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Abstract

This paper introduces a novel Bayesian time series model that combines the
nonparametric features of an infinite hidden Markov model with the volatil-
ity persistence captured by the GARCH framework, to effectively model and
forecast short-term interest rates. When applied to US 3-month Treasury bill
rates, the GARCH-IHMM reveals both structural and persistent changes in
volatility, thereby enhancing the accuracy of density forecasts compared to
existing benchmark models. Out-of-sample evaluations demonstrate the supe-
rior performance of our model in density forecasts and in capturing volatility
dynamics due to its adaptivity to different macroeconomic environments.

1 Introduction
Modeling and forecasting short-term interest rates are crucial in finance and eco-
nomics, serving as key inputs for bond pricing, risk management, and macroeconomic
forecasting (Gurkaynak et al., 2007; Duffee, 2013; Filipović, 2009). The time series
dynamics of short-term rates have been extensively modeled. However, short-term
interest rates are less suitable for traditional modeling approaches, as they are often
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subject to both transitory and persistent changes in the macroeconomic environment.
In this paper, we integrate a generalized autoregressive conditional heteroskedastic-
ity (GARCH) model with an infinite hidden Markov model (IHMM), allowing the
GARCH component to capture persistent changes in volatility, and the IHMM ac-
counts for Markovian changes in unknown conditional distribution over time, which
is crucial for capturing potential complex economic shocks. Applying our model to
the US 3-month Treasury bill rates, our model provides significant improvements in
density forecasts compared to competitive benchmarks.

Short-term interest rates experience high and volatile periods and low and sta-
ble periods, suggesting switches among different states (Figure 1). Consequently,
Markov switching (MS) models have been extensively applied for those rates. Para-
metric examples include Hamilton (1988), Albert and Chib (1993), Garcia and Perron
(1996), and Pesaran et al. (2006). Maheu and Yang (2016) were the first to employ
the Bayesian nonparametric MS extension, IHMM, to model and forecast short-term
interest rates. They documented that more than two states are needed to continually
capture sophisticated dynamics resulting from the ongoing monetary and economic
shocks.

Meanwhile, much of the research aims to combine volatility models with MS.
Early attempts include Cai (1994), Gray (1996), Durham (2003) and Hou and Suardi
(2011), showing that the persistent volatility captured by GARCH is an important
feature in short-term interest rates. And recent work by Jin et al. (2022) investigates
model dynamics via model combination forecasting, documenting that both GARCH
and IHMM play a key role in capturing volatility changes in short-term T-bill rates.

From the literature, it is evident that regime switching and volatility persis-
tence are both essential for capturing short-rate dynamics over time, influencing
the conditional mean, variance, and probably higher moments. Therefore, the ex-
isting application of the standalone IHMM model by Maheu and Yang (2016) is
insufficient, which motivates the design of a new model capable of capturing both
regime switches and persistent changes. This paper proposes a novel Bayesian semi-
parametric GARCH-infinite hidden Markov model (GARCH-IHMM) to capture the
dynamics of the short-term interest rates. We allow the GARCH model to capture
the persistent volatility changes, while the IHMM governs Markovian changes in the
shape of conditional distributions.

Compared to the existing literature on time series modeling of interest rates,
our model advances in several respects. With respect to Gray (1996) and Durham
(2003), our model learns the number of latent states rather than pre-selecting it
subjectively, and we specify MS and GARCH in a multiplicative form instead of
making GARCH parameters state-dependent, which is arguably more restrictive and
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much harder to estimate. With respect to Maheu and Yang (2016), we integrate a
GARCH component to capture the volatility persistence ignored by the IHMM. And
with respect to Jin et al. (2022), we introduce a unified specification to achieve a
similar goal with a simpler estimation at a faster speed.

Our paper also contributes to the literature on model specifications. The IHMM
has been effectively used in various applications, and our model further enriches
existing works.1 Dufays (2016) and Shi and Song (2016) incorporate IHMM into
GARCH by allowing the GARCH parameters to be state-dependent, whereas we let
IHMM and GARCH contribute to the conditional volatility in a multiplicative form.
Similar work by Jensen and Maheu (2013), Maheu and Shamsi Zamenjani (2021) and
Li and Maheu (2023) attempts to combine various Bayesian nonparametric models
with multivariate GARCH, while we investigate interest rates in a univariate setting.2

This paper is organized as follows. Section 2 illustrates the specification of the
proposed GARCH-IHMM and the benchmark models. Section 3 illustrates the al-
gorithms used to estimate and forecast the GARCH-IHMM. Section 4 describes the
data. Section 5 discusses the in-sample estimation and out-of-sample forecast results.
And Section 6 concludes.

2 Model Specification
Let rt be the short rate at time t. The proposed univariate GARCH-IHMM model
is specified as

rt = µst + ρrt−1 + ϵt, ϵt ∼ N(0, σ2
stht), (1a)

ht = ω0 + ω1(rt−1 − ρrt−2 − ω3)
2 + ω2ht−1, (1b)

st|st−1 ∼ cat(Πst−1), Γ ∼ Stick1(η), Π ∼ Stick2(α,Γ), (1c)

where Θ = {Θst}
∞
st=1 =

{
µst , σ

2
st

}∞
st=1

is the set of state-dependent parameters with
an infinite number of states, and ht is the GARCH volatility that is designated for
smooth changes in conditional variance.

Equation (1b) is an asymmetric GARCH structure, where θh = {ρ, ω0, ω1, ω2, ω3}
is the set of GARCH parameters. Maheu and Yang (2016) finds that the autore-
gressive parameter ρ is likely non-state-dependent3, so we categorize it as a GARCH

1Inflation dynamics (Song, 2014; Jochmann, 2015), short-term interest rates (Maheu and Yang,
2016), realized volatility (Jin and Maheu, 2016; Jin et al., 2019; Luo et al., 2022), macroeconomic
forecasting (Hou, 2017; Yang, 2019), and model combination (Jin et al., 2022).

2Other relevant works include Jensen and Maheu (2010) and Li et al. (2024), which attempt to
jointly model stochastic volatility with DPM and IHMM, respectively.

3We confirm this finding in a separate test, which is not included in this paper.
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parameter, which greatly simplifies the estimation. Unlike conventional GARCH
models, the feedback term (rt−1 − ρrt−2 − ω3)

2 involves an additional parameter ω3,
which captures the potential leverage effect. For example, when ω3 > µst−1 , (1b)
behaves similarly to the GJR-GARCH model.

Formula (1c) represents the Bayesian nonparametric IHMM component, which
employs a hierarchical Dirichlet process prior. Γ = (γ1, γ2, . . . )

′ is a probability
vector, Πst−1 is the st−1th row of the transition matrix Π, η and α are both concen-
tration parameters for the hierarchical Dirichlet process. Stick1(η) and Stick2(α,Γ)
are stick-breaking processes that construct the hierarchical Dirichlet process and the
IHMM (Sethuraman, 1994; Maheu and Yang, 2016), such that

γk = γ̃k

k−1∏
l=1

(1− γ̃l) , γ̃k ∼ Beta (1, η) , (2a)

πjk = π̃jk

k−1∏
l=1

(1− π̃jl) , π̃jk ∼ Beta

(
αγk, α

(
1−

k∑
l=1

γl

))
. (2b)

The IHMM can be seen as a Bayesian nonparametric extension to the parametric
MS model, whose number of states is finite and predefined while the IHMM allows
the number of latent states to be learned from the data. The IHMM can also be seen
as a dynamic extension of the Bayesian nonparametric DPM model whose mixture
weight is static, wherein IHMM allows the mixture to change over time. As a type
of mixture model, mixing over the conditional mean µst can generate skewness, and
mixing over the conditional variance σ2

st can generate kurtosis. Combined with the
GARCH component, which is adapted to the smooth change in conditional volatility,
the proposed new model is able to approximate both the unknown shape and the
unknown period-by-period evolution of the conditional distribution.

The base measure of the IHMM component is essentially the prior of the state-
dependent parameters µst ∼ N(b0, B0) and σ−2

st ∼ Gamma
(
v0
2
, s0

2

)
. For non-state

dependent parameters, we assume θh = (ω0, ω1, ω2, ω3, ρ)
′ ∼ N(0, I). We further

apply hierarchical priors to the base measure hyperparameters for robust estimation
and forecast performance. (Song, 2014; Maheu and Yang, 2016; Li et al., 2024)
Moreover, the concentration hyperparameters of the hierarchical Dirichlet prior can
be estimated with Gamma hyperpriors. The hyperpriors and hierarchical priors are
set as follows:

η ∼ Gamma(5, 5), α ∼ Gamma(5, 5),

b0 ∼ N(0, 1), B0 ∼ IG

(
3

2
,
1

2

)
, v0 ∼ Exp

(
1

g0

)
, s0 ∼ Gamma(c0, d0).
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The hierarchical priors for v0 and s0 are set to aim that E(σ2
st) =

v0
s0

= 1 for improved
identification between the state-dependent volatility (σ2

st) and the GARCH volatility
(ht). In this case, the σ2

st serves as a multiplier around 1 to scale or shrink ht. One
way to achieve this is to set E(vo)

E(s0)
= 1 with linear approximation when Var(s0) is

small. We set c0 = d0 = 6 and g0 = 1 so that 1
g0

= c0
d0

.
To compare the performance of the proposed new model, we consider the following

benchmark models.

GARCH-DPM:

rt = µst + ρrt−1 + ϵt, ϵt ∼ N(0, σ2
stht),

ht = ω0 + ω1(rt−1 − ρrt−2 − ω3)
2 + ω2ht−1,

st ∼ cat(Γ), Γ ∼ Stick1(η).

This Bayesian semiparametric model replaces the IHMM with a DPM from our
model. It is nested in the GARCH-IHMM as a special case where the mixture
weights are static over time. The GARCH-DPM is a univariate version of the model
introduced by Jensen and Maheu (2013) and Maheu and Shamsi Zamenjani (2021).

IHMM:

rt = µst + ρrt−1 + ϵt, ϵt ∼ N(0, σ2
st),

st|st−1 ∼ cat(Πst−1), Γ ∼ Stick1(η), Π ∼ Stick2(α,Γ).

This Bayesian nonparametric model removes the GARCH component from the GARCH-
IHMM and corresponds to the model of Maheu and Yang (2016).

Parametric GARCH models:

rt = µ+ ρrt−1 +
√

htϵt,

ht = ω0 + ω1(rt−1 − ρrt−2 − ω3)
2 + ω2ht−1.

This specification refers to four different specifications. One extension allows the
shock term ϵt to follow either N(0, 1) or t(ν). Another extension is to set ω3 to be
the same as µ (symmetric) or different from µ (asymmetric). Therefore, there are
four benchmark GARCH models, each corresponding to one particular combination:
AGARCH-t (asymmetric GARCH with Student’s t shocks), GARCH-t (symmetric
GARCH with Student’s t shocks), AGARCH-N (asymmetric GARCH with normal
shocks), and GARCH-N (symmetric GARCH with normal shocks).

5



3 Estimation and Forecast Methods
A Markov chain Monte Carlo (MCMC) algorithm can be used to estimate the pro-
posed and the benchmark models. For the proposed GARCH-IHMM, we partition
the infinite-dimensional state space to K active states plus one remaining state, and
apply the beam sampler (Van Gael et al., 2008) to estimate the number of active
states K, the partitioned probability vector Γ, and the partitioned transition matrix
Π. One way to see this algorithm is that it introduces new states when necessary
and drops states without observations assigned. Each MCMC iteration consists of
the following steps:

1. Sample the precision parameters η, α|K, s1:T with the sampler from Fox et al.
(2011).

2. Sample Γ,Π|K, s1:T , η, α with conjugate results.
3. Sample the auxiliary slice variable u1:T |Π and update the number of active

states K with the beam sampler from Van Gael et al. (2008).
4. Sample the latent states s1:T |r1:T ,Θ1:K , θh,Γ,Π, u1:T with the forward filter

backward sampler (FFBS) from Chib (1996) with necessary adjustments.
5. Sample the state-dependent parameters Θ1:K |r1:T , s1:T , θh with conjugate re-

sults.
6. Sample the base measure hyperparameters b0, B0, v0, s0|Θst with conjugate re-

sults.
7. Sample the GARCH parameters θh|r1:T , s1:T ,Θ1:K with a block-move random-

walk Metropolis-Hastings sampler.

The detailed sampling steps of the above algorithm can be found in Appendix A.
Log predictive likelihoods and log Bayes factors are used to compare out-of-

sample forecast performance among models. Let Θ(i)
all,A denote the set of all parameter

draws for model MA from the ith MCMC iteration out of M iterations. Predictive
likelihood p(rt+1|r1:t,MA) is evaluated in the following way:

p (rt+1|r1:t,MA) ≈
1

M

M∑
i=1

p
(
rt+1

∣∣∣r1:t,Θ(i)
all,A

)
p
(
Θ

(i)
all,A

∣∣∣r1:t) . (3)

Then the log predictive likelihood of model MA over the out-of-sample periods t+1 :
T is computed as

logPLA = log p (rt+1:T |r1:t,MA) =
T∑

l=t+1

log p (rl|r1:l−1,MA) , (4)
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and the log Bayes factor of model MA against model MB is logBFAB = logPLA −
logPLB. A log Bayes factor greater than or equal to 5 is considered strong evidence
supporting model MA as suggested by Kass and Raftery (1995). Further, the log
score difference (LSD) suggested by Pettenuzzo and Timmermann (2011) is calcu-
lated to measure the relative improvement in log predictive likelihoods for model
MA against model MB: LSDAB = logBFAB

| logPLB | .

4 Data
We choose the 3-month US T-bill secondary market rates from the Federal Reserve
Economic Data (FRED) database to represent the short-term interest rates. The
data span from January 1948 to December 2023 at a monthly frequency with 912
observations. The quoted rates in percentage value are used to estimate each model.

Table 1 lists the descriptive statistics of the sample. The sample distribution is
approximately symmetric with standard tails, and the short-rate process is highly
autocorrelated, whereas the autocorrelation is significantly reduced after taking the
first-order difference.

Figure 1 plots the quoted market rates over time. The short rates generally trend
up and down, while after the 2008 crisis and during the COVID pandemic, the short
interest rates are consistently low, suggesting potential regime switches.

5 Empirical Results
We employ the MCMC algorithm in Section 3 to estimate and forecast the proposed
GARCH-IHMM model.

5.1 In-sample estimates
Table 2 presents the full-sample posterior estimates for selected models. Overall,
the GARCH-IHMM model successfully captures the dynamic patterns that both
the IHMM and the GARCH models identify in the data. For example, the volatility
persistence (ω1+ω2) of the GARCH-IHMM and that of the AGARCH-N are approx-
imately the same, and the concentration parameters α, η along with the number of
active states K of the GARCH-IHMM are very similar to those of the IHMM model.

In contrast, the GARCH-DPM model displays a lower concentration parameter
and identifies fewer active states compared to the IHMM. This suggests that the time-
varying IHMM can approximate more complex distributions and dynamics than the
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static DPM model. Additionally, the 95% density interval of the GARCH parameters
(ω0, ω1, ω2) in the GARCH-DPM model differs significantly from those of the other
two models.4

Figure 2 plots the posterior means of the time-varying parameters in the GARCH-
IHMM. The state-dependent mean µst and standard deviation σst exhibit clear shifts
across different states, effectively serving to capture complex economic shocks. In
the lower panel, we observe that σst is close to one most of the time, indicating little
deviation from the persistent volatility ht, with notable exceptions. For example,
σst spikes to 13 during the COVID-19 shock in March 2020 (the interest rate drops
dramatically from 1.52% in February 2024 to 0.29% in one month) when ht grew
gradually. After 2008 during the quantitative easing, the state-dependent σst quickly
reduced the impact of ht, which dropped slowly during this period.

5.2 Out-of-sample forecasts
Out-of-sample forecast results are reported in Table 3. In terms of density forecasts,
the proposed GARCH-IHMM achieves the highest log predictive likelihoods, while
the IHMM performs the best among the benchmark models, consistent with the find-
ings in Maheu and Yang (2016). However, the IHMM still significantly falls behind
the GARCH-IHMM, with a log Bayes factor of 33.7646 and a log score difference of
16.89%. The GARCH-DPM performs similarly to the parametric GARCH models
with Student t innovations, indicating that the DPM component captures the fat
tails, but important distributional dynamics remain missing.

In terms of point forecasts, the IHMM model is the best among all models with
the lowest root mean squared forecast error (RMSFE) of 0.3947, while the GARCH-
IHMM is the second-best model (1.40% loss to IHMM). The static mixture GARCH-
DPM and the parametric GARCH models perform approximately the same, with
RMSFEs from 0.4058 to 0.4066. Switching to the GARCH-IHMM yields an im-
provement of 1.37% to 1.57%.

Figure 3 plots the out-of-sample cumulative log Bayes factors (CLBFs) of the
GARCH-IHMM against the GARCH-DPM, IHMM, and GARCH-t. This measure
provides a period-by-period comparison of forecast performance, illustrating how the
log Bayes factors evolve over time to capture the ongoing predictive accuracy of each
model. An upward-trending curve indicates that the GARCH-IHMM consistently
outperforms the benchmark models, and vice versa.

A turning point can be seen roughly around 1980. Before that, the GARCH-
DPM and GARCH-t generally performed on par with the GARCH-IHMM, while

4Full-sample posterior estimates for other benchmark models are available upon request.
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both models quickly lost their predictive power after that, as indicated by their
upward CLBF trajectory. In contrast, the GARCH-IHMM consistently outperforms
the IHMM model before 1980, and then performs approximately the same afterwards
with a flat CLBF curve. The design of the GARCH-IHMM leverages the strengths of
both the IHMM and the GARCH components. It allows the component with greater
predictive power to automatically take charge and beat the corresponding bench-
marks, which is an excellent feature in case the macroeconomic condition transits
back to the pre-1980 era in the future.

6 Conclusion
This paper introduces the GARCH-IHMM, a novel Bayesian semiparametric model
that combines the IHMM with an asymmetric GARCH component, designed to
effectively capture the complex dynamics of short-term interest rates. Applied to the
US 3-month Treasury bill rates, the GARCH-IHMM exhibits significant advantages
in density forecasts, outperforming the benchmark models and offering competitive
point forecasts. These results indicate that the proposed GARCH-IHMM harnesses
great predictive power for its excellent adaptivity.
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Table 1: Descriptive Statistics for the Short Rates

Panel A: Key moments for the short rates
Obs Mean Median Std.Dev Skew Ex.Kurt Min Max
912 3.9707 3.6500 3.0679 0.9661 1.2069 0.0100 16.3000

Panel B: Autocorrelation for the short rate process
Lags 1 2 3 4 5 10 20
ACF 0.9914 0.9772 0.9640 0.9517 0.9395 0.8860 0.7439

Panel C: Autocorrelation for the I(1) process
Lags 1 2 3 4 5 10 20
ACF 0.3427 -0.0555 -0.0604 -0.0042 0.0474 0.0832 -0.2188
1. Data is the quoted rates in percentage, ranging from January 1948 to

December 2023 at a monthly frequency.
2. Bold ACF indicates significance at 5% level.
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Table 3: Out-of-Sample Forecast Results

LPL LBF LSD RMSFE (%)

GARCH-IHMM 233.6668 — — 0.4003 —
GARCH-DPM 188.1377 45.5291 24.20% 0.4056 1.32%
AGARCH-t 187.1061 46.5607 24.88% 0.4063 1.49%
GARCH-t 187.9625 45.7043 24.32% 0.4065 1.53%
AGARCH-N 50.7593 182.9075 360.34% 0.4058 1.37%
GARCH-N 57.5381 176.1287 306.11% 0.4066 1.57%
IHMM 199.9023 33.7646 16.89% 0.3947 -1.40%
Rolling-window AR -150.2158 383.8826 255.55% 0.4172 4.22%
1. Initial training set spans from January 1948 to December 1953, and the

out-of-sample period spans from January 1954 to December 2023 (840 out-
of-sample periods).

2. LPL denotes log predictive likelihoods (the higher the better). LBF denotes
log Bayes factors for the proposed GARCH-IHMM against the correspond-
ing model, where an LBF of 6 and above suggests significant evidence for
GARCH-IHMM. LSD denotes the log score difference, which is the percent-
age improvement of the LPL for the GARCH-IHMM from the corresponding
benchmark model with the base of the benchmark.

3. RMSFE denotes root mean squared forecast error for predictive means (the
lower the better), and the following (%) denotes the percentage improvement
of the RMSFE for the GARCH-IHMM from the corresponding benchmark
model with the base of the benchmark.

4. The window width for the rolling-window AR model is a fixed 60 months
(5 years).
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A Detailed Sampling Algorithm for GARCH-IHMM
Recall that the infinitely dimensional state space is partitioned into K active states
plus one remaining state. Then, Γ and Π are partitioned into Γ = (γ1, . . . , γK , γR)

′

and Πj = (πj1, . . . , πjK , πjR), where γR =
∑∞

k=K+1 γk = 1 −
∑K

k=1 γk and πjR =∑∞
k=K+1 πjk = 1−

∑K
k=1 πjk. The sampling steps are:

1. Sample c1:K |s1:T ,Γ, α. c1:K is essential for sampling Γ, and it counts balls of
different colors in the “oracle” urn. Fox et al. (2011) proposes simulating ck
from the hierarchical Pòlya urn scheme instead of sampling it.

(a) Count the number of each transition type, njk, for the number of times
switching from state j to state k.

(b) Simulate an auxiliary trail variable xi ∼ Bernoulli
(

αγk
i−1+αγk

)
, for i =

1, . . . , njk. If the trial is successful, an “oracle” urn step is involved at the
ith step towards njk, and we increase the corresponding “oracle” counts,
ojk, by one.

(c) ck =
∑K

j=1 ojk.

2. Sample η. Following Fox et al. (2011); Maheu and Yang (2016), assume a prior
η ∼ Gamma (a1, b1), and let c =

∑K
j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+η

)
(b) λ ∼ Beta (η + 1, c)

(c) η ∼ Gamma (a1 +K − ν, b1 − log λ)

3. Sample α. Following Fox et al. (2011), assume a prior α ∼ Gamma (a2, b2),
and let nj =

∑K
k=1 njk,

(a) νj ∼ Bernoulli
(

nj

nj+α

)
(b) λj ∼ Beta (α + 1, nj)

(c) α ∼ Gamma
(
a2 + c−

∑K
j=1 νj, b2 −

∑K
j=1 log (λj)

)
4. Sample Γ|c1:K , η. Given the “oracle” urn counts c1:K and the property of the

Dirichlet process, the conjugate posterior is

Γ|c1:K , η ∼ Dir (c1, . . . , cK , η) (5)
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5. Sample Π|n1:K,1:K ,Γ, α. Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (αγ1 + nj1, . . . , αγK + njK , αγR) (6)

6. Sample u1:T |Γ,Π. The auxiliary slice variable U = {ut}Tt=1 is drawn by u1 ∼
U (0, γs1) and ut ∼ U

(
0, πst−1st

)
.

7. Update K. Similar to the DPM model, if K does not meet the condition

min {ut}Tt=1 > max {πjR}Kj=1 (7)

then K needs to be increased by 1 (K ′ = K + 1) and all of the corresponding
parameters need to be drawn from the base measure. In addition, since a new
active state is introduced, Γ and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;
(b) Draw v ∼ Beta (1, η), then update Γ = (γ1, . . . , γK , γK′ , γR)

′, where γK′ =
vγR and γR = (1− v) γR;

(c) Draw vj ∼ Beta (αγK′ , αγR), update Πj = (πj1, . . . , πjK , πjK′ , πjR) for
j = 1, . . . , K, where πjK′ = vπjR and πjR = (1− v) πjR;

(d) Draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (αγ1, . . . , αγK , αγK′ , αγR).

Repeat the above steps until inequality (7) holds.

8. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ, θh. Iterating the following steps
forward from 1 to T :

(a) The prediction step for the initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ 1 (u1 < γk) , k = 1, . . . , K (8)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ, θh) ∝
K∑
j=1

1 (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ, θh)

(9)
(b) The update step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ, θh) ∝ p (rt|rt−1,Θk, θh) p (st = k|r1:t−1, u1:t,Π,Θ, θh)
(10)
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9. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ, θh. Sample the states s1:T using
the previously filtered values backward from T to 1:

(a) for the terminal state sT directly from p (sT |r1:T , u1:T ,Π,Θ, θh)

(b) for the rest states,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ, θh) ∝ 1 (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ, θh)
(11)

10. Sample Θ|r1:T , s1:T , θh. Assume conjugate priors µst ∼ N (b0, B0) and σ−2
st ∼

Gamma
(
v0
2
, s0

2

)
. Define Yk ≡

{
h
−1/2
t rt|st = k

}T

t=2
and Xk ≡

{
h
−1/2
t |st = k

}T

t=2
.

The linear model is now

Yk = Xkµk + ϵk, ϵk ∼ N
(
0, σ2

k

)
(12)

The posteriors are

p
(
µk|Yk, σ

2
k, h1:T

)
∝
∏

t:st=k

p
(
Yt|µk, σ

2
k, ht

)
p (µk) (13)

∼ N (Mµ, Vµ) (14)

where

Mµ = Vµ

(∑
t:st=k

h−1
t σ−2

k rt +B−1
0 b0

)
(15)

Vµ =

(∑
t:st=k

h−1
t σ−2

k +B−1
0

)−1

(16)

and

p
(
σ−2
k |Yk, µk, h1:T

)
∝
∏

t:st=k

p
(
rt|µk, σ

−2
k , ht

)
p
(
σ−2
k

)
(17)

∼ Gamma
( v̄
2
,
s̄

2

)
(18)

where

v̄ = Tk + v0 =
T∑
t=1

1 (st = k) + v0 (19)

s̄ =
∑
t:st=k

h−1
t (rt − µk)

2 + s0 (20)
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11. Sample hierarchical priors.

(a) Sample b0|µ1:K , B0 ∼ N (µb, σ
2
b ), where the prior is b0 ∼ N(bb, Bb) and

µb = σ2
b

(
B−1

0

K∑
k=1

µk +B−1
b bb

)
(21)

σ2
b =

(
KB−1

0 +B−1
b

)−1 (22)

(b) Sample B0|µ1:K , b0 ∼ IG
(
v̄B
2
, s̄B

2

)
, where the prior is B0 ∼ IG(vB

2
, sB

2
)

and

v̄B = K + vB (23)

s̄B =
K∑
k=1

(µk − b0)
2 + sB (24)

(c) Sample v0|σ2
1:K , s0, where the prior is v0 ∼ Exp(g0). There is no easily

applicable conjugate prior for v0 so a Metropolis-Hastings step needs to
be applied. Implement a Gamma proposal following Maheu and Yang
(2016):

v′0|v0 ∼ Gamma
(
τ,

τ

ν

)
(25)

and the acceptance rate is

min

{
1,

p (v′0|σ2
1:K , s0, g0) /q (v

′
0|v0)

p (v0|σ2
1:K , s0, g0) /q (v0|v′0)

}
(26)

(d) Sample s0|σ2
1:K , v0 ∼ Gamma (cs, ds), where the prior is s0 ∼ Gamma(c0, d0)

and

cs =
Kv0
2

+ c0 (27)

ds =

∑K
k=1 σ

−2
k

2
+ d0 (28)

12. Sample the GARCH parameters θh = (ω0, ω1, ω2, ω3, ρ)
′|r1:T , s1:T ,Θ. With nor-

mal prior θh ∼ N (0, I), the posterior is

p (θh|r1:T , s1:T ,Θ) ∝
T∏
t=1

p (rt|Θst , ht) p (θh) . (29)

And then apply a random-walk Metropolis-Hastings algorithm.
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