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Abstract  

In this paper, we propose an alternative method that applies the model reduction techniques to the 𝑉𝐴𝑅 

framework when the number of variables is sufficiently large. The relevance of the model reduction in the 

𝑉𝐴𝑅 and 𝑆𝑉𝐴𝑅 systems comes from that the new trajectories preserve the qualitative properties of the 

initial trajectories. In economic analysis, this allow to apprehend the underlying phenomena. Also, the 

resulting model is accurate, computationally less expensive and based on the real meaning of the system.  
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1. Introduction 

Recently high-dimensional models gained considerable importance in several areas of economics as 

monetary forecasting and home-price data. Even if the standard VAR models (Sims 1980, Stock and 

Watson 2001) usually include no more than ten variables, the number of parameters grows quadratically 

with the size of the model. The reduction dimension is more interesting than the principal component 

analysis (PCA), because the latter drops many important information between 𝑌 and 𝑋. The reduction 

method operates a paradigm of reduction before modeling the regression between 𝑌 and 𝑋, and does not 

have the disadvantage of losing information in 𝑋 necessary for estimating 𝑌, and it does not limit the choice 

of regression methodology (Adragni and Cook 2009, Cook 2007). The direct numerical simulations of 

dynamical systems have been an extremely successful means for studying complex phenomena in sciences. 

However, the dimensionality of such simulations may increase to unmanageable levels of storage and 

computational requirements. One approach to overcoming this problem is through model reduction. Model 

reduction of large-scale dynamical systems has become very popular (Antoulas 1998, 1999, 2005; Grimme 

1995, 1997; and a good survey by Snowden et al. 2017). The idea is to construct a “simple” lower order 

model that approximates well the behavior of a “complex” larger dynamical model. A complex system is 

essentially a mathematical model which describes a real-world process. This mathematical model is often 

characterized by partial differential equations (PDEs) or ordinary differential equations (ODEs). Since 

improved accuracy (using e.g. a very fine discretization) leads to models of high complexity, this may 

become prohibitive for certain computations (as control process and optimization). Therefore, it is essential 

to design models of reduced complexity without sacrificing too much accuracy.1  

Our goal is to give a first step in using the model reduction technics particularly in economics 

modeling to apprehend complex phenomena that induce many endogenous variables. We will apply the 

model order reduction to the 𝑉𝐴𝑅 framework that preserve the properties of the contracted structural 

models. Such model reduction is based on the real meaning of the underlying system and its mathematical 

modeling. The suggested approach permits to retain the significant variable functions in the model. It allows 

that the resulting model is accurate yet computationally less expensive. In Section 2, we introduce the notion 

of model reduction in dynamical system and we display the methodology of the 𝑉𝐴𝑅 and 𝑆𝑉𝐴𝑅 models. 

The focus of Section 3 is the presentation of the methodology adopted to define the reduced model 𝑅𝑉𝐴𝑅 

and the associated algorithm. Section 4 addresses the experimental results and the comparison with the 

classical methods. We conclude in Section 5.   

 

 
1 For more details on the model reduction and the related technics see Antoulas (1999, 2005), Grimme 

(1997), and Moore (1981). 
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2. Preliminaries 

Let consider the following linear dynamical system: 

{
𝜎𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑋(𝑡) + 𝐷𝑢(𝑡)
                                                  (𝑆) 

Where 𝜎 is either the derivative operator 𝜎𝑓(𝑡) = 𝑓̇(𝑡) or the shift operator 𝜎𝑓(𝑡) = 𝑓(𝑡 + 1), 𝑡 ∈ 𝑍 and 

the matrices 𝐴, 𝐵, 𝐶 and 𝐷 are such that  

Σ = (
𝐴 𝐵
𝐶 𝐷

)  ∈ ℝ(𝑛+𝑝)×(𝑛+𝑚) 

We identify the complexity of the system (𝑆) with its order 𝑛. The motivation for this definition is that the 

simulation time of the system (𝑆) is strongly correlated to the number 𝑛 of differential equations. A reduced 

order system i.e. an approximation of (𝑆) is a system of the following form: 

{
𝜎𝑋𝑘(𝑡) = 𝐴𝑘𝑋𝑘(𝑡) + 𝐵𝑘𝑢𝑘(𝑡)

𝑦𝑘(𝑡) = 𝐶𝑘𝑋𝑘(𝑡) + 𝐷𝑘𝑢𝑘(𝑡)
                                                 (𝑆𝑘)  

with     Σk = (
𝐴𝑘 𝐵𝑘

𝐶𝑘 𝐷𝑘
)  ∈ ℝ(𝑘+𝑝)×(𝑘+𝑚)  

Where 𝑋𝑘(𝑡) ∈ ℝ𝑘, and 𝑘 ≪ 𝑛 such that the following properties are satisfied:  

(i) The approximation error is small, and there exists a global error bound. 

(ii) System properties, like stability, passivity, are preserved. 

(iii) The procedure is computationally stable and efficient. 

We rewrite the system (S) in some appropriate coordinates with 𝑘 components. There are many 

sets of methods which are currently in use as Singular Values Decomposition (SVD) based methods, 

moments matching based methods, truncated balanced model reduction. This paper discusses some 

technical methods of economic analysis founded on the Structural Vector Auto Regression models (𝑆𝑉𝐴𝑅). 

It corresponds to an alternative to the existing methods of 𝑉𝐴𝑅 models in the case of large scale. The 

canonical innovations, associated to a 𝑉𝐴𝑅 model, represent the shocks whose propagation results in the 

fluctuations of the studied dynamic system. Under the assumption that the innovations are not 

instantaneously correlated, the contribution of each impulse on the various series of a given system is 

measurable. If the shocks are not independent, Sims (1980), proceeded by an orthogonalization of the 

Cholesky type. But, this orthogonalization is purely statistical and is not associated to an economic theory. 

Moreover, it skews the economic interpretation of the obtained shocks.  
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𝑽𝑨𝑹 Methodology and hypotheses 

Let's consider an economic system composed of a vector 𝑋 and let 𝑢𝑡 be the canonical innovation which 

corresponds to the anticipated part of the series observed between the dates 𝑡 and 𝑡 − 1. The estimate of 

these innovations is carried out according to the Sims principle given in its founder article (1980), starting 

from the dynamic canonical vector auto regression representation given by:  

𝑋𝑡 = 𝐴1𝑋𝑡−1 + 𝐴2𝑋𝑡−2 + ⋯ + 𝐴𝑝𝑋𝑡−𝑝 + 𝑢𝑡                                           (2.1) 

At each date 𝑡, the errors are estimated by the residues of the regression corresponding to the 

individual estimate of each equation of the 𝑉𝐴𝑅. If the shocks are not independent, Sims (1980) proceeded 

by an orthogonalization of the Cholesky type, which constitutes a statistical constraint. The disadvantage 

of this approach is that it does not allow for an economic interpretation. The orthogonalization obtained by 

the decomposition of Cholesky is largely criticized by the partisans of the 𝑆𝑉𝐴𝑅 methodology, who 

recommend an orthogonalization based on identifying constraints resulting from the economic theory 

(Shapiro and Watson 1988, Blanchard and Quah 1989, King and al. 1991). The methodology of 

identification assumes the existence of a linear relation between the structural shocks noted 𝜀𝑡 and the 

canonical shocks 𝑢𝑡 of the form: 

𝜀𝑡 = 𝐻𝑢𝑡                                                                            (2.2) 

where 𝐻 is a passage matrix. This method supposes that the components of 𝜀𝑡 are not correlated between 

them and have a unit variance:  

𝐸(𝜀𝑡𝜀𝑡
′) = 𝐼                                                                      (2.3) 

3. 𝑹𝑽𝑨𝑹 methodology 

In the reduction procedure, the model (𝑆𝑘) should be of lower order than the model (S), but its trajectories 

should preserve some qualitative properties of the trajectories of (S) and allow to capture the underlying 

phenomena. Precisely, we will proceed as follows: 

Step 1: Change the coordinates 𝑋(𝑡). This consists to find a suitable invertible matrix 𝑇 ∈ ℝ𝑛×𝑛 and then 

transform the state-space model.  

Step 2: Use the truncated balanced realization method (see section 3.2). 

Globally, we need to find “good” coordinate transformations 𝑇, and a suitable approximation order 𝑘 of the 

model (S). 
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3.1 Singular values decomposition method (SVD) 

3.1.1 Presentation of the SVD 

Let 𝐴 be an 𝑛 × 𝑛 matrix. Let the ordered non-negative numbers 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 be the positive 

square roots of the eigenvalues of 𝐴𝐴∗; let 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix. There exist unitary matrices 

𝑛 × 𝑛, 𝑈 and 𝑉 such that  

𝑈𝑈∗ = 𝐼𝑛 , 𝑉𝑉∗ = 𝐼𝑛 ,   𝐴 = 𝑈Σ𝑉∗                                               (3.1) 

where Σ is an 𝑛 × 𝑛 matrix with Σ𝑖𝑖 = 𝜎𝑖 and zero elsewhere. The columns vectors of 𝑈 and 𝑉 are the 

eigenvectors of 𝐴𝐴∗ and 𝐴∗𝐴, respectively. The decomposition form of 𝐴 in (3.1) is called the SVD of 𝐴. 

Let's remark that: 

1. The SVD is unique when the matrix 𝐴 is square and the singular values have multiplicity one. 

2. One can use a faster algorithm introduced by Higham (2000) to obtain the singular value decomposition 

of the matrix 𝐴. 

3.1.2 Why do we need the SVD in the statistical model? 

This type of decomposition can also be interpreted in the optic of the statistical study of a set of data. Then, 

the main columns of 𝑈 represent the trends of the set considered (the vectors of 𝑈 represent the “directions 

of high variation” of the set). The diagonal values of 𝛴 are then analogous to the “energy” or the 

“representativeness” which will be considered as a weight of these behaviors. They decrease more rapidly 

if the statistical set is ordered. We can consider, for example from the perspective of data mining, that the 

“important” information of the set is that which corresponds to a more marked structure. Then, by vanishing 

the diagonal of 𝛴 after some value, then by reconstituting the initial matrix, one obtains filtered data, 

representing the dominant information of the initial set. Equivalently, data of energy after a certain threshold 

can be considered equal to zero.  

Thus, the SVD makes possible the construction of an empirical model. It is also possible to 

reconstruct, using a basis of singular vectors from a first dataset, another dataset with more or less precision, 

in order to determine the similarity between the two. The effectiveness of the method depends in particular 

on the way in which the information is presented. 

3.2 Truncated balanced realization (TBR) 

Before introducing the TBR method, let's give the following result which is the key ingredient of the last 

method. Let consider the following type of equation called Sylvester equation (see Bartels, Stewart 1972 

and Bhatia, Rosenthal 1997): 
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𝐴𝑋 + 𝑋𝐵 = 𝐶      (or also as 𝐴𝑋 − 𝑋𝐵 = 𝐶) 

Then given matrices 𝐴, 𝐵, and 𝐶, the problem is to find the possible matrices X that obey this equation. All 

matrices are assumed to have coefficients in the complex numbers. For the equation to make sense, the 

matrices must have appropriate sizes, 𝐴 and 𝐵 must be square matrices of sizes n and m respectively, and 

then X and C both have n rows and m columns.  

A Sylvester equation has a unique solution for 𝑋 exactly when there are no common eigenvalues 

of 𝐴 and −𝐵. The Truncated Balanced Realization (TBR) (See Enns 1984, Moore 1981, Pernebo et al. 

1982) produces a guaranteed stable reduced model. It produces a reduced model with globally accurate 

frequency response approximation.  

Let 𝐴 be an 𝑛 × 𝑛  stable matrix. Let 𝑃 and 𝑄 be the unique Hermitian positive definite solutions 

to 

𝐴𝑃 + 𝑃𝐴𝑡 = −𝐵𝐵𝑡 ,          𝐴𝑡𝑄 + 𝑄𝐴 = −𝐶𝐶𝑡                                            (3.2) 

The 𝜎𝑖(Σ) are the square roots of the eigenvalues of the product 𝑃𝑄: 𝜎𝑖(Σ) = √𝜆𝑖(𝑃𝑄).  

We give below the algorithm for the 𝑘-truncated balanced realization which will be used in the reduction 

model (See Safonov et al. 1989, Tombs et al. 1987): 

Algorithm 

1. Solve the equations (3.2)                                                                                                        (3.3) 

2. Find the Cholesky decomposition  

𝑃 = 𝑍𝐵(𝑍𝐵)𝑡 ,     𝑄 = 𝑍𝐶(𝑍𝐶)𝑡                                                          (3.4)  

3. Calculate the singular value decomposition of (𝑍𝐶)𝑡𝑍𝐵 

𝑈𝐿Σ(𝑈𝑅)𝑡 = (𝑍𝐶)𝑡𝑍𝐵                                                                     (3.5)    

where, 

𝑈𝑅 = [𝑢1
𝑅 … 𝑢𝑛

𝑅], 𝑈𝐿 = [𝑢1
𝐿 … 𝑢𝑛

𝐿 ], Σ = diag(𝜎1, … , 𝜎𝑛) 

4. If 𝜎𝑘 > 𝜎𝑘+1, let 

𝑆𝐵 = 𝑍𝐵[𝑢1
𝑅 … 𝑢𝑘

𝑅]diag (
1

√𝜎1
, … ,

1

√𝜎𝑘

)                                       (3.6) 

and 

https://en.wikipedia.org/wiki/Complex_number
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𝑆𝐶 = 𝑍𝐶[𝑢1
𝐿 … 𝑢𝑘

𝐿]diag (
1

√𝜎1
, … ,

1

√𝜎𝑘

)                                       (3.7) 

5. The order 𝑘-truncated balanced realization is given by 

𝐴𝑘 = (𝑆𝐶)𝑡𝐴𝑆𝐵, 𝐵𝑘 = (𝑆𝐶)𝑡𝐵,        𝐶𝑘 = 𝐶𝑆𝐵                           (3.8) 

 

3.3 Linear transformation of the dynamical system 

Our goal is to express the solution 𝑋(𝑡) ∈ ℝ𝑛 of the model (𝑆) in only 𝑘 variables. Such a solution can be 

written as  

𝑋(𝑡) = 𝑆𝐵𝑋𝑘(𝑡) 

where 𝑋𝑘(𝑡) ∈ ℝ𝑘 and 𝑆𝐵 ∈ ℝ𝑛×𝑘. 𝑆𝐵 is chosen such that its columns span a subspace where the solution 

𝑋(𝑡)  belongs.  

If the believed solution is inserted into the original state-space model (𝑆), we obtain 

𝜎𝑋(𝑡) = 𝑆𝐵𝜎𝑋𝑘(𝑡) = 𝐴𝑆𝐵𝑋𝑘(𝑡) + 𝐵𝑢 + 𝐸                                     (3.9)  

where 𝐸 is a residual. From (3.9),  𝑋(𝑡) = 𝑆𝐵𝑋𝑘(𝑡) is a solution to the original problem if, and only if, 

𝐸(𝑡) = 0 for all 𝑡. There are 𝑛 equations in (3.9), but only 𝑘 unknowns 𝑋𝑘. The system is generally over-

determined. To find a unique solution, we can require that the projection of the residual 𝐸(𝑡) onto the 

subspace spanned by 𝑆𝐵 is zero. This projection is given by (𝑆𝐶)𝑡. Hence, we add the condition 

(𝑆𝐶)𝑡𝐸(𝑡) = 0, ∀ 𝑡                                                                   (3.10) 

 We then obtain the reduced model:  

𝜎𝑋𝑘(𝑡) = (𝑆𝐶)𝑡𝐴𝑆𝐵𝑋𝑘(𝑡) + (𝑆𝐶)𝑡𝐵𝑢                                          (3.11)  

Remark. Let's remark that the relation  𝑋(𝑡) = 𝑆𝐵𝑋𝑘(𝑡) permit us to pass from the reduced vector 𝑋𝑘 to 

the original vector 𝑋. 

 

3.4 Some useful results 

3.4.1 Approximation with low rank 

Low-rank approximation is a minimization problem, in which the cost function measures the fit between a 

given matrix and an approximating matrix, subject to a constraint that the approximating matrix has 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Loss_function


8 
 

 
 

low rank. The problem is used for mathematical modeling and data compression. The rank constraint is 

related to a constraint on the complexity of a model that fits the data. The low-rank approximation is closely 

related to: (i) principal component analysis, (ii) factor analysis, (iii) total least squares, (iv) latent semantic 

analysis, (v) orthogonal regression. 

 

If the matrix 𝐴 is with full rank, we can approximate it with another matrix with lower rank by using the 

following result due to Schmidt-Eckart-Young-Mirsky theorem (see Antoulas 2005): 

Theorem 3.1: Let 𝐴 be a matrix in ℝ𝑛×𝑛 such that the corresponding singular values are ordered such that 

𝜎𝑘 > 𝜎𝑘+1. Then 

min
𝑋∈𝑹𝑛×𝑛,𝑟𝑎𝑛𝑘(𝑿)=𝒌

‖𝐴 − 𝑋‖ = 𝜎𝑘+1 

If 𝜎𝑘+1 is very small, then the matrix 𝑋 approximated well the matrix 𝐴. 

 

3.4.2 Nearest correlation matrix problem 

Given a symmetric matrix, the nearest correlation matrix designed the nearest symmetric positive matrix 

with unit diagonal. The term correlation matrix comes from statistics, since a matrix whose (𝑖, 𝑗) entry is 

the correlation coefficient between two random variables 𝑋𝑖 , 𝑋𝑗 is symmetric positive semidefinite with unit 

diagonal. For more details about this type of approximation one can see Anjos et al (2003) and Higham 

(2002). Correlation matrices appear naturally in different fields: 

• In graph theory: certain matrix completion problems are modeled using graphs. In this type of 

modeling, the correlation matrices play an important role.  

• In Statistics and Finance: these are matrices which collect the different correlation coefficients which 

exist for a finite number of random variables. In the case of Finance, for example these random variables 

are the prices of different stocks listed on the stock market. 

We also find the correlation matrices in optimal control, when we apply a method of “proper 

orthogonal decomposition” where it collects the different scalar products two by two of an orthonormal 

base, called base POD, obtained from the classical base given by a decomposition into finite elements. 

Let now give the following theorem of Higham (2002) which we will use below. 

Theorem 3.2: Let 𝐴 be a symmetric square matrix, there exist an approximate matrix 𝐵 (in some sense) 

symmetric positive semidefinite matrix with unit diagonal.  

https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Total_least_squares
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Orthogonal_regression
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In the last references (as in Anjos et al. 2003 and Higham 2002), many algorithms for computing fastly the 

nearest correlation matrix are presented. 

 

4. Experimental results 

The first objective is to reduce the classical 𝑉𝐴𝑅 model to the reduced vectoral autoregressive model 

(𝑅𝑉𝐴𝑅). In our case, we can consider the case of the system (𝑆) with 𝐵 = 𝐼, 𝐶 = 𝐼, and 𝐷 = 0. We have 

then the following 𝑉𝐴𝑅 model  

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝑢𝑡                                                                  (4.1)   

where the matrix 𝐴 is large. Let define a tolerance parameter 𝑎∗ acceptable in economic theory for which 

if 𝜎𝑘 𝜎1⁄ < 𝑎∗ the truncation at order 𝑘 of the system can be done. Then, the reduced model (3.11) becomes: 

�̂�𝑡 = �̂��̂�𝑡−1 + �̂�𝑡                                                                  (4.2)   

It is clear that the new error vector satisfies in general 𝐸(�̂�𝑡�̂�𝑡
′ ) ≠ 𝐼𝑘. The steps used in the experimental 

results will be as the following: 

1. We consider the 𝑉𝐴𝑅 model with matrix 𝐴.2 

2. If 𝐴 is with full rank, we give its approximation �̃� with low rank 𝑘 and in the model (4.1) we replace 

the matrix 𝐴 by �̃�. 

3. Consider the variance covariance matrix of the canonical innovations 𝑢𝑡, 𝐸(𝑢𝑡𝑢𝑡
′ ) = 𝐸. 

4. Consider the reduced 𝑉𝐴𝑅 model as described above by 𝑅𝑉𝐴𝑅. 

5. Give the Structural model 𝑆𝑅𝑉𝐴𝑅 by the Blanchard and Quah (1989) approach or by Amisano and 

Giannini (1997) known as AB approach 

5.a. Use the SVD method to determine the structural shocks: supposing 𝜀�̂� = �̂��̂�𝑡 and  

       �̂� = 𝐸(�̂�𝑡�̂�𝑡
′ ), Φ = 𝐸(𝜀�̂�𝜀�̂�

′),   then   Φ =  �̂��̂��̂�𝑡. 

 

5.b. Use the restriction coming from the economics a priori. 

5.c. Compare the two results (from 5.a and 5.b) and give an interpretation. 

 
2 If the matrix 𝐴 is not stable, we approximate it with a stable matrix by a projection as in Higham (2002). 
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6. In the system (2.2), we use the SVD method to determine the matrix 𝐻 and without supposing that 

𝐸(𝜀𝑡𝜀𝑡
′) = 𝐼. If not, we use the nearest correlation matrix which is mathematically possible, but did not 

impose any conditions on the structural innovation. 

7. Come back to the original 𝑉𝐴𝑅 and 𝑆𝑉𝐴𝑅 and compare its results. 

We remark that if we use the identification shocks introduced by Ghassan, Kbiri and Souissi (2009), 

we do not need to use the result of Higham (2002), since we do not need the last approximation by a 

correlation matrix. The relation (2.2) was replaced by a differential inclusion. 

 

5. Conclusion  

We have suggested a model order reduction for the large VAR and SVAR modeling such that the new 

trajectories preserve the qualitative properties of the initial trajectories. This allows for capturing 

particularly in economics the complex phenomena that induce many endogenous variables. Moreover, the 

resulting models are accurate, computationally less expensive and based on the real meaning of the system 

and its mathematical modeling. In this paper, the main ingredients are the singular value decomposition and 

the truncated balanced realization.  
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