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ABSTRACT

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables

(IVs) to decide whether the ordinary least squares (OLS) or the IV-based method is appropriate. Guggenberger (2010)

shows that the second-stage t-test – based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the

first stage – has extreme size distortion with asymptotic size equal to 1, even when the IVs are strong. In this paper,

we propose a novel two-stage test procedure that switches between the OLS-based statistic and the weak-IV-robust

statistic. Furthermore, we develop a size-corrected wild bootstrap approach, which combines certain wild bootstrap

critical values along with an appropriate size-correction method. We establish uniform validity of this procedure

under conditional heteroskedasticity in the sense that the resulting tests achieve correct asymptotic size no matter the

identification is strong or weak. Monte Carlo simulations confirm our theoretical findings. In particular, our proposed

method has remarkable power gains over the standard weak-identification-robust test.
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1. Introduction

Inference after data-driven model selection is widely studied in both statistical and econometric

literature. For instance, see Hansen (2005), Leeb and Pötscher (2005), who provide an overview

of the importance and difficulty of conducting valid inference after model selection. In particular,

it is now well known that widely used model-selection practices such as pretesting may have large

impact on the size properties of two-stage procedures and thus invalidate inference on parameter

of interest in the second stage. For the classical linear regression model with exogenous covariates,

Kabaila (1995) and Leeb and Pötscher (2005) show that confidence intervals (CIs) based on consis-

tent model selection have serious problem of under-coverage, while Andrews and Guggenberger

(2009b) show that such CIs have asymptotic confidence size equal to 0. Furthermore, Andrews

and Guggenberger (2009a) find extreme size distortion for the two-stage test after “conservative"

model selection and propose various least favourable critical values (CVs).

In comparison, the literature on models that contain endogenous covariates, such as widely

used instrumental variable (IV) regression models, remains relatively sparse. The uniform validity

of post-selection inference for structural parameters in linear IV models with homoskedastic errors

was studied by Guggenberger (2010a), who advised not to use Hausman-type pretesting to select

between ordinary least squares (OLS) and two-stage least squares (2SLS)-based t-tests because

such two-stage procedure can be extremely over-sized with asymptotic CVs.1 Instead, Guggen-

berger (2010a) recommended to use the standard 2SLS-based t-test. However, it is well known

that the 2SLS-based t-test itself may have undesirable finite-sample size properties when IVs are

not strong enough. As such, in the quest for statistical power, many empirical practitioners still use

pretesting in IV applications despite the important concern raised by Guggenberger (2010a).2

1Similar concerns were also raised by Guggenberger and Kumar (2012) about pretesting the instrument exogeneity
using a test of overidentifying restrictions, and by Guggenberger (2010b) about pretesting for the presence of random
effects before inference on the parameters of interest in panel data models.

2Their motivation of implementing the pretesting procedure also lies in the fact that valid IVs (i.e., exogenous IVs)
found in practice are often rather uninformative, while strong IVs are typically more or less invalid and such deviation
from IV exogeneity may also lead to serious size distortion in the 2SLS-based t-test; e.g., see Conley, Hansen and
Rossi (2012), Guggenberger (2012), Andrews, Gentzkow and Shapiro (2017).
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Recently, Young (2022) analyzes a sample of 1359 empirical applications involving IV regres-

sions in 31 papers published in the American Economic Association (AEA): 16 in AER, 6 in AEJ:

A.Econ., 4 in AEJ: E.Policy, and 5 in AEJ: Macro. He highlights that the IVs often do not ap-

pear to be strong in these papers, so that inference methods based-on standard normal CVs can

be unreliable, especially in the case with heteroskedastic or clustered errors, and he advocates for

the usage of bootstrap methods to improve the quality of inference. Furthermore, he argues that

in these papers IV confidence intervals almost always include OLS point estimates and there is

little statistical evidence of endogeneity and evidence that OLS is seriously biased, based on the

low rejection rates of Hausman-type tests in his data. In his simulations based upon the published

regressions (Table 14), the rejection frequencies can be as low as 0.232 and 0.382 for 1% and

5% significance levels, respectively, for asymptotic Hausman tests, and even as low as 0.098 and

0.200, respectively, for bootstrap Hausman tests. Similarly, Keane and Neal (2024) argue that a

rather strong IV is necessary to give high confidence that 2SLS will outperform OLS (e.g., with a

first-stage F higher than 50, which is well above the industry standard of 10).

However, Young (2022)’s finding from the AEA data that OLS estimates seem to be not very

different from 2SLS estimates may be attributed to the fact that the used IVs are relatively weak

so that 2SLS may be biased towards OLS, and Hausman-type tests also have low power in this

case [e.g., see Doko Tchatoka and Dufour (2018, 2024)]. In particular, as shown by Guggenberger

(2010a), the Hausman test is not able to reject the null hypothesis of exogeneity in situations where

there is only a small degree of endogeneity, i.e., local endogeneity. Then, OLS-based inference

is selected in the second stage with high probability. However, the OLS-based t-statistic often

takes on very large values even under such local endogeneity, causing extreme size distortions

in the two-stage test. Such issue with pretesting for exogeneity is highly relevant to empirical

practice as endogeneity is mild in many IV applications. For example, Hansen, Hausman and

Newey (2008) report that the median, 75th quantile, and 90th quantile of estimated endogeneity

parameters are only 0.279, 0.466, and 0.555, respectively, in their investigated AER, JPE, and QJE
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papers. Angrist and Kolesár (2023) investigate three influential just-identified IV applicaitions:

Angrist and Krueger (1991), Angrist and Evans (1998), Angrist and Lavy (1999), and find that

the estimated endogeneity is no more than 0.175, 0.075, and 0.460 for different specifications and

samples in these papers, respectively [see Section 3.1 and Table 1 in Angrist and Kolesár (2023)].

Motivated by these issues, we study in this paper the possibility of proposing a uniformly

valid method for the above two-stage testing procedure and a closely related Stein-type shrinkage

procedure proposed by Hansen (2017). First, we consider an asymptotic framework that allows for

weak identification and conditional heteroskedasticity, which are paramount for the methodology

to be useful in practice. Second, we propose a novel two-stage test procedure that switches between

the OLS-based Wald statistic and the weak-IV-robust statistic such as the Anderson-Rubin statistic.

Specifically, the switching is implemented by using a null-imposed Hausman-type Wald statisitc

for testing exogeneity. We need to impose the null to ensure the validity of this test statistic even

under weak identification. Third, we propose a novel size-corrected wild bootstrap procedure,

which combines certain standard wild bootstrap CVs with an appropriate Bonferroni-based size-

correction method, following the lead of McCloskey (2017). We show that the resulting CVs are

uniformly valid with heteroskedastic errors in the sense that they yield two-stage and shrinkage

tests with correct asymptotic size, including the case with weak IVs. In particular, as standard

wild bootstrap procedures cannot mimic well the key localized endogeneity parameter, particular

attention is taken on this parameter when designing bootstrap DGP, and a Bonferroni-based size-

correction technique is implemented to deal with the presence of this localization parameter in the

limiting distributions of interest. Different from the conventional Bonferroni bound, which may

lead to conservative test with asymptotic size strictly less than the nominal level, the size-correction

procedure always leads to desirable asymptotic size.

In terms of practical usage of our method, following the aforementioned studies by Hansen

et al. (2008), Young (2022), and Angrist and Kolesár (2023), we are particularly interested in the

IV applications where the values of endogeneity parameters are relatively small. These are the
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cases where the Hausman-type pretest would not reject exogeneity and the naive two-stage proce-

dure would lead to extreme size distortion. On the other hand, as the problem of size distortion is

circumvented by our method, we can take advantage of the power superiority of the OLS-based test

over its IV counterpart. In addition, Hansen (2017) shows that his shrinkage estimator has substan-

tially reduced median squared error relative to 2SLS, and Doko Tchatoka and Dufour (2024) show

that their pretest estimators based on DWH tests can outperform both OLS and 2SLS estimators

in terms of mean squared error, even with moderate endogeneity. As such, our proposed method

is also attractive from the viewpoint of providing a valid inference method for such shrinkage or

pretesting estimator. Monte Carlo experiments confirm that our size-corrected bootstrap procedure

achieves reliable size correction and remarkable power gains over the standard weak-identification-

robust method. We also note that the size-corrected bootstrap Hansen-type shrinkage procedure

has superior finite-sample power performance than its Hausman-type counterpart.

The motivation of using bootstrap in the current testing problem originates from a growing

literature illustrating that when applied to IV regressions, well designed bootstrap procedures typ-

ically have superior finite-sample performance than asymptotic approximations; see, e.g., David-

son and MacKinnon (2008, 2010), Wang and Kaffo (2016), Kaffo and Wang (2017), Wang and

Doko Tchatoka (2018), Finlay and Magnusson (2019), Young (2022), MacKinnon (2023), and

Wang and Zhang (2024). Furthermore, we are motivated by the growing literature showing the

excellent performance of wild bootstrap methods with heteroskedastic or clustered errors, among

them Davidson and Flachaire (2008), Cameron, Gelbach and Miller (2008), MacKinnon and Webb

(2017), Djogbenou, MacKinnon and Nielsen (2019), and Mackinnon, Nielsen and Webb (2021,

2023). Our size-correction procedure follows closely the seminal study by McCloskey (2017), who

proposed Bonferroni-based size-correction procedures for general nonstandard testing problems,

and McCloskey (2020) applied this method to inference in linear regression model after consistent

model selection. Additionally, Han and McCloskey (2019) applied it to inference in moment con-

dition models where the estimating function may exhibit mixed identification strength and a nearly
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singular Jacobian, and Wang and Doko Tchatoka (2018) applied it to weak-identification-robust

subvector inference in linear IV models. Different from our bootstrap procedures, these procedures

are based on simulations from null limiting distributions.

The remainder of this paper is organized as follows. Section 2 presents the setting, test statis-

tics, and parameter space of interest. Section 3 presents the main results of our size-corrected wild

bootstrap methods. Section 4 investigates the finite sample power performance of our methods

using simulations. The proofs are provided in the Supplementary Material.

Throughout the paper, for any positive integers n and m, In and 0n×m stand for the n× n

identity matrix and n×m zero matrix, respectively. For any full-column rank n×m matrix

A, PA = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of A, and

MA = In−PA. The notation vec(A) is the nm×1 dimensional column vectorization of A. λ min(A)

denote the minimum eigenvalue of a square matrix A. ‖U‖ denotes the usual Euclidean or Frobe-

nius norm for a matrix U. The usual orders of magnitude are denoted by OP(.) and oP(.), →P

stands for convergence in probability, while→d stands for convergence in distribution. We write

P∗ to denote the probability measure induced by a bootstrap procedure conditional on the data, and

E∗ and Var∗ to denote the expected value and variance with respect to P∗. For any bootstrap statis-

tic T ∗ we write T ∗→P∗ 0 in probability P if for any δ > 0, ε > 0, limn→∞P[P∗(|T ∗|> δ )> ε] = 0,

i.e., P∗(|T ∗|> δ ) = oP(1); e.g., see Gonçalves and White (2004). Also, we write T ∗ = OP∗(nϕ) in

probability P if and only if for any δ > 0 there exists a Mδ < ∞ such that limn→∞P[P∗(|n−ϕT ∗|>

Mδ ) > δ ] = 0, i.e., for any δ > 0 there exists a Mδ < ∞ such that P∗(|n−ϕT ∗| > Mδ ) = oP(1).

Finally, we write T ∗→d∗ T in probability P if, conditional on the data, T ∗ weakly converges to T

under P∗, for all samples contained in a set with probability approaching one.
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2. Framework

2.1. Model and test statistics

We consider the following linear IV model

y = Xθ +u, X = Zπ + v, (2.1)

where y ∈ Rn and X ∈ Rn are vectors of dependent and endogenous variables, respectively, Z ∈

Rn×k is a matrix of instruments (k ≥ 1), (θ ,π ′)′ ∈ Rk+1 are unknown parameters, and n is the

sample size. Denote by ui, vi, yi, Xi, and Zi the i-th rows of u, v, y, X , and Z respectively, written as

column vectors or scalars. For notational simplicity, we assume that the other exogenous variables

have already been partialled out from the model.

The object of inferential interest is the structural parameter θ and we consider the problem of

testing the null hypothesis H0 : θ = θ 0. We study the two-stage testing procedure for assessing

H0, where an exogeneity test is undertaken in the first stage to decide whether an OLS or IV-

based method is appropriate for testing H0 in the second stage. Assume that the instruments Z

are exogenous, i.e., EF [uiZi] = 0, where EF denotes expectation under the distribution F. Under

this orthogonality condition of the instruments, X is endogenous in (2.1) if and only if v and u are

correlated. Consider the following linear projection of u on v:

u = va+ e, a = (EF [v2
i ])
−1EF [viui], (2.2)

where e is uncorrelated with v. Notice that the exogeneity of X in (2.1) can be assessed by testing

the null hypothesis Ha : a = 0 in (2.2). Substituting (2.2) into (2.1), we obtain

y = Xθ + va+ e, (2.3)
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where X and v are uncorrelated with e. Therefore, the null hypothesis of exogeneity Ha : a = 0 can

be assessed using a standard Wald statistic in the extended regression (2.3) [e.g., see Doko Tcha-

toka and Dufour (2014)]. To account for possible conditional heteroskedasticity, we propose the

following control function-based Wald statistic imposing H0 : θ = θ 0:3

Hn(θ 0) = â2(θ 0)/V̂a(θ 0), (2.4)

where â = (v̂′v̂)−1v̂′ỹ(θ 0), ỹ(θ 0) = y−Xθ 0, V̂a(θ 0) = (n−1v̂′v̂)−1 (n−2
∑

n
i=1 v̂2

i ẽ2
i (θ 0)

)
(n−1ṽ′ṽ)−1

is the (null-imposed) Eicker-White heteroskedasticity-robust estimator of the variance of â(θ 0),

v̂ = MZX , and ẽ(θ 0) = Mv̂ỹ(θ 0). Note that ẽ(θ 0) is the residual vector from the OLS regression of

ỹ(θ 0) on v̂. When H0 is true and X is exogenous, Hn(θ 0) follows a χ2
1 distribution asymptotically,

no matter the IVs are strong or weak. The pretest rejects the null hypothesis that X is exogenous in

(2.1) if Hn(θ 0)> χ2
1,1−β

, where χ2
1,1−β

is the (1−β )-th quantile of χ2
1-distributed random variable

for some β ∈ (0,1).

Let θ̂ ols = (X
′
X)−1X

′
y be the OLS estimator of θ in (2.1). Also, define its corresponding

variance estimator and Wald statistic as

V̂ols =
(

n−1X
′
X
)−1

(
n−2

n

∑
i=1

X2
i û2

i (θ̂ ols)

)(
n−1X

′
X
)−1

,

Tols(θ 0) = (θ̂ ols−θ 0)
2/V̂ols, (2.5)

where ûi(θ̂ ols) = yi − Xiθ̂ ols, and π̂ = (Z′Z)−1Z′X . In addition, let us define the weak-

identification-robust Anderson-Rubin (AR) statistic as:

Tar(θ 0) =
(

n−1/2û(θ 0)
′Z
)(

Ω̂(θ 0)
)−1
(

n−1/2Z′û(θ 0)
)
, (2.6)

3Alternative formulations of this exogeneity statistic (without imposing H0 : θ = θ 0) are given in Hahn, Ham and
Moon (2010), Doko Tchatoka and Dufour (2018, 2024) but the Wald version considered in (2.4) easily accommodates
conditional heteroskedasticity or clustering, so we shall use this formulation.
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where ûi(θ 0) = yi−Xiθ 0 and Ω̂(θ 0) = n−1
∑

n
i=1 ZiZ′i û

2
i (θ 0).

Then, the two-stage test statistic associated with the Hn(θ 0)-based pretest of exogeneity in the

first stage is given by

T1,n(θ 0) = Tols(θ 0)1(Hn(θ 0)≤ χ
2
1,1−β

)+Tar(θ 0)1(Hn(θ 0)> χ
2
1,1−β

), (2.7)

Related to the two-stage procedure, Hansen (2017) proposed a Stein-like shrinkage approach in the

context of IV regressions. His estimator follows Maasoumi (1978) in taking a weighted average

of the 2SLS and OLS estimators, with the weight depending inversely on the test statistic for

exogeneity, and the proposed shrinkage estimator is found to have substantially reduced finite-

sample median squared error relative to the 2SLS estimator. Following Hansen (2017)’s approach,

we define a Stein-like shrinkage test statistic as follows:

T2,n(θ 0) = Tols(θ 0)w(Hn(θ 0))+Tar(θ 0)(1−w(Hn(θ 0))), (2.8)

where the weight function takes the form w(Hn(θ 0)) =


τ/Hn(θ 0) if Hn(θ 0)≥ τ

1 if Hn(θ 0)< τ

, and τ is a

shrinkage parameter chosen by the researcher. Compared with the Hausman-type procedure, the

shrinkage statistic has a relatively smooth transition between the OLS-Wald and AR statistics. In

Section 4, we evaluate the finite sample performance of the shrinkage procedure with different

choices of τ .

2.2. Parameter space and asymptotic size

Assume that {(ui,vi,Zi) : i ≤ n} in (2.1) are i.i.d. with distribution F . To characterize the asymp-

totic size of the two-stage and shrinkage tests, we define the parameter space Γ of the nuisance

parameter vector γ following the seminal studies by Andrews and Guggenberger (2009, 2010a,

2010b), Guggenberger (2012), and Guggenberger and Kumar (2012). For the current testing prob-
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lem, define the vector of nuisance parameters γ = (γ1,γ2,γ3) by

γ1 = a, γ2 = (γ21,γ22,γ23,γ24,γ25), γ3 = F, (2.9)

where a is defined in (2.2), γ21 = π, γ22 = EFe2
i ZiZ′i , γ23 = EFe2

i v2
i , γ24 = EFZiZ′i , and γ25 = EFv2

i .

Here, γ1 measures the degree of endogeneity of X and is the key parameter in the current testing

problem as it determines the point of discontinuity of the null limiting distributions of the two-stage

and shrinkage test statistics. For the parameter space, let

Γ1 = R, Γ2 =
{
(γ21,γ22,γ23,γ24,γ25) : γ21 = π ∈ Rk,γ22 = EFe2

i ZiZ′i ∈ Rk×k,

γ23 = EFe2
i v2

i ∈ R,γ24 = EFZiZ′i ∈ Rk×k,γ25 = EFv2
i ∈ R,

s.t. ‖γ21‖ ≥ 0,λ min(γ22)≥ κ,γ23 > 0,λ min(γ24)≥ κ, and γ25 > 0
}
. (2.10)

In addition, Γ3(γ1,γ2) is defined as follows:

Γ3(γ1,γ2) =
{

F : EFeivi = EFeiZi = EFviZi = 0, EFe2
i viZi = EFeiv2

i Zi = EFeiviZiZ′i = 0,

EFv2
i ZiZ′i ∈ Rk×k with λ min(EFv2

i ZiZ′i)≥M−1, (2.11)∥∥∥∥EF

(
||Ziei||2+ξ , ||Zivi||2+ξ , |viei|2+ξ , ||ZiZ′i ||2+ξ , |Xi|2(2+ξ )

)′∥∥∥∥≤M
}
,

for some constant ξ > 0 and M < ∞. We then define the whole nuisance parameter space Γ of γ as

Γ = {γ = (γ1,γ2,γ3) : γ1 ∈ Γ1,γ2 ∈ Γ2,γ3 ∈ Γ3(γ1,γ2)}, (2.12)

where Γj, j = 1,2,3 are given in (2.10) and (2.11). This nuisance parameter space extends the

one defined in Guggenberger (2010a) to allows for conditional heteroskedasticity and is similar

to those defined in Guggenberger (2012) and Guggenberger and Kumar (2012), which also allow

for heteroskedastic errors. The condition that EFe2
i viZi = EFeiv2

i Zi = EFeiviZiZ′i = 0 in (2.11) is
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similar to that imposed for Γ3(γ1,γ2) in Guggenberger (2010a) [see (A.2) in the Appendix of his

paper for related discussions]. This condition simplifies the limiting distributions and its sufficient

condition is, for example, independence between (vi,ei) and Zi.

Now we define the asymptotic size. Let cn denote a (possibly data-dependent) CV being

used for the two-stage testing or shrinkage procedure. The finite sample null rejection proba-

bility (NRP) of the test statistic of interest evaluated at γ ∈ Γ is given by Pθ 0,γ

[
Tl,n(θ 0)> cn

]
for l ∈ {1,2}, where Pθ 0,γ [En] denotes the probability of event En when θ 0 and γ are the true

values of the parameters. Then, the asymptotic NRP of the test evaluated at γ ∈ Γ is given by

limsup
n→∞

Pθ 0,γ

[
Tl,n(θ 0)> cn

]
, while the asymptotic size is given by

AsySz[cn] = limsup
n→∞

sup
γ∈Γ

Pθ 0,γ

[
Tl,n(θ 0)> cn

]
. (2.13)

In general, asymptotic NRP evaluated at a given γ ∈ Γ is not equal to the asymptotic size of the

test. To control the asymptotic size, one needs to control the null limiting behaviour of Tl,n(θ 0)

under drifting parameter sequences {γn : n≥ 1} indexed by the sample size; e.g., see Andrews and

Guggenberger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger and Kumar (2012).

Following the arguments used in these papers, to derive AsySz[cn] we can study the asymptotic

NRP along certain parameter sequences of the type {γn,h} (defined below) for some h ∈H , as the

highest asymptotic NRP is materialized under such sequence, where

H =

{
h = (h1,h′21,vec(h22)

′,h23,vec(h24)
′,h25)

′ ∈ R2k2+k+3
∞ : ∃{γn = (γn,1,γn,2,γn,3) ∈ Γ : n≥ 1}

s.t. n1/2
γn,1→ h1 ∈ R∞, γn,2→ h2 = (h21,h22,h23,h24,h25), ‖h21‖ ≥ 0, λ min(A)≥ κ,

for A ∈ {h22,h24}, h23 > 0, h25 > 0

}
≡H1×H21×H22×H23×H24×H25, (2.14)

for some κ > 0 and R∞ = R∪ {±∞}. Then, for h ∈ H , the relevant sequence of parameters
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{γn,h} ⊂ Γ is defined following Guggenberger (2010a) as γn,h = (γn,h,1,γn,h,2,γn,h,3) where

γn,h,1 = (EFn[v
2
i ])
−1EFn[viui], γn,h,2 = (γn,h,21,γn,h,22,γn,h,23,γn,h,24,γn,h,25), (2.15)

with γn,h,21 = πn, γn,h,22 = EFne2
i ZiZ′i , γn,h,23 = EFne2

i v2
i , γn,h,24 = EFnZiZ′i , γn,h,25 = EFnv2

i , s.t.

n1/2
γn,h,1→ h1, γn,h,2→ h2, and γn,h,3 = Fn ∈ Γ3(γn,h,1,γn,h,2). (2.16)

More specifically, under H0 : θ = θ 0 and {γn,h} satisfying (2.16) with |h1| = ∞ (i.e., strong

endogeneity), Hn(θ 0)→P ∞, and the two-stage and shrinkage test statistics are asymptotically

equivalent to the AR statistic. On the other hand, under {γn,h} satisfying (2.16) with |h1|< ∞ (i.e.,

local endogeneity), the following joint convergence results hold for Tar(θ 0), Tols(θ 0), Hn(θ 0), and

the two-stage and shrinkage statistics Tl,n(θ 0) for l ∈ {1,2}:

1√
n

 Z′u(
v′u−EFnv′u

)
→d

ψZe

ψve

∼ N

0,

h22 0

0′ h23


 ,


Tar(θ 0)

Tols(θ 0)

Hn(θ 0)

 →d


η1,h

η2,h

η3,h

=


ψ ′Zeh−1

22 ψZe

(h′21h22h21 +h23)
−1 (h′21ψZe +ψve +h25h1)

2

h−1
23 (ψve +h25h1)

2

 ,

T1,n(θ 0) →d T̃1,h = η2,h1(η3,h ≤ χ
2
1,1−β

)+η1,h1(η3,h > χ
2
1,1−β

),

T2,n(θ 0) →d T̃2,h = η2,hw(η3,h)+η1,h(1−w(η3,h)), (2.17)

where η1,h ∼ χ2
k , η2,h ∼ χ2

1

(
(h′21h22h21+h23)

−1h2
25h2

1

)
, η3,h ∼ χ2

1

(
h−1

23 h2
25h2

1

)
, w(η3,h) = τ/η3,h

if η3,h ≥ τ , and w(η3,h) = 1 if η3,h < τ .
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3. Main Results

3.1. Standard wild bootstrap

In this section, we present the standard wild bootstrap procedure and further explain why in general

it cannot achieve a correct size control for the two-stage testing and shrinkage procedures.

Wild Bootstrap Algorithm:

1. Compute the (null-restricted) residuals from the first-stage and structural equations: v̂ =

X−Zπ̂ , û(θ 0) = y−Xθ 0, where π̂ = (Z′Z)−1Z′X denotes the least squares estimator of π .

2. Generate the bootstrap pseudo-data following X∗ = Zπ̂ + v∗, y∗ = X∗θ 0 + u∗, where there

are two options to generate the bootstrap disturbances:

(a) v∗ and u∗ are generated independently from each other. Specifically, in the cur-

rent case with heteroskedastic data, we set for each observation i: v∗i = v̂iω
∗
1i, and

u∗i = ûi(θ 0)ω
∗
2i, where ω∗1i and ω∗2i are two random variables with mean 0 and vari-

ance 1, i.e., E∗
[
ω∗1i
]
= E∗

[
ω∗2i
]
= 0 and Var∗

[
ω∗1i
]
= Var∗

[
ω∗2i
]
= 1, and they are

independent from the data and independent from each other.

(b) v∗ and u∗ are drawn dependently from each other. We set for each observation i: v∗i =

v̂iω
∗
1i, and u∗i = ûi(θ 0)ω

∗
1i.

Following Young (2022), we refer to (a) as independent transformation of disturbances and

(b) as dependent transformation of disturbances.4

3. Compute the wild bootstrap analogues of the two-stage and shrinkage test statistics:

T ∗1,n(θ 0) = T ∗ols(θ 0)1(H∗n (θ 0)≤ χ
2
1,1−β

)+T ∗ar(θ 0)1(H∗n (θ 0)> χ
2
1,1−β

),

4For the purpose of better size control, it is often recommended that for bootstrap exogeneity tests, (u∗,v∗) should
be generated using the independent transformation scheme, so that the bootstrap samples are obtained under the null
hypothesis of exogeneity. However, this is not necessarily the case for the bootstrap two-stage or shrinkage test
statistic.
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T ∗2,n(θ 0) = T ∗ols(θ 0)w(H∗n (θ 0))+T ∗ar(θ 0)(1−w(H∗n (θ 0))), (3.1)

where w(H∗n (θ 0)) =


τ/H∗n (θ 0) if H∗n (θ 0)≥ τ

1 if H∗n (θ 0)< τ

, T ∗ols(θ 0), T ∗ar(θ 0) and H∗n (θ 0) are the

bootstrap analogues of Tols(θ 0), Tar(θ 0) and Hn(θ 0), respectively, which are obtained from

the bootstrap samples generated in Step 2.

4. For l ∈ {1,2}, repeat Steps 2-3 B times and obtain {T ∗(b)l,n (θ 0),b = 1, ...,B}. The boot-

strap test with the test statistic Tl(θ 0) rejects H0 if the corresponding bootstrap p-value

1
B ∑

B
b=11

[
T ∗

(b)

l,n (θ 0)> Tl,n(θ 0)
]

is less than the nominal level α.

Following the standard arguments for bootstrap validity, to check whether (conditional on the

data) the bootstrap is able to consistently estimate the distribution of the two-stage or shrinkage test

statistic, one needs to check whether under H0 and both cases of strong endogeneity (|h1|= ∞) and

local endogeneity (|h1| < ∞), supx∈R

∣∣∣P∗(T ∗l,n(θ 0)≤ x
)
−P

(
Tl,n(θ 0)≤ x

)∣∣∣→P 0, for l ∈ {1,2}.

However, we notice below that neither bootstrap procedure is able to consistently estimate the

distribution of interest under local endogeneity.

More specifically, it holds for the bootstrap statistics with dependent or independent transfor-

mation (for the dependent transformation, we further require E∗
[
ω∗31i

]
= 0 and E∗

[
ω∗41i
]
= 1) that

n−1/2

 Z
′
u∗(

u∗
′
v∗−E∗[u∗

′
v∗]
)
→d∗

ψ∗Ze

ψ∗ve

 , (3.2)

in probability P (i.e., with probability approaching one according to P), where the boot-

strap (conditional) weak limit (ψ∗
′

Ze,ψ
∗
ve)
′ is the same as (ψ ′Ze,ψve)

′, i.e., the weak limit of

n−1/2 ((Z′u)′,(u′v−EF [u′v]))
′. Therefore, the bootstrap procedures do replicate well the random-

ness in the original sample.

On the other hand, under local endogeneity the standard wild bootstraps are not able to mimic

13



well the key localization parameter h1, thus resulting in the discrepancy between the original and

bootstrap samples. In particular, let hb
1 denote the localization parameter of endogeneity in the boot-

strap world, then hb
1 = 0 for the bootstrap with independent transformation, while hb

1 = h1+h−1
25 ψve

for the one with dependent transformation, where ψve∼N(0,h23). That is, while the bootstrap with

dependent transformation is able to mimic the situation of local endogeneity in the original sample

(hb
1 is finite with probability approaching one when h1 is finite), the approximation is imprecise and

results in an extra error term h−1
25 ψve, whose value depends on the actual realization of the sample.

Therefore, in general, neither bootstrap procedure is able to achieve a correct size control for the

two-stage testing and shrinkage procedures. We show formally the bootstrap failure in Theorem

S.5 of the Supplementary Material.

3.2. Size-corrected wild bootstrap

As the standard wild bootstrap procedures are not able to provide uniform size control, in this

section we propose Bonferroni-based size-correction methods for the two-stage testing and shrink-

age procedures, following the seminal study by McCloskey (2017). As explained in McCloskey

(2017), the idea behind such size-correction is to construct CVs that use the data to determine how

far the key nuisance parameter (i.e., the endogeneity parameter in the current testing problem) is

from the point that causes the discontinuity in the limiting distributions of the test statistics. Al-

though the key nuisance parameter cannot be consistently estimated under the drifting sequences

in (2.16), it is still possible to construct an asymptotically valid confidence set for it and then

construct adaptive CVs that control the asymptotic size.

First, we will construct a size-corrected wild bootstrap CV by using the wild bootstrap CVs

with the independent transformation and Bonferroni bounds. Note that although the localization

parameter h1 cannot be consistently estimated, we may still construct an asymptotically valid con-

fidence set for h1 by defining ĥn,1(θ 0) = n1/2â(θ 0), where â(θ 0) = (v̂′v̂)−1 v̂′ỹ(θ 0). A confidence
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set of h1 can be constructed by using the fact that under the drifting parameter sequences and H0,

ĥn,1(θ 0)→d h̃1 ∼ N
(

h1,h−2
25 h23

)
. (3.3)

Then, uniformly valid size-corrected bootstrap CVs for testing H0 : θ = θ 0 under the two-

stage or shrinkage procedure can be constructed by using Bonferroni bounds: we may con-

struct a 1− (α − δ ) level first-stage confidence set for h1, and then take the maximal (1− δ )-

th quantile of appropriately generated bootstrap statistics over the first-stage confidence set.

Specifically, let ĥn,2 =
(

ĥ′n,21,vec(ĥn,22)
′, ĥn,23,vec(ĥn,24)

′, ĥn,25

)′
be the estimators of h2 =

(h′21,vec(h22)
′,h23,vec(h24)

′,h25)
′, and define the 1− (α−δ ) level confidence set of h1 for some

0 < δ ≤ α < 1 as

CI
α−δ

(ĥn,1(θ 0)) =
[
ĥn,1(θ 0)− z1−(α−δ )/2 ·

(
nV̂a(θ 0)

)1/2
, ĥn,1(θ 0)+ z1−(α−δ )/2 ·

(
nV̂a(θ 0)

)1/2
]
,

where V̂a(θ 0) is defined in (2.4). The wild bootstrap-based simple Bonferroni critical value

(SBCV) is defined as

cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = sup

h1∈CI
α−δ

(ĥn,1(θ 0))

c∗l,(h1,ĥn,2)
(1−δ ), (3.4)

for l ∈ {1,2}, where c∗
l,(h1,ĥ2)

(1−δ ) is the (1−δ )-th quantile of the distribution of T ∗
l,n,(h1,ĥn,2)

(θ 0),

i.e., the distribution of the bootstrap analogue of Tl,n(θ 0) generated under the value of localization

parameter equal to h1.

As we have seen in the previous section, the standard wild bootstrap procedures cannot mimic

well the localization parameter h1, no matter with independent or dependent transformation. There-

fore, attention has to be taken when considering the bootstrap DGP. In particular, we propose to
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generate the bootstrap statistics under the localization parameter h1 as follows:

T ∗1,n,(h1,ĥn,2)
(θ 0) = T ∗ols,(h1,ĥn,2)

(θ 0)1
(

H∗n,(h1,ĥn,2)
(θ 0)≤ χ

2
1,1−β

)
+T ∗ar(θ 0)1

(
H∗n,(h1,ĥn,2)

(θ 0)> χ
2
1,1−β

)
,

T ∗2,n,(h1,ĥn,2)
(θ 0) = T ∗ols,(h1,ĥn,2)

(θ 0)w
(

H∗n,(h1,ĥn,2)
(θ 0)

)
+T ∗ar(θ 0)

(
1−w

(
H∗n,(h1,ĥn,2)

(θ 0)
))

, (3.5)

where T ∗
ols,(h1,ĥn,2)

(θ 0) and H∗
n,(h1,ĥn,2)

(θ 0) are the bootstrap analogues of Tols(θ 0) and Hn(θ 0), re-

spectively, evaluated at the value of localization parameter equal to h1. More precisely, to obtain

these bootstrap analogues, we first generate the bootstrap counterparts of the OLS and regression

endogeneity parameter estimators under h1:

θ̂
∗
ols,(h1,ĥn,2)

= θ̂
∗
ols +

(
ĥ′n,21ĥn,24ĥn,21 + ĥn,25

)−1ĥn,25

(
n−1/2h1

)
, â∗

(h1,ĥn,2)
= â∗+n−1/2h1, (3.6)

where θ̂
∗
ols and â∗ are generated by the standard wild bootstrap procedure in Section 3.1 with in-

dependent transformation of disturbances, so that θ̂
∗
ols and â∗ have localization parameter equal to

zero in the bootstrap world. By doing so,
√

n
(

θ̂
∗
ols,(h1,ĥn,2)

−θ 0

)
and
√

nâ∗
(h1,ĥn,2)

have appropriate

null limiting distribution conditional on the data. Then, we obtain

T ∗ols,(h1,ĥn,2)
(θ 0) = (θ̂

∗
ols,(h1,ĥn,2)

−θ 0)/V̂ ∗1/2
ols , H∗n,(h1,ĥn,2)

(θ 0) = â∗
2

(h1,ĥn,2)
/V̂ ∗a , (3.7)

and we can show that the following (conditional) convergence in distribution holds:

T ∗
ols,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)

(θ 0)

→d∗

(h′21h22h21 +h23)
−1 (h′21ψ∗Ze +ψ∗ve +h25h1)

2

h−1
23 (ψ∗ve +h25h1)

2

 ,

in probability P, where ψ∗Ze and ψ∗ve are the bootstrap analogues of ψZe and ψve, respectively.

This implies that T ∗
1,n,(h1,ĥn,2)

(θ 0) and T ∗
2,n,(h1,ĥn,2)

(θ 0), the resulting bootstrap counterparts of the

two-stage and shrinkage test statistics, have the desired null limiting distributions evaluated at the

value of localization parameter equal to h1.
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As seen from (3.4), the bootstrap SBCV equals the maximal quantile c∗
l,(h1,ĥn,2)

(1−δ ) over the

values of the localization parameter h1 in the set CI
α−δ

(ĥn,1(θ 0)). We can now state the following

asymptotic size result for cB−S
l (α,α−δ , ĥn,1, ĥn,2), where l ∈ {1,2}.

Theorem 3.1 Suppose that H0 holds, then we have for any 0 < δ ≤ α < 1 and for l ∈ {1,2},

AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]
≤ α.

Theorem 3.1 states that tests based on cB−S
l (α,α − δ , ĥn,1(θ 0), ĥn,2) control the asymptotic

size. In practice, cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) can be obtained by using the following algorithm.

Wild Bootstrap Algorithm for cccB-S
lll (((α,,,α−−−δ ,,, ĥhhn,1(((θ 000))),,, ĥhhn,2))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , â∗(b),V̂ ∗(b)ols ,V̂ ∗(b)a ,T ∗(b)ar (θ 0)

}
,b = 1, ...,B, using the

standard wild bootstrap procedure with independent transformation of disturbances.

2. Choose α , δ , and compute CI
α−δ

(ĥn,1(θ 0)). Create a fine grid for CI
α−δ

(ĥn,1(θ 0)) and call

it C grid
α−δ

.

3. For l ∈ {1,2} and for h1 ∈ C grid
α−δ

, generate T ∗(b)
l,n,(h1,ĥn,2)

(θ 0), b = 1, ...,B, using the bootstrap

statistics generated in Step 1. The same set of bootstrap statistics can be used repeatedly for

each h1.

4. Compute c∗
l,(h1,ĥn,2)

(1−δ ), the (1−δ )-th quantile of the distribution of T ∗
l,n,(h1,ĥ2)

(θ 0) from

these B draws of bootstrap samples.

5. Find cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = sup

h1∈C grid
α−δ

c∗
l,(h1,ĥn,2)

(1−δ ).

Note that as shown in Theorem 3.1, although controlling the asymptotic size, the bootstrap

SBCV may yield a conservative test whose asymptotic size does not reach its nominal level. For

further refinement on the Bonferroni bounds, we propose a size-adjustment method to adjust the

bootstrap SBCV so that the resulting test is not conservative with asymptotic size exactly equal to
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α . Specifically, for l ∈ {1,2}, the size-adjustment factor for the bootstrap SBCV is defined as:

η̂ l,n = inf

{
η : sup

h1∈H1

P∗
[
T ∗l,n,(h1,ĥn,2)

(θ 0)> cB−S
l (α,α−δ , ĥ∗n,1(h1), ĥn,2)+η

]
≤ α

}
, (3.8)

where ĥ∗n,1(h1) denotes the bootstrap analogue of ĥn,1 with localization parameter equal to h1 and

is generated by the same bootstrap samples as those for T ∗
n,(h1,ĥn,2)

(θ 0). More precisely, we define

ĥ∗n,1(h1) = ĥ∗n,1 +h1, (3.9)

where ĥ∗n,1 = n1/2â∗ =
(
v̂∗′v̂∗

)−1v̂∗′u∗, v̂∗ = MZX∗, is generated by the standard wild bootstrap

procedure with independent transformation so that the localization parameter equals zero in the

bootstrap world. Notice that we have the following convergence in distribution (jointly with the

other bootstrap statistics), ĥ∗n,1(h1)→d∗ N
(

h1,h−2
25 h23

)
, in probability P, i.e., the same limiting

distribution as that of ĥn,1(θ 0) in (3.3).

The goal of the size-adjustment method is to decrease the bootstrap SBCV as much as possible

by using the factor η while not violating the inequality in (3.8), so that the asymptotic size of the

resulting tests can be controlled. Then, the bootstrap size-adjusted CV (BACV) can be defined as

cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)

= cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n for l ∈ {1,2}, (3.10)

and one can expect that relatively small η̂ l,n results in relatively less conservative (and more power-

ful) test. Under a proper algorithm for the size-adjustment method, and given some fixed α ∈ (0,1)

and δ ∈ (0,α], the size-adjustment factor η̂ l,n(·) is continuous as a function of ĥ∗n,1(h1). Further-

more, we notice that the bootstrap-based size-adjustment method in (3.10) is in the same spirit

as the adjusted Bonferroni CV proposed in McCloskey (2017, Section 3.2), which is based on

adjusting the quantile level of the underlying localized quantile in the simple Bonferroni CV.
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Below we state the theorem on the uniform size control of the wild bootstrap CVs based on

the size-adjustment method, and we assume a continuity condition on the NRP function, follow-

ing similar continuity assumptions in Andrews and Cheng [2012, p.2195, Assumption Rob2(i)]

and Han and McCloskey [2019, p.1052, Assumption DF2(ii)]. Define cB−S
l (α,α − δ , h̃1,h2) =

suph1∈CIα−δ (h̃1)
cl,h(1− δ ), where cl,h(1− δ ) is the (1− δ )-th quantile of T̃l,h and T̃l,h is the weak

limit of Tl,n(θ 0) under the sequence {γn,h} ⊂ Γ satisfying (2.16) for l ∈ {1,2}.

Assumption 3.2 P
[
T̃l,h = cB−S

l (α,α−δ , h̃1,h2)+η
]
= 0, ∀h1 ∈ H1 and η ∈ [−cB−S

l (α,α −

δ , h̃1,h2),0], where l ∈ {1,2}.

Theorem 3.3 Suppose that H0 and Assumption 3.2 hold, then we have for any 0 < δ ≤ α < 1 and

for l ∈ {1,2}: AsySz
[
cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]
= α.

Furthermore, let CSl,n(1−α) denote the nominal level 1−α confidence set for θ constructed

by collecting all the values of θ that cannot be rejected by the corresponding size-adjusted two-

stage or shrinkage test at nominal level α .

Corollary 3.4 Suppose that Assumption 3.2 holds, then we have for any 0 < δ ≤ α < 1 and for

l ∈ {1,2}: liminfn→∞ infγ ∈ Γ P
θ ,γ

[
θ ∈CSl,n(1−α)

]
= 1−α.

Theorem 3.3 shows that cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2) yield two-stage and shrinkage tests with

the correct asymptotic size, and Corollary 3.4 states that the confidence sets constructed from in-

verting these tests have correct asymptotic coverage probability.5 To implement such size-adjusted

tests in practice, we must compute cB−S
l (α,α − δ , ĥn,1(θ 0), ĥn,2) and η̂ l,n. These values can be

computed sequentially starting with cB−S
l (α,α − δ , ĥn,1(θ 0), ĥn,2). Then the size-adjustment fac-

tor η̂ l,n can be computed by evaluating (3.8) over a fine grid of H1 as follows.

Wild Bootstrap Algorithm for cccB-A
lll (((α,,,α−−−δ ,,, ĥhhn,1(((θ 000))),,, ĥhhn,2))):

5Also see, e.g., Section 6 in Davidson and MacKinnon (2010) and Section 3.5 in Roodman, Nielsen, MacKinnon
and Webb (2019) for detailed guidance on constructing confidence set from inverting a wild bootstrap test.
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1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , â∗(b),V̂ ∗(b)ols ,V̂ ∗(b)a ,T ∗(b)ar (θ 0)

}
,b = 1, ...,B, using the

standard wild bootstrap procedure with independent transformation.

2. For l ∈ {1,2}, let cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) be the obtained SBCV.

3. Create a fine grid of the set H1 in (3.8) and call it H grid
1 . For l ∈ {1,2} and for each

h1 ∈H grid
1 , obtain T ∗(b)

l,n,(h1,ĥn,2)
(θ 0) and cB−S

l (α,α−δ , ĥ∗(b)n,1 (h1), ĥn,2), b = 1, ...,B, using the

bootstrap statistics generated in Step 1. Note that the same set of bootstrap statistics can be

used for each h1.

4. Create a fine grid of [−cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2), 0] and call it S

grid
.

5. Find all η ∈ Sgrid
s.t. sup

h1∈H grid
1

1
B ∑

B
b=11

[
T ∗(b)

l,n,(h1,ĥn,2)
(θ 0)> cB−S

l (α,α−δ , ĥ∗(b)n,1 (h1), ĥn,2)+η

]
≤

α, and set η̂ l,n equal to the smallest η .

6. The BACV is given by cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n.

We emphasize that ĥ∗n,1(h1) needs to be generated simultaneously with T ∗
l,n,(h1,ĥn,2)

(θ 0) using

the same bootstrap samples, so that the dependence structure between the statistics Tl,n(θ 0) and

ĥn,1(θ 0) is well mimicked by the bootstrap statistics. This is important for the size-adjustment

procedure to correct the conservativeness of the Bonferroni bound. Similarly, for the imple-

mentation of the size-adjustment, one cannot replace cB−S
l (α,α − δ , ĥ∗n,1(h1), ĥn,2) in (3.8) with

cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2), as it also breaks down the dependence structure.

4. Finite sample power performance

In this section, we study the finite-sample power performance of the size-corrected wild bootstrap

procedure by conducting simulations for the linear IV model under conditional heteroskedastic-

ity. For all simulations, the number of Monte Carlo replications is set at 5,000, and the number

of bootstrap replications is set at B = 399. We compare the performance of the AR-based wild
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bootstrap test (without pretest or shrinkage), our two-stage test based on the size-adjusted wild

bootstrap CVs, and our test that is based on Hansen (2017)’s shrinkage apporach and its corre-

sponding size-adjusted wild bootstrap CVs. We set α = .05 for the CVs of the three tests. In

addition, we set β = .05 for the nominal level of the pretest. The algorithms for the size-adjusted

wild bootstrap CVs are executed with δ = α −α/10 = .045, following the recommendation in

McCloskey (2017). As explained by McCloskey (2017, Section 3.5), this choice of δ tends to have

good power performance in both regions of the parameter space in which the key nuisance param-

eter (i.e., γ1 or γc
1 in the current context) is far from zero and those in which it is close to zero. The

shrinkage parameter τ in Hansen (2017)’s procedure is set to equal 1/2,1/3, or 1/4. The random

weights for the wild bootstrap are generated from the standard normal distribution throughout the

simulations.

The simulation model follows the IV model in (2.1), and the DGP is specified as

(ũi, ε̃ i)
′ ∼ i.i.d. N(0, I2), Zi ∼ i.i.d. N(0,1) and is independent from (ũi, ε̃ i)

′,

ṽi = ρ ũi +(1−ρ
2)1/2

ε̃ i, ui = f (Zi)ũi, and vi = f (Zi)ṽi, (4.11)

where i = 1, ...,n and f (x) = |x|. The sample size is set at n = 100. The value of the null hypothesis

θ 0 is fixed at zero throughout the simulations. Following the IV literature, we capture the instru-

ment strength by the concentration parameter φ = π2 ·Z′Z and let φ ∈ {1,10,25,50}. In addition,

the true values of the endogeneity parameter are set at ρ ∈ {0.1,0.3,0.5,0.7,0.9,0.95}.

Figures 1-4 show the finite-sample power curves of the tests. We highlight some findings

below. First, it is clear that our size-adjusted bootstrap tests have remarkable power gain over the

AR-based bootstrap test, especially when the IV is rather weak (e.g., φ ∈ {1,10}). Such power

gain originates from the inclusion of the OLS-based Wald test in the two-stage and shrinkage test

statistics. Second, we notice that the shrinkage bootstrap tests (in red, blue, and black) have power

advantage over the two-stage bootstrap test (in green), especially for distant alternative hypotheses.

21



Third, the shrinkage bootstrap test with τ = 1/2 typically has the best power performance among

the size-adjusted bootstrap tests. Furthermore, the standard bootstrap AR test has good size control

across different settings, as it is weak-IV-robust. However, although its size is well controlled, its

power can also be rather low when the identification is weak. On the other hand, our proposed

bootstrap tests have the advantage of providing power improvement by incorporating the OLS-

based Wald-test.

Figure 1: Power of wild bootstrap tests with φ = 1

Notes: The power curves for the bootstrap AR test, the two-stage test with hybrid-BACVs, and the shrinkage test with
BACVs with τ = 1/2,1/3,1/4 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 2: Power of wild bootstrap tests with φ = 10

Notes: The power curves for the bootstrap AR test, the two-stage test with hybrid-BACVs, and the shrinkage test with
BACVs with τ = 1/2,1/3,1/4 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 3: Power of wild bootstrap tests with φ = 25

Notes: The power curves for the bootstrap AR test, the two-stage test with hybrid-BACVs, and the shrinkage test with
BACVs with τ = 1/2,1/3,1/4 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 4: Power of wild bootstrap tests with φ = 50

Notes: The power curves for the bootstrap AR test, the two-stage test with hybrid-BACVs, and the shrinkage test with
BACVs with τ = 1/2,1/3,1/4 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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In this Supplementary Material, Section S.1 contains several technical lemmas. Section S.2

contains the proofs of the theorems in the main text. Section S.3 presents the details of the bootstrap

inconsistency under local endogeneity.

S.1. Technical Lemmas

The following lemma gives the limiting distributions of the estimators and test statistics under the

sequences of drifting endogeneity parameter n1/2γn,h,1→ h1 ∈ R.

Lemma S.1 Under H0 and the drift sequences of parameters {γn,h} in (2.16) with |h1| < ∞, the

following results hold:

(a) Asymptotic distributions of the estimators:

 n1/2â(θ 0)

n1/2(θ̂ ols−θ)

→d

 ψa

ψols

=

 h−1
25 ψve +h1

(h′21h24h21 +h25)
−1 (h′21ψZe +ψve +h25h1)

 ,

where ψa ∼N
(

h1,h−2
25 h23

)
, and ψols ∼N

(
h25h1/

(
h′21h24h21+h25

)
,(h′21h22h21+h23)/

(
h′21h24h21+

h25
)2
)

.

(b) Asymptotic distributions of the test statistics:


Tar(θ 0)

Tols(θ 0)

Hn(θ 0)

 →d ηh =


η1,h

η2,h

η3,h


1



=


ψ ′Zeh22ψZe

(h′21h22h21 +h23)
−1 (h′21ψZe +ψve +h25h1)

2

h−1
23 (ψve +h25h1)

2


T1,n(θ 0) →d T̃1,h = η2,h1(η3,h ≤ χ

2
1,1−β

)+η1,h1(η3,h > χ
2
1,1−β

),

T2,n(θ 0) →d T̃2,h = η2,hw(η3,h)+η1,h(1−w(η3,h)),

where η1,h ∼ χ2
k , η2,h ∼ χ2

1

(
(h′21h22h21 +h23)

−1h2
25h2

1

)
, and η3,h ∼ χ2

1

(
h−1

23 h2
25h2

1

)
.

PROOF OF LEMMA S.1 (a) It is sufficient to characterize the asymptotic distributions of estima-

tors separately: (a1) n1/2â(θ 0), and (a2) n1/2(θ̂ ols−θ).

(a1) Asymptotic distribution of n1/2â(θ 0). First, note that for the denominator,

n−1v̂′v̂ = n−1X ′MZX →P h25. (S.1)

Second, for the numerator, we have

n−1/2v̂′e = n−1/2v′MZe = n−1/2v′e−n−1/2v′PZe = n−1/2v′e+oP(1)→d
ψve, (S.2)

by applying Lyapunov Central Limit Theorem (CLT), where ψve∼N(0,h23). Therefore, we obtain

n1/2(â(θ 0)− γn,h,1) →d h−1
25 ψve ∼ N

(
0,h−2

25 h23
)
. (S.3)

Since n1/2â(θ 0) = n1/2(â(θ 0)− γn,h,1)+n1/2γn,h,1, it follows that

n1/2â(θ 0) →d ψa = h−1
25 ψve +h1 ∼ N

(
h1,h−2

25 h23

)
. (S.4)

(a2) Asymptotic distribution of n1/2(θ̂ OLS−θ 0). First, we have

n1/2(θ̂ OLS−θ) =
(
n−1X ′X

)−1(n−1/2X ′u
)
, (S.5)

2



where n−1X ′X →P h′21h24h21 +h25, and

n−1/2X ′u = n−1/2(γ ′n,h,21Z′+ v′)(vγn,h,1 + e)

= γ
′
n,h,21

(
n−1/2Z′e

)
+ γ
′
n,h,21

(
n−1/2Z′v

)
γn,h,1 +n−1/2v′e+

(
n−1v′v

)
n1/2

γn,h,1

→d h′21ψZe +ψve +h25h1, (S.6)

since γ ′n,h,21(n
−1/2Z′v)γn,h,1 = oP(1), n−1(v′v) = h25 +oP(1), and n1/2γn,h,1→ h1 as n→ ∞.

Therefore, we obtain

n1/2(θ̂ ols−θ) →d ψols = (h′21h24h21 +h25)
−1(h′21ψZe +ψve +h25h1) (S.7)

∼ N
( h25h1

h′21h24h21 +h25
,

h′21h22h21 +h23

(h′21h24h21 +h25)2

)
.

(b) It also suffices to characterize the asymptotic distributions of each statistic separately. Be-

low we show that nV̂ols→P h′21h22h21+h23

(h′21h24h21+h25)
2 . The argument for V̂a(θ 0) is similar and thus omitted.

For V̂ols we use the decomposition

V̂ols

Vols
−1 =V−1

ols

(
V̂ols−Vols

)
=V−1

ols

(
Aols,1−2Aols,2 +Aols,3

)
+oP(1), (S.8)

where Vols = n−2Q−1
ols ∑

n
i=1 EF [X2

i u2
i ]Q
−1
ols , Aols,1 = n−2Q−1

ols ∑
n
i=1 X2

i u2
i Q−1

ols −

n−2Q−1
ols ∑

n
i=1 EF [X2

i u2
i ]Q
−1
ols , Aols,2 = n−2Q−1

ols ∑
n
i=1 X3

i ui(θ̂ ols − θ)Q−1
ols , Aols,3 =

n−2Q−1
ols ∑

n
i=1 X4

i (θ̂ ols − θ)2Q−1
ols , and Qols = plimn→∞n−1X ′X . Thus, we need to show that

V−1
ols Aols,m = oP(1), for m = 1,2,3.

For m = 1, we let ri = n−1V−1/2
ols Q−1

olsXiui, and we have EF
[
∑

n
i=1 r2

i −1
]
= EF

[
V−1

ols Aols,1
]
= 0.

Also define the truncated variable qi = ri1(|ri| ≤ ε) such that r2
i = q2

i + r2
i 1(|ri|> ε). Then,

EF

∣∣∣∣∣ n

∑
i=1

r2
i −1

∣∣∣∣∣≤ EF

∣∣∣∣∣ n

∑
i=1

(
q2

i −EF [q2
i ]
)∣∣∣∣∣+EF

∣∣∣∣∣ n

∑
i=1

(
r2

i 1(|ri|> ε)−EF [r2
i 1(|ri|> ε)]

)∣∣∣∣∣ . (S.9)
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by the triangle inequality. The first term is o(1) because

VarF

[
n

∑
i=1

q2
i

]
=

n

∑
i=1

VarF
[
q2

i
]
≤ ε

2
n

∑
i=1

VarF [|qi|]≤ ε
2

n

∑
i=1

EF
[
q2

i
]
≤ ε

2
n

∑
i=1

EF
[
r2

i
]
= ε

2, (S.10)

where ε is arbitrary. For the second term, we have

EF

∣∣∣∣∣ n

∑
i=1

(
r2

i 1(|ri|> ε)−EF(r2
i 1(|ri|> ε)

)∣∣∣∣∣≤ 2
n

∑
i=1

EF

[
|ri|2+ξ |ri|−ξ1(|ri|> ε)

]
≤ 2ε

−ξ
n

∑
i=1

EF |ri|2+ξ → 0, (S.11)

where the result of convergence to zero holds by the moment restriction on EF [||Ziei||2+ξ ],

EF [|viei|2+ξ ], EF [||ZiZ′i ||2+ξ ] and EF [|Xi|2(2+ξ )], and by Vols = O(n−1). For m = 3, we have

|nAols,3|= n−1Q−2
ols(θ̂ ols−θ)2

n

∑
i=1

X4
i = oP(1), (S.12)

where the second equality follows from the moment restriction on EF [|Xi|2(2+ξ )]. Therefore, we

obtain that V−1
ols Aols,3 = oP(1). For m = 2, by the Cauchy-Schwarz inequality,

∣∣V−1
ols Aols,2

∣∣ ≤ (
V−1

ols n−2Q−1
ols

n

∑
i=1

X2
i u2

i Q−1
ols

)1/2 (
V−1

ols Aols,3
)1/2

=
(
1+V−1

ols Aols,1
)1/2 (

V−1
ols Aols,3

)1/2
= oP(1), (S.13)

so that the results follows from those for m = 1 and m = 3.

Finally, the proof for the asymptotic distribution of Tar(θ 0) is straightforward and thus also

omitted.

Lemmas S.2-S.3 are needed for the arguments with regard to the limiting distributions of the

bootstrap analogues of the estimators and test statistics.
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Lemma S.2 For the independent bootstrap, suppose that E∗
[
|ω∗1i|2+ξ

]
≤C and E∗

[
|ω∗2i|2+ξ

]
≤

C; for the dependent bootstrap, suppose that E∗
[
|ω∗1i|2(2+ξ )

]
≤ C, for some ξ > 0 and some

large enough constant C. If further EF
[
w2+ξ

i
]
< ∞ for all wi ∈

{
||Ziui||, ||Zivi||, ||ZiZ′i ||, |uivi|

}
and some ξ > 0, then under H0, n−1

∑
n
i=1 E∗

[
||Ziu∗i ||2+ξ

]
, n−1

∑
n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
and

n−1
∑

n
i=1 E∗

[
|u∗i v∗i |2+ξ

]
are bounded in probability.

PROOF OF LEMMA S.2

The proof is straightforward for n−1
∑

n
i=1 E∗

[
||Ziu∗i ||2+ξ

]
. Indeed, we have

n−1
n

∑
i=1

E∗
[
||Ziu∗i ||2+ξ

]
= n−1

n

∑
i=1

E∗
[
||Ziui(θ 0)ω

∗
1i||2+ξ

]
= n−1

n

∑
i=1

E∗
[
||Ziui(θ 0)||2+ξ |ω∗1i|2+ξ

]
= n−1

n

∑
i=1
||Ziui(θ 0)||2+ξ E∗

[
|ω∗1i|2+ξ

]
≤Cn−1

n

∑
i=1
||Ziui(θ 0)||2+ξ = OP(1), (S.14)

where the last equality follows from θ = θ 0 under the null hypothesis, EF [||Ziui||2+ξ ] < ∞,

and n−1
∑

n
i=1 ||Ziui||2+ξ −EF [||Ziui||2+ξ ]→P 0 by Law of Large Numbers (LLN). Now, consider

n−1
∑

n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
. As in (S.14) we have for j = 1 or 2,

n−1
n

∑
i=1

E∗
[
||Ziv∗i ||2+ξ

]
= n−1

n

∑
i=1
||Ziv̂i||2+ξ E∗

[
|ω∗ji|2+ξ

]
≤Cn−1

n

∑
i=1
||Ziv̂i||2+ξ . (S.15)

By using Minkowski and Cauchy-Schwartz inequalities, along with v̂i = vi−Z′i(π̂−π), we obtain

n−1
n

∑
i=1
||Ziv̂i||2+ξ = n−1

n

∑
i=1
||Zivi−ZiZ′i(π̂−π)||2+ξ

≤C1

{
n−1

n

∑
i=1
||Zivi||2+ξ + ||π̂−π||2+ξ n−1

n

∑
i=1
||ZiZ′i ||2+ξ

}
= OP(1), (S.16)

where C1 denotes some large enough constant, and (S.16) holds because π̂ − π →P 0,

EF
[
||Zivi||2+ξ

]
< ∞, EF

[
||ZiZ′i ||2+ξ

]
< ∞, n−1

∑
n
i=1 ||Zivi||2+ξ − EF

[
||Zivi||2+ξ

]
→P 0 and

n−1
∑

n
i=1 ||ZiZ′i ||2+ξ − EF

[
||ZiZ′i ||2+ξ

]
→P 0 by LLN. Therefore, n−1

∑
n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
is

bounded in probability from (S.15)-(S.16).
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We now show that n−1
∑

n
i=1 E∗

[
|u∗i v∗i |2+ξ

]
is bounded in probability. For j = 1 or 2, we have

n−1
n

∑
i=1

E∗
[
|u∗i v∗i |2+ξ

]
= n−1

n

∑
i=1

E∗
[
|ui(θ 0)v̂i|2+ξ |ω∗1iω

∗
ji|2+ξ

]
= n−1

n

∑
i=1
|ui(θ 0)v̂i|2+ξ E∗

[
|ω∗1iω

∗
ji|2+ξ

]
. (S.17)

Note that j = 2 for the wild bootstrap scheme with independent transformation, so that

E∗
[
|ω∗1iω

∗
ji|2+ξ

]
= E∗

[
|ω∗1iω

∗
2i|2+ξ

]
= E∗

[
|ω∗1i|2+ξ

]
E∗
[
|ω∗2i|2+ξ

]
≤ C2 for some large enough

constant C2. For the wild bootstrap scheme with dependent transformation, j = 1, and we have

E∗
[
|ω∗1iω

∗
ji|2+ξ

]
= E∗

[
|ω∗1i|2(2+ξ )

]
≤ C. Combining both cases into (S.17) along with the fact

that ui(θ 0)v̂i = ui(θ 0)vi−ui(θ 0)Z′i(π̂−π), θ = θ 0 under the null hypothesis, EF ||Ziui||2+ξ < ∞,

EF |uivi|2+ξ < ∞, and by using the arguments with Minkowski and Cauchy-Schwartz inequalities,

we have

n−1
n

∑
i=1

E∗
[
|u∗i v∗i |2+ξ

]
≤ C3

{
n−1

n

∑
i=1
|ui(θ 0)vi|2+ξ + ||π̂−π||2+ξ n−1

n

∑
i=1
||Ziui(θ 0)||2+ξ

}
= OP(1),

for some large enough constants C3.

Lemma S.3 Suppose that H0 holds, the conditions of Lemma S.2 are satisfied, E∗[ω∗1i] =

E∗[ω∗2i] = 0, and Var∗[ω∗1i] = Var∗[ω∗2i] = 1. For the dependent bootstrap, further suppose that

E∗[ω∗31i ] = 0 and E∗[ω∗41i ] = 1. Then, under the sequence {γn,h} defined in (2.16) with |h1|< ∞ we

have:

 n−1/2Z
′
u∗

n−1/2
(

u∗
′
v∗−E∗

[
u∗
′
v∗
])
→d∗

ψ∗ze

ψ∗ve

∼ N

0,

h22 0

0′ h23


 , (S.18)

in probability P.

PROOF OF LEMMA S.3
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Let c1 denote k-dimensional nonzero vectors, and c2 denote a nonzero scalar. Define

U∗n,i =
{

c′1u∗i Zi + c2 (u∗i v∗i −E∗[u∗i v∗i ])
}
/
√

n

=
{

c′1ω
∗
1iûi(θ 0)Zi + c2

(
ûi(θ 0)v̂iω

∗
1iω
∗
ji−E∗[ûi(θ 0)v̂iω

∗
1iω
∗
ji]
)}

/
√

n, (S.19)

where j = 1 for the dependent bootstrap scheme and j = 2 for the independent bootstrap scheme.

It suffices to verify that the conditions of the Liapounov CLT hold for U∗n,i. For brevity, we shall

focus on the proof for the case with independent transformation (i.e., j = 2). Note that the proof

for the case with dependent transformation ( j = 1) follows similar steps.

(a) We have E∗[U∗n,i] = 0 as E
∗
[ω∗1iûi(θ 0)Zi] = ûi(θ 0)ZiE

∗
[ω∗1i] = 0, and E

∗
[ûi(θ 0)v̂iω

∗
1iω
∗
2i−

E∗[ûi(θ 0)v̂iω
∗
1iω
∗
2i]] = ûi(θ 0)v̂iE

∗
[ω∗1iω

∗
2i]− ûi(θ 0)v̂iE∗[ω∗1iω

∗
2i] = 0.

(b) Note that

E
∗
[u∗

2

i ZiZ′i ] = E
∗
[û2

i (θ 0)ω
∗2

1i ZiZ′i ] = û2
i (θ 0)ZiZ′iE

∗
[ω∗

2

1i ] = û2
i (θ 0)ZiZ′i ,

E
∗
[u∗

2

i v∗
2

i ] = E
∗
[û2

i (θ 0)v̂2
i ω
∗2

1i ω
∗2

2i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

2

1i ω
∗2

2i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

2

1i ]E
∗[ω∗

2

2i ] = û2
i (θ 0)v̂2

i ,

E
∗
[u∗

2

i v∗i Zi] = E
∗
[û2

i (θ 0)v̂iZiω
∗2

1i ω
∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗

2

1i ω
∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗

2

1i ]E
∗[ω∗2i] = 0,

which implies that under H0,

n

∑
i=1

E∗[U∗
2

n,i] = c′1

(
n−1

n

∑
i=1

û2
i (θ 0)ZiZ′i

)
c1 + c2

2

(
n−1

n

∑
i=1

û2
i (θ 0)v̂2

i

)
= c′1h22c1 + c2

2h23 +oP(1) = OP(1).

(S.20)

(c) We note that by Minkowski inequality, for some ξ > 0 and some large enough constant C4,

n

∑
i=1

E∗[
∣∣U∗n,i∣∣2+ξ

]≤C4n−
ξ

2 n−1
n

∑
i=1

E∗
[∣∣c′1Z∗i u∗i

∣∣2+ξ
+ |c2u∗i v∗i |

2+ξ
]
→P 0, (S.21)

where the convergence in probability is obtained by using Lemma S.2.
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From (a)-(c) above, U∗n,i satisfies the Lyapunov CLT conditions, and the result of Lemma S.3

follows for the independent bootstrap. For the dependent bootstrap, notice that for (b),

E
∗
[u∗

2

i v∗
2

i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

4

1i ] = û2
i (θ 0)v̂2

i , and E
∗
[u∗

2

i v∗i Zi] = û2
i (θ 0)v̂iZiE

∗
[ω∗

3

1i ] = 0, (S.22)

and the desired result follows.

S.2. Proofs of Theorems in the Main Text

PROOF OF THEOREM 3.1

First, note that by following similar arguments as those in the proofs of Theorem S.4, we can

obtain that the following (conditional) convergence in distribution holds:

T ∗
OLS,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)

(θ 0)

→d∗

(h′21h22h21 +h23)
−1/2 (h′21ψ∗Ze +ψ∗ve +h25h1)

h−1
23 (ψ∗ve +h25h1)

2

 (S.23)

in probability P. Then, based on the formula of T ∗
l,n,(h1,ĥn,2)

(θ 0) for l ∈ {1,2}, we conclude that

the (conditional) null limiting distribution of T ∗
l,n,(h1,ĥn,2)

(θ 0) is the same as the null limiting dis-

tribution of Tl,n(θ 0) with the value of localization parameter equal to h1, and this implies that

c∗
l,(h1,ĥn,2)

(1−δ )→P cl,(h1,h2)(1−δ ), where cl,(h1,h2)(1−δ ) denotes the (1−δ )-th quantile of T̃l,h

with h = (h1,h2).

Then, the arguments for the proof is similar to those in McCloskey (2017). We note that there

exists a “worst case sequence” γn ∈ Γ such that AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

equals:

limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[
Tl,n(θ 0)> cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

8



= limsup
n→∞

P
θ0,γn

[
Tl,n(θ 0)> cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

= lim
n→∞

P
θ0,γmn

[
Tl,mn(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)
]

(S.24)

where {mn : n≥ 1} is a subsequence of {n : n≥ 1} and such a subsequence always exists. Further-

more, there exists a subsequence {ωn : n≥ 1} of {mn : n≥ 1} such that:

lim
n→∞

P
θ0,γmn

[
Tl,mn(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)
]

= lim
n→∞

P
θ0,γωn,h

[
Tl,ωn(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
]

(S.25)

for some h ∈ H . But, for any h ∈ H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and

any sequence {γωn,h : n ≥ 1}, we have
(
Tl,ωn(θ 0), ĥωn,1

(θ 0)
)
→d (T̃l,h, h̃1

)
jointly. In addition,

cB−S
l (α,α−δ , ĥ

ωn,1
(θ 0), ĥωn,2

) is continuous in ĥ
ωn,1

by the definition of the SBCV and Maximum

Theorem. Hence, the following convergence holds jointly by the Continuous Mapping Theorem:

(
Tl,ωn(θ 0),cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
)
→d

(
T̃l,h,cB−S

l (α,α−δ , h̃1,h2)
)

(S.26)

where cB−S
l (α,α−δ , h̃1 ,h2) = sup

h1∈CI
α−δ

(h̃1)

cl,(h1,h2)(1−δ ). Then, (S.24)-(S.26) imply that

AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

= lim
n→∞

P
θ0,γωn,h

[
Tl,ωn(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
]

= sup
h∈H

P
[
T̃l,h > cB−S

l (α,α−δ , h̃1,h2)
]
, (S.27)

Now, for any h ∈H , we have:

P
[
T̃l,h ≥ cB−S

l (α,α−δ , h̃1,h2)
]

= P
[
T̃l,h ≥ cB−S

l (α,α−δ , h̃1,h2)≥ cl,h(1−δ )
]

9



+ P
[
T̃l,h ≥ cl,h(1−δ )≥ cB−S

l (α,α−δ , h̃1,h2)
]

+ P
[
cl,h(1−δ )≥ T̃l,h ≥ cB−S

l (α,α−δ , h̃1,h2)
]

≤ P
[
T̃l,h ≥ cl,h(1−δ )

]
+P

[
cl,h(1−δ )≥ cB−S

l (α,α−δ , h̃1,h2)
]

= P
[
T̃l,h ≥ cl,h(1−δ )

]
+P

[
h1 /∈CIα−δ (h̃1)

]
= δ +(α−δ ) = α, (S.28)

where the inequality and the second equality follow from the form of cB−S
l (α,α − δ , h̃1,h2), and

the third equality follows from the definition of CIα−δ (h̃1). As (S.28) holds for any h ∈H , it is

clear from (S.27) that AsySz[cB−S
l (α,α−δ , ĥn,1, ĥn,2)]≤ α, as stated.

PROOF OF THEOREM 3.3

As in Theorem 3.1, we can show that there exists a sequence γn ∈ Γ , a subsequence

{mn : n≥ 1} of {n : n≥ 1}, and a subsubsequnce {ωn : n≥ 1} of {mn : n≥ 1} such that the

following result holds for l ∈ {1,2}:

AsySz
[
cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[
Tl,n(θ 0)> cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n

]
= limsup

n→∞

P
θ0,γn

[
Tl,n(θ 0)> cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n

]
= lim

n→∞
P

θ0,γmn

[
Tl,mn(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)+ η̂ l,mn

]
= lim

n→∞
P

θ0,γωn,h

[
Tl,ωn(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)+ η̂ l,ωn

]
(S.29)

for some h ∈H . Furthermore, as in the proof of Theorem 3.1, for any h ∈Hh, any subsequence

{ωn : n ≥ 1} of {n : n ≥ 1}, and any sequence {γωn,h : n ≥ 1}, we have
(
Tl,ωn(θ 0), ĥωn,1

)
→d(

T̃l,h, h̃1

)
jointly. Hence,

lim
n→∞

P
θ0,γωn ,h

[
Tl,ωn(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)+ η̂ l,ωn

]
10



= sup
h∈H

P
[
T̃l,h > cB−S

l (α,α−δ , h̃1,h2)+ η̄ l

]
(S.30)

≡ sup
h∈H

P
[
T̃l,h > cB−A

l (α,α−δ , h̃1,h2)
]
, (S.31)

where η̄ l = inf

{
η : sup

h1∈H1

P
[
T̃l,h > cB−S

l (α,α−δ , h̃1 ,h2)+η
]
≤ α

}
. For the simplicity of expo-

sition, define the following asymptotic rejection probability:

NRPl[h,η ] ≡ P[T̃l,h > cB−S
l (α,α−δ , h̃1,h2)+η ]. (S.32)

It is clear from (S.29)-(S.32) that AsySz[cB−A
l (α,α − δ , ĥn,1, ĥn,2)] = sup

h∈H
NRPl[h, η̄ l]. Hence, it

suffices to show that sup
h∈H

NRPl[h, η̄ l] = α to establish Theorem 3.3.

First, from the result of Theorem 3.1 and the definition of the size-correction criterion, it is clear

that sup
h∈H

NRPl[h, η̄ l] ≤ α . We proceed to show that sup
h∈H

NRPl[h, η̄ l] < α leads to contradiction.

Assume that sup
h∈H

NRPl[h, η̄ l]< α and define the function Kl(·) : R− → [−α, 1−α] such that

Kl(x) = sup
h∈H

NRPl[h,x]−α. (S.33)

Notice that given Assumption 3.2, NRPl[h, ·] is continuous on R−. Therefore, the Maximum The-

orem entails that Kl(·) is also continuous on R−. Moreover, we have6

Kl

(
−cB−S

l (α,α−δ , h̃1,h2)
)
= sup

h∈H
NRPl[h,−cB−S

l (α,α−δ , h̃1,h2)]−α = 1−α > 0

and Kl (η̄ l) = sup
h∈H

NRPl[h, η̄ l]−α < 0 (by assumption).

6We notice that the proof is focused on the symmetric two-sided test and uses the fact that NRPl [h,−cB−S
l (α,α−

δ , h̃1,h2)] = P[T̃l,h > 0] = 1 in this case. This proof can be adapted to the case of a lower/upper one-sided test by noting
that for any ε > 0 small enough, there exists a large enough positive constant c≡ c(ε) such that NRPl [h,−c(ε)] = 1−ε,
for all h∈H . Therefore, Kl(−c(ε)) = suph∈H NRPl [h,−c(ε)] = 1−ε−α. As this holds for any ε > 0 small enough,
the result for the case with lower/upper one-sided test follows by choosing ε such that ε → 0.

11



Then, we note that by the Intermediate Value Theorem, there exists η̇ l such that

i) − cB−S
l (α,α−δ , h̃1,h2)< η̇ l < η̄ l almost surely,

ii) Kl (η̇ l) = 0; i.e., sup
h∈H

NRPl[h, η̇ l] = α.

However, this contradicts the size-correction procedure where

η̄ l = inf

{
η : sup

h1∈H1

P
[
T̃l,h > cB−S

l (α,α−δ , h̃1,h2)+η

]
≤ α

}
.

It follows that sup
h∈H

NRPl[h, η̄ l] = α; i.e., AsySz[cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)] = α .

PROOF OF COROLLARY 3.4 We notice that for l ∈ {1,2},

liminf
n→∞

inf
γ ∈ Γ

P
θ ,γ

[
θ ∈CSl,n(1−α)

]
= liminf

n→∞
inf

γ ∈ Γ
P

θ ,γ

[
Tl,n(θ)≤ cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]
, (S.34)

where cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2) denotes the BACV corresponding to Tl,n(θ). Then, the result

follows by Theorem 3.3 and by exploiting the duality between confidence set and inverting the test

of each of the individual null hypothesis H0 : θ = θ 0.

S.3. Asymptotic Results for the Bootstrap Inconsistency

This section contains the details of the bootstrap inconsistency under local endogeneity. In the

following theorem, we give the results of bootstrap inconsistency for the two-stage and shrinkage

tests under local endogeneity. For this purpose, we notice that there are two sources of randomness

12



in the bootstrap: the randomness from the original data and the randomness from the bootstrap

procedure (i.e., the random weights of the wild bootstrap). Specifically, take the original sample

as from the probability space (Ω ,F ,P). In addition, suppose the randomness from the bootstrap

is defined on a probability space (Λ ,G ,P∗), which is independent of (Ω ,F ,P). Then, in the

following theorem we view the bootstrap statistics as being defined on the product probability

space (Ω ,F ,P)×(Λ ,G ,P∗) = (Ω×Λ ,F ×G ,P), where P= P×P∗. Theorem S.4 gives the null

limiting distributions of the bootstrap statistics under P. In particular, this framework is needed to

characterize the asymptotic behaviour of the bootstrap statistics generated under the dependent

transformation of disturbances.

Theorem S.4 Suppose that H0 and the conditions of Lemmas S.2 and S.3 hold. Then, under the

sequence {γn,h} defined in (2.16) with |h1|< ∞:


T ∗ar(θ 0)

T ∗ols(θ 0)

H∗n (θ 0)

  η
∗
h ≡


η∗1,h

η∗2,h

η∗3,h

=


ψ∗

′
Zeh22ψ∗Ze

(h′21h22h21 +h23)
−1 (h′21ψ∗Ze +ψ∗ve +h25hb

1

)2

h−1
23

(
ψ∗ve +h25hb

1

)2

 ,

T ∗1,n(θ 0)  T̃ ∗1,h = η
∗
2,h1(η

∗
3,h ≤ χ

2
1,1−β

)+η
∗
1,h1(η

∗
3,h > χ

2
1,1−β

),

T ∗2,n(θ 0)  T̃ ∗2,h = η
∗
2,hw(η∗3,h)+η

∗
1,h(1−w(η∗3,h)),

where hb
1 = 0 for the bootstrap based on independent transformation of disturbances, and hb

1 = h1+h−1
25 ψve

with ψve ∼ N(0,h23), for the bootstrap based on dependent transformation of disturbances, and signifies

the weak convergence under P.

PROOF OF THEOREM S.4

First, we note that

n−1X∗
′
PZX∗ = n−1 (Zπ̂ + v∗)′PZ (Zπ̂ + v∗) = n−1

π̂
′Z
′
Zπ̂ +n−1

π̂
′Z
′
v∗+n−1v∗

′
Zπ̂ +n−1v∗

′
PZv∗

= n−1
π̂
′Z
′
Zπ̂ +oP∗(1)→P∗ h

′
21h24h21, in probability P, (S.35)
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which follows from π̂−h21→P 0, n−1Z′Z−h24→P 0, and n−1Z′v∗→P∗ 0 in probability P. Using

similar arguments, we obtain

n−1X∗
′
X∗→P∗ h

′
21h24h21 +h25, (S.36)

in probability P. Furthermore, using similar arguments as those for V̂a, V̂ols and V̂2sls in the proof

of Lemma S.1, we obtain

nV̂ ∗a →P∗ (h
′
21h24h21)

−2h
′
21h22h21 +h−2

25 h23, nV̂ ∗ols→P∗ (h
′
21h24h21 +h25)

−2(h′21h22h21 +h23
)
,

nV̂ ∗2sls→P∗ (h′21h24h21
)−2h

′
21h22h21, (S.37)

in probability P.

Second, we note that

n−1/2X∗
′
PZu∗ = n−1/2 (Zπ̂ + v∗)′PZu∗ = n−1/2

π̂
′Z
′
u∗+

(
n−1v∗

′
Z
)(

n−1Z
′
Z
)−1(

n−1/2Z
′
u∗
)

= n−1/2
π̂
′Z
′
u∗+oP∗(1)→d∗ h′21ψ

∗
Ze, (S.38)

in probability P, where the last equality follows from: (a) by Lemma S.3, n−1/2Z
′
u∗ = OP∗(1) in

probability P; (b) n−1Z′v∗→P∗ 0 in probability P as E∗[n−1Z′v∗] = 0; (c) n−1Z
′
Z→P h24, which

is positive definite, and therefore
(

n−1Z
′
Z
)−1
→P h−1

24 . Then, the (conditional) convergence in

distribution in (S.35) follows from Lemma S.3, along with the fact that π̂−h21→P 0.

Third, following the same arguments as above, we have n−1/2X∗
′
u∗ = n−1/2π̂

′Z
′
u∗ +

n−1/2(v∗′u∗−E∗[v∗
′
u∗]
)
+n−1/2E∗[v∗

′
u∗], where

n−1/2
π̂
′Z
′
u∗+n−1/2(v∗′u∗−E∗[v∗

′
u∗]
)
→d∗ h′21ψ

∗
Ze +ψ

∗
ve, (S.39)

in probability P. Then, for n−1/2E∗[v∗
′
u∗], we notice that it is equal to zero under the inde-
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pendent transformation of disturbances. Under the dependent transformation, n−1/2E∗[v∗
′
u∗] =

n1/2 (n−1
∑

n
i=1 v̂iûi(θ 0)

)
, where

n1/2

(
n−1

n

∑
i=1

v̂iûi(θ 0)

)
= n1/2

(
n−1

n

∑
i=1

(viui(θ 0)−EF [viui(θ 0)])

)
+n1/2EF [viui(θ 0)]+oP(1)

→d ψve +h25h1. (S.40)

Finally, notice that the results in probability P in (S.35)-(S.39) are invariant to the original data,

so they hold under P as well. Then, by (S.40) and the Continuous Mapping Theorem, we obtain

that under H0,


n1/2â∗

n1/2(θ̂
∗
ols−θ 0)

T ∗ar(θ 0)

  


h−1

25 ψ∗ve +hb
1

(h
′
21h24h21 +h25)

−1(h
′
21ψ∗Ze +ψ∗ve +h25hb

1)

ψ∗
′

Zeh22ψ∗Ze

 , (S.41)

and the results in the statement of Theorem S.4 follow.
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