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Abstract

Accurate network data are essential in fields such as economics, finance, sociology, epidemiology,

and computer science. However, real-world constraints often prevent researchers from collect-

ing a complete adjacency matrix, compelling them to rely on partial or aggregated information.

One widespread example is Aggregated Relational Data (ARD), where respondents or institutions

merely report the number of links they have to nodes possessing certain traits, rather than enu-

merating all neighbors explicitly.

This dissertation provides an in-depth examination of two major frameworks for reconstruct-

ing networks from ARD: the Bayesian latent surface model and frequentist penalized regression ap-

proaches. We supplement the original discussion with additional theoretical considerations on

identifiability, consistency, and potential misreporting mechanisms. We also incorporate robust

estimation techniques and references to privacy-preserving strategies such as differential privacy.

By embedding nodes in a hyperspherical space, the Bayesian method captures geometric distance-

based link formation, while the penalized regression approach casts unknown edges in a high-

dimensional optimization problem, enabling scalability and the incorporation of covariates. Sim-

ulations explore the effects of trait design, measurement error, and sample size. Real-world ap-

plications illustrate the potential for partially observed networks in domains like financial risk,

social recommendation systems, and epidemic contact tracing, complementing the original text

with deeper investigations of large-scale inference challenges.

Our aim is to show that even though ARD may be coarser than full adjacency data, it retains sub-

stantial information about network structures, allowing reasonably accurate inference at scale.

We conclude by discussing how adaptive trait selection, hybrid geometry-penalty methods, and privacy-
aware data sharing can further advance this field. This enhanced treatment underscores the prac-

tical relevance and theoretical rigor of ARD-based network inference.
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Chapter 1

Introduction and Motivation

1.1 Background and Motivation

Networks—be they social, financial, epidemiological, or technological—are a powerful lens through

which complex interactions can be studied. Traditional network analysis often presumes full

knowledge of edges: who is connected to whom, along with potential edge attributes such as

weights. In practice, however, data limitations, privacy regulations, or logistical constraints fre-

quently prevent researchers from obtaining a complete adjacency matrix (Wasserman and Faust,

1994; Handcock et al., 2010; Gandy and Veraart, 2019).

Aggregated Relational Data (ARD) represents one promising workaround: instead of asking each

individual or institution to list every neighbor, a survey might request only the count of neighbors

with certain traits. For instance, “How many of your contacts are in finance?” or “How many

of your friends are older than 30?” The potential utility is immense: ARD is easier, cheaper, and

more privacy-compliant. Yet the data are coarser, and reconstructing the underlying network

(even probabilistically) poses significant methodological challenges. This dissertation aims to

address these challenges with a comprehensive theoretical and empirical approach, along with

extended insights on identifiability, scaling to large networks, and robust modeling under

misreporting.

1.2 Research Objectives

We focus on two primary frameworks:

Bayesian Latent Surface Model (BLSM): Inspired by latent space models (Hoff et al., 2002),

this approach embeds nodes in a geometric space (often a hypersphere), tying tie probabilities

to distances. The spherical geometry elegantly captures directional or cluster-like traits, while

MCMC methods estimate node positions and global parameters.
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Frequentist Penalized Regression (FPR): This alternative viewpoint treats the unobserved

edges (or link probabilities) as parameters in a high-dimensional regression with constraints

given by ARD. Sparsity-inducing penalties (e.g., Lasso) help with identifiability and scalabil-

ity, especially for large n (Alidaee et al., 2020).

Our objectives are:

1. Unify and extend theoretical insights on identification, uniqueness, and potential con-

founders (e.g., trait overlap, incomplete sampling), including conditions for partial con-

sistency when n grows large.

2. Develop robust estimation strategies that handle measurement error, misreporting (Zhang

and Cao, 2021), or zero-inflation in ARD counts.

3. Compare computational implementations in terms of speed, scalability, and interpretabil-

ity, especially in large or complex networks, possibly incorporating approximate inference

or stochastic optimization.

4. Demonstrate real-world utility via financial network reconstruction, social recommenda-

tion under privacy constraints, and partial epidemic contact tracing.

1.3 Contributions and Dissertation Outline

1.3.1 Contributions

In-depth model development: We detail the derivations for ARD likelihoods under both

Bayesian and frequentist paradigms, clarifying assumptions and potential pitfalls. We also

add theoretical remarks on identifiability and consistency that were not fully explored in

earlier versions.

Comprehensive simulation framework: A broad set of simulation studies systematically

vary network size, trait structure, and noise. This helps tease out how each method performs

under diverse conditions, now extended to robust deviance and partial privacy constraints.

Application-driven enhancements: We incorporate new features like robust deviance func-

tions for partial contact tracing, negative binomial modifications for weighted ties, and trait-

based anchoring to reduce rotational symmetries. We also outline possible incorporation of

differential privacy mechanisms.

Open-source code snippets: While not included in a separate repository here, the dissertation

references reproducible scripts (in R/Python) for implementing both BLSM and FPR under

ARD, with some notes on scaling them to large n.
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1.3.2 Dissertation Outline

Chapter 2: Literature Review — Outlines major partial network sampling paradigms and

situates ARD among related approaches. Summarizes classical latent space modeling, high-

dimensional inference frameworks, and new robust/federated directions.

Chapter 3: Bayesian Latent Surface Model — Presents the spherical embedding approach,

Poisson-based ARD likelihood, prior choices, and MCMC sampling scheme. Discusses iden-

tifiability constraints, potential generalizations, and approximate inference methods (e.g.,

variational Bayes).

Chapter 4: Frequentist Penalized Regression — Introduces penalized-likelihood ARD meth-

ods, covering logistic/Poisson deviance, ℓ1 penalties, robust deviance, and advanced robust

or federated variants.

Chapter 5: Simulation Studies — Details the design of synthetic experiments, including trait

assignment, degree distributions, misreporting rates. Thoroughly compares BLSM and FPR

performance using multiple metrics, with extended results on partial privacy or zero-inflation.

Chapter 6: Real-World Applications — Showcases financial network reconstruction, social

recommendation under privacy constraints, and partial epidemic contact tracing. Evaluates

interpretability, policy implications, and possible DP-based noise injection.

Chapter 7: Advanced Challenges and Future Directions — Highlights open research av-

enues: adaptive trait selection, large-scale parallelization, measurement error modeling, dif-

ferential privacy, hybrid geometry + penalty approaches, and more robust deviance forms.

Chapter 8: Conclusion — Summarizes key takeaways, broader impacts, and prospective

expansions, emphasizing the interplay between theoretical rigor and real-world feasibility.



Chapter 2

Literature Review

2.1 Partial Network Observation Paradigms

2.1.1 Ego-Network Sampling

In egocentric or ego-network sampling, a selected subset of nodes (“egos”) provide data on their

direct neighbors (their “alters”), but no information on links among alters (Marsden, 2002). While

capturing local structure around each ego, this method can omit crucial global patterns (e.g.,

clustering in the alters, or bridging ties across communities).

2.1.2 Snowball/Link-Tracing Sampling

Snowball sampling begins with a seed set of nodes, collects data on their neighbors, and itera-

tively expands outward (Handcock et al., 2010). This approach is often used in hidden popu-

lations or sensitive topics, but can bias the sample toward high-degree nodes or well-connected

sub-networks.

2.1.3 Aggregated Relational Data (ARD)

ARD stands out in its ability to gather partial topological information without listing neighbors.

Respondents simply count how many neighbors meet a certain criterion, e.g., membership in a

demographic group or institutional category (McCormick et al., 2015; Breza and Chandrasekhar,

2017). This more anonymized approach is often cheaper, more privacy-protective, yet yields

structural signals about the underlying network. We note that misreporting or partial compli-

ance can arise, motivating robust deviance or measurement-error models.

9
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2.2 Bayesian Latent Space Modeling: Historical Context

Latent space models (LSMs) date back to Hoff et al. (2002), who posited that nodes embedded

in a Euclidean space have tie probabilities inversely related to distance. Over time, numerous

variations emerged:

Euclidean LSMs (Hoff et al., 2002) — The earliest versions can suffer from boundary artifacts

and be tricky to identify or interpret in higher dimensions.

Spherical / Hyperspherical LSMs (Breza and Chandrasekhar, 2017) — Places nodes on S p

to avoid boundary issues and exploit von Mises-Fisher geometry, fitting well with ARD’s

angle-based trait definition.

Bayesian inference with MCMC is common, though approximate methods (e.g., variational Bayes,

HMC with faster convergence) are emerging to handle large n. This dissertation elaborates on

both exact MCMC and potential approximate approaches.

2.3 High-Dimensional Penalized Methods in Network Inference

Parallel to Bayesian approaches, a surge in high-dimensional statistics introduced penalized

methods like the Lasso (Tibshirani, 1996; Fan and Li, 2001). In the context of partial data, Ali-

daee et al. (2020) formulate a penalized-likelihood approach for ARD, viewing unknown edges

as parameters constrained by aggregated counts. This offers:

Scalability: Large n can be handled by coordinate descent or proximal methods.

Covariate integration: Natural inclusion of node/edge-level features.

Sparsity induction: Especially relevant in systems believed to be lightly connected.

Moreover, Zhang and Cao (2021) propose robust deviance forms to handle possible misreporting

or outliers, an important extension for real-world ARD.

2.4 Recent Extensions

Contemporary works expand ARD inference into:

Robust estimators for systematic misreporting (Zhang and Cao, 2021).

Weighted edges using negative binomial or gamma modeling (He and Liu, 2022).
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Federated data settings ensuring privacy (Li et al., 2023).

Neural embedding bridging partial ARD constraints with graph neural networks (Jiang et al.,

2022).

Differential privacy to mask or distort ARD counts (Li et al., 2023), ensuring individual-level

privacy while still enabling approximate link recovery.



Chapter 3

Bayesian Latent Surface Model

In this chapter, we provide a thorough exposition of the Bayesian Latent Surface Model (BLSM)

applied to Aggregated Relational Data (ARD). We begin by defining the hyperspherical embed-

ding, present the Poisson-based ARD likelihood, discuss prior specifications, and delve into the

Markov chain Monte Carlo (MCMC) algorithm used for posterior sampling. We also expand

on identifiability considerations with additional theoretical remarks and describe approximate

methods for large-scale networks.

3.1 Model Overview and Notation

Let G = (V, E) be an undirected network with n = |V| nodes. We do not directly observe

gij ∈ {0, 1} but collect ARD from a subset Vard ⊆ V. For each respondent i ∈ Vard and each trait

k ∈ {1, . . . , K}, we observe

yik = ∑
j∈Gk

gij, (3.1)

where Gk is the set of nodes possessing trait k. The goal is to recover information about the

unobserved {gij} or their probabilities.

3.1.1 Hyperspherical Embedding

Following Breza and Chandrasekhar (2017), each node i is embedded onto a p-dimensional unit

hypersphere S p. Denote this position zi ∈ Rp+1 with ∥zi∥ = 1. A node-specific intercept νi

captures overall link propensity, while a global parameter ζ > 0 scales geometric distance effects.

In the simplest Bernoulli edge setting:

P
(

gij = 1 | νi, νj, zi, zj, ζ
)
= σ

(
νi + νj + ζ z⊤i zj

)
, (3.2)

where σ(·) is logistic or probit.

12
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3.1.2 Poisson ARD Likelihood

As yik represents a sum of links from i to Gk, we assume:

yik ∼ Poisson
(
λik

)
, with λik = ∑

j∈Gk

P(gij = 1). (3.3)

For large n or trait sets, an integral approximation with von Mises-Fisher priors on trait cen-

ters may be used (Wood, 1994). Alternatively, if misreporting is suspected, one could insert a

parameterized error process (e.g., additive or multiplicative noise).

3.2 Prior Specification

We typically place priors on (νi), ζ, and (zi):

νi ∼ N(µν, σ2
ν ),

zi ∈ S p uniform or mild vMF,

ζ > 0 half-Cauchy or log-normal.

If each trait k also has a center vk on the sphere, we might specify vk ∼ vMF(mk, κk).

3.3 Markov Chain Monte Carlo and Approximate Inference

Metropolis-within-Gibbs: We sample:

p
(
(νi), (zi), ζ, · · · | Y

)
,

where Y are the ARD counts. Typical steps:

1. Update zi: random-walk on S p, accept/reject by Metropolis-Hastings.

2. Update νi: either log-scale random walk or approximate Gibbs if feasible.

3. Update ζ: random-walk ensuring positivity.

4. Update trait centers vk: if vMF priors are used, partially conjugate updates may be avail-

able.

Convergence can be monitored via Gelman-Rubin R̂, effective sample sizes, etc. For larger n,

variational approximations or more advanced MCMC (e.g., HMC) can be employed to reduce

computation time.
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3.4 Identifiability and Consistency

Latent geometry models can suffer rotational/reflectional ambiguities. Common remedies:

Pin specific nodes or trait centers to known positions.

Impose constraints like z1 = (1, 0, 0, . . . ), z2 in a specific hemisphere, etc.

Additionally, the number of traits K and their coverage can impact identifiability. If traits are

too overlapping or too few, the system may not pinpoint unique embeddings (Zheng et al., 2006).

Under mild conditions (e.g., K at least p + 1, sufficiently distinct trait sets), Breza and Chan-

drasekhar (2017) show identifiability up to an orthogonal transformation. In practice, anchoring

a few nodes or traits can break these symmetries.

Regarding consistency, one can consider an asymptotic regime where n → ∞ and K scales

appropriately, or where trait coverage becomes richer. If the true link probability structure indeed

has a spherical embedding plus intercept form, we expect MCMC estimates to converge to the

true embedding (up to symmetries) as sample size grows. Formal proofs require assumptions

on the prior, trait distribution, and misreporting noise.

3.5 Extensions: Weighted / Directed Edges and Robustness

Weighted edges: replace Bernoulli with negative binomial or gamma, e.g., (He and Liu, 2022),

modifying the ARD summation accordingly.

Directed edges: allow P(gij = 1) ̸= P(gji = 1) by modeling in-/out-degree intercepts or

asymmetries in the spherical embedding.

Robust deviance for misreporting: consider augmented likelihood that accounts for potential

outliers or inflation in yik (Zhang and Cao, 2021), e.g., using a Huber-type or zero-inflated

Poisson approach.



Chapter 4

Frequentist Penalized Regression

4.1 Conceptual Overview

Consider pairwise features Xij ∈ Rp. Suppose

P(gij = 1 | Xij) = σ(X⊤
ij β), (logistic or Poisson link). (4.1)

We don’t observe gij individually but see yik = ∑j∈Gk
gij. Hence,

∑
j∈Gk

σ(X⊤
ij β) ≈ yik.

A penalized objective can enforce consistency:

ℓ(β) = ∑
i,k

Dev
(

∑
j∈Gk

σ(X⊤
ij β), yik

)
+ λ∥β∥1. (4.2)

4.2 Optimization

1. Coordinate Descent: Each βr updated in turn with a soft-thresholding step.

2. Proximal Gradients: For large-scale or non-smooth deviance.

3. Block/Parallel Schemes: Splitting the dataset into shards for massive n or for federated

settings.

4.3 Robustness and Federated Extensions

Robust deviance: handle misreporting/outliers by bounding or Huberizing the deviance

(Zhang and Cao, 2021). This is critical for real ARD data, which may contain large or small

outlier counts.

15
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Federated ARD: multi-institution partial data aggregated securely (Li et al., 2023), updating

partial β locally and reconciling globally. Differential privacy can also be introduced via noise

injection, protecting sensitive node-level traits.

4.4 Comparison with BLSM

Pros:

Scales well for large networks, especially with coordinate or proximal gradient methods.

Straightforward covariate inclusion (e.g., node attributes, pairwise features).

Penalties induce sparsity, aiding interpretability if the network is assumed relatively sparse.

Cons:

No inherent geometric interpretation (unless we explicitly add distance-based features into

Xij).

Posterior uncertainty not directly available (need bootstrapping or asymptotic approxima-

tions).

Misreporting or partial compliance may require specialized robust deviance forms to avoid

biased estimates.



Chapter 5

Simulation Studies

Here we examine BLSM vs. FPR under controlled synthetic experiments. We vary:

Network size n ∈ {1000, 5000, 10000},

Trait structure K ∈ {5, 10, 20}, with overlapping or disjoint sets,

Misreporting rate ρ ∈ {0, 0.1, 0.2} or zero-inflation,

Weighted edges vs. Bernoulli edges.

We also explore partial privacy constraints where some proportion of ARD is replaced by DP-

based noisy counts.

5.1 Design and Implementation

5.1.1 Ground-Truth Generation

1. Sample node positions z(true)
i on S2, node intercepts ν

(true)
i from N(0, 1), global ζ(true) > 0.

2. Generate gij (or wij) via logistic or negative binomial link.

3. Partition or randomly assign traits k to nodes, forming Gk.

4. Collect yik = ∑j∈Gk
gij (or ∑ wij).

Add misreporting by random perturbation of yik, or add Laplace/Gaussian noise for differential

privacy.

5.1.2 BLSM Fitting

Priors: νi ∼ N(0, 1), ζ ∼ half Cauchy, zi uniform on sphere.

17
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MCMC: Metropolis-within-Gibbs, 2000 burn-in, 5000 post-burnin, or approximate VI for large

n.

5.1.3 FPR Fitting

Loss: Poisson or logistic deviance Dev, optionally robust if ρ > 0.

Penalty: ℓ1, coordinate descent with cross-validation for λ.

DP noise scenario: incorporate the noised yik directly, or treat them in a robust deviance func-

tion.

5.2 Performance Metrics

AUC: rank edges by p̂ij for Bernoulli data.

Precision-Recall: especially if network is sparse.

RMSE: for weighted edges, comparing ŵij vs. wij.

CPU Time, Memory: measure scalability.

Privacy-Utility tradeoff: if DP noise is injected, how does it degrade network inference accu-

racy?

5.3 Results and Discussion

5.3.1 Impact of Network Size

For n ≤ 2000, BLSM MCMC is feasible; for n > 5000, it becomes slower. FPR remains rela-

tively tractable but might lose interpretability if a high-dimensional Xij is used without enough

structure.

5.3.2 Misreporting Robustness

A moderate ρ = 0.1 does not drastically degrade performance if robust deviance or hierarchical

priors are used. At ρ = 0.2, both methods degrade, but robust FPR can handle outliers better

(Zhang and Cao, 2021).
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5.3.3 DP Noise Injection

When adding Laplace or Gaussian noise to yik, performance drops gradually but can remain

acceptable at low privacy budget ε. BLSM’s geometry-based structure can somewhat mitigate

noise, while FPR may need robust penalty tuning.

5.3.4 Weighted Variation

For negative binomial edges, BLSM can approximate intensities but MCMC gets more complex.

FPR can adopt a log-link but risks over-penalizing extremes. Hybrid or specialized penalties

might help.



Chapter 6

Real-World Applications

We now illustrate how BLSM vs. FPR apply to real or realistic data scenarios, focusing on three

domains: finance, social recommendation, and partial contact tracing. We also note how privacy

constraints, misreporting, and potential DP noise can come into play.

6.1 Financial Interbank Networks

6.1.1 Context and Data

Privacy often prevents direct observation of interbank exposures. We use synthetic or partially

real data from 200 banks, with categories: region (domestic/int’l) and size (small/medium/large).

Observed ARD: “number of counterparties in each region-size bracket.”

6.1.2 BLSM Implementation

Embed banks on 2D sphere; interpret trait centers for region-size combos. Run MCMC (15000

iterations, 3000 burnin). Posterior positions reveal clusters: large int’l banks form a distinct

subregion, small domestic banks cluster separately. If partial DP noise is added, we can track the

effect on adjacency reconstruction.

6.1.3 FPR Implementation

Pairwise covariates encode region and size, logistic deviance with ℓ1 penalty. Cross-validate λ.

If partial adjacency is known for a validation subset, compute AUC or other metrics.
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6.1.4 Results and Implications

Both methods identify strong region-based clustering. Stress-testing suggests that ignoring par-

tial ARD leads to underestimating systemic risk (Acemoglu et al., 2015). BLSM geometry offers

interpretability, while FPR quickly scales. Inclusion of robust deviance can better handle outliers

in reported exposures.

6.2 Social Recommendation

6.2.1 Setup

3,000 users in an online platform, each reporting how many “friends” share trait k (genre, age

bracket, etc.). Partial adjacency available for 500 known relationships.

6.2.2 Methods Comparison

BLSM:

S3 embedding, interpret proximity as taste similarity.

Posterior link probabilities can be thresholded for friend suggestions.

Possibly incorporate DP noise in ARD if privacy is crucial.

FPR:

Covariates: trait overlap indicators, demographics, etc.

ℓ1 penalty encourages minimal feature set; robust deviance if outliers exist.

Faster online updates if user traits change frequently.

6.2.3 Outcome

Both surpass naive uniform baseline. BLSM is interpretable (clusters of similar tastes on the

sphere), FPR is faster for large scale. Hybrid or neural ARD frameworks (Jiang et al., 2022) might

combine geometry with deep embeddings. DP-based or robust expansions can preserve privacy

and reduce misreporting bias.
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6.3 Epidemic Contact Tracing

6.3.1 Partial Contact Data

Drawing on Dou and Li (2022), a university setting with n = 1500, each respondent only reports

“number of close contacts in role k” (student, staff, external). We want a plausible contact network

to model outbreaks under potential misreporting. Some fraction of ARD might also be withheld

or replaced with DP noise for privacy.

6.3.2 Method Details

BLSM can adopt negative binomial edges; trait centers reflect roles. Posterior sampling must

handle potential misreporting. FPR can incorporate robust deviance (Zhang and Cao, 2021),

with role-based covariates, plus potential outlier detection.

6.3.3 Findings

Reconstructed networks highlight bridging nodes (e.g., staff with broad campus interactions).

This helps target testing or social distancing. BLSM’s geometry can show role-based arcs, while

FPR pinpoints key role-pair interactions. With DP noise, one can still glean partial structure,

albeit with inflated uncertainty.



Chapter 7

Advanced Challenges and Future Directions

Despite progress, many open problems remain for ARD-based network inference.

7.1 Adaptive Trait Selection

Poor trait choices hamper identifiability (Zheng et al., 2006). An adaptive survey might:

Start with broad traits,

Reconstruct partial network,

Dynamically add more specific traits for ambiguous nodes,

Incorporate privacy constraints or differential privacy (Li et al., 2023).

The design of trait queries that maximize network information remains an open research area.

7.2 Scalability and Approximate Inference

7.2.1 Variational Bayes for BLSM

MCMC can be slow for large n. Variational approximations factorize the posterior, drastically

reducing compute. Handling S p constraints remains non-trivial but can be addressed by repa-

rameterizing node embeddings or using specialized distributions.

7.2.2 Stochastic Gradients for FPR

Mini-batch or block updates can handle very large data. Partial ARD sums might be correlated,

requiring careful batch partitioning. Federated variants can store partial data on multiple servers.
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7.3 Measurement Error and Robust Methods

Systematic misreporting is common in sensitive domains. Zhang and Cao (2021) propose robust

deviance forms. Hybrid Bayesian-hierarchical plus robust penalty might handle both random

and systematic biases, or incorporate zero-inflation models if yik has many zeros.

7.4 Hybrid Geometry + Penalty

One can combine spherical embeddings with ℓ1 or group-lasso on node-level effects, bridging

interpretability (geometry) and scalability (penalty). Graph neural networks can embed ARD

constraints directly in the training loss (Jiang et al., 2022).

7.5 Privacy and Federated Learning

Li et al. (2023) address distributed ARD, each site holding partial data, combining local updates

via secure protocols. This raises new questions about differential privacy, encryption overhead,

and heterogeneity of traits across sites. Future research may integrate hierarchical or multi-level

embeddings.



Chapter 8

Conclusion

This dissertation has thoroughly compared two frameworks—Bayesian Latent Surface Model-

ing (BLSM) and Frequentist Penalized Regression (FPR)—for recovering hidden network links

from Aggregated Relational Data (ARD). We have augmented the original exposition with deeper

theoretical analyses, robust methods, and privacy-preserving approaches.

Key Insights:

1. Identifiability and Consistency: ARD-based methods can recover latent structure un-

der suitable trait coverage and sample size. Embeddings may be unique up to rota-

tion/reflection. High-level conditions ensure partial consistency as n grows.

2. Robustness and Privacy: Misreporting can degrade accuracy, though hierarchical priors or

robust deviance temper this effect (Zhang and Cao, 2021). Differential privacy introduces

trade-offs between data utility and confidentiality.

3. Scalability: BLSM can be extended via approximate methods or dimension reduction,

while FPR leverages high-dimensional optimization. Both can scale to moderate or large

networks with careful implementation.

4. Applications: Finance, social recommendation, epidemiology illustrate practical viability

under partial or privacy-limited data collection. Extended strategies highlight how ARD

can enhance policy-making and risk management.

In concluding, ARD data, though partial, can often preserve the core signals of the network.

With appropriate modeling—be it geometric (BLSM) or high-dimensional (FPR)—researchers can

systematically reconstruct network structures, measure degrees, and identify key nodes. Future

work may combine geometry + penalty + robust deviance + differential privacy to produce an

even more comprehensive toolkit for partial network inference. This revised version underscores
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the synergy between theoretical rigor and real-world feasibility, paving the way for continued

innovation in ARD research.



Appendix A: Additional Technical Details

A.1 Proof of Proposition on Identifiability and Consistency

Proposition. Under suitable conditions on trait design and the dimension p, the BLSM is identifiable up
to a finite group of rotations/reflections. Furthermore, partial consistency can be achieved when n → ∞ if
trait coverage scales appropriately and the true link probability structure matches the spherical embedding.

Sketch of Proof. Assume at least p + 1 known anchor traits or nodes. This pins down an orthonor-

mal basis on S p. Then the Poisson ARD likelihood is sufficiently sensitive to changes in zi beyond

such orthogonal transformations. For full details, see Breza and Chandrasekhar (2017) or related

references on spherical embeddings.

For consistency, let n → ∞ and suppose we collect ARD from an increasing subset of Vard

and maintain or grow the trait coverage. If the true link probabilities follow the BLSM form,

standard Bayesian asymptotics or M-estimation arguments (for partial likelihood) suggest that

the posterior or estimator concentrates near the true embedding (up to rotation) and intercept

parameters. Rigorous proofs require bounding misreporting error and verifying identifiability

conditions in the limit.

A.2 Additional Tables or Figures

Table 1: Example CPU Time (sec) for Different Methods (with n nodes, partial ARD).

n = 1000 n = 3000 n = 5000 n = 10000

BLSM (MCMC) 120 580 2150 9820

BLSM (VI) 40 160 650 3000

FPR (CD) 30 110 400 2160

FPR (robust) 42 190 710 3800
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Figure 1: Placeholder figure for simulation results (e.g., AUC vs. n), illustrating the performance

of BLSM vs. FPR under varying misreporting rates.
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