USDT 52 OUSD Origin Dollar 92 XIDR XIDR
13 DAI Dai 53 PAR Parallel 93 XSGD XSGD
14 DFUSD DefiDollar 54 RSV Reserve 94 XSTUSD SORA Synthetic USD
15 DGD DigixDAO 55 SBD Steem Dollars 95 XUSD xUSD Token
16 DGX DigixGoldToken 56 SEUR sEUR 96 xXUSD xDollar Stablecoin
17 DJED Djed 57 STATIK Statik 97 YUSD YUSD Stablecoin
18 DOLA DOLA 58 sUSD sUSD 98 FDUSD First Digital USD
19 DPT Diamond Platform Token | 59 TOR TOR 99 USDe Ethena USDe
20 DSD Dynamic Set Dollar 60 TRIBE Tribe 100 PYUSD PayPal USD
21 DUSD Decentralized USD 61 TRYB BiLira 101 QC Qcash
22 EOSDT EOSDT 62 TUSD TrueUSD 102 ITL Ttalian Lira
23 ESD ESD 63 USDB USD Bancor 103 USDSC Stably USD Classic
24 EUROC Euro Coin 64 USDC USD Coin 104 UsSDhQ UsSbhQ
25 EURS STASIS EURO 65 USDD USDD 105 BSD Basis Dollar
26 EURT Tether EURt 66 USDEX USDEX 106 MDS Midas Dollar Share
27 F1GOLD 1GOLD 67 USDH USDH 107 MDO Midas Dollar
28 FEI Fei USD 68 USDI USDi 108 ALUSD Alchemix USD
29 FFUSD Fuse Dollar 69 USDJ USDJ 109 FLOAT Float Protocol
30 FRAX Frax 70 USDK USDK 110 fUSDT Frapped USDT
31 FUSD Fantom USD 71 USDP Pax Dollar 111 ARTH ARTH Valuecoin
32 GUSD Gemini Dollar 72 USDPS USDP Stablecoin 112 BEAN Bean
33 HUSD HUSD 73 USDR Ratio Stable Coin 113 COUSD Coffin Dollar
34 IDRT Rupiah Token 74 USDS Stably USD 114 AUSD Alpaca USD
35 IRON Iron 75 USDs Sperax 115 FUSDT FEG Wrapped USDT
36 JPYC JPY Coin 76 USDT Tether 116 H20 H20
37 KBC Karatgold Coin 7 USDX USDX [Kava] 117 IUSDS Inflation Adjusted USDS
38 KRT TerraKRW 78 USDZ ZEDXION 118 EUROS SpiceEURO
39 LUSD Liquity USD 79 USN USN 119 QCAD QCAD
40 mCEUR Moola Celo EUR 80 UsSTC TerraClassicUSD 120 SBC Stable Coin
121 RUBCASH Rubcash

Table 1: List of downloaded stablecoins with their abbreviations and full names.

4.2 Key findings: proportion of "dead” and ”resurrected” stablecoins

We applied the method proposed by Feder et al. (2018) and Gandal et al. (2021) to our dataset of 121
stablecoins to identify which stablecoins had changed their status to “abandoned” and/or “resurrected,”
and how many times this occurred, see Table 2.

Our findings revealed that only 21% of the stablecoins in our dataset had changed their status to
“abandoned” at least once. Among these, 36% were resurrected (7% of the total sample); however, the
majority were subsequently considered abandoned once again. Only 11% of the stablecoins that had
been resurrected at least once retained the status of “resurrected” as their final status (1% of the total
sample).

Unlike Feder et al. (2018) and Gandal et al. (2021) with cryptocurrencies, we found a relatively low
percentage of stablecoins that were classified as abandoned. One possible reason for this discrepancy
is that the methodology proposed by Feder et al. (2018) begins with identifying a “candidate peak,”

which requires the price to be somewhat elevated before the collapse of the cryptocurrency. However,
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N. of times N. of times Date Date
Ne  Abbreviation Name ” Abandoned”  ”Resurrected” 7 Abandoned” ”Resurrected”
1 BITCNY bitCNY 1 0 2023-11-01 -
BRCP BRCP TOKEN 1 0 2023-11-08 -
2022-04-19 2023-01-14
3 CADC CAD Coin 3 2 2023-05-01 2023-06-01-
2023-07-01 -
4 COFFIN Coffin Finance 1 0 2023-07-01 -
5 DGD DigixDAO 2 1 2022-11-01 2022-12-01-
2023-02-01 -
6 DGX Digix Gold Token 2 1 2021-07-01 2021-10-01-
2023-11-01 -
7 DPT Diamond Platform T. 2 1 2021-05-15 2021-10-23-
2022-07-01 -
8 DSD Dynamic Set Dollar 1 0 2022-05-01 -
9 EOSDT EOSDT 2 1 2022-02-01 2022-05-01-
2022-07-01 -
10 ESD ESD 1 0 2022-06-01 -
11 IRON Iron 1 0 2024-01-01 -
12 KBC Karatgold Coin 1 0 2020-11-01 -
13 KRT TerraKRW 1 0 2022-06-01 -
14 nUSD nUSD (HotBit) 1 0 2022-11-12 -
15 SBD Steem Dollars 2 1 2021-05-01 2021-06-01-
2023-06-01 -
16 USDB USD Bancor 1 0 2024-02-01 -
17 USDR Ratio Stable Coin 1 0 2023-12-01 -
18 USDS Stably USD 1 0 2021-08-06 -
19 USX sForce USD 1 0 2021-12-09 -
20 v1JPYC JPY Coin vl 1 0 2022-04-06 -
21 XIDR XIDR 1 1 2024-02-01 2024-04-01
22 ITL Italian Lira 2 1 2020-04-01 2020-08-03-
2021-09-01 -
23 USDSC Stably USD Classic 1 0 2021-08-06 -
24 USDQ USDQ 2 2 2021-02-13 2021-06-15-
2022-05-01 -
25 BSD Basis Dollar 1 1 2022-05-01 -

Table 2: List of stablecoins that acquired the status of “abandoned” and/or “resurrected” according to
the methodology of Feder et al. (2018) and Gandal et al. (2021).

stablecoins, unlike cryptocurrencies, are designed to maintain their peg and exhibit lower volatility. As
a result, many stablecoins that broke their peg did not experience a price increase prior to this event.
To gain more insight, it is helpful to examine a few examples. Let’s consider the behavior of the close
prices for three stablecoins: TerraClassicUSD, Iron, and EOSDT, see Figure 1.

The graph shows that all of these stablecoins deviated from their pegs. Terra collapsed in May
2022 and was unable to recover. Iron collapsed in December 2022, but after a year, it experienced a
price increase with some peaks. EOSDT also broke its peg, but unlike the other stablecoins mentioned,
it was more volatile before the peg break. Terra did not exhibit price peaks or noticeable volatility
before the peg break, which is why the methodology proposed by Feder et al. (2018) did not classify it as
“abandoned.” The same applies to Iron, whose price was relatively stable before the peg break. However,

after its recovery, the price experienced a sudden peak at the end of 2023. A closer examination of the
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Figure 1: The behavior of close prices for 3 stablecoins: TerraClassicUSD, Iron, and EOSDT.

price behavior around this peak reveals that it was a sudden jump, meeting the criteria required by the
method to be considered “dead”. The last example, EOSDT —a more volatile stablecoin— demonstrates
that a stablecoin can receive a status of “resurrected.”

Conceptually, the design of stablecoins is the primary reason why the results of this methodology for
stablecoins differ from those obtained by Feder et al. (2018) for cryptocurrencies. While cryptocurrencies
are more volatile and likely to experience significant price fluctuations, it is uncommon for investors to
reinvest in stablecoins that have broken their peg, as this involves substantial risks and uncertainties
(including potential technical errors in the algorithm maintaining the peg), which may outweigh the
potential benefits.

Unfortunately, there are currently no better alternatives to the method proposed by Feder et al.
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(2018). Schmitz and Hoffmann (2020) suggested a simplified version of Feder et al. (2018)’s method,
where a crypto-asset is classified as dead if its average daily trading volume for a given month is less than
or equal to 1% of its previous historical peak. Conversely, a crypto-asset is classified as “resurrected” if
this average daily trading volume rises to 10% or more of its past historical peak. However, it is evident
that such an approach would be even less effective with stablecoins, rendering it unsuitable. Similarly,
the widely recognized professional rule that defines a crypto-asset as dead if its value falls below 1 cent,
and alive if its value rises above 1 cent, is difficult to apply to stablecoins. For example, in Figure 1,
out of the three abandoned stablecoins, only Iron dropped below the price of 1 cent. For a detailed

comparison of these three criteria for classifying a crypto-asset as dead or alive, see Fantazzini (2022).

4.3 Key findings: time between significant peg break and stablecoin col-

lapse/stabilization

The second objective of our study was to perform structural tests using a simple linear regression model
(against a constant of 1) to analyze the price behavior of stablecoins. This approach aimed to determine
the number of days occurring between a structural change and the subsequent collapse of the stablecoin
or its price recovery.

The algorithm to calculate the days leading up to a stablecoin’s collapse involved several steps. First,
we examined each stablecoin individually to identify the point when its price began to significantly
deviate from its peg, utilizing one of the previously discussed structural break tests. To illustrate this
approach, we consider two stablecoins that did not experience a peg break, such as Moremoney USD
(MONEY) and mStable USD (MSUSD). The close prices and the Recursive Estimates (RE) processes

are shown in Figure 2.

16



MONEY 2022-03-13 / 2024-09-23 MSUSD 2020-07-16 / 2021-12-07
1.10 1.10

1.05 1.05
1.00 1.00
0.95 095
0.90 0.90
0.90 0.90
I I 1 rmtT 17 17 17 17T 1T 1T T T T T T T T TT
Mar-2022 Mar-2023 Mar-2024 Sep-2024 Jul-2020 Mow-2020 Mar-2021  Jul-2021 Now-2021
RE test (recursive estimates test) RE test (recursive estimates test)

1.0
1.0

T~ |

! ! I ! I I I I ! I I I
20225 20230 20235 20240 20245 20206 2021.0 20214 2021.8

Empirical fluctuation process
10 -05 00 05

Empirical fluctuation process
1.0 -05 00 05

Time Time

Figure 2: Prices behavior and assumed RE processes for two stablecoins: Moremoney USD (MONEY)
and mStable USD (MSUSD).

It is evident from the graph that both stablecoins remained relatively stable, experiencing only minor
fluctuations around their peg. After computing the RE process and plotting the results, no significant
structural change in the price process of these stablecoins was observed. Structural change tests based
on these RE processes did not reject the null hypothesis of no break in the price peg, with p-values of
0.43 and 0.15, respectively.

Next, we consider a stablecoin that did break its peg —TerraClassicUSD (USTC)- which lost its
peg in May 2022, making it a significant example. We used data from September 2020 to early May
2022, a period during which Terra’s price fell from $1 to $0.4, raising uncertainty about whether the
stablecoin could recover its peg. The price behavior, along with three empirical processes based on
recursive estimates (RE), the OLS-based CUSUM process, and moving estimates (ME), are presented in

Figure 3. The p-values for the structural change tests based on these processes are 0.02, 0.02 and 0.01,
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respectively, and the null hypothesis is rejected at the 5% significance level for all three tests.
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Figure 3: Prices behavior three empirical fluctuation processes for TerraClassicUSD (USTC)

We remark that if structural tests based on different processes yielded varying results, we primarily
relied on the RE process rather than the ME process when assessing structural changes in stablecoin
prices. The RE process is advantageous because it adapts to changes in the data over time by updating
estimates recursively, making it more sensitive to structural breaks that occur gradually or intermittently.
Unlike the ME tests, which depend on moving averages and may experience lag effects in detecting
structural changes, the RE test operates without lag, providing more immediate insights into changes in
stablecoin prices. This minimizes the risk of delayed responses to market developments.

We applied these tests and then calculated the time period between the structural change and the
stablecoin’s collapse/recovery for the entire dataset of stablecoins. More specifically, for the dead stable-

coins, we considered the period between the statistically significant structural break and the time when
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the price stabilized around a “new” lower value, while for resurrected stablecoins, we considered the
period between the structural break and the time when the price recovered to their peg value. However,
we remark that we had to exclude a certain number of stablecoins with extreme price volatility that were
simply unable to maintain their peg throughout their existence, so the dataset for the second step of
our analysis consisted of 50 stablecoins. Besides, if a stablecoin did not break its peg, we obviously did
not compute the time between the peg break and the stablecoin’s collapse or stabilization. The average
number of days for the stablecoins included in the analysis was approximately 10 days. The table with
the test p-values (using the RE process), the date of the price peg break, and the final outcomes for each

stablecoin considered in this analysis are presented in Table 3.

Ne Abbreviation Name p-value Structural change End date  # of days Outcome

1 AGEUR Angel Protocol 0.045 yes 2023-03-16 3 Stabilization
2 ALUSD Alchemix USD 0.010 yes 2023-06-08 10 Collapse

3 AUSD Alpaca USD 0.330 no 2022-08-18 - Stabilization
4 BAC Basis Cash 0.000 yes 2021-01-16 9 Collapse

5 BIDR BIDR 0.038 yes 2020-09-15 4 Collapse

6 BITCNY bitCNY 0.000 yes 2018-09-19 1 Stabilization
7 BSD Basis Dollar 0.293 no 2021-12-16 - Stabilization
8 BUSD Binance USD 0.000 yes 2024-03-17 10 Stabilization
9 c¢CUSD Coin98 Dollar 0.000 yes 2023-04-18 8 Stabilization
10 CUSD Celo Dollar 0.019 yes 2022-11-17 10 Stabilization
11 DAI Dai 0.147 no 2024-04-27 - Stabilization
12 DFUSD DefiDollar 0.006 yes 2022-12-27 15 Stabilization
13 DOLA DOLA 0.000 yes 2023-04-22 12 Stabilization
14 EOSDT EOSDT 0.014 yes 2023-03-19 4 Collapse

15 FRAX Frax 0.182 no 2021-09-27 - Stabilization
16 fusDT Frapped USDT 0.474 no 2024-04-27 - Stabilization
17 FUSDT FEG Wrapped USDT 0.013 yes 2022-05-06 16 Stabilization
18 GUSD Gemini Dollar 0.018 yes 2018-12-23 6 Stabilization
19 HUSD HUSD 0.000 yes 2022-11-08 12 Collapse

20 IDRT Rupiah Token 0.308 no 2019-12-08 - Stabilization
21 IRON Tron 0.035 yes 2022-12-23 7 Collapse

22 mCUSD Moola Celo USD 0.000 yes 2022-11-01 14 Stabilization
23 MIM Magic Internet Money  0.000 yes 2023-07-13 7 Stabilization
24 MIMATIC MAI 0.000 yes 2023-07-27 15 Stabilization
25 MONEY Moremoney USD 0.429 no 2024-04-27 - Stabilization
26 MSUSD mStable USD 0.152 no 2021-09-01 - Stabilization
27 nUSD nUSD (HotBit) 0.000 yes 2022-11-15 21 Stabilization
28 ONEICHI ONEICHI 0.389 no 2024-04-27 - Stabilization
29 OUSD Origin Dollar 0.047 yes 2021-01-08 2 Collapse

30 PYUSD PayPal USD 0.071 no 2024-04-27 - Stabilization
31 RSV Reserve 0.049 yes 2023-12-13 12 Stabilization
32 STATIK Statik 0.011 yes 2022-08-10 4 Collapse

33 TOR TOR 0.028 yes 2023-07-10 4 Collapse

34 USDEX USDEX 0.002 yes 2023-05-20 13 Collapse

35 USDH USDH 0.048 yes 2023-05-07 13 Stabilization
36 USDI USDi 0.058 no 2024-04-27 - Stabilization
37 USDJ USDJ 0.000 yes 2022-11-16 6 Increase

38 USDPS USDP Stablecoin 0.010 yes 2022-04-21 3 Collapse

39 UsbQ UsbhQ 0.001 yes 2020-04-26 16 Stabilization
40 USDR Ratio Stable Coin 0.000 yes 2023-10-23 11 Collapse

41 USDS Stably USD 0.315 no 2023-02-14 - Stabilization
42 USDSC Stably USD Classic 0.194 no 2023-02-14 - Stabilization
43 UsSDT Tether 0.000 yes 2017-04-30 21 Stabilization
44 USDZ ZEDXION 0.015 yes 2023-03-13 5 Stabilization
45 USN USN 0.273 no 2024-04-23 - Stabilization
46 USTC TerraClassicUSD 0.017 yes 2022-05-12 8 Collapse

47 xDAI xDAI 0.198 no 2024-01-24 - Stabilization
48 XIDR XIDR 0.280 no 2023-09-18 - Stabilization
49 XSTUSD SORA Synthetic USD  0.009 yes 2022-09-11 20 Stabilization
50 xXUSD xDollar Stablecoin 0.042 yes 2023-04-22 4 Stabilization

Table 3: P-values for the structural change tests based on RE empirical fluctuation processes, date of
the price peg break, and final outcomes for each stablecoin.
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4.4 Key findings: computation of market-implied probabilities of default

We calculated market-implied probabilities of default (PDs) using the Zero Price Probability (ZPP)
method by Fantazzini et al. (2008), incorporating stablecoins’ market capitalization instead of prices.
As previously mentioned, the rationale for using market capitalization is that it reflects both the price
and circulating supply of stablecoins, thereby capturing the overall market sentiment. To illustrate the
relationship between prices and market capitalization, we can examine the examples of two stablecoins:
TerraClassicUSD (USTC) and Tether (USDT'). The former broke its peg in May 2022, while the latter

generally maintained its peg, as shown in Figure 4.
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Figure 4: Market prices and market capitalization of TerraClassicUSD (USTC) and Tether (USDT).

As evident from Figure 4, when Terra broke its peg, its market capitalization also experienced a sharp
decline. In contrast, Tether’s market capitalization followed an upward trend while its price remained
relatively stable.

We analyzed the entire dataset of stablecoins, but many stablecoins (especially those that collapsed)
had missing market capitalization data, which led us to exclude them from the analysis. The final

dataset for the third step of our analysis consisted of 47 stablecoins ﬂ We computed different PDs for

2The dataset used to test for a break in the peg includes 50 stablecoins, excluding those with extreme price volatility
that were unable to maintain their peg throughout their lifespan. Although these coins are formally classified as stablecoins,
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the stablecoins included in our study, based on varying time frames for the estimation windows (30 days,
365 days, and the entire available historical data before the forecast) and different forecasting horizons
(1-day ahead, 30-day ahead, and 365-day ahead). As in our earlier method for testing structural change,
we selected the end date as the period when the price began to deviate for at least a few days. For
example, TerraClassicUSD (USTC) broke its peg in May 2022, so we analyzed the period up to the
beginning of May 2022 (2022-05-12), considering three time frames: 1) from 2022-04-12 to 2022-05-12; 2)
from 2021-05-12 to 2022-05-12; and 3) from its launch in September 2020 to 2022-05-12. The computed
probabilities for all stablecoins are available from the authors upon request.

After calculating the PDs for different estimation windows and forecasting horizons, we treated the
analysis as a classification problem and computed the AUC score for each model specification, as well
as the Brier Score. Additionally, we also calculated accuracy, sensitivity, and specificity for each model,
using two alternative thresholds for converting probabilities into binary variables: 1) a threshold of 50%;
2) a threshold equal to the proportion of dead stablecoins in the sample (i.e., the empirical prevalence).
We remark that a 50% threshold is not advisable for our dataset due to the imbalance between the two
classes. These forecasting metrics are reported in Table 4, together with the models included in the MCS

at the 10% confidence level.

Model AUC Brier-S. MCS Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Binary threshold: 50% Binary threshold:  e. prevalence
zpp-1 exp 30 0.56 0.15 Included 0.83 0.00 0.97 0.76 0.00 0.90
zpp-30 exp 30 0.77 0.16 Included 0.80 0.57 0.85 0.76 0.85 0.75
zpp-365 exp 30 0.83 0.32 NO 0.63 1.00 0.57 0.59 1.00 0.52
zpp_1 exp 365 0.61 0.13 Included 0.85 0.00 1.00 0.85 0.14 0.97
zpp-30 exp 365 0.77 0.13 Included 0.83 0.28 0.92 0.87 0.57 0.92
zpp-365 exp 365  0.74 0.19 Included 0.78 0.71 0.80 0.72 0.71 0.72
zpp-1 exp all 0.58 0.14 Included 0.83 0.00 0.97 0.83 0.14 0.95
zpp-30 exp all 0.73 0.15 Included 0.78 0.28 0.87 0.78 0.57 0.82
zpp-365 exp all 0.69 0.19 Included 0.78 0.71 0.80 0.70 0.71 0.70

Table 4: AUC, Brier scores, models included in the MCS, and evaluation metrics for different ZPP
models (with different estimation windows and forecasting horizons), using two alternative thresholds for
converting probabilities into binary variables. Abbreviations meaning: the first number is the number
of days for the forecasting window, while second number is the size of the estimation window. For
example, zpp_1 exp 30 refers to the PD computed with the ZPP model for 1-day ahead forecasts, using
an estimation window of 30 days

The ZPP models with 365-day estimation windows seem to offer the best balance in terms of forecast-
ing metrics, while models with 30-day estimation windows appear to be less stable, particularly regarding

Brier scores and sensitivity. However, it is important to emphasize that more robust results would require

their behavior resembled that of cryptocurrencies with large price fluctuations, making it meaningless to test for a break
in their peg. Market capitalization data were not required for this analysis. Conversely, the dataset used to compute
market-implied probabilities of default (PDs) consists of 47 stablecoins for which market capitalization data were available.
Unlike the first dataset, the criterion of maintaining the peg was not applied. Instead, the analysis focused on whether a
stablecoin was classified as ”dead” or "alive” (a binary classification problem). The similar sizes of these two groups (50
and 47 stable-coins, respectively) are purely coincidental and unrelated to the selection criteria
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a much larger dataset, especially with respect to stablecoins that have collapsed. This highlights a key
limitation of our study: the small size of our dataset. This is not a new challenge when working with
credit risk for crypto-assets. For example, the seminal work by Moore et al. (2013), which addressed
credit risk for crypto-exchanges, also dealt with a dataset of only 40 exchanges.

We then used the Cox Proportional Hazards Model (CPHM) to calculate the probability of death for
each stablecoin following a break in the peg, with lagged market capitalization levels as the regressors.
Our analysis considered lagged market capitalization data up to seven days. In this context, a deviation
from the peg was treated as an event. Since the hazard model produces time-dependent survival prob-
abilities, we calculated the default probabilities (the complement of survival probabilities) over time for
each stablecoin. As in the ZPP method, we considered three forecasting horizons: 1-day ahead, 30-days
ahead, and 365-days ahead. The calculated probabilities for the CPHM are available from the authors
upon request. After obtaining the PDs, we computed the AUC and Brier scores for all considered models,
as well as the usual evaluation metrics (accuracy, sensitivity, and specificity) for the previously discussed

probability thresholds, and we also found which models were included into the MCS, as shown in Table

5.
Model AUC  Brier-S. MCS Accuracy Sensitivity —Specificity ~Accuracy Sensitivity Specificity
Binary threshold: 50% Binary threshold:  e. prevalence
hz_1 0.69 0.13 Included 0.85 0.14 0.97 0.87 0.28 0.97
hz_30 0.82 0.12 Included 0.85 0.28 0.95 0.89 0.57 0.95
hz 365 0.87 0.11 Included 0.80 0.57 0.85 0.80 1.00 0.77

Table 5: AUC, Brier scores, models included in the MCS, and evaluation metrics for different CPHMs
(with different forecasting horizons), using two alternative thresholds for converting probabilities into
binary variables.

High AUC values and respectable accuracy indicate that the Cox Proportional Hazards Model can
be considered a good option for assessing the risk of default for stablecoins. However, we note again that
when using different thresholds for obtaining binary variables in predicting models, it is better in our
case to rely on the empirical prevalence rather than the more common threshold of 50%. This is due to
the unbalanced nature of our dataset between defaulted and surviving stablecoins.

If we compare the ZPP and CPHM models’ performance, we observe that the most accurate models
were those that used the ”1-year-ahead” forecasting horizon. While both the ZPP and hazard models
performed well in predicting the probability of stablecoin default, the hazard model was slightly superior
according to the AUC and Brier scores. This may be because hazard models are specifically designed to
model event occurrence over time, making them well-suited for survival analysis tasks, such as predicting
stablecoins deaths. Their formulation accounts for censoring and time-to-event data, providing a more
robust framework for modeling the likelihood of stablecoin death. However, all models except one (the
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ZPP with 365-day ahead forecasts and a 30-day estimation window) were included in the MCS at the
10% confidence level (see Tables 4-5), indicating that the models’ forecasts are generally not statistically
different. In this context, it is worth noting that large-scale simulation evidence reported by Hansen et
al. (2011) suggests that “it takes about 500 observations to remove all the poor models” (Hansen et al.,
2011, p. 479). Given that our forecasting sample consists of fewer than 50 observations, it is expected
that most models would be included in the MCS.

Overall, these models complement each other due to their distinct strengths and capabilities. The
ZPP model excels in estimating the probability of default based solely on market capitalization, offering
valuable insights into market sentiment and investor behavior. On the other hand, the hazard model pro-
vides a robust framework for survival analysis. By combining insights from both models, researchers and
investors can gain a comprehensive understanding of stablecoin default probabilities, enabling more effec-
tive risk management and investment strategies. Combining these two approaches can be an interesting

avenue for further research.

5 Robustness check: key factors behind stablecoins’ collapse

To further understand the underlying factors that contribute to stablecoin instability and potential
collapse, we conducted a robustness analysis using the Cox Proportional Hazards Model. Inspired by the
approach of Gatabazi et al. (2022), who employed this model to explore the determinants of coin and
token survival, we extend our analysis to stablecoins specifically, examining the following regressors: 1)
the type of stablecoin (asset-backed, crypto-backed, or algorithmic, where the first one represent the base
category), 2) the year the stablecoin was launched (“Year launch”), 3) whether the stablecoin was built
on the Ethereum blockchain (“Ethereum”), 4) the average stablecoin market capitalization and 5) the
stablecoin’s final status —whether it collapsed or not (“Status”), which served as the dependent variable.

Given the limited size of our dataset, we considered four possible model specifications: a full model
with all variables, a model where the variables were selected by stepwise selection (single p-values < 0.10
and p-value for the joint LR test < 0.05), a model where the variables were selected using LASSO
regularization via 10-fold cross-validation following the procedure outlined in James et al. (2023), and
a model with LASSO where the variable “Year launch” was substituted with yearly dummy variables
from 2018 till 2023. The estimated coefficients of these models are reported in Table 6, along with
the p-value for the likelihood ratio test for the null hypothesis that all coefficients are zero, the p-value
for the global test of the proportional hazards (PH) assumption of the Cox regression using the scaled
Schoenfeld residuals (see Grambsch and Therneau (1994) for more details), and the concordance statistic,

which computes the agreement between the observed responses and the predicted responses from the Cox
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model (closely related to Kendall’s tau-a and tau-b, Goodman’s gamma, and Somers’ d), see Harrell et

al. (1982) and Uno et al. (2011) for more details.

CPH CPH (stepwise CPH+LASSO (f) CPH+LASSO (¥)

(full model) selection) with separate years
Ethereum -0.74 -0.92 (*) -0.69 -0.81
Year launch 0.38 0.45 (*) 0.37 /
Algo_backed 0.58 0.72 0.57
Crypto_backed -0.15
Market_Cap 0.00 0.00
Year 2018 / / / ~19.45
Year 2021 / / / -0.38
Year 2022 / / / 0.76
P-value LR test 0.09 0.02 0.05 0.02
P-value test for NA (1) 0.14 NA (1) 0.28
PH assumption
Concordance 0.67 0.66 0.67 0.71

* Significance at the 10% level. () T-statistics not available for LASSO. () The test could not be
computed numerically.

Table 6: Coeflicient estimates, hazard ratios and misspecification tests for the Cox Proportional Hazards
Model (CPHM), under four specifications.

The estimated coeflicients for the full model indicated that none of the variables were statistically
significant, although the signs of the coefficients aligned with expectations. For example, stablecoins
built on the Ethereum blockchain showed a lower likelihood of collapse, older stablecoins exhibited
reduced risk, and algorithmic stablecoins were more prone to failure compared to asset-backed ones
(which served as the baseline category). The lack of parameter significance was likely due to the limited
sample size, prompting us to consider three additional model specifications. Notably, the results for these
alternative models were qualitatively similar, confirming the importance of being built on the Ethereum
blockchain, using older stablecoins, and avoiding algorithmic stablecoins. The fact that the test of the
proportional hazards assumption could not be numerically computed for the full model and for the model
estimated using LASSO highlights some numerical instability problems. However, the model estimated
with LASSO where the variable “Year launch” was replaced with yearly dummy variables appears to be
the best, according to post-estimation statistics.

These findings suggest that the resilience of stablecoins built on Ethereum may stem from the
blockchain’s established reputation, extensive adoption, and the fast and reliable operations it offers.
Additionally, Ethereum’s advanced smart contract functionality allows for the implementation of sophis-
ticated stabilization mechanisms, which are crucial for maintaining the price stability of many stablecoins.
These factors likely contribute to Ethereum-based stablecoins being less susceptible to collapse.

Our results are largely consistent with those of Gatabazi et al. (2022), who found that cryptocur-
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rencies built on the Ethereum blockchain are less vulnerable to failure and that newer cryptocurrencies
face a higher risk of collapse. However, it is also important to recognize the limitations of our analysis.
The lack of statistical significance of most covariates and the numerical issues for some models’ specifi-
cations are partly due to the small and imbalanced nature of our dataset, with only a limited number of
stablecoins classified as “dead.” These two factors reduce the statistical power of our models and makes
it difficult to draw definitive conclusions regarding the impact of the covariates on stablecoin survival.
In summary, while our findings offer some insights into the factors influencing stablecoin stability, they
should be interpreted with caution due to the constraints imposed by the dataset size and composition.
Future research with a larger and more balanced dataset is needed to verify these results and provide

more robust evidence on the determinants of stablecoin collapse.

6 Conclusions

Stablecoins represent a significant development within decentralized finance (DeFi) and are a highly
debated topic given the growing interest in digital assets among researchers, investors, and crypto-
enthusiasts. Designed to provide stability in the volatile cryptocurrency market, stablecoins aim to
address key challenges in both traditional financial systems and DeFi, offering a solution to price volatil-
ity while providing more transparency, faster transactions, and lower costs compared to conventional
banking. Their potential to reshape the future of finance highlights the importance of understanding the
risks and factors influencing stablecoin stability.

This study contributes to the existing literature by focusing specifically on the credit risks associated
with stablecoins, unlike previous research that tends to generalize findings across digital assets. Our
results confirm that a significant proportion of stablecoins have already failed, consistent with previous
studies dealing with crypto-assets as a whole. By applying the methodology proposed by Feder et al.
(2018), we found that approximately 21% of stablecoins were "abandoned” at least once, with only
36% being "resurrected.” However, the majority of these "resurrected” stablecoins were later abandoned
again, and only 11% maintained their "resurrected” status over time. These findings align with the
hypothesis that once a stablecoin loses its peg, regaining user confidence is challenging, often leading
to further decline and eventual failure. This difficulty in recovery is intuitive, given that a broken peg
typically signals underlying technical issues or market distrust, making it hard for the issuer to restore
stability.

We also computed the time between a structural break in a stablecoin’s price and its eventual collapse
(or stabilization), and we found it to be relatively short, typically ranging from a few days to a couple of

weeks. On average, this period was approximately equal to ten days. Testing for structural changes in
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the price peg is critical for several reasons. First, it enables the identification of breakpoints, allowing us
to determine the precise moment when a stablecoin’s peg begins to fail. This information is invaluable for
investors and market participants seeking to make timely and well-informed decisions. Early detection
of structural changes can also function as an early warning system, enabling investors to take proactive
measures to manage risks, mitigate potential losses, and adjust their strategies accordingly. Addition-
ally, analyzing these structural shifts offers researchers valuable insights into the market dynamics that
contribute to stablecoin instability. Such understanding not only aids in regulatory efforts to stabilize
the stablecoin market but also informs improvements in stablecoin design.

We then estimated stablecoin probabilities of death/default (PDs) based on market capitalization,
considering different historical data windows and forecasting horizons. Our analysis showed that the
Zero Price Probability (ZPP) models with a 365-day estimation window provided the best balance in
forecasting performance, while models with a 30-day estimation window were less stable, particularly in
terms of Brier scores and sensitivity. In addition to the ZPP approach, we also applied the Cox Propor-
tional Hazards Model (CPHM) to estimate default probabilities, using lagged market capitalization as
regressors. When comparing the performance of the ZPP and CPHM models, we found that the most
accurate predictions came from models using a 1-year-ahead forecasting horizon. Moreover, while both
models performed well, the hazard model had a slight edge, likely due to its design for survival analysis
and time-to-event modeling, which makes it particularly suitable for predicting stablecoin deaths. The
complementary nature of these models suggests that using both can provide a more comprehensive un-
derstanding of stablecoin credit risks. The ZPP model offers insights into market sentiment based on
market capitalization, while the hazard model provides a robust framework for survival analysis. To-
gether, these tools can guide better risk management and investment strategies in the stablecoin market,
an avenue we leave for future research.

To further explore the factors driving stablecoin collapse, we conducted a robustness check using
the Cox Proportional Hazards Model and four model specifications. The analysis revealed that stable-
coins based on the Ethereum blockchain are less prone to failure, older stablecoins exhibit reduced risk,
and algorithmic stablecoins are more prone to failure compared to asset-backed ones. The robustness
of Ethereum’s ecosystem, coupled with its strong security features and established reputation, likely
contributes to the lower risk of stablecoin collapse when built on this blockchain.

However, several limitations of this study must be acknowledged. First, the dataset was limited to
only 121 stablecoins, a relatively small number compared to similar studies that often analyze thousands
of cryptocurrencies. Furthermore, this dataset was constrained by missing market capitalization data
and several volatile stablecoins unable to maintain their pegs, reducing the sample size even further.

Additionally, the sample was imbalanced, with a low proportion of failed stablecoins, which impacted
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the reliability of the statistical analysis. As a result, while our findings provide valuable insights, they
should be interpreted with caution. Future research should aim to validate these results using a larger,
more balanced dataset to provide more robust evidence on the factors driving stablecoin collapse.
Despite these limitations, we believe our study offers useful insights for investors and traders interested
in maximizing returns, managing risks, and optimizing their portfolios in the stablecoin market. The
data and models presented here can serve as tools to evaluate the credit risks associated with stablecoins,

offering a deeper understanding of their nature and the dynamics influencing their stability.
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