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Abstract: Acemoglu’s (2003) paper “Labor- and Capital-augmenting Technical Change” 

is a pioneering work that introduces a growth model with an endogenous direction of technical 

progress including microfoundations. At the steady-state equilibrium, the model indicates that 

there is only net labor-augmenting technical change, despite firms being able to pursue both 

labor- and capital-augmenting technological improvements. While this paper is a classic and 

original contribution to the field, it presents several significant shortcomings: (1) substantial 

mathematical errors in the proof of the main propositions; (2) the absence of a dynamic 

adjustment function for scientists across different innovation sectors, which is critical for the 

model; (3) neglect of the crucial condition required for the propositions to hold; (4) omission of 

important policy implications that diverge from existing literature; and (5) insufficient 

explanation of the intuition behind the model’s core conclusions. This comment identifies and 

addresses these shortcomings. 
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Ⅰ Introduction 

To align the equilibrium of growth models with Kaldor’s (1961) stylized facts and comply 

with Uzawa’s (1961) steady-state theorem, both neoclassical growth models (Solow, 1956; Cass, 

1965; Koopmans, 1965) and endogenous technological change models (Romer, 1990; Aghion 

and Howitt, 1992) assume that all technical change is purely labor-augmenting (Harrod-neutral). 

However, these models do not explain why profit-maximizing firms only pursue labor-

augmenting innovations, even though other types of technological progress, such as Solow-

neutral (capital-augmenting) and Hicks-neutral, are at least conceptually possible. 

Acemoglu’s (2003) paper addresses this gap by developing a growth model where the 

direction of technological progress is endogenously determined. In this model, firms can 

undertake both labor- and capital-augmenting innovations; however, driven by profit motives, 

the steady-state equilibrium ultimately results in only net labor-augmenting technological 

change. This indicates that purely labor-augmenting technological progress may be a rational 

choice for firms under specific constraints, thereby providing a microfoundation for the 

exogenous assumption regarding the direction of technological change in existing literature. 

Indeed, as the inaugural paper in Volume 1, Issue 1 of the JEEA, it has attracted significant 

attention since its publication, garnering over 1,000 citations on Google Scholar. Additionally, 

it is an essential component of Acemoglu’s classic textbook (2009, ch.15.6) and is prominently 

featured in Acemoglu’s (2024) slides for the “Introduction to Economic Growth” course at MIT. 

Jones (2024) specifically discusses this paper in his teaching slides titled “The Direction of 

Technical Change,” referring to it as a “Great Idea for a paper”! 

However, this paper presents several serious issues that have not been publicly addressed 

in the literature or rectified by the author. First, there are substantial mathematical errors in the 

proof of the main propositions. Specifically, the premise Lemma A1 used to prove Propositions 

1, 2, and 6, as well as the dynamic equation of scientists in the proof of Proposition 5, is 

mathematically incorrect. Second, the model is inadequately specified due to the absence of a 

behavioral function for the dynamic adjustments of scientists. These adjustments between 

different innovation sectors are critical determinants of the dynamics of technological progress 

and the outcomes of the steady-state equilibrium; however, the model does not explicitly provide 

such a dynamic adjustment function. Third, the paper presents results only for scenarios where 

investment is greater than zero, omitting analysis for the case when investment is zero. Even in 

the absence of investment, the model maintains a steady-state equilibrium but lacks a balanced 

growth path (BGP) equilibrium. This distinction between the two types of equilibria is 

overlooked in this paper and existing literature. Fourth, the paper neglects important policy 

implications of the model. It fails to indicate that the model suggests taxes or subsidies on 
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innovation do not affect the direction or rate of technological progress in the steady state, nor 

do they influence economic growth; rather, they only impact income distribution. This 

contradicts established models of endogenous technological progress (Romer, 1990; Aghion and 

Howitt, 1992) and conflicts with the authors’ assertion that tax policies have no effect on the 

long-run distribution of income. Fifth, the model does not provide the correct intuition behind 

its core conclusion. The authors claim that the asymmetry between capital and labor 

accumulation—specifically, that capital can be accumulated while labor cannot—leads to the 

conclusion that technological progress in the steady state is purely labor-augmenting. However, 

even the paper acknowledges the logical difficulties inherent in this argument. While the 

asymmetry may explain a bias toward labor-augmenting technological progress, it does not 

clarify why this progress is exclusively labor-augmenting. Therefore, the authors’ objective of 

explaining why long-run technical change is labor-augmenting has not been achieved. 

While these issues do not undermine the original value of the paper, identifying and 

addressing its errors could significantly enhance its contribution to the theory of economic 

growth. By highlighting the paper’s failure to resolve its central issues, we can encourage further 

inquiry into what key factors were overlooked, ultimately leading to the development of a 

general framework for analyzing the direction of technological progress. 

The structure of this comment is organized as follows: Section 2 identifies two significant 

mathematical errors in the proof of the proposition; Section 3 supplements the model with a 

behavioral function for scientists’ dynamic adjustments that is currently missing; Section 4 

presents the dynamic equations of the model, along with modifications to the propositions and 

the reproves; Section 5 highlights important policy implications of the model that have been 

overlooked in the paper; Section 6 discusses the intuition behind the core conclusions of the 

model; and Section 7 provides a summary of the comment. 

Ⅱ Two Significant Mathematical Errors in the Proof of the Propositions 

This paper presents six propositions and one lemma, focusing on the existence, uniqueness 

and convergence of the steady-state equilibrium of the model, as well as specific results related 

to it. Propositions 1, 2, 3, and 4 delve into the existence and uniqueness, while Propositions 5 

and 6, along with Lemma 1, address the convergence of the model’s balanced growth path (BGP) 

equilibrium. To prove the main conclusions of the paper—specifically, Propositions 1, 2, and 

Lemma 1—the author first establishes Lemma A1. However, a significant mathematical error 

in Lemma A1 undermines the validity of the proofs for these propositions. Additionally, the 

proof of Proposition 5 contains another serious mathematical error, resulting in the proposition 

being only partially valid. 
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1. The mathematical error in Lemma A1 

In Lemma A1, Acemoglu first defines ∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
, and then derives the following 

equation (1) from the equation (20) in the paper: 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
= ∫

𝑟(𝑣)𝐾(𝑣)

𝑤(𝑣)𝐿(𝑣)
𝑑𝑣

∞

𝑡

= ∫ 𝑘(𝑣)(𝜀−1) 𝜀⁄ 𝑑𝑣
∞

𝑡

           (1) 

However, equation (1) is evidently mathematically incorrect. By substituting the equation 

(21) from Acemoglu (2003) into the equation (20) from the same paper, we arrive at the 

following equation (2): 

{
 
 

 
 𝑉𝑘(𝑡) =

1 − 𝛽

𝛽
∫ 𝑒𝑥𝑝 [−∫ (𝑟(𝜔) + 𝛿

𝑣

𝑡

)𝑑𝜔]
𝑟(𝑣)𝐾(𝑣)

𝑚(𝑣)
𝑑𝑣

∞

𝑡

𝑉𝑙(𝑡) =
1 − 𝛽

𝛽
∫ 𝑒𝑥𝑝 [−∫ (𝑟(𝜔) + 𝛿

𝑣

𝑡

)𝑑𝜔]
𝑤(𝑣)𝐿(𝑣)

𝑛(𝑣)
𝑑𝑣

∞

𝑡

                           (2) 

Substituting equation (2) into 
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
 yields the following equation (3): 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
=
𝑚(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿

𝑣

𝑡
)𝑑𝜔]

𝑟(𝑣)𝐾(𝑣)
𝑚(𝑣)

𝑑𝑣
∞

𝑡

𝑛(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿
𝑣

𝑡
)𝑑𝜔]

𝑤(𝑣)𝐿(𝑣)
𝑛(𝑣)

𝑑𝑣
∞

𝑡

     (3) 

The statement in (1) cannot be derived from (3). We suspect that the author made the 

following mathematical error, leading to the incorrect equation (1) from (3). 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
=
∫ 𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿

𝑣

𝑡
)𝑑𝜔]𝑚(𝑡)

𝑟(𝑣)𝐾(𝑣)
𝑚(𝑣)

𝑑𝑣
∞

𝑡

∫ 𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿
𝑣

𝑡
)𝑑𝜔]𝑛(𝑡)

𝑤(𝑣)𝐿(𝑣)
𝑛(𝑣)

𝑑𝑣
∞

𝑡

= ∫
𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿

𝑣

𝑡
)𝑑𝜔]𝑟(𝑣)𝐾(𝑣)

𝑒𝑥𝑝[−∫ (𝑟(𝜔) + 𝛿
𝑣

𝑡
)𝑑𝜔]𝑤(𝑣)𝐿(𝑣)

𝑑𝑣 = ∫
𝑟(𝑣)𝐾(𝑣)

𝑤(𝑣)𝐿(𝑣)
𝑑𝑣

∞

𝑡

∞

𝑡

 

However, mathematically, the integral of a quotient does not equal the quotient of the 

integrands. Additionally, based on the model’s production function, we have 
𝑟(𝑣)𝐾(𝑣)

𝑤(𝑣)𝐿(𝑣)
=

(1−𝛾)

𝛾
𝑘(𝑣)(𝜀−1) 𝜀⁄ . Therefore, equation (1), which represents the first expression in Lemma A1, 

is mathematically incorrect, specifically: 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
≠ ∫

𝑟(𝑣)𝐾(𝑣)

𝑤(𝑣)𝐿(𝑣)
𝑑𝑣

∞

𝑡

≠ ∫ 𝑘(𝑣)(𝜀−1) 𝜀⁄ 𝑑𝑣
∞

𝑡

              (4) 

In fact, a simple example can demonstrate that equation (1) is not valid: 
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∫ 𝑥𝑑𝑣
∞

𝑡

∫ 𝑥𝑑𝑣
∞

𝑡

= 1 ≠ ∫
𝑥

𝑥
𝑑𝑣

∞

𝑡

= ∞ 

The relative wages of scientists engaged in two types of innovations are given by 

𝑏𝑘ϕ(𝑆𝑘(𝑡))

𝑏𝑙ϕ(𝑆−𝑆𝑘(𝑡))
and 

𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
, where ∆(𝑡) ≡

𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
 is a key influencing factor. Therefore, the error 

in equation (1) not only affects the proof of the main propositions in the paper but also impacts 

the dynamic analysis of scientists’ migration between different innovation sectors. It should be 

corrected. The correct form of ∆(𝑡) =
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
 should involve integrating the numerator and 

denominator separately, resulting in equation (5):4 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
=
𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
∇(𝑡) =

(1 − 𝛾)

𝛾
𝑘(𝑡)

𝜀−1
𝜀 ∇(𝑡)                      (5) 

where ∇(𝑡) ≡
∫ 𝑒𝑥𝑝[∫ [𝑔𝑟(𝜔)+𝑔𝐾(𝜔)−𝑔𝑚(𝜔)]𝑑𝜔

𝑣
𝑡 −∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)

𝜔
𝑡 𝑑𝑢]+𝛿)𝑑𝜔

𝑣
𝑡 ]𝑑𝑣

∞
𝑡

∫ 𝑒𝑥𝑝[∫ [𝑔𝑤(𝜔)+𝑔𝐿(𝜔)−𝑔𝑛(𝜔)]𝑑𝜔
𝑣
𝑡 −∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)

𝜔
𝑡 𝑑𝑢]+𝛿)𝑑𝜔

𝑣
𝑡 ]𝑑𝑣

∞
𝑡

. 

2. Mathematical Error in the Proof of Proposition 5 

The growth model should not only address the existence of a steady-state equilibrium but 

also examine the stability of that equilibrium. Proposition 5 of the paper specifically discusses 

the stability of the balanced growth path of the model. When the economy is on the balanced 

growth path, the wage rates of scientists across different innovation sectors are equal, as 

expressed in equation (6): 

𝑏𝑙ϕ(𝑆 − 𝑆𝑘(𝑡))𝑛(𝑡)𝑉𝑙(𝑡) = 𝑏𝑘ϕ(𝑆𝑘(𝑡))𝑚(𝑡)𝑉𝑘(𝑡)                    (6) 

Equation (6) indicates that the allocation of scientists across different sectors has reached 

equilibrium. However, what happens to the movement of scientists when the economy deviates 

from the balanced growth path? Acemoglu does not provide explicit assumptions regarding this 

in the paper, meaning that he does not specify a clear flow function for scientists, �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄ . 

Nonetheless, when the economy is not on the balanced growth path, scientists may need to shift 

across different innovation sectors, and this movement will affect whether the model’s BGP 

equilibrium converges. Therefore, in order to analyze the convergence characteristics of the 

model’s balanced growth path, a flow equation for scientists is typically required. To this end, 

the paper derives an equation that includes �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄  by taking the growth rate of both sides 

of equation (6), resulting in equation (7): 

 
4 The derivation process is detailed in Appendix A. Fortunately, the equation (29) of the paper is derived by solving for 𝑉𝑘 and 

𝑉𝑙 separately, as shown in the equation (27) of the paper. Therefore, the specific results concerning the BGP equilibrium in the 

paper are unaffected.  
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−
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
𝑒𝑘 +

�̇�(𝑡)

𝑛(𝑡)
+
𝑉�̇�(𝑡)

𝑉𝑙(𝑡)
=
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
𝑒𝑙 +

�̇�(𝑡)

𝑚(𝑡)
+
𝑉�̇�(𝑡)

𝑉𝑘(𝑡)
                     (7) 

Although equation (7) can be derived from equation (6), the function �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄  

obtained from equation (7) is inadequate for analyzing the convergence of the model’s balanced 

growth path. This is because when �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄ = 0 in equation (7), it does not guarantee that 

𝑆𝑘(𝑡)  converges to the steady state 𝑆𝑘
∗  defined by equation (6). This limitation arises from 

fundamental principles of differentiation and integration: while equation (6) can lead to equation 

(7), it is generally not possible to derive equation (6) from equation (7). For any constant 𝑨 ≠ 𝟎, 

if the following equation (8) holds: 

𝑏𝑙ϕ(𝑆 − 𝑆𝑘(𝑡))𝑛(𝑡)𝑉𝑙(𝑡) = 𝑨. 𝑏𝑘ϕ(𝑆𝑘(𝑡))𝑚(𝑡)𝑉𝑘(𝑡)                    (8) 

Therefore, not only can equation (6) lead to equation (7), but equation (8) can also yield 

equation (7). However, when 𝑨 ≠ 𝟏 , equation (8) indicates that the economy is not on the 

balanced growth path. Consequently, the function �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄   derived from equation (7) 

cannot be used to discuss the dynamic properties of the balanced growth path, rendering both 

the proof and the conclusions of Proposition 5 incorrect. 

Ⅲ Absence of Dynamic Behavior Function for Scientists in the Model 

The core content of this paper is that firms can undertake both labor- and capital-

augmenting technological improvements. However, at steady-state equilibrium, only net labor-

augmenting innovations will occur, while net capital-augmenting innovation will be zero. The 

allocation of scientists between the two sectors ultimately determines the direction of 

technological progress at steady state. Thus, how scientists move between sectors is crucial for 

the dynamic adjustments that shape technological progress and its outcomes. However, the 

paper lacks a clear specification of scientists’ dynamic adjustment behaviors and merely 

suggests that the free entry of innovations leads to an equilibrium where scientists’ wages equal 

those in the higher-return sector, as indicated in equation (9): 

𝜔𝑠 = 𝑚𝑎𝑥{𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙, 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘}                                          (9) 

Although equation (9) provides the results at the final equilibrium, it does not offer 

sufficient information for dynamic adjustments during non-equilibrium states. Without a 

function describing the movement of scientists between sectors during non-equilibrium, the 

paper cannot analyze the convergence characteristics of the model’s steady-state equilibrium. 

When the paper examines the convergence properties of the Balanced Growth Path (BGP) 

equilibrium in the appendix, it derives the function �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄   using equation (6), further 

demonstrating that without �̇�𝑘(𝑡) 𝑆𝑘(𝑡)⁄  , the description of the model’s dynamic system is 

incomplete. However, this derived function is both economically unreasonable and 
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mathematically inadequate. Thus, the lack of a behavioral function for scientists’ movement 

between innovation sectors is a significant flaw in the model’s specification that needs to be 

addressed. 

Although scientists are homogeneous and their wages must be identical at the long-term 

equilibrium, wage rates for scientists in different innovation sectors may not be equal during 

non-steady-state equilibria. Therefore, we denote the wage rates for scientists in the two sectors 

as 𝜔𝑠𝑙 and 𝜔𝑠𝑘, respectively. 

{
𝜔𝑠𝑙(𝑡) = 𝑏𝑙ϕ(𝑆𝑙(𝑡))𝑛(𝑡)𝑉𝑙(𝑡)    

𝜔𝑠𝑘(𝑡) = 𝑏𝑘ϕ(𝑆𝑘(𝑡))𝑚(𝑡)𝑉𝑘(𝑡)
                                                   (10) 

Since scientists are homogeneous, any wage differentials will incentivize them to migrate 

from lower-wage sectors to higher-wage sectors until equilibrium is achieved and all scientists 

receive the same wage. However, the transfer process takes time, and it is reasonable to assume 

that the greater the wage differential, the faster the rate of scientist flow, leading to a more rapid 

reduction in the wage disparity. Therefore, we supplement the model by introducing a dynamic 

adjustment function for scientists as shown in equation (11): 

𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
= 𝐺 [

𝜔𝑠𝑘
𝜔𝑠𝑙

] = 𝐺 [
𝑏𝑘ϕ(𝑆𝑘(𝑡))𝑚(𝑡)𝑉𝑘(𝑡)

𝑏𝑙ϕ(𝑆𝑙(𝑡))𝑛(𝑡)𝑉𝑙(𝑡)
] ,                            (11) 

where G(.) is assumed to satisfy G(1)=0, 𝐺′(. ) > 0, 𝐺′′(. ) < 0.  

Equation (11) indicates that when 
𝜔𝑠𝑘

𝜔𝑠𝑙
> 1, 

𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
> 0, resulting in a continuous increase in 

𝑆𝑘(𝑡) and a corresponding decrease in 𝑆𝑙(𝑡). Conversely, when 
𝜔𝑠𝑘

𝜔𝑠𝑙
< 1, 

𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
< 0, leading to a 

continuous decrease in 𝑆𝑘(𝑡) and an increase in 𝑆𝑙(𝑡). Given that the total number of scientists 

S is fixed, three possible states can exist, at which point the flow of scientists will cease, 

indicated by 
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
= 0, achieving equilibrium in the distribution of scientists. 

First, when 
𝜔𝑠𝑘

𝜔𝑠𝑙
= 1, there are 0 < 𝑆𝑘(𝑡) < 𝑆 and 0 < 𝑆𝑙(𝑡) < 𝑆; 

Second, when 
𝜔𝑠𝑘

𝜔𝑠𝑙
> 1, there are 𝑆𝑘(𝑡) = 𝑆 and 𝑆𝑙(𝑡) = 0; 

Third, when 
𝜔𝑠𝑘

𝜔𝑠𝑙
< 1, 𝑆𝑘(𝑡) = 0 and 𝑆𝑙(𝑡) = 𝑆. 

The first scenario represents an equilibrium where scientists coexist in both innovation 

sectors with identical wage rates, resulting in no further movement among scientists. 5  In 

contrast, the second and third scenarios indicate that all scientists are concentrated in a single 

 
5 If ϕ(0) < ∞, it is possible for the case to exist where 

𝜔𝑠𝑘

𝜔𝑠𝑙
= 1 and either 𝑆𝑘(𝑡) = 0 or 𝑆𝑙(𝑡) = 𝑆.  
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sector, where the wage in that sector exceeds that of the other, leading to a cessation of scientist 

flow as well. 

Substituting ∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
 determined by equation (5) into equation (11) yields: 

𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘(𝑡))

𝑏𝑙ϕ(𝑆𝑙(𝑡))

(1 − 𝛾)

𝛾
𝑘(𝑡)

𝜀−1
𝜀 ∇(t)]                    (12) 

Since ∇(𝑡) depends on the discounted integral of the growth rates of 𝑟(𝑣), 𝐾(𝑣), 𝑤(𝑣), 

𝐿(𝑣), and  𝑛(𝑣) from time t to infinity, it can be assumed that the impact of short-term shocks 

on ∇(𝑡) is negligible. Therefore, equation (12) indicates that the primary factors influencing the 

wage differentials for scientists across different sectors are: the relative crowding effect of 

innovation 
ϕ(𝑆𝑘(𝑡))

ϕ(𝑆−𝑆𝑘(𝑡))
  and the relative income share of factors 

(1−𝛾)

𝛾
𝑘(𝑡)

𝜀−1

𝜀  . Holding other 

factors constant, 
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
 is positively correlated with 

ϕ(𝑆𝑘(𝑡))

ϕ(𝑆−𝑆𝑘(𝑡))
. According to the crowding effect 

hypothesis, the crowding effect of innovation reduces the wage rate gap of scientists between 

the two sectors. The relationship between 
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
 and 𝑘(𝑡) depends on whether 𝜀 is greater than 1. 

If 𝜀 < 1, then 
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
 is negatively correlated with 𝑘(𝑡), which also contributes to narrowing the 

wage rate gap among scientists. Conversely, if 𝜀 > 1, then 
𝑆�̇�(𝑡)

𝑆𝑘(𝑡)
 is positively correlated with 

𝑘(𝑡), which serves to widen the wage rate differentials among scientists. 

From equation (12), all the core conclusions required for this paper can be derived, thereby 

enhancing the clarity of the analytical process. Thus, it aligns with the ideas presented in 

Acemoglu (2003). 

Ⅳ Dynamic system of equations, revision and reproof of propositions 

The mathematical errors in the proof process of the propositions in this paper stem not 

only from oversight by the authors and reviewers but also from a common shortcoming in the 

existing economic growth literature. Growth models are inherently dynamic systems described 

by a set of dynamic equations. However, prior to solving for the steady-state equilibrium, the 

literature often fails to provide a complete set of these equations, typically introducing them 

only when discussing convergence. This approach could create inconsistencies between the 

dynamic equations analyzed for steady-state convergence and those used in the solution process, 

making such errors difficult to detect. 

Conversely, if a complete set of dynamic equations describing the model is provided 

before solving for the steady state, and if the steady state and its convergence are analyzed using 

these equations, the mathematical errors in this paper are less likely to occur. Specifically, 
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substituting ∆(𝑡) = ∫ 𝑘(𝑣)(𝜀−1) 𝜀⁄ 𝑑𝑣
∞

𝑡
 from Lemma A1 into the scientist’s dynamic adjustment 

function (equation 11) would prevent the derivation of Propositions 1, 2, 3, and 4 when 𝑆�̇� 𝑆𝑘⁄ =

0. In this scenario, for any 0 < 𝑘(𝑣) < ∞, we must have ∆(𝑡) = ∞, implying that scientists 

would focus exclusively on capital-augmenting technological innovation. This situation makes 

the existence of a balanced growth equilibrium impossible and directly indicates that ∆(𝑡) =

∫ 𝑘(𝑣)(𝜀−1) 𝜀⁄ 𝑑𝑣
∞

𝑡
 is incorrect. Similarly, using the dynamic adjustment function for scientists 

presented in equation (7) which used in the appendix of the paper also fails to derive 

Propositions 1, 2, 3, and 4. This indicates that the formulation of 𝑆�̇� 𝑆𝑘⁄   cannot accurately 

describe the dynamic behavior of scientists, thus precluding its use for analyzing the 

convergence characteristics of the steady state. 

Therefore, this comment aims to address this deficiency. First, we will provide a complete 

set of dynamic equations for the model using the function of 𝑆�̇� 𝑆𝑘⁄   in the equation (12) 

introduced in the previous section. Next, we will use these dynamic equations to derive the 

equilibrium of the model and prove Propositions 1, 2, 3, and 4 as outlined in the paper. Finally, 

we will linearize the equation system around the balanced growth path (BGP) to analyze the 

local convergence characteristics of the BGP equilibrium, thereby revising Propositions 5 and 

6 and Lemma 1. 

1. Dynamic Equations of the Model 

As in the original paper, we define 𝑐(𝑡) ≡ 𝐶(𝑡) 𝐾(𝑡)⁄  . By substituting the dynamic 

function for scientists 𝑆�̇� 𝑆𝑘⁄  from equation (12) of the previous section, we obtain the dynamic 

equations of the model as stated in equation (13): 

{
 
 
 
 

 
 
 
 
𝑆�̇�
𝑆𝑘
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀]                                             

�̇�

𝑀
=
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿]                                                                   

�̇�

𝑐
= (

𝑀𝛽𝑓′(𝑘)

𝜃
−
𝜌

𝜃
) − (

𝑀𝑓(𝑘)

𝑘
− 𝑐)                                                 

�̇�

𝑘
= (

𝑀𝑓(𝑘)

𝑘
− 𝑐) +

1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘)]

   (13) 

Equation system (13) consists of four variables: 𝑆𝑘, 𝑀, 𝑐, and 𝑘, along with four dynamic 

equations that collectively describe a dynamic system. It encompasses all behavioral functions 

of the model. Apart from the dynamic adjustment function for scientists 𝑆�̇� 𝑆𝑘⁄  , the Euler 

equation for consumption and the capital accumulation function are included within the �̇� 𝑐⁄  

function, while the �̇� 𝑘⁄   function incorporates both the innovation function and the capital 

accumulation function.  
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This comment will employ the dynamic equations presented in equation (13) to derive the 

steady-state equilibrium of the model and analyze the stability of the balanced growth path (BGP) 

equilibrium, thus proving all the propositions outlined in the original paper. Since the Euler 

equation 
�̇�

𝐶
=

1

𝜃
(𝑟(𝑡) − 𝜌) holds only when I>0, equation (13) is also valid only when I>0. As 

this paper analyzes the equilibrium results of the model solely under the condition I>0, we will 

supplement the results for the case when I=0. 

2. Steady-State Equilibrium of the Model 

Acemoglu defines two concepts of equilibrium in this paper: asymptotic path (AP) 

equilibrium and balanced growth path (BGP) equilibrium. However, he does not provide a 

definition for steady-state (SS) equilibrium, nor does he clarify the distinction between SS and 

BGP equilibria. Based on the dynamic equations in equation (13), and drawing on Acemoglu’s 

definition of steady state (Acemoglu, 2009, pp.60), this comment asserts that there exists a finite 

time 𝑇 < ∞  such that AP equilibrium refers to the condition where at least one dynamic 

equation equals zero for 𝑡 ≥ T . In contrast, SS equilibrium is characterized by all dynamic 

equations of the model’s system equaling zero for 𝑡 ≥ T . To date, the existing literature, 

including Acemoglu’s work, has not clearly differentiated between BGP equilibrium and SS 

equilibrium, often treating them as synonymous. This confusion arises primarily because current 

growth literature has yet to propose a SS equilibrium that is distinct from BGP equilibrium. 

However, according to Acemoglu’s definition, BGP equilibrium is a specific subset of SS 

equilibrium, requiring not only the conditions of SS equilibrium but also specific relationships 

among the growth rates of certain variables for 𝑡 ≥ T , such as �̇�(𝑡) 𝑌(𝑡)⁄ = �̇�(𝑡) 𝐶(𝑡)⁄ =

�̇�(𝑡) 𝐾(𝑡)⁄  , and �̇�(𝑡) 𝑀(𝑡)⁄ = 0 . This primarily pertains to the SS equilibrium of the 

neoclassical growth model, where the capital-output ratio remains constant and the rate of net 

capital-augmenting technological progress equals zero. 

(1) Refinements and Reproving of Propositions 1, 2, 3, and 4 

Propositions 1, 3, and 4 focus on the existence of BGP equilibria and the specific outcomes 

of various variables at equilibrium, while Proposition 2 explores the existence of equilibria 

beyond the BGP. Due to a mathematical error in Lemma A1, the proofs of these propositions 

contain inaccuracies that require re-evaluation. To enhance the clarity of the proof’s logic, we 

will make slight modifications to Propositions 1, 2, 3, and 4, reorganizing them into Propositions 

A1, A2, and A3, which will address the three cases of 𝜀 < 1, 𝜀 > 1 and 𝜀 = 1, respectively.6  

 
6 Since we prove Propositions 1 and 2 by solving the equilibrium solutions of the dynamic system represented by equation (13), 

the results for Propositions 3 and 4 will be provided concurrently with the proofs of Propositions 1 and 2. For the cases of 𝜀 > 1 

and 𝜀 = 1 , not only do the equilibrium results differ, but the dynamic equations also vary. Therefore, we will separate 

Proposition 2 into two distinct cases for 𝜀 > 1 and 𝜀 = 1 and prove them individually. 
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Proposition A1: For 𝜀 < 1, there exists a finite 𝑇 < ∞ such that for 𝑡 ≥ 𝑇, the solution 

𝑆𝑘(𝑡)
𝑡≥𝑇

= 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 represents the model’s asymptotic path (AP) equilibrium, which is also 

a balanced growth path (BGP) equilibrium. When 𝛿 > 0, there exists a unique set of values 

(𝑘∗, 𝑀∗, 𝑐∗) ; when 𝛿 = 0 , there are infinite sets of values (𝑘∗, 𝑀∗, 𝑐∗)  and 𝑆𝑘
∗ = 0  such that 

𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0. However, for different (𝑘∗, 𝑀∗, 𝑐∗), the growth rates of all variables of the 

model remain the same. 

The detailed proof of the proposition can be found in Appendix B. 

Proposition A2: For 𝜀 > 1, there exist three asymptotic path (AP) equilibria: 

(1) When ≥ 0 , 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 , there exists a BGP equilibrium that is also an AP 

equilibrium; 

(2) When 𝛿 ≥ 0, 𝑆𝑘
∗ = 𝑆, there exists a non-steady-state AP equilibrium; 

(3) When 𝛿 > 0, 𝑆𝑘
∗ = 0, there is also a non-steady-state AP equilibrium. 

The detailed proof of the proposition can be found in Appendix C. 

Proposition A3: For 𝜀 = 1, the model has a unique asymptotic path (AP) equilibrium, 

which is also a balanced growth path (BGP) equilibrium. 

The detailed proof of the proposition can be found in Appendix D. 

Although Propositions 1, 2, 3, and 4 in the paper remain valid under the condition I>0, 

the proof process in this comment serves two main purposes: first, to correct mathematical errors 

in the original proof in the paper; second, to show that solving the model’s dynamic equations 

(13) allows us to obtain all the results originally intended in the paper. 

(2) Supplementary Proposition B 

Propositions 1, 2, 3, and 4 hold only when I>0; however, the paper not only fails to point 

this out but also does not analyze the equilibrium of the model when I=0. Nonetheless, the 

equilibrium results when  I=0 still hold economic significance and therefore warrant further 

analysis. If   I=0, then 𝐶(𝑡) = 𝑌(𝑡) , �̇�(𝑡) 𝐾(𝑡)⁄ = 0 . In this case, the Euler equation 
�̇�

𝐶
=

1

𝜃
(𝑟(𝑡) − 𝜌)  no longer applies, and the model’s dynamic equations are described solely by 

𝑆�̇� 𝑆𝑘⁄  and �̇� 𝑘⁄  (where 𝑘 ≡
𝑀𝐾

𝑁𝐿
), as follows: 
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{
 
 

 
 𝑆�̇�
𝑆𝑘
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀]              

�̇�

𝑘
=
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘)]

                          (14) 

At this point, Propositions 1, 2, 3, and 4 proposed in the paper do not hold, and the 

equilibrium situation of the model can be summarized by the following Proposition B: 

Proposition B: If 𝐼 = 0, the model has asymptotic path (APs) equilibrium and a steady-

state (SS) equilibrium, but no balanced growth path (BGP) equilibrium. When 𝜀 < 1, the model 

has a unique SS equilibrium; when 𝜀 > 1, the model has three AP equilibria, one of which is an 

SS equilibrium and the other two are non-stationary AP equilibria. When 𝜀 = 1 , the model 

typically has only an SS equilibrium. 

The detailed proof of the proposition can be found in Appendix E. 

Proposition B not only demonstrates that Propositions 1, 2, 3, and 4 proposed in the paper 

hold only when I>0, 7  but also indicates that the SS equilibrium is distinct from the BGP 

equilibrium. The model achieves both an AP equilibrium and an SS equilibrium; however, it 

does not satisfy the BGP equilibrium as defined in the paper, since �̇� 𝐾⁄ ≠ �̇� 𝑌⁄ = �̇� 𝐶⁄ , and 

�̇� 𝑀⁄ > 0. 

Another important role of Proposition B is that the form of the capital accumulation 

function is crucial for determining whether capital-augmenting technological progress is 

included in the steady state. However, this point has not been adequately recognized in the 

existing literature. Acemoglu not only fails to highlight the importance of I>0 for the core 

conclusions in this paper, but he also explicitly assumes a capital accumulation function �̇� =

𝑠𝐾K  in his simplified model (Acemoglu, 2009, ch.15.6; 2024), where 𝑠𝐾  is an exogenous 

parameter, implicitly implying I = 0, while still hoping to derive results for the case of I>0, 

which leads to erroneous conclusions. 

3. Convergence of BGP Equilibrium 

(1) Revised Proposition 5: When I>0, the model’s BGP equilibrium is saddle-stable 

regardless of whether 𝜀 < 1 or 𝜀 > 1. 

The detailed proof of the proposition can be found in Appendix F. 

The proof indicate that the BGP is saddle-stable not only when the elasticity of substitution 

𝜀 < 1  but also when 𝜀 > 1 . This is because, when 𝜀 > 1 , the neoclassical properties of the 

 
7 Jones and Scrimgeour (2008) also note that I>0 is a key condition for the validity of Uzawa’s (1961) steady-state theorem; 

however, in the case of exogenous technological progress, a growth model with I>0 is not meaningful.  
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production function ensure that, for given 𝑀∗ , 𝑐∗  and 𝑆𝑘
∗ , �̇� 𝑘⁄   converges, implying that the 

BGP is not completely divergent but is instead saddle-stable. 

(2) Revised Proposition 6 and Lemma 1 

The paper analyzes the convergence properties of the model’s steady-state equilibrium 

more clearly by specifically examining the case where the utility function parameter θ = 0 . 

When θ = 0, the consumption Euler equation degenerates to equation (15) as follow: 

𝑀𝛽𝑓′(𝑘) = 𝜌                                                                                          (15) 

From equation (15), we obtain 𝑘 = 𝑘(𝑀) with d𝑘 d𝑀⁄ > 0, that is, 𝑘 is an increasing 

function of M. Using this condition, equations (13) simplify to the following pair of dynamic 

equations: 

{
 
 

 
 𝑆�̇�
𝑆𝑘
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝑀)(𝜀−1)/𝜀]    

�̇�

𝑀
=
1 − 𝛽

𝛽
𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿                                    

                              (16) 

Equation (16) indicates that even when θ=0, the dynamics of the model must be described 

by �̇� 𝑀⁄  and 𝑆�̇� 𝑆𝑘⁄ , rather than solely by �̇� 𝑀⁄ = 𝜓(𝑀) as suggested in Lemma 1 of the paper. 

Therefore, Proposition 6 should be revised as follows: 

Revised Proposition 6： When ε < 1, the steady state is locally stable, and when 𝜀 > 1, 

it is locally saddle-path stable.  

The detailed proof of the proposition can be found in Appendix G. 

From equation (16), it can be seen that Lemma 1 and Proposition 6 in the paper hold only 

under a specific condition. We will now present this condition. If the scientists’ wages are the 

same overtime (even when the economy is not in a steady state), then the following equation 

(17) must hold at all times: 

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝑀)(𝜀−1)/𝜀 = 1                                (17) 

At this point, from equation (17), it can be deduced that 𝑆𝑘 is a function of k(M), that is, 

𝑆𝑘 = 𝑆𝑘(𝑘(𝑀)). Substituting this into �̇� 𝑀⁄  yields: 

�̇�

𝑀
=
1 − 𝛽

𝛽
𝑏𝑘ϕ(𝑆𝑘(𝑘(𝑀))) 𝑆𝑘(𝑘(𝑀)) − 𝛿                                (18) 

Let 𝜓(𝑀) ≡
1−𝛽

𝛽
𝑏𝑘ϕ(𝑆𝑘(𝑘(𝑀))) 𝑆𝑘(𝑘(𝑀)) − 𝛿 , equation (18) corresponds to the 

equation (32) in the paper, �̇� 𝑀⁄ = 𝜓(𝑀). 

From equation (18) we can obtain the equation (19) as follow:  
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𝜕𝜓(𝑀)

𝜕𝑀
=
1 − 𝜀

𝜀
𝑘−

1
𝜀

𝜕𝜓(𝑀)
𝜕𝑆𝑘

𝜕𝑘
𝜕𝑀

𝑏𝑘[ϕ(𝑆𝑘)]
2(1 − 𝛾)∇

𝑏𝑙𝛾[ϕ′(𝑆 − 𝑆𝑘)ϕ(𝑆𝑘) + ϕ(𝑆 − 𝑆𝑘)ϕ′(𝑆𝑘)]
        (19) 

Since 
𝜕𝜓(𝑀)

𝜕𝑆𝑘

𝜕𝑘

𝜕𝑀
> 0, and due to the crowding-out effect, ϕ′() < 0, it follows that when 

𝜀 < 1 ,  
𝜕𝜓(𝑀)

𝜕𝑀
< 0 , indicating that the model’s steady-state equilibrium is globally stable. 

Conversely, when 𝜀 > 1 , 
𝜕𝜓(𝑀)

𝜕𝑀
> 0 , which means the model’s steady-state equilibrium is 

unstable. In other words, Lemma 1 and Proposition 6 are only correct when equation (17) holds 

in all time; however, the paper also asserts that the scientists’ wages are considered equal only 

when the economy is in a BGP equilibrium. 

V. Overlooked the Important Policy Implications 

The paper overlooks the important policy implications that significantly differ from those 

in traditional endogenous technological progress literature (Romer, 1990; Aghion and Howitt, 

1992). Contrary to the paper’s assertion that tax policy does not influence income distribution, 

this comment finds that, within the model, tax and subsidy policies have a substantial impact on 

income distribution, while not affecting technological progress or economic growth. 

1. Tax Policy and Steady-State Income Shares of Factors 

If we consider that scientists may have 𝜔𝑠𝑘 ≠ 𝜔𝑠𝑙 during non-steady states, and that 

taxes are applied to scientists’ wages or the monopoly profits of innovative firms, then the 

budget constraint should be modified to:8 

𝐶 + 𝐼 ≤ 𝑤𝐿 + 𝑟𝐾 + (1 − 𝜏𝑘)𝜔𝑠𝑘𝑆𝑘 + (1 − 𝜏𝑙)𝜔𝑠𝑙𝑆𝑙 + Π + 𝑇       (20) 

where 𝑇 = 𝜏𝑘𝜔𝑠𝑘𝑆𝑘 + 𝜏𝑙𝜔𝑠𝑙𝑆𝑙. 

At this point, the flow equation for scientists becomes as follows: 

𝑆�̇�
𝑆𝑘
= 𝐺 [

(1 − 𝜏𝑘)𝑏𝑘ϕ(𝑆𝑘)

(1 − 𝜏𝑙)𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀]                      (21) 

Equation (21) indicates that when a uniform tax rate is imposed on all scientists (i.e., 𝜏𝑘 =

𝜏𝑙), taxation has no effect on 𝑆�̇� 𝑆𝑘⁄ , and consequently no impact on the equilibrium results of 

the model. However, when 𝜏𝑘 ≠ 𝜏𝑙, it follows from (21) that the relative income shares in the 

steady state after taxation are as follows: 

𝜎𝐾
𝜏 =

𝑟𝐾

𝑤𝐿
=
(1 − 𝜏𝑙)𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)

(1 − 𝜏𝑘)𝑏𝑘ϕ(𝑆𝑘
∗)∇∗

=
1 − 𝜏𝑙
1 − 𝜏𝑘

𝜎𝐾                            (22) 

Equation (22) indicates that taxation affects the relative income share 𝜎𝐾
𝜏  in the BGP 

 
8 Alternatively, providing subsidies for the inputs used in the production of machines as intermediate goods would reduce the 

production costs for patent-holding firms to (1 − 𝜏𝑘)𝑟𝐾 and (1 − 𝜏𝑙)𝑤𝐿, which would have the same effect as taxing monopoly 

profits or scientists’ wages. 
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steady-state equilibrium, and is negatively correlated with 𝜏𝑙 and positively correlated with 𝜏𝑘. 

In other words, taxing innovations in capital-intensive machinery benefits the relative income 

of capital, while taxing innovations in labor-intensive machinery increases the relative income 

share of labor. Therefore, the paper’s assertion that taxation does not affect long-term relative 

income shares, based solely on the premise that direct taxation of factor incomes does not 

influence income distribution, is inaccurate. 

2. The Impact of Tax Policy on Technical Change and Economic Growth 

The traditional literature on endogenous technological progress (Romer, 1990; Aghion 

and Howitt, 1992) posits that innovation has positive externalities, and that subsidies or taxes 

on innovation can influence innovation and promote economic growth. However, the model 

presented in this paper challenges this conventional view. Although the paper’s innovation 

maintains economies of scale similar to the Romer model, in the BGP equilibrium, taxation does 

not affect the direction of technological progress; that is, it does not influence the relative 

magnitude of 
�̇� 𝑀⁄

�̇� 𝑁⁄
, nor does it affect the magnitudes of �̇� 𝑀⁄  and �̇� 𝑁⁄ . Since the economic 

growth rate equals �̇� 𝑁⁄ , taxation also does not impact the economic growth rate in the BGP 

equilibrium, nor the interest rate 𝑟∗ = 𝜌 + 𝜃𝑔∗. This result may be surprising for the model, as 

a key feature is that firms can undertake both labor- and capital-augmenting technological 

improvement, which would allow the direction of technological progress to be endogenously 

determined in the steady state. However, the outcome shows that, in the steady state, 

technological progress must be purely labor-augmenting, and no policy can influence this. 

It is unfortunate that the implicit policy implications of taxation or subsidies are 

overlooked in this paper. Since the introduction of endogenous technological progress theories, 

government subsidies for innovation have been viewed as essential policies for promoting 

economic growth. However, the analysis presented above suggests that unless uniform subsidies 

are applied to all innovations, the outcomes of such taxes or subsidies may be entirely 

unforeseen. In practice, taxation and subsidy policies for innovation tend to be highly selective; 

certain sectors receive substantial innovation subsidies, while much innovation remains outside 

the government’s purview. From the perspective of this model, such subsidy policies appear to 

provide minimal benefits for technological progress and economic growth, primarily affecting 

income distribution instead. 

Ⅵ Intuition Behind the Core Conclusions 

Both the exogenous and endogenous technological progress growth models assume that 

technological progress is purely labor-augmenting (Uzawa, 1961). However, this intuition of 

the assumption has long been a challenge for growth theory. The significance of Acemoglu’s 
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paper lies in the assertion that firms can pursue both labor- and capital-augmenting technological 

improvements; however, under profit incentives, firms will ultimately realize only net labor-

augmenting technological progress in the steady state. This suggests that the exogenous 

assumption of purely labor-augmenting technological progress may align with the rational 

choices of firms, which is a much-anticipated outcome in existing growth theories. Nevertheless, 

why do these rational firms ultimately choose only labor-augmenting technological 

improvements? In other words, why can profit maximization be achieved solely through the 

selection of labor-augmenting technologies, while firms opting for capital-augmenting 

improvements fail to maximize profits? Acemoglu still needs to provide an economic intuition 

for the steady-state equilibrium results of the model. 

The paper argues that the asymmetry between capital and labor accumulation—

specifically, that capital, K, can be accumulated, while labor, L, cannot—is the key reason for 

this outcome. The author contends that the steady state necessitates balanced growth between 

MK and NL. Since capital can be accumulated, both M and K can grow, while in NL, only N can 

increase. Consequently, the author asserts that “capital accumulation, therefore, implies that 

technical change has to be, on average, more labor-augmenting than capital-augmenting.” 

However, this does not fully explain the model’s result regarding why “all technical change will 

be labor-augmenting”. Indeed, Acemoglu (2009, ch.15.6; 2024) demonstrates the fallacy of this 

logic in his simplified model. In the simplified model, he assumes that capital is accumulable 

but is no longer a function of investment, expressed as �̇�(𝑡) = 𝑠𝐾𝐾(𝑡) , while labor is not 

accumulable. Acemoglu confidently asserts that, in the steady state, technological progress 

remains purely labor-augmenting. However, in reality, the opposite is true; it is generally 

impossible for technological progress to be purely labor-augmenting (Li, 2016).  

What, then, causes firms to opt for labor-augmenting innovations rather than capital-

augmenting ones, even when they have the option to choose capital-augmenting technology? 

Recently, Li and Bental (2023) extended Acemoglu’s model to develop a general framework for 

examining the determinants of the direction of technological progress in the steady state. They 

argue that the absence of net capital-augmenting technological progress in this context is 

attributable to the infinite elasticity of capital accumulation, rather than the asymmetry between 

capital and labor accumulation. 

This intuition was actually proposed by Hicks (1932), who argued that an increase in 

factor prices would incentivize firms to innovate in order to economize those factors. However, 

Hicks overlooked the other side of price incentives: rising factor prices also motivate factor 

suppliers to increase the supply of those factors. If the supply of factors is infinitely elastic in 

response to price changes, then, in the long run, there is no potential for factor prices to rise. 
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Consequently, firms would lack the incentive to invest resources in technological innovations 

aimed at conserving these factors. The function �̇�(𝑡) = 𝐼(𝑡) > 0  implies that capital 

accumulation possesses infinite elasticity. This further explains why the core proposition of this 

paper holds only when 𝐼(𝑡) > 0. When 𝐼(𝑡) = 0 or �̇�(𝑡) = 𝑠𝐾𝐾(𝑡)with 𝑠𝐾 being exogenous, 

capital accumulation does not exhibit infinite elasticity, and therefore, the model in steady-state 

equilibrium includes capital-augmenting technological progress. 

 

Ⅶ Summary 

Acemoglu (2003) represents a significant contribution to growth theory by developing a 

model in which the direction of technological progress is determined endogenously. The model 

allows firms to pursue both labor-augmenting and capital-augmenting technologies; however, it 

ultimately converges to a steady-state equilibrium characterized solely by net labor-augmenting 

progress, with no advancements in capital-augmenting technologies. This framework provides 

a microeconomic foundation for earlier models that assume labor-augmenting technical change 

as exogenous, while also establishing a basis for analyzing the determinants of technological 

direction. 

Despite its significant impact and enduring relevance in the field, the original paper has 

notable shortcomings that limit its utility for understanding economic growth and the dynamics 

of technological progress. This commentary identifies and rectifies mathematical errors in the 

original proofs, providing new proofs for all propositions. Additionally, it introduces a 

behavioral function for scientists’ dynamic adjustments across different innovation sectors and 

revises several propositions from Acemoglu’s work. While Acemoglu only analyzed the 

equilibrium results of the model under the condition  I>0, this commentary supplements the 

model by examining the equilibrium results when  I=0. The model exhibits a steady-state 

equilibrium under  I=0 but does not possess a balanced growth path equilibrium, clearly 

delineating the distinctions between steady-state equilibrium and balanced growth path 

equilibrium. Furthermore, it elucidates that capital-augmenting technological progress does not 

affect the existence of a steady-state equilibrium but is inherently incompatible with the 

balanced growth path equilibrium. In addition, the model’s equilibrium results indicate that 

taxes or subsidies for innovative firms do not affect the direction of technological progress, the 

rate of technological advancement, or overall economic growth; rather, they primarily influence 

income distribution. This important policy implication was overlooked in the original paper and 

contradicts the author’s own positions. 

Although the model posits that the direction of technological progress is endogenous, it 

fails to propose any policy instruments capable of altering this equilibrium direction. Firms may 
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choose various technological paths; however, implicit constraints lead them to adopt only labor-

augmenting technologies. The factors limiting firms’ choices regarding the direction of 

technological progress in steady state remain unexplored, leaving the question of why long-run 

technical change is labor-augmenting inadequately addressed. The explanation provided—

rooted in the asymmetry between capital and labor accumulation—does not satisfactorily clarify 

this issue. 

Building on Acemoglu’s work, Li and Bental (2023) delve deeper into the determinants of 

technological direction in the steady state. They extend the production and factor accumulation 

functions of the original model, proposing a general framework for analyzing this direction. 

Their findings suggest that the relative size of elasticity of factor supply is the key determinant 

of the direction of technological progress, establishing that infinite elasticity in capital 

accumulation leads to purely labor-augmenting technological advancement. 

Additionally, the paper highlights that the innovation function for the lab-equipment model 

(Rivera-Batiz and Romer,1991) does not yield a steady-state equilibrium, indicating a sensitivity 

of the model’s equilibrium to the form of the innovation function. This observation introduces 

a broader concern in growth theory: the apparent knife-edge nature of steady-state equilibria in 

growth models, a longstanding issue that merits further investigation in a dedicated study. 
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Appendix A：The derivation process of ∆(𝑡) =
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
=

(1−𝛾)

𝛾
𝑘(𝑡)

𝜀−1

𝜀 . ∇(𝑡)  

Assuming that the variables r(v), K(v), m(v), w(v), L(v), and n(v) exhibit growth rates as 

follows: 

𝑔𝑥(𝜔) ≡
�̇�(𝜔)

𝑥(𝜔)
, 𝑥 = 𝑟,𝑤, 𝐾, 𝐿,𝑚, 𝑛                                     (𝐴1) 

Using (A1), the variables r(v),  K(v),  m(v),  w(v),  L(v), and  n(v) can be expressed as 

follows: 

𝑥(𝑣) = 𝑥(𝑡)𝑒𝑥𝑝 [∫ 𝑔𝑥(𝜔)
𝑣

𝑡

𝑑𝜔]                                         (𝐴2) 

(A2) indicates that x(v) at time v is the value of x(t) at the initial time t accumulated to 

time v at the growth rate 𝑔𝑥(𝜔). Therefore, x(t) is merely the initial value of x(v) and is not 

equal to x(v) at other times. Substituting (A2) into equation (3) of this comment yields: 

∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)

=

𝑚(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)
𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]
𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝜔)

𝑣

𝑡
𝑑𝜔]𝐾(𝑡)𝑒𝑥𝑝[∫ 𝑔𝐾(𝜔)

𝑣

𝑡
𝑑𝜔]

𝑚(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑚(𝜔)
𝑣

𝑡
𝑑𝜔]

𝑑𝑣
∞

𝑡

𝑛(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)
𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]
𝑤(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑤(𝜔)

𝑣

𝑡
𝑑𝜔]𝐿(𝑡)𝑒𝑥𝑝[∫ 𝑔𝐿(𝜔)

𝑣

𝑡
𝑑𝜔]

𝑛(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑛(𝜔)
𝑣

𝑡
𝑑𝜔]

𝑑𝑣
∞

𝑡

=

𝑟(𝑡)𝐾(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)
𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]
𝑒𝑥𝑝[∫ 𝑔𝑟(𝜔)

𝑣

𝑡
𝑑𝜔]𝑒𝑥𝑝[∫ 𝑔𝐾(𝜔)

𝑣

𝑡
𝑑𝜔]

𝑒𝑥𝑝[∫ 𝑔𝑚(𝜔)
𝑣

𝑡
𝑑𝜔]

𝑑𝑣
∞

𝑡

𝑤(𝑡)𝐿(𝑡) ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)
𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]
𝑒𝑥𝑝[∫ 𝑔𝑤(𝜔)

𝑣

𝑡
𝑑𝜔]𝑒𝑥𝑝[∫ 𝑔𝐿(𝜔)

𝑣

𝑡
𝑑𝜔]

𝑒𝑥𝑝[∫ 𝑔𝑛(𝜔)
𝑣

𝑡
𝑑𝜔]

𝑑𝑣
∞

𝑡

=
𝑟(𝑡)𝐾(𝑡) ∫ 𝑒𝑥𝑝[∫ [𝑔𝑟(𝜔) + 𝑔𝐾(𝜔) − 𝑔𝑚(𝜔)]𝑑𝜔

𝑣

𝑡
− ∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)

𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]𝑑𝑣

∞

𝑡

𝑤(𝑡)𝐿(𝑡) ∫ 𝑒𝑥𝑝[∫ [𝑔𝑤(𝜔) + 𝑔𝐿(𝜔) − 𝑔𝑛(𝜔)]𝑑𝜔
𝑣

𝑡
− ∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)

𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]𝑑𝑣

∞

𝑡

   (𝐴3) 

Let ∇(𝑡) ≡
∫ 𝑒𝑥𝑝[∫ [𝑔𝑟(𝜔)+𝑔𝐾(𝜔)−𝑔𝑚(𝜔)]𝑑𝜔

𝑣
𝑡 −∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)

𝜔
𝑡 𝑑𝑢]+𝛿)𝑑𝜔

𝑣
𝑡 ]𝑑𝑣

∞
𝑡

∫ 𝑒𝑥𝑝[∫ [𝑔𝑤(𝜔)+𝑔𝐿(𝜔)−𝑔𝑛(𝜔)]𝑑𝜔
𝑣
𝑡

−∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟(𝑢)
𝜔
𝑡

𝑑𝑢]+𝛿)𝑑𝜔
𝑣
𝑡

]𝑑𝑣
∞
𝑡

, substituting it 

into equation (A3) gives 

∆(𝑡) =
𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
. ∇(𝑡)                                                          (𝐴4) 

Substituting the equation (26) in the paper, that is, 
𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
=

(1−𝛾)

𝛾
𝑘(𝑡)

𝜀−1

𝜀 , into equation 

(A4) gives 

∆(𝑡) =
(1 − 𝛾)

𝛾
𝑘(𝑡)

𝜀−1
𝜀 . ∇(𝑡)                                               (𝐴5) 

Equation (A5) is equation (5) in the comment. 
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Appendix B: Proof of Proposition A1 

Proposition A1: For 𝜀 < 1, there exists a finite 𝑇 < ∞ such that for 𝑡 ≥ 𝑇, the solution 

𝑆𝑘(𝑡)
𝑡≥𝑇

= 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 represents the model’s asymptotic path (AP) equilibrium, which is also 

a balanced growth path (BGP) equilibrium. When 𝛿 > 0, there exists a unique set of values 

(𝑘∗, 𝑀∗, 𝑐∗) ; when 𝛿 = 0 , there are infinite sets of values (𝑘∗, 𝑀∗, 𝑐∗)  and 𝑆𝑘
∗ = 0  such that 

𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0. However, for different (𝑘∗, 𝑀∗, 𝑐∗), the growth rates of all variables of the 

model remain the same. 

Proof. 

Step 1: To prove that there exists a finite 𝑇 < ∞ such that for all 𝑡 ≥ 𝑇 , if 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0 holds in the equation (13), then a Balanced Growth Path (BGP) equilibrium exists; 

From the production function in equation (23) of the paper and the equation 𝑘(𝑡) ≡

𝑀(𝑡)𝐾(𝑡)

𝑁(𝑡)𝐿(𝑡)
, we obtain:  

{
 
 

 
 �̇�(𝑡)

𝑌(𝑡)
=
�̇�(𝑡)

𝑀(𝑡)
+
�̇�(𝑡)

𝐾(𝑡)
−

𝛾

𝛾 + (1 − 𝛾)(𝑘)(𝜀−1) 𝜀⁄
�̇�(𝑡)

𝑘(𝑡)

�̇�(𝑡)

𝑌(𝑡)
=
�̇�(𝑡)

𝑁(𝑡)
+
�̇�(𝑡)

𝐿(𝑡)
+

(1 − 𝛾)(𝑘)(𝜀−1) 𝜀⁄

𝛾 + (1 − 𝛾)(𝑘)(𝜀−1) 𝜀⁄
�̇�(𝑡)

𝑘(𝑡)

          (𝐵1) 

Substituting 
�̇�

𝑀
=

�̇�

𝑘
= 0 and 

�̇�(𝑡)

𝐿(𝑡)
= 0 into equation (B1) and using 

𝑐̇

𝑐
= 0 yields  

𝑔∗ =
�̇�

𝑌
=
�̇�

𝐾
=
�̇�

𝐶
=
�̇�

𝑁
=
1 − 𝛽

𝛽
[𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)(𝑆 − 𝑆𝑘
∗) − 𝛿]       (𝐵2) 

Substituting equation (B2) in Euler equation 
�̇�

𝐶
=

1

𝜃
(𝑟(𝑡) − 𝜌) yields 

𝑟∗ = 𝜃𝑔∗ + 𝜌                                                                                     (𝐵3) 

(B2) and (B3) indicate that when 𝑡 ≥ 𝑇 , �̇�(𝑡) 𝑌(𝑡)⁄
𝑡≥𝑇

= �̇�(𝑡) 𝐾(𝑡)⁄
𝑡≥𝑇

= �̇�(𝑡) 𝐶(𝑡)⁄
𝑡≥𝑇

= 𝑔∗ , 

and �̇�(𝑡) 𝑀(𝑡)⁄
𝑡≥𝑇

= 0. Therefore, the model is in a Balanced Growth Path (BGP) equilibrium. 

Next, we will derive the specific results for 𝑆𝑘
∗ and (𝑘∗, 𝑀∗, 𝑐∗) when  

𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
=

0. 

Substituting 𝑟 = 𝛽(1 − 𝛾)𝑀[𝛾(𝑘∗)−(𝜀−1) 𝜀⁄ + (1 − 𝛾)]
1 (𝜀−1)⁄

 into equation (B3) yields 

𝑀∗ =
𝜃𝑔∗ + 𝜌

𝛽(1 − 𝛾)
[𝛾(𝑘∗)(1−𝜀) 𝜀⁄ + (1 − 𝛾)]

1 (1−𝜀)⁄
                              (𝐵4) 
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Substituting (B4) and 𝑓(𝑘) = [𝛾 + (1 − 𝛾)𝑘(𝜀−1) 𝜀⁄ ]
𝜀 (𝜀−1)⁄

  into 
�̇�

𝑘
=

𝑀𝑓(𝑘)

𝑘
− 𝑐 − 𝑔∗ = 0 

yields 

𝑐∗ =
𝜃𝑔∗ + 𝜌

𝛽(1 − 𝛾)
[𝛾(𝑘∗)−(𝜀−1) 𝜀⁄ + (1 − 𝛾)] − 𝑔∗                              (𝐵5) 

From 
�̇�

𝑀
= 0 we can obtain 

𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)
                                                                     (𝐵6) 

When 𝛿 > 0 , (B6) indicates that 𝑆𝑘
∗ > 0 . Given that the paper assumes 𝑆 > 𝑆𝑘

∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

, it follows that 𝑆𝑙
∗ = 𝑆 − 𝑆𝑘

∗ > 0. Since the scientists are homogeneous, when 𝑆𝑙
∗ =

𝑆 − 𝑆𝑘
∗ > 0 and both 𝑆𝑘

∗ and 𝑆𝑙
∗ are positive, from  

𝑆�̇�

𝑆𝑘
= 0 the following equation (B7) must 

hold: 

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 = 1                                          (𝐵7) 

From (B7), we obtain the following (B8): 

(𝑘∗)
𝜀−1
𝜀 =

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)𝛾

𝑏𝑘ϕ(𝑆𝑘
∗)(1 − 𝛾)∇∗

                                                 (𝐵8) 

From the equation (18) in the paper, we have 𝑤 = 𝛽𝛾𝑁[𝛾 + (1 − 𝛾)𝑘(𝜀−1) 𝜀⁄ ]
1 (𝜀−1)⁄

 . 

Taking the growth rate of both sides of this equation and using 
�̇�

𝑘
= 0, we obtain 𝑔𝑤(𝜔) = 𝑔∗. 

From 𝑀 ≡ 𝑚(1−𝛽) 𝛽⁄ , 
�̇�

𝑀
= 0, and (B3), we have 𝑔𝑟(𝜔) = 𝑔𝑚(𝜔) = 0. Additionally, from 𝑁 ≡

𝑛(1−𝛽) 𝛽⁄ , it follows that 𝑔𝑛(𝜔) =
𝛽

1−𝛽
𝑔∗.  

Substituting 𝑔𝑤(𝜔) , 𝑔𝑟(𝜔) , 𝑔𝑚(𝜔) , 𝑔𝑛(𝜔) , 𝑔𝐾(𝜔) , 𝑔𝐿(𝜔)  and 𝑟∗ = 𝜃𝑔∗ + 𝜌  into ∇(𝑡) 

yields 

∇∗=
[𝜃 + (2𝛽 − 1) (1 − 𝛽)⁄ ]𝑔∗ + 𝜌 + 𝛿

(𝜃 − 1)𝑔∗ + 𝜌 + 𝛿
                             (𝐵9) 

Equations (B4), (B5), (B6), and (B8) provide the specific values of 𝑆𝑘
∗ and (𝑘∗, 𝑀∗, 𝑐∗) 

when 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0, summarized as follows: 
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{
 
 
 
 

 
 
 
 𝑆𝑘(𝑡)

𝑡≥𝑇
= 𝑆𝑘

∗ =
𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)
                                                             (𝐵6)

𝑘(𝑡)
𝜀−1
𝜀

𝑡≥𝑇
= (𝑘∗)

𝜀−1
𝜀 =

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)𝛾

𝑏𝑘ϕ(𝑆𝑘
∗)(1 − 𝛾)∇∗

                              (𝐵8)

𝑀(𝑡)
𝑡≥𝑇

= 𝑀∗ =
𝜃𝑔∗ + 𝜌

𝛽(1 − 𝛾)
[𝛾(𝑘∗)(1−𝜀) 𝜀⁄ + (1 − 𝛾)]

1 (1−𝜀)⁄
      (𝐵4)

𝑐(𝑡)
𝑡≥𝑇

= 𝑐∗ =
𝜃𝑔∗ + 𝜌

𝛽(1 − 𝛾)
[𝛾(𝑘∗)−(𝜀−1)/𝜀 + (1 − 𝛾)] − 𝑔∗        (𝐵5)

 

When 𝛿 = 0, since 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)
= 0, there will be no movement of scientists even if 

𝜔𝑠𝑘

𝜔𝑠𝑙
< 1. Therefore, from 

𝑆�̇�

𝑆𝑘
= 0, we can only derive the following inequality (B10): 

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 ≤ 1                                          (𝐵10) 

The following inequality (B11) can be obtained from inequality (B10): 

(𝑘∗)
𝜀−1
𝜀 ≥

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)𝛾

𝑏𝑘ϕ(𝑆𝑘
∗)(1 − 𝛾)∇∗

                                                (𝐵11) 

All 𝑘∗  that satisfy (B11) ensure that 
𝑆�̇�

𝑆𝑘
= 0 , allowing the model to achieve BGP 

equilibrium. Since 𝑀∗ and 𝑐∗ are functions of 𝑘∗, there are also numerous 𝑀∗ and 𝑐∗ that can 

lead the model to BGP equilibrium. 

Substituting (B8) into the relative income shares of capital and labor 𝜎𝐾 ≡
𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
=

(1−𝛾)

𝛾
𝑘
𝜀−1

𝜀 , if 𝛿 > 0 then yields 

𝜎𝐾
∗ =

(1 − 𝛾)

𝛾
(𝑘∗)

𝜀−1
𝜀 =

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)

𝑏𝑘ϕ(𝑆𝑘
∗)∇∗

                                             (𝐵12𝑎); 

if 𝛿 = 0 then yields 

𝜎𝐾
∗ =

(1 − 𝛾)

𝛾
(𝑘∗)

𝜀−1
𝜀 ≥

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)

𝑏𝑘ϕ(𝑆𝑘
∗)∇∗

                                             (𝐵12𝑏). 

Thus, when 𝛿 > 0, the BGP equilibrium corresponds to a unique relative income share, 

while for 𝛿 = 0, there are infinitely many relative income shares. 

Step two: Prove that there is only one equilibrium 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

, or in other words, that 

no equilibrium exists with 
�̇�

𝑀
≠ 0. 

First, we prove by contradiction that there is no equilibrium 𝑆𝑘 = 𝑆𝑘
∗∗ > 𝑆𝑘

∗ =
𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 

in the model. 

Suppose there exists another equilibrium 𝑆𝑘 = 𝑆𝑘
∗∗ > 𝑆𝑘

∗ =
𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

, we have 
𝑆�̇�

𝑆𝑘
= 0. In 
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this case, it must hold that 
𝑏𝑘ϕ(𝑆𝑘

∗∗)

𝑏𝑙ϕ(𝑆−𝑆𝑘
∗∗)

(1−𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 ≥ 1; otherwise, 

𝑆�̇�

𝑆𝑘
< 0, which contradicts 

𝑆�̇�

𝑆𝑘
= 0. Substituting 𝑆𝑘 = 𝑆𝑘

∗∗ into 
�̇�

𝑘
 yields: 

�̇�

𝑘
= (

𝑀𝑓(𝑘)

𝑘
− 𝑐) +

1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘

∗∗)𝑆𝑘
∗∗ − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗∗)(𝑆 − 𝑆𝑘
∗∗)]   (𝐵13) 

Since 𝑆𝑘
∗∗ > 𝑆𝑘

∗, it follows that 
�̇�

𝑀
> 0. Consequently, M will continue to rise, leading to 

an ongoing increase in 
�̇�

𝑘
 . As long as 

�̇�

𝑀
> 0 , there will eventually be 

�̇�

𝑘
> 0 , resulting in an 

increase in 𝑘. Given that 𝜀 < 1, 𝑘(𝜀−1)/𝜀 will decline. Therefore, as long as 
�̇�

𝑀
> 0, 𝑘(𝜀−1)/𝜀 will 

keep decreasing, ultimately leading to 
𝑏𝑘ϕ(𝑆𝑘

∗∗)

𝑏𝑙ϕ(𝑆−𝑆𝑘
∗∗)

(1−𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 < 1 , which implies 

𝑆�̇�

𝑆𝑘
< 0 . 

This proves that any 𝑆𝑘 = 𝑆𝑘
∗∗ > 𝑆𝑘

∗ cannot be a steady-state equilibrium. 

Similarly, it can be proved that there is no other equilibrium 𝑆𝑘 = 𝑆𝑘
∗∗ < 𝑆𝑘

∗ =
𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 

in the model. 

The above proof demonstrates that the dynamic system described by equation (13) has not 

only one balanced growth path (BGP) equilibrium at 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0 , but also that this 

equilibrium is unique at 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

, providing specific values of 𝑆𝑘
∗ and (𝑘∗, 𝑀∗, 𝑐∗). Thus, 

this proves Proposition A1, as well as Propositions 1, 3, and 4. 

 

Appendix C: Proof of Proposition A2 

Proposition A2: For 𝜀 > 1, there exist three asymptotic path (AP) equilibria: 

(1) When ≥ 0 , 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 , there exists a BGP equilibrium that is also an AP 

equilibrium; 

(2) When 𝛿 ≥ 0, 𝑆𝑘
∗ = 𝑆, there exists a non-steady-state AP equilibrium; 

(3) When 𝛿 > 0, 𝑆𝑘
∗ = 0, there is also a non-steady-state AP equilibrium. 

 

Proof. 

In the first step, we can similarly prove that when 𝜀 > 1, the conditions 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0 yield the same balanced growth path (BGP) equilibrium as in the case of 𝜀 < 1. Here, 

𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

  is the unique value that satisfies 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑀
=

𝑐̇

𝑐
=

�̇�

𝑘
= 0  for 𝛿 > 0 , resulting in a 
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unique set of values (𝑘∗, 𝑀∗, 𝑐∗). When 𝛿 = 0, there are infinitely many sets of (𝑘∗, 𝑀∗, 𝑐∗) and 

a unique 𝑆𝑘
∗ =

𝛿

𝑏𝑘ϕ(𝑆𝑘
∗)

 that satisfy the same conditions. The growth rates of each variable at 

equilibrium are also the same as in the case of 𝜀 < 1, regardless of whether 𝛿 > 0 or 𝛿 = 0. 

In the second step, we prove that when 𝑆𝑘
∗ = 𝑆, the model has an asymptotic path (AP) 

equilibrium. 

When 𝑆𝑘 = 𝑆, substituting it into the dynamic system represented by equation (13) yields 

�̇� 𝑀⁄ =
1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿] > 0 . Substituting = 𝑀(0)exp (

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿]𝑡) and 𝑆𝑘 = 𝑆 

into the �̇� 𝑘⁄  function in equation (13) results in the following equation: 

�̇� 𝑘⁄ = (
𝑀(0)exp (

1 − 𝛽
𝛽

[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿]𝑡)

𝑓(𝑘) 𝑘⁄
− 𝑐) +

1 − 𝛽

𝛽
𝑏𝑘ϕ(𝑆)𝑆       (𝐶1) 

Since �̇� 𝑀⁄ > 0, we have lim
𝑡→∞

�̇� 𝑘⁄ = ∞, which implies lim
𝑡→∞

𝑘 = ∞. Given that 𝜀 > 1, it 

follows that lim
𝑡→∞

𝑘(𝜀−1)/𝜀 = ∞ . As long as ϕ(0) < ∞ , it must be that 

lim
𝑡→∞

𝑏𝑘ϕ(𝑆)

𝑏𝑙ϕ(0)

(1−𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 > 1. Since we already have 𝑆𝑘 = 𝑆, it follows that 

𝑆�̇�

𝑆𝑘
= 0. Therefore, 

𝑆𝑘 = 𝑆 is an asymptotic path (AP) equilibrium. However, at this point, �̇�(𝑡) 𝑀(𝑡)⁄ > 0 and 

�̇�(𝑡) 𝑁(𝑡)⁄ =
1−𝛽

𝛽
[𝑏𝑙ϕ(0)(0) − 𝛿] = −

1−𝛽

𝛽
𝛿 < 0. 

Substituting lim
𝑡→∞

𝑘(𝜀−1)/𝜀 = ∞ into equation (B1) yields 

lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝑀(𝑡)
+
�̇�(𝑡)

𝐾(𝑡)
) = lim

𝑡→∞
(
�̇�(𝑡)

𝑁(𝑡)
+
�̇�(𝑡)

𝑘(𝑡)
) = ∞               (𝐶2) 

Since 
�̇�(𝑡)

𝑀(𝑡)
< ∞  and 

�̇�(𝑡)

𝑁(𝑡)
< ∞ , we can derive the equation (C3) from equation (C2) as 

follows: 

lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝐾(𝑡)
) = lim

𝑡→∞
(
�̇�(𝑡)

𝑘(𝑡)
) = ∞                     (𝐶3) 

Since lim
𝑡→∞

𝑀(𝑡) = ∞ and lim
𝑡→∞

𝑘(𝑡)−
𝜀−1

𝜀 → 0, we can derive the equation (C4) as follows: 

lim
𝑡→∞

𝑟(𝑡) = 𝛽(1 − 𝛾)𝑀(𝑡) [𝛾𝑘−
𝜀−1
𝜀 + (1 − 𝛾)]

1
𝜀−1

= ∞     (𝐶4) 

Substituting (C4) into Euler equation yields 
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lim
𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
= lim

𝑡→∞

1

𝜃
(𝑟(𝑡) − 𝜌) = ∞                                            (𝐶5) 

From equations (C3) and (C5) we can obtain the following equations: 

lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝐾(𝑡)
) = lim

𝑡→∞
(
𝐶(𝑡)̇

𝐶(𝑡)
) = ∞                        (𝐶6) 

At this point, in the dynamic system represented by equation (13), there is 
𝑆�̇�

𝑆𝑘
= 0 . 

However, lim
𝑡→∞

(
�̇�(𝑡)

𝑘(𝑡)
) = ∞ and 

�̇�(𝑡)

𝑀(𝑡)
=

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿] > 0. Therefore, the model represents 

an asymptotic path (AP) equilibrium, rather than a steady-state (SS) equilibrium or a balanced 

growth path (BGP) equilibrium. 

In the third step, when 𝛿 > 0 and 𝑆𝑘
∗ = 0, the model has another asymptotic path (AP) 

equilibrium. 

When 𝑆𝑘 = 0 , substituting this into the dynamic system represented by equation (13) 

yields �̇� 𝑀⁄ = −
1−𝛽

𝛽
𝛿 < 0 . By substituting 𝑀 = 𝑀(0)exp (−

1−𝛽

𝛽
𝛿𝑡)  and 𝑆𝑘 = 0  into the 

�̇� 𝑘⁄  function from equation (13), we obtain the following equation (C7): 

�̇� 𝑘⁄ = (
𝑀(0)exp (−

1 − 𝛽
𝛽

𝛿𝑡)

𝑓(𝑘) 𝑘⁄
− 𝑐) −

1 − 𝛽

𝛽
𝑏𝑙ϕ(𝑆)𝑆          (𝐶7) 

Since �̇� 𝑀⁄ < 0, it follows that lim
𝑡→∞

�̇� 𝑘⁄ < 0, which implies lim
𝑡→∞

𝑘 = 0. Given that 𝜀 >

1, we have lim
𝑡→∞

𝑘(𝜀−1)/𝜀 = 0. As long as ϕ(0) < ∞, it follows that lim
𝑡→∞

𝑏𝑘ϕ(0)

𝑏𝑙ϕ(𝑆)

(1−𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 <

1. Since we already have 𝑆𝑘 = 0, it follows that 
𝑆�̇�

𝑆𝑘
= 0. Therefore, 𝑆𝑘 = 0 is an asymptotic path 

(AP) equilibrium. 

Substituting lim
𝑡→∞

𝑘(𝜀−1)/𝜀 = 0 into (B1) yields 

lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝑀(𝑡)
+
�̇�(𝑡)

𝐾(𝑡)
−
�̇�(𝑡)

𝑘(𝑡)
) = lim

𝑡→∞
(
�̇�(𝑡)

𝑁(𝑡)
) =

1 − 𝛽

𝛽
[𝑏𝑙ϕ(𝑆)𝑆 − 𝛿]  (𝐶8) 

From 𝑟(𝑡) = 𝛽(1 − 𝛾)𝑀(𝑡) [𝛾𝑘(𝑡)−
𝜀−1

𝜀 + (1 − 𝛾)]

1

𝜀−1
 , we can obtain the following 

equation: 

𝑟(𝑡)̇

𝑟(𝑡)
=
�̇�(𝑡)

𝑀(𝑡)
−

1

𝜀 [1 +
(1 − 𝛾)
𝛾

𝑘(𝑡)
𝜀−1
𝜀 ]

�̇�(𝑡)

𝑘(𝑡)
                            (𝐶9) 
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Substituting lim
𝑡→∞

𝑘
𝜀−1

𝜀 = 0 into (C9) we can obtain the following equation 

lim
𝑡→∞

𝑟(𝑡)̇

𝑟(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝑀(𝑡)
−
1

𝜀

�̇�(𝑡)

𝑘(𝑡)
)                                             (𝐶10) 

Substituting (C10) into Euler equation yields  

lim
𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
= lim

𝑡→∞

1

𝜃
(𝑟(0)𝑒𝑥𝑝 [−

1 − 𝛽

𝛽
𝛿 −

1

𝜀

�̇�(𝑡)

𝑘(𝑡)
] 𝑡 − 𝜌)         (𝐶11) 

If lim
𝑡→∞

[−
1−𝛽

𝛽
𝛿 −

1

𝜀

�̇�(𝑡)

𝑘(𝑡)
] > 0, then lim

𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
= ∞. Conversely, if lim

𝑡→∞
[−

1−𝛽

𝛽
𝛿 −

1

𝜀

�̇�(𝑡)

𝑘(𝑡)
] <

0 , then lim
𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
= −

1

𝜃
𝜌 < 0 , leading to lim

𝑡→∞
𝐶(𝑡) = 0 . Given that 0 < 𝐶(𝑡) < 𝑌(𝑡)  and 

lim
𝑡→∞

𝑌(𝑡)̇

𝑌(𝑡)
=

1−𝛽

𝛽
[𝑏𝑙ϕ(𝑆)𝑆 − 𝛿] < ∞ , it follows that 0 < lim

𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
< ∞ . Therefore, we must 

have lim
𝑡→∞

[−
1−𝛽

𝛽
𝛿 −

1

𝜀

�̇�(𝑡)

𝑘(𝑡)
] = 0. Substituting it into equation (C11) yields 

lim
𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
=
1

𝜃
(𝑟(0) − 𝜌) = 𝑔𝑐 < ∞                                             (𝐶12) 

and 

lim
𝑡→∞

�̇�(𝑡)

𝑘(𝑡)
= −

1 − 𝛽

𝛽
𝜀𝛿 = 𝑔𝑘                                                            (𝐶13) 

Substituting (C13) into (C9) yields 

lim
𝑡→∞

�̇�(𝑡)

𝐾(𝑡)
=
1 − 𝛽

𝛽
[𝑏𝑙ϕ(𝑆)𝑆 − 𝜀𝛿] < lim

𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
                               (𝐶14) 

From lim
𝑡→∞

�̇�(𝑡)

𝐾(𝑡)
= lim

𝑡→∞

𝐼(𝑡)

𝐾(𝑡)
=

1−𝛽

𝛽
[𝑏𝑙ϕ(𝑆)𝑆 − 𝜀𝛿] we can obtain the following equation: 

lim
𝑡→∞

�̇�(𝑡)

𝐾(𝑡)
= lim

𝑡→∞

𝐼(̇𝑡)

𝐼(𝑡)
                                                              (𝐶15) 

From 𝐶(𝑡) + 𝐼(𝑡) = 𝑌(𝑡)  and lim
𝑡→∞

�̇�(𝑡)

𝐾(𝑡)
< lim

𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
 , we can obtain lim

𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
> lim

𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
 . 

Combining with (C14), we obtain the following chain of inequalities: 

lim
𝑡→∞

�̇�(𝑡)

𝐾(𝑡)
< lim

𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
< lim

𝑡→∞

𝐶(𝑡)̇

𝐶(𝑡)
                                       (𝐶16) 

Since 
𝑐̇

𝑐
=

𝐶(𝑡)̇

𝐶(𝑡)
−
�̇�(𝑡)

𝐾(𝑡)
 , it follows that lim

𝑡→∞

𝑐̇

𝑐
> 0 . Therefore, in the dynamic system 

represented by equation (13), while 
𝑆�̇�

𝑆𝑘
= 0, the other three equations—

�̇�

𝑀
, 
𝑐̇

𝑐
 and 

�̇�

𝑘
—are all non-
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zero. Thus, although the distribution of scientists has reached a steady state, the model itself has 

not, which is why Acemoglu refers to it as an asymptotic path (AP) equilibrium. It is certainly 

not a balanced growth path (BGP) equilibrium. 

In summary, Proposition A2 is proven, which confirms the main part of Proposition 2 in 

the paper. 

 

Appendix D: Proof of Proposition A3 

Proposition A3: For 𝜀 = 1, the model has a unique asymptotic path (AP) equilibrium, 

which is also a balanced growth path (BGP) equilibrium. 

 

Proof. 

When 𝜀 = 1, the production function is no longer a CES function but a Cobb-Douglas (C-

D) function, namely: 

𝑌(𝑡) = [𝑀(𝑡)𝐾(𝑡)]1−𝛾[𝑁(𝑡)𝐿(𝑡)]𝛾                                    (𝐷1) 

Since ∆(𝑡) ≡
𝑚(𝑡)𝑉𝑘(𝑡)

𝑛(𝑡)𝑉𝑙(𝑡)
=

𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
∇(𝑡), for a Cobb-Douglas function, the relative income 

shares of the factors are given by: 

𝜎𝐾 ≡
𝑟(𝑡)𝐾(𝑡)

𝑤(𝑡)𝐿(𝑡)
=
1 − 𝛾

𝛾
                                                   (𝐷2) 

At this point, the dynamic equation 
𝑆�̇�

𝑆𝑘
 becomes: 

𝑆�̇�
𝑆𝑘
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
]                                      (𝐷3) 

When 
𝑆�̇�

𝑆𝑘
= 0 , it determines 

�̇�

𝑀
=

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿] ; thus, 

�̇�

𝑀
  is no longer an 

independent dynamic equation. On the other hand, we need to redefine 𝑘(𝑡) ≡

𝐾(𝑡)

[𝑀(𝑡)](1−𝛾) 𝛾⁄ 𝑁(𝑡)𝐿(𝑡)
, resulting in the new 

�̇�

𝑘
 function as follows: 

�̇�

𝑘
= 𝑘−𝛾 − 𝑐 −

1 − 𝛽

𝛽
([
1 − 𝛾

𝛾
𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘) −

𝛿

𝛾
])    (𝐷4) 

Using 𝑘(𝑡) ≡
𝐾(𝑡)

[𝑀(𝑡)](1−𝛾) 𝛾⁄ 𝑁(𝑡)𝐿(𝑡)
 to yield 

𝑐̇

𝑐
 function as follows： 

�̇�

𝑐
= (

𝛽(1 − 𝛾) − 𝜃

𝜃
𝑘−𝛾) − (

𝜌

𝜃
− 𝑐)                                     (𝐷5) 

(D3), (D4), and (D5) form a new dynamic system involving the three variables 𝑆𝑘, 𝑘 and 

𝑐, which describes the dynamic behavior of the model. 
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If there exists a finite 𝑇 < ∞ such that for 𝑡 ≥ 𝑇, 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑘
=

𝑐̇

𝑐
= 0, we have: 

{
  
 

  
 

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
= 1                        

(
𝛽(1 − 𝛾) − 𝜃

𝜃
𝑘−𝛾) − (

𝜌

𝜃
− 𝑐) = 0       

𝑘−𝛾 − 𝑐 −
1 − 𝛽

𝛽
(
1 − 𝛾

𝛾
𝑔𝑚 + 𝑔𝑛) = 0

                          (D6) 

It can be derived from (D6) that:  

{
 
 
 

 
 
 

ϕ(𝑆𝑘
∗)

ϕ(𝑆 − 𝑆𝑘
∗)
=

𝑏𝑙𝛾

𝑏𝑘(1 − 𝛾)∇∗
                                                                          

𝑐∗ =
𝜌

𝜃
−
𝛽(1 − 𝛾) − 𝜃

𝜃
(

𝜌

𝛽(1 − 𝛾)
+
(1 − 𝛽)𝜃

𝛽𝛽(1 − 𝛾)
(
1 − 𝛾

𝛾
𝑔𝑚

∗ + 𝑔𝑛
∗))

(𝑘∗)−𝛾 =
𝜌

𝛽(1 − 𝛾)
+
(1 − 𝛽)𝜃

𝛽𝛽(1 − 𝛾)
(
1 − 𝛾

𝛾
𝑔𝑚 + 𝑔𝑛)                                  

    (D7) 

Substituting 𝑆𝑘
∗ into the innovation function yields: 

{
𝑔𝑚

∗ ≡
�̇�

𝑚
= 𝑏𝑘ϕ(𝑆𝑘

∗)𝑆𝑘
∗ − 𝛿             

𝑔𝑛
∗ ≡

�̇�

𝑛
= 𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)(𝑆 − 𝑆𝑘
∗) − 𝛿

                              (𝐷8) 

From 
�̇�

𝑘
= 0, the following results can be obtained: 

𝑔𝐾
∗ ≡

�̇�

𝐾
=
1 − 𝛽

𝛽
(
1 − 𝛾

𝛾
𝑔𝑚

∗ + 𝑔𝑛
∗)                                     (𝐷9)  

From production function (D1), we can derive the following results: 

𝑔∗ ≡
�̇�

𝑌
=
1 − 𝛽

𝛽
(
1 − 𝛾

𝛾
𝑔𝑚

∗ + 𝑔𝑛
∗)                                           (𝐷10) 

From 
𝑐̇

𝑐
= 0, we can derive the following results: 

𝑔𝐶
∗ ≡

�̇�

𝐶
=
�̇�

𝐾
=
1 − 𝛽

𝛽
(
1 − 𝛾

𝛾
𝑔𝑚

∗ + 𝑔𝑛
∗)                                (𝐷11) 

Substituting (D11) into Euler equation yields  

𝑟∗ = 𝜃𝑔∗ + 𝜌                                                                                 (𝐷12) 

From equation (18) in the paper, we have 𝑤 = 𝛾[𝑀(𝑡)𝐾(𝑡)]1−𝛾[𝑁(𝑡)]𝛾[𝐿(𝑡)]𝛾−1. This 

leads to 𝑔𝑤(𝜔) = 𝑔∗. From (D12), we obtain 𝑔𝑟(𝜔) = 0. Substituting 𝑔𝑤(𝜔), 𝑔𝑟(𝜔), 𝑔𝑚(𝜔), 

𝑔𝑛(𝜔), 𝑔𝐾(𝜔), 𝑔𝐿(𝜔) and 𝑟∗ = 𝜃𝑔∗ + 𝜌 into ∇(𝑡) yields: 
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∇∗=
∫ 𝑒𝑥𝑝[∫ [(1 − 𝜃)𝑔∗ − 𝑔𝑚 − 𝜌 − 𝛿]𝑑𝜔

𝑣

𝑡
]𝑑𝑣

∞

𝑡

∫ 𝑒𝑥𝑝[∫ [(1 − 𝜃)𝑔∗ − 𝑔𝑛 − 𝜌 − 𝛿)]𝑑𝜔
𝑣

𝑡
]𝑑𝑣

∞

𝑡

=
(1 − 𝜃)𝑔∗ − 𝑔𝑛 − 𝜌 − 𝛿

(1 − 𝜃)𝑔∗ − 𝑔𝑚 − 𝜌 − 𝛿
    (𝐷13) 

Although if 𝑆𝑘
∗ = 𝑆 results in 

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)∇

𝛾
> 1, we still have 

𝑆�̇�

𝑆𝑘
= 0, there is only one 

equilibrium at 𝑆𝑘
∗ = 𝑆. Similarly, if 𝑆𝑘

∗ = 0 leads to 
𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)∇

𝛾
< 1, we also have 

𝑆�̇�

𝑆𝑘
= 0, 

but again, there is only one equilibrium at 𝑆𝑘
∗ = 0. Furthermore, the preceding solution process 

is identical, and the model’s results remain the same. 

Although 
�̇�

𝑀
=

1−𝛽

𝛽
𝑔𝑚

∗ > 0 , since the production function is a Cobb-Douglas function 

and 𝑟∗ = 𝜃𝑔∗ + 𝜌  is a constant, we have 
�̇�

𝑌
=

�̇�

𝐾
=

�̇�

𝐶
=

1−𝛽

𝛽
(
1−𝛾

𝛾
𝑔𝑚

∗ + 𝑔𝑛
∗) . Therefore, the 

unique steady state (SS) equilibrium of the model is still the balanced growth path (BGP) 

equilibrium. 

In summary, Proposition A3 is proved. Propositions A2 and A3 together indicate the 

validity of Proposition 2 in the paper. 

 

Appendix E: Proof of Proposition B 

Proposition B: If 𝐼 = 0, the model has asymptotic path (APs) equilibrium and a steady-

state (SS) equilibrium, but no balanced growth path (BGP) equilibrium. When 𝜀 < 1, the model 

has a unique SS equilibrium; when 𝜀 > 1, the model has three AP equilibria, one of which is an 

SS equilibrium and the other two are non-stationary AP equilibria. When 𝜀 = 1 , the model 

typically has only an SS equilibrium. 

Proof. 

For equation (14), if there exists a finite 𝑇 < ∞ such that for 𝑡 ≥ 𝑇, 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑘
= 0, we have: 

{
 
 

 
 𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 = 0              

1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘)] = 0

                          (𝐸1) 

The unique solution can be derived as follows: 

{
 
 

 
 𝑆𝑘

∗ =
𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)

𝑏𝑘ϕ(𝑆𝑘
∗) + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)
𝑆

(𝑘∗)(𝜀−1)/𝜀 =
𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)𝛾

𝑏𝑘ϕ(𝑆𝑘
∗)(1 − 𝛾)∇∗

                                                (𝐸2) 

Substituting 𝑆𝑘
∗ into equation  

�̇�

𝑘
= 0 yields 
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𝑔𝑚
∗ = 𝑔𝑛

∗ = 𝑏𝑘ϕ(𝑆𝑘
∗)𝑆𝑘

∗ − 𝛿                                                     (𝐸3) 

From production function in equation (23) of the paper, the result in the following equation 

can be derived: 

𝑔∗ ≡
�̇�

𝑌
=
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘

∗)𝑆𝑘
∗ − 𝛿]                                                (𝐸4) 

Since I=0, we have C=Y, leading to the following result: 

𝑔𝐶
∗ ≡

�̇�

𝐶
=
�̇�

𝑌
=
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘

∗)𝑆𝑘
∗ − 𝛿]                                        (𝐸5) 

From the equilibrium prices of capital and labor at profit maximization, we can obtain the 

following results: 

𝑔𝑤
∗ = 𝑔𝑟

∗ =
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘

∗)𝑆𝑘
∗ − 𝛿]                                         (𝐸6) 

Substituting 𝑔𝑤(𝜔) , 𝑔𝑟(𝜔) , 𝑔𝑚(𝜔) , 𝑔𝑛(𝜔) , 𝑔𝐾(𝜔) , 𝑔𝐿(𝜔)  and 𝑟∗ = 𝜃𝑔∗ + 𝜌  into ∇(𝑡) 

yields 

∇∗=
∫ 𝑒𝑥𝑝[∫ [𝑔𝑟 − 𝑔𝑚]𝑑𝜔

𝑣

𝑡
− ∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟

𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]𝑑𝑣

∞

𝑡

∫ 𝑒𝑥𝑝[∫ [𝑔𝑤 − 𝑔𝑛]𝑑𝜔
𝑣

𝑡
− ∫ (𝑟(𝑡)𝑒𝑥𝑝[∫ 𝑔𝑟

𝜔

𝑡
𝑑𝑢] + 𝛿)𝑑𝜔

𝑣

𝑡
]𝑑𝑣

∞

𝑡

= 1    (𝐸7) 

Substituting (E7) into (E1) yields 

(𝑘∗)(𝜀−1)/𝜀 =
𝑏𝑙ϕ(𝑆 − 𝑆𝑘

∗)𝛾

𝑏𝑘ϕ(𝑆𝑘
∗)(1 − 𝛾)

                                      (𝐸8) 

Substituting (E8) into the relative income share yields 

𝜎𝐾
∗ =

𝑏𝑙ϕ(𝑆 − 𝑆𝑘
∗)

𝑏𝑘ϕ(𝑆𝑘
∗)

=
𝑆𝑘

∗

𝑆 − 𝑆𝑘
∗                                   (𝐸9) 

Since for 𝑡 ≥ 𝑇, 
𝑆�̇�

𝑆𝑘
=

�̇�

𝑘
=, the model achieves a steady-state (SS) equilibrium. However, 

because 
�̇�

𝐶
=

�̇�

𝑌
=

�̇�

𝑀
= 𝑔∗ > 0 and 

�̇�

𝐾
= 0, it does not satisfy Acemoglu’s definition of a balanced 

growth path (BGP) equilibrium. 

When 𝜀 < 1, if 𝑆𝑘(𝑡) > 𝑆𝑘
∗, then 

�̇�

𝑘
> 0, causing 𝑘 to increase. This leads to a decrease in 

𝑘(𝜀−1)/𝜀, which reduces 
𝑆�̇�

𝑆𝑘
, ultimately bringing 𝑆𝑘(𝑡) back to 𝑆𝑘

∗. Conversely, if 𝑆𝑘(𝑡) < 𝑆𝑘
∗, a 

similar opposite process occurs, also resulting in 𝑆𝑘(𝑡)  back to 𝑆𝑘
∗ . Thus, the model has a 

unique steady-state equilibrium. 

When 𝜀 > 1, if 𝑆𝑘(𝑡) = 𝑆, then 
�̇�

𝑘
=

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆] > 0. Thus, lim

𝑡→∞
𝑘(𝜀−1)/𝜀 = ∞, leading 

to lim
𝑡→∞

𝑏𝑘ϕ(𝑆)

𝑏𝑙ϕ(0)

(1−𝛾)∇

𝛾
𝑘(𝜀−1)/𝜀 > 1. However, since 𝑆𝑘 = 𝑆, we have 

𝑆�̇�

𝑆𝑘
= 0. Therefore, 𝑆𝑘(𝑡) =

𝑆 represents an AP equilibrium. 
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Substituting lim
𝑡→∞

𝑘(𝜀−1)/𝜀 = ∞ into (B1) yields 

lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞

�̇�(𝑡)

𝑀(𝑡)
= lim

𝑡→∞
(
�̇�(𝑡)

𝑁(𝑡)
+
�̇�(𝑡)

𝑘(𝑡)
) =

1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿]        (𝐸10) 

where lim
𝑡→∞

�̇�(𝑡)

𝑁(𝑡)
= −

1−𝛽

𝛽
𝛿, lim

𝑡→∞

�̇�(𝑡)

𝑘(𝑡)
=

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆]. 

Although lim
𝑡→∞

�̇�(𝑡)

𝑌(𝑡)
= lim

𝑡→∞

�̇�(𝑡)

𝑀(𝑡)
=

1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿] and lim

𝑡→∞

�̇�(𝑡)

𝑁(𝑡)
= −

1−𝛽

𝛽
𝛿 , with 

�̇�(𝑡)

𝐾(𝑡)
=

�̇�(𝑡)

𝐿(𝑡)
= 0, all variables are constants. However, since there is no 𝑇 < ∞ such that for 𝑡 ≥ 𝑇, 

𝑆�̇�

𝑆𝑘
=

�̇�

𝑘
= 0 , and there is no 

�̇�(𝑡)

𝑌(𝑡)
𝑡≥𝑇

=
�̇�(𝑡)

𝑀(𝑡)
𝑡≥𝑇

=
1−𝛽

𝛽
[𝑏𝑘ϕ(𝑆)𝑆 − 𝛿] , this equilibrium is merely an AP 

equilibrium, not a SS equilibrium. This distinguishes SS equilibrium from AP equilibrium. 

Similarly, when 𝑆𝑘 = 0, it is also an AP equilibrium, not a SS equilibrium. 

When 𝜀 = 1, the dynamic equation (14) of the model becomes 

{
 
 

 
 𝑆�̇�
𝑆𝑘
= 𝐺 [

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆 − 𝑆𝑘)

(1 − 𝛾)∇

𝛾
]                             

�̇�

𝑘
=
1 − 𝛽

𝛽
[𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘)]

                          (𝐸11) 

Since 
𝑆�̇�

𝑆𝑘
= 0 and 

�̇�

𝑘
= 0 are two independent equations regarding 𝑆𝑘, there is generally no 

solution, meaning a SS equilibrium typically does not exist. However, there must exist 𝑆𝑘(𝑡) =

𝑆𝑘
∗ such that 

𝑆�̇�

𝑆𝑘
= 0, indicating the presence of an AP equilibrium. 

The Proposition B is proven. 

 

Appendix F: Proof of the Revised Proposition 5 

Revised Proposition 5: When I>0, the model’s BGP equilibrium is saddle-stable 

regardless of whether 𝜀 < 1 or 𝜀 > 1. 

Proof. 

Linearizing equation (13) around the BGP yields the dynamic equation (F1): 

{
 
 
 
 

 
 
 
 
�̇�

𝑐
= 𝑎𝑐𝑐(𝑐 − 𝑐

∗) + 𝑎𝑐𝑘(𝑘 − 𝑘
∗) + 𝑎𝑐𝑚(𝑀 −𝑀∗)                                 

�̇�

𝑘
= 𝑎𝑘𝑐(𝑐 − 𝑐

∗) + 𝑎𝑘𝑘(𝑘 − 𝑘
∗) + 𝑎𝑘𝑚(𝑀 −𝑀∗) + 𝑎𝑘𝑠(𝑆𝑘 − 𝑆𝑘

∗)

�̇�

𝑀
= 𝑎𝑚𝑠(𝑆𝑘 − 𝑆𝑘

∗)                                                                                    

𝑆�̇�
𝑆𝑘
= 𝑎𝑠𝑘(𝑘 − 𝑘

∗) + 𝑎𝑠𝑠(𝑆𝑘 − 𝑆𝑘
∗)                                                         

        (𝐹1) 
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where 𝑎𝑠𝑠 = 𝐺
′.
𝑏𝑘

𝑏𝑙

(1−𝛾)∇

𝛾
𝑘
𝜀−1

𝜀
ϕ′(𝑆𝑘)ϕ(𝑆−𝑆𝑘)+ϕ(𝑆𝑘)ϕ

′(𝑆−𝑆𝑘)

[ϕ(𝑆−𝑆𝑘)]
2 < 0 ,  𝑎𝑠𝑘 =

𝐺′.
𝜀−1

𝜀

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)∇

𝛾
𝑘
−1

𝜀  the sign of which depends on the value of substitution elasticity ε, 

𝑎𝑠𝑚 = 𝑎𝑠𝑐 = 0；； 𝑎𝑚𝑠 =
1−𝛽

𝛽
𝑏𝑘ϕ(𝑆𝑘) > 0   𝑎𝑚𝑚 = 𝑎𝑚𝑐 = 𝑎𝑚𝑘 = 0 ; 𝑎𝑐𝑠 = 0 , 𝑎𝑐𝑚 =

(
𝛽

𝜃

𝑘𝑓′(𝑘)

𝑘
−
𝑓(𝑘)

𝑘
) the sign of which is unknown, 𝑎𝑐𝑐 = 1, 𝑎𝑐𝑘 = 𝑀(

𝛽

𝜃
𝑓′′(𝑘) −

𝑘𝑓′(𝑘)−𝑓(𝑘)

𝑘∗𝑘
) the 

sign of which is also is unknown；𝑎𝑘𝑠 =
1−𝛽

𝛽
(𝑏𝑘ϕ(𝑆𝑘) + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)) > 0, 𝑎𝑘𝑚 =

𝑓(𝑘)

𝑘
> 0, 

𝑎𝑘𝑐 = −1 < 0, 𝑎𝑘𝑘 = 𝑀
𝑘𝑓′(𝑘)−𝑓(𝑘)

𝑘∗𝑘
< 0. 

The characteristic equation is as follows: 

𝑑𝑒𝑡 |

𝑎𝑐𝑐 − 𝜆 𝑎𝑐𝑘 𝑎𝑐𝑚 0
𝑎𝑘𝑐 𝑎𝑘𝑘 − 𝜆 𝑎𝑘𝑚 𝑎𝑘𝑠
0 0 −𝜆 𝑎𝑚𝑠
0 𝑎𝑠𝑘 0 𝑎𝑠𝑠 − 𝜆

| = 0                                     (𝐹2) 

Expanding of the characteristic equation yields:  

𝜆4 − 𝜆3(𝑎𝑠𝑠 + 1 + 𝑎𝑘𝑘) + 𝜆
2(𝑎𝑠𝑠 + 𝑎𝑠𝑠𝑎𝑘𝑘 + 𝑎𝑘𝑘 + 𝑎𝑐𝑘 − 𝑎𝑠𝑘𝑎𝑘𝑠)

+ 𝜆(−𝑎𝑠𝑠𝑎𝑐𝑘 − 𝑎𝑠𝑠𝑎𝑘𝑘 + 𝑎𝑠𝑘𝑎𝑘𝑠 − 𝑎𝑠𝑘𝑎𝑚𝑠𝑎𝑘𝑚) + 𝑎𝑠𝑘𝑎𝑚𝑠(𝑎𝑘𝑚 + 𝑎𝑐𝑚)

= 0                                                                                                                                                          (𝐹3) 

From the Vieta theorem: 

𝜆1𝜆2𝜆3𝜆4 = 𝑎𝑠𝑘𝑎𝑚𝑠(𝑎𝑘𝑚 + 𝑎𝑐𝑚)                                                  (𝐹4) 

When ε > 1 , ask =
𝜀−1

𝜀

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)

𝛾
𝑘
−1

𝜀 > 0；，𝑎𝑚𝑠 > 0；，(𝑎𝑘𝑚 + 𝑎𝑐𝑚) =
𝛽

𝜃

𝑘𝑓′(𝑘)

𝑘
>

0，therefore λ1λ2λ3λ4 > 0. Equation (F4) shows that the characteristic equation must have 4 

positive roots, or 4 negative roots, or two positive and two negative roots. If there are 4 positive 

roots, the steady state is unstable. If there are 4 negative roots, then the steady state is locally 

stable, if there are two positive and two negative roots, then the steady state is locally saddle-

path stable. Therefore, as long as we can rule out the case of four positive roots, the equilibrium 

growth path is at least saddle-path stable. 

We prove by contradiction that not all four roots can be positive. That is, provided ε > 1, 

claiming that equation (F3) has four positive roots results in a contradiction.  

Use the Vieta theorem to obtain： 

𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 𝑎𝑠𝑠 + 1 + 𝑎𝑘𝑘                                                   (𝐹5) 

If equation (F3) has 4 positive roots, then from equation (F5) we can obtain 𝜆1 + 𝜆2 +

𝜆3 + 𝜆4 = (ass + 1 + akk) > 0 , implying that 1 + akk > −ass > 0 . From the Vieta theorem 

also the following equation holds: 

𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆1𝜆4 + 𝜆2𝜆3 + 𝜆2𝜆4 + 𝜆3𝜆4 = 𝑎𝑠𝑠(1 + 𝑎𝑘𝑘) + (𝑎𝑘𝑘 + 𝑎𝑐𝑘) − 𝑎𝑠𝑘𝑎𝑘𝑠   (𝐹6) 
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Owing to 𝑎𝑠𝑠 < 0；，if 1 + akk > 0 , then 𝑎𝑠𝑠(1 + 𝑎𝑘𝑘) < 0 ; and akk + ack =

M
β

θ
f ′′(k) < 0 ; 𝑎𝑘𝑠 =

1−𝛽

𝛽
(𝑏𝑘ϕ(𝑆𝑘) + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)) > 0 , but when ε > 1 , ask =

𝐺′.
𝜀−1

𝜀

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)

𝛾
𝑘
−1

𝜀 > 0. It follows that −askaks < 0. Therefore, the RHS of equation (F6) 

is less than 0. However, if all four roots are positive, then the RHS of equation (F6) should be 

greater than zero. Therefore, equation (F3) cannot possess four positive roots, and can either 

have two positive roots and two negative roots, or four negative roots. In the former case, the 

steady-state equilibrium is locally saddle-path stable. In the latter case, the steady-state 

equilibrium is locally stable. In summary, the steady-state equilibrium is at least saddle-path 

stable. 

When ε < 1 , ask = G
′.
𝜀−1

𝜀

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)

𝛾
𝑘
−1

𝜀 < 0 , 𝑎𝑚𝑠 > 0  and (𝑎𝑘𝑚 + 𝑎𝑐𝑚) =

𝛽

𝜃

𝑘𝑓′(𝑘)

𝑘
> 0  then λ1λ2λ3λ4 = askams(akm + acm) < 0 , so the equation must have negative 

roots and the steady-state equilibrium is also saddle-path stable. Whether there is just one or 

three negative roots, the equilibrium growth path is saddle-path stable. 

Therefore, the model’s BGP equilibrium is saddle-stable regardless of whether 𝜀 < 1 or 

𝜀 > 1. 

 

Appendix G: Proof of Revised Proposition 6 

Revised Proposition 6： When ε < 1, the steady state is locally stable, and when 𝜀 > 1, 

it is locally saddle-path stable.  

Proof. 

Linearizing equations (16) near the equilibrium point yields:  

{
 
 

 
 𝑆�̇�
𝑆𝑘
= 𝑎𝑠𝑠(𝑆𝑘 − 𝑆𝑘

∗) + 𝑎𝑠𝑚(𝑀 −𝑀∗)

�̇�

𝑀
= 𝑎𝑚𝑠(𝑆𝑘 − 𝑆𝑘

∗)                              

                                                       (𝐺1) 

where 𝑎𝑠𝑠 ≡
𝜕
𝑆𝑘
̇

𝑆𝑘

𝜕𝑆𝑘
= 𝐺′.

𝑏𝑘

𝑏𝑙

(1−𝛾)∇

𝛾
𝑘(𝑀)

𝜀−1

𝜀
ϕ′(𝑆𝑘)ϕ(𝑆−𝑆𝑘)+ϕ(𝑆𝑘)ϕ

′(𝑆−𝑆𝑘)

[ϕ(𝑆−𝑆𝑘)]
2 < 0 , 𝑎𝑠𝑚 ≡

𝜕
𝑆𝑘
̇

𝑆𝑘

𝜕𝑀
=

𝐺′.
𝜀−1

𝜀

𝑏𝑘ϕ(𝑆𝑘)

𝑏𝑙ϕ(𝑆−𝑆𝑘)

(1−𝛾)∇

𝛾
𝑘(𝑀)

−1

𝜀
𝑑𝑘

𝑑𝑀
 the sign of which depends on the value of ε, and 𝑎𝑚𝑠 ≡

𝜕
�̇�

𝑀

𝜕𝑆𝑘
=

1−𝛽

𝛽
𝑏𝑘ϕ(𝑆𝑘) > 0.9  

The characteristic equation of the model is given by: 

 
9 The sign of these coefficients holds under all circumstances, not just in the steady state. 



34 

 

𝑑𝑒𝑡 |
𝑎𝑠𝑠 − 𝜆 𝑎𝑠𝑚
𝑎𝑚𝑠 −𝜆

| = 0   ,                                                            (𝐺2) 

leading to: 

𝜆2 − 𝜆𝑎𝑠𝑠 − 𝑎𝑠𝑚𝑎𝑚𝑠 = 0 ,                                                         (𝐺3) 

By using the Vieta theorem we obtain:  

{
𝜆1𝜆2 = −𝑎𝑠𝑚𝑎𝑚𝑠       
𝜆1 + 𝜆2 = 𝑎𝑠𝑠 < 0      

                                                             (𝐺4) 

When ε < 1，asm < 0 and ams > 0, so that −asmams > 0. Equation (G4) shows that equation 

(G3) must have two negative roots, λ1 < 0 and λ2 < 0. In this case, the steady-state equilibrium 

of the model is locally stable. 

When ε > 1, then asm > 0 and ams > 0 Since λ1λ2 = −asmams < 0, and there must be 

one positive root and one negative root, so the steady-state equilibrium of the model is locally 

saddle-path stable.10  

Therefore, the proposition is proved. 
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