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Abstract

This paper explores the limitations of traditional econometric models, such as the Ricardian and

profit approaches, in accurately quantifying the impacts of climate change on agriculture. While

these models offer valuable insights, they often neglect spatial dependencies, heterogeneity, and

spillover effects. We argue that spatial econometrics provides a more comprehensive and robust

approach to analyzing climate change impacts. By explicitly incorporating spatial relationships be-

tween agricultural units, spatial econometric models capture the influence of factors such as proximity

to markets, resource sharing, information diffusion, and spatial correlation of climatic variables. We

review pioneering studies employing spatial econometric models, including SAR, SEM, SLX, SARAR

and SDM, which reveal significant discrepancies between spatial and non-spatial estimations. These

studies demonstrate that neglecting spatial dependence can lead to biased estimations and inaccurate

predictions of climate change impacts. Moreover, the incorporation of spatial effects often results in

smaller marginal effects of climate variables, suggesting that traditional non-spatial models may over-

estimate negative consequences. This paper contributes to the ongoing research on climate change

impacts on agriculture by highlighting the significance of spatial econometrics and emphasizing its

potential to inform robust and effective adaptation strategies.
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1 Introduction

Introduction Climate change, a global challenge threatening food security and economic development

[IPCC, 2023], impacts agriculture heterogeneously [Desmet and Rossi-Hansberg, 2024]. Regions like

the MENA, already facing aridity, are experiencing significant climate shifts, with notable variations

across countries [Amouzay et al., 2023]. Economies heavily reliant on agriculture, a sector sensitive

to temperature fluctuations and extreme weather events, are more vulnerable than those dominated

by industry or services [IPCC, 2023]. The impact of climate change on agriculture is spatially

differentiated, with more severe consequences at equatorial latitudes compared to higher latitudes

[Desmet and Rossi-Hansberg, 2024].

The economic evaluation of climate change impacts on agriculture is a complex field requiring

methodologies adapted to available data, study objectives, and regional specificities. Econometric ap-

proaches, developed to overcome the limitations of agronomic methods, have significantly advanced

in recent decades. These models aim to capture farmers’ behavioral responses to climate change

[Blanc and Reilly, 2017]. Two economic models are widely recognized: the Ricardian model [Mendel-

sohn et al., 1994], relying on cross-sectional regressions of agricultural land prices, and the production

function model [Deschênes and Greenstone, 2007], based on panel data analysis of agricultural profits.

These models allow for evaluating both short- and long-term impacts of climate change on agricul-

ture [Blanc and Reilly, 2017]. However, conventional econometric approaches, such as the Ricardian

model [Mendelsohn et al., 1994] and the profit function model [Deschênes and Greenstone, 2007],

have limitations that can lead to biased estimates, particularly due to the neglect of spatial auto-

correlation and spillover effects of climate change impacts on agriculture [Chatzopoulos and Lippert,

2016; Schlenker et al., 2006]. For example, Schlenker et al. [2006] revealed a negative impact of

climate change on US agriculture. By rigorously correcting for spatial error correlation in their data,

the authors estimated an annual loss of $5.3 to $5.4 billion for non-irrigated and non-urban areas.

This finding contradicts the conclusions of Mendelsohn et al. [1994], who predicted positive effects.

This major difference underscores that the effects of climate change are not geographically isolated.

Omitting this spatial interdependence, leads to an underestimation, or even a complete reversal, of

the actual impact [Schlenker et al., 2006]. Therefore, the use of spatial econometric models is crucial

for obtaining reliable estimates and effectively informing adaptation policies, as erroneous conclusions

can lead to inefficient and costly strategies.

Spatial econometrics, which accounts for specific spatial effects and interactions among geographi-

cal units of climate and agricultural variables, offers a promising alternative to overcome these limita-

tions. The presence of spatial autocorrelation, where neighboring observations influence each other or

share an unobserved phenomenon, necessitates specific tools in econometrics. This approach provides

a variety of models capable of considering these spatial interactions, starting with a prior definition
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of the neighborhood relationships among geographical entities [Anselin, 2013]. Consequently, these

spatial models allow for a better understanding of causal relationships and provide more accurate

estimates of the impacts of climate change on agriculture [Lippert et al., 2009; Schlenker et al., 2006].

In particular, spatial panel models enable the simultaneous consideration of spatial autocorrelation

and individual heterogeneity, offering essential tools for decomposing local effects and spillover effects

[Chen et al., 2016; Dall’Erba and Domínguez, 2016; Vaitkeviciute et al., 2019].

This paper aims to present a state-of-the-art review of the literature on spatial models used to

study the impact of climate change on agriculture and demonstrate how methodological advancements

in spatial econometrics have been introduced in this field. We emphasize that this is not an exhaustive

review; rather, the objective is to highlight the major contributions to spatial models and their

methodological advancements. Our literature reviews deviate from those provided by Auffhammer

[2018]; Carter et al. [2018]; Hsiang [2016]; Kolstad and Moore [2020]; Ortiz-Bobea [2021]; Su and Chen

[2022], which primarily focus on conventional econometric approaches, without specifically delving

into the use of spatial models. Our main objective is to fill this gap by summarizing studies that

explicitly incorporate spatial autocorrelation in spatial models to investigate the impacts of climate

change on agriculture. This literature review draws upon scholarly articles indexed in Scopus and Web

of Science (WOS) and examines pioneering studies employing spatial econometric models, including

SAR, SEM, SLX, SARAR and SDM, published over the past 20 years. This study contributes to a

better understanding of these phenomena by providing an overview of spatial methodological tools

and their potential for informing adaptation policies in the agricultural sector.

The remainder of this paper is organized as follows. In section 2, we examine a brief overview

of conventional econometric approaches for estimating the impact of climate change on agriculture.

In section 3, we review state-of-the-art spatial econometric models and justify their relevance for

research in this field. Conclusions are presented in section 4.

2 Ricardian and Profit Approaches: A Brief Overview

This section provides a brief overview of the Ricardian and profit approaches, two econometric models

widely used to assess the economic impacts of climate change on agriculture. While these approaches

offer valuable insights, they also present limitations, which are discussed below.

2.1 Ricardian Approach: Cross-Sectional Model

The Ricardian approach, based on the work of Ricardo [1817], posits that agricultural land rent

reflects the present value of future income streams derived from agricultural production. Mendelsohn

et al. [1994] pioneered the empirical application of this approach, utilizing the hedonic price method
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to assess the influence of climate variables: Temperature (tempi) and Precipitation (preci) and their

squares (prec2i ) and (temp2i ), Soil Quality (Si), and Socioeconomic Variables (Zi) on Agricultural

Land Prices (Vi). βi (i = 0, ..., 4), δ and θ represent a vector of unknown parameters to be estimated.

The Ricardian model can be expressed in different forms, with the semi-logarithmic form being

the most common [Vaitkeviciute et al., 2019] :

ln (Vi) = β0 + β1preci + β2 + β3prec
2
i + β4temp2i + Siδ + Ziθ + εi (1)

The Ricardian approach offers the advantage of incorporating all available adaptation options

in the data sample [Mendelsohn et al., 1996]. It assumes that farmers maximize their profits and

choose the land allocation that generates the highest revenue. Initially applied in the United States

[Mendelsohn et al., 1994], the Ricardian model investigates the direct impacts of environmental

factors, including climate, on land value [Rosen, 1974]. It has been applied in approximately 50

countries [Mendelsohn and Massetti, 2017], demonstrating the beneficial effects of warm spring and

autumn temperatures but the detrimental effects of hotter summer and winter temperatures [Massetti

and Mendelsohn, 2011; Van Passel et al., 2017].

Despite its usefulness in assessing the impact of climate change on agriculture, the Ricardian

approach faces several limitations. It is notably susceptible to omitted variable bias [Deschênes

and Greenstone, 2007], including the increasing capitalization of agricultural land prices by non-

agricultural influences [Hardie et al., 2001; Livanis et al., 2006; Plantinga et al., 2002] and preferences

for milder climates Albouy et al. [2016]. Furthermore, it relies on restrictive assumptions regarding

price invariance in response to supply changes [Cline, 1996], which underestimates losses and overes-

timates gains [Cline, 1996]. The approach also neglects adaptation costs and incomplete knowledge of

climate change [Kelly et al., 2005; Quiggin and Horowitz, 1999; Reilly et al., 1996] and omits farmers’

adaptation strategies [Mendelsohn and Dinar, 2009]. For instance, the irrigation variable is often

disregarded, hindering the capture of its influence on agricultural land values [Cline, 1996; Darwin,

1999; Schlenker et al., 2005]. Finally, the endogenous nature of adaptation measures [Chatzopoulos

and Lippert, 2015] and the spatial aggregation of data [Fezzi and Bateman, 2015; Timmins, 2006]

can bias estimates.

2.2 Profit Approach: Panel Data Model

Proposed by Deschênes and Greenstone [2007], the profit approach utilizes panel data to estimate the

impact of meteorological fluctuations on agricultural profits, addressing concerns about omitted vari-

able bias and misspecification inherent in the Ricardian approach. This approach examines the effects

of climate change on annual profit, revenu or production, rather than land values, acknowledging that

weather conditions can have a short-term impact on agricultural production and expenses.
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The profit approach model (Equation 2) incorporates county-level fixed effects to control for

unobservable (αi), time-invariant factors and year or state-level fixed effects to account for common

annual variations across counties (γt). It investigates the influence of annual weather conditions (Wit)

on agricultural profits (yit), while controlling for time-varying factors (Xit).

yit = αi + γt +
∑
i

θifi(Wit) +Xitβ + εit (2)

Panel data models, although widely used to study the impact of climate change on agriculture,

have limitations [Blanc and Reilly, 2017]. Including fixed effects is not sufficient to eliminate omitted

variable bias, as time-varying confounding factors can be correlated with weather anomalies [Auffham-

mer et al., 2013; Nugroho et al., 2023]. Using different time scales for agricultural and meteorological

variables can also bias results [Blanc and Reilly, 2017], and aggregating meteorological variables to

the annual scale can mask seasonal effects. The approach by Deschênes and Greenstone [2007] raises

questions about the role of stocks used by farmers to mitigate the effects of unusual economic and

weather conditions [Ortiz-Bobea, 2021]. Carter et al. [2018] highlights the risk of multicollinearity,

estimation bias in case of response heterogeneity, and model selection challenges related to the fre-

quency of weather data. Furthermore, panel models are sensitive to measurement errors, which can

be particularly problematic in regions with scarce or poor-quality data [Auffhammer, 2018]. Spatial

interpolation of weather data introduces measurement errors [Auffhammer et al., 2013]. The presence

of measurement errors, often extending beyond geographical boundaries, is due to spatial correlation

of errors [Chen et al., 2016; Fisher et al., 2012], explained by different data scales and aggregation

processes [Vaitkeviciute et al., 2019]. It is thus crucial to consider spatial autocorrelation in the study

of the impact of climate change on agriculture, prompting the exploration of spatial econometrics.

3 Spatial Econometrics and Climate Change Impacts on

Agriculture

This section underscores the critical role of spatial econometrics in gaining a deeper understanding

of climate change impacts on agriculture. We first explore The importance of considering spatial

effects (3.1), followed by a comprehensive review of pioneering studies that have employed spatial

econometric models to analyze the effects of climate change on agriculture (3.2).
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3.1 The Importance of Spatial Effects in Agriculture and Climate

Change

The deep intertwining of the concepts of space and agriculture was highlighted as early as the 19th

century by Von Thünen [1826], who underscored the crucial importance of the spatial dimension

in agricultural economics. This spatial dimension is fundamental to understanding the impacts of

climate change on agriculture, as the effects of climate change are not uniformly distributed, varying

significantly from region to region [Desmet and Rossi-Hansberg, 2024].

This importance of spatial effects is reinforced by several key factors. Firstly, significant spatial

correlations exist in agricultural data. Neighboring counties often share similar climatic, soil, and ir-

rigation characteristics [Polsky, 2004], leading to spillover effects such as information diffusion among

farmers, technology transfer, and the diffusion of public agricultural R&D spending [McCunn and

Huffman, 2000]. Furthermore, the evapotranspiration-rain cycle and the sharing of resources such

as irrigation water create geographical interconnectedness [Dominguez et al., 2009]. Even seemingly

objective data, such as weather measurements, exhibit spatial correlation due to data generation pro-

cesses and interpolation methods used to create spatially geo-located datasets [Auffhammer et al.,

2013]. This spatial autocorrelation poses methodological challenges, as the inherent correlation in

data, for example meteorological data, can lead to biased estimates if not properly addressed. Sev-

eral approaches exist to mitigate this bias, including the use of spatial weighting matrices [Conley,

1999], non-parametric methods, or block bootstrapping. However, caution is warranted with interpo-

lated gridded data, as they can introduce problematic multicollinearity, particularly in panel analyses

[Auffhammer et al., 2013].

These spatial dependencies necessitate the integration of spatial effects into econometric models

to improve the accuracy and reliability of results, thus avoiding erroneous conclusions [LeSage and

Pace, 2009]. Indeed, Chatzopoulos and Lippert [2016] highlights several reasons for integrating

spatial effects into the Ricardian model: the econometric advantages, including the reduction of

omitted variable bias through spatial lags and improved robustness against unobservable factors; the

problems related to data aggregation, which can create artificial spatial dependence and homogenize

heterogeneous units; the importance of interactions between landowners, who influence prices based

on neighboring transactions, and the lack of information on land characteristics; and finally, the

influence of common behaviors in land use, which are difficult to incorporate into the traditional

Ricardian model. Although land investments generating external benefits could be captured through

spatial lags, data availability and theoretical justification limit their application in the studied context.

For a rigorous analysis of these spatial dependencies, spatial econometric models are necessary.

Spatial literature has developed a comprehensive classification of key spatial econometric models,

based on three types of spatial interaction [Anselin and Bera, 1998; Arbia and Baltagi, 2008; Elhorst,
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2010; Florax et al., 2003; Le Gallo, 2002; LeSage and Pace, 2009]. This classification provides a

framework for more accurate modeling and informed decision-making regarding complex economic

phenomena within a geographical context. Elhorst [2014] further details spatial models for both

cross-sectional and panel data, as well as strategies for selecting the best spatial specification. The

introduction of a spatial weight matrix introduces endogeneity, rendering ordinary least squares (OLS)

inappropriate; panel models are generally estimated using maximum likelihood [Anselin et al., 2008;

Elhorst, 2010].

Table 1 below summarizes some common spatial econometric models used in studies on the impacts

of climate change on agriculture, highlighting their specific specifications and interpretations.

Table 1: Spatial models specifications use in climate change impacts on agriculture studies

Model Specification Model Interpretation
Spatial Autoregressive Model (SAR) Y = ρWY +Xβ + ε Agricultural output one location

is determined jointly with that of
neighbors

Spatial Error Model (SEM) Y = Xβ + ε and ε = λWε+ u Agricultural output one location
is determined by the unobserved
omitted variables of neighbors.
Data measurement errors

Spatial Autoregressive Combined Model (SARAR) Y = ρWY + Xβ + ϵ and
ϵ = λWϵ+ u

A combination of SAR and SEM
Models

Spatial Lag X Model (SLX) Y = Xβ +WXγ + ε Agricultural output variable for
one location is determined by the
explanatory variables of neigh-
bors

Spatial Durbin Model (SDM) Y = ρWY +Xβ +WXγ + ε A combination of SLX and SAR
Models

Note: ρ is the spatial autoregressive coefficient, λ the spatial autocorrelation coefficient, γ and β represent a vector of
unknown parameters to be estimated. W is a nonnegative N ×N matrix describing the spatial configuration or arrangement of
the units in the sample.

3.2 Spatial Models Use in Climate Change Impacts on Agriculture

Studies

The growing recognition of the importance of geographic distribution in the influence of climate on

agriculture has driven the adoption of econometric methods that integrate spatial dimensions. Spatial

econometrics has emerged as a distinct discipline, and its integration into the study of climate change

impacts on agriculture is crucial. Ignoring the concept of spatial dependence in this context risks

introducing bias.

Incorporating the spatial dimension reveals crucial information that aspatial models fail to cap-

ture. Spatial approaches, such as SAR, SEM, SLX, SARAR, and SDM models, enable a better under-

standing of interactions among farmers—often influenced by geographic or sectoral proximity—inter-
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regional interactions, spillover effects, and the spatial heterogeneity of impacts. The importance of

these models lies in the distinction between local effects and spillover effects. These effects arise

from frequent interactions: the adoption of similar agricultural practices among neighboring farmers

[Polsky, 2004], the repercussions of public investments in agricultural R&D on neighboring areas

[McCunn and Huffman, 2000], or the sharing of resources such as irrigation water among neighboring

regions [Dominguez et al., 2009].

According to Dall’Erba and Domínguez [2016], the literature on spillover effects can be catego-

rized into three groups: studies neglecting these effects by assuming Independently and Identically

Distributed (i.i.d.) errors [Deschênes and Greenstone, 2007; Mendelsohn et al., 1994]; studies ad-

dressing global spillover effects [Chatzopoulos and Lippert, 2015; Dall’Erba and Domínguez, 2016;

?], captured by SAR or SDM models; and studies focusing on local spillover effects [Dall’Erba and

Domínguez, 2016; Ortiz-Bobea, 2015; Polsky, 2004; Zouabi and Peridy, 2015], captured by spatial

lagging of explanatory variables (SLX model). However, the use of the SLX model requires caution

due to the risk of multicollinearity, particularly with highly correlated climate variables [Vaitkevi-

ciute et al., 2019]. To address this, Vaitkeviciute et al. [2019] advocates for the SEM model, which

captures spillover effects through the error term, particularly suitable for aggregated data and situa-

tions with spatial autocorrelation in climate data or measurement errors [Chen et al., 2016; Lippert

et al., 2009; Schlenker et al., 2006]. Climate data, often derived from unevenly distributed weather

stations, can generate spatial autocorrelation and measurement errors exceeding the boundaries of

aggregation units. In such cases, the SEM model allows for the analysis of spatially complex links

between climate variables and agricultural phenomena [Vaitkeviciute et al., 2019].

This literature review identifies pioneering studies using econometric approaches to quantify the

impact of climate change on the agricultural sector, with a particular emphasis on those employing

spatial econometric models that integrate elements of farmer adaptation. To this end, we selected

studies published over the past 20 years (post-2003), using the Scopus and ISI Web of Science (WoS)

databases and employing the following keyword pairs: "climate change," "agriculture," "impact,"

and "spatial econometrics." This search yielded a total of 2916 articles. Based on titles, we removed

articles not employing econometric approaches, leaving 386 articles. Next, we examined the abstracts,

eliminating those that did not clearly meet our inclusion criteria (e.g., articles must demonstrate sig-

nificant methodological advancements compared to conventional econometric models (cross-sectional

or panel data models)), reducing the total to 157. Among these, we are particularly interested in

studies using spatial models such as SAR, SEM, SLX, SARAR and SDM, to analyze the impact of

climate variables on land value, agricultural income, agricultural production, or other economic indi-

cators related to agriculture. Consequently, we removed those that did not meet all defined inclusion

criteria after a full read. This search and exclusion process left us with 21 articles. Many articles

were eliminated because they were not pioneering or did not improve methodologies for quantifying
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the value of adaptation, focusing only on the application of econometric models.

The evolution of econometric methods applied to the study of climate change impacts on agricul-

ture is marked by a steady progression towards greater complexity and a better accounting for spatial

and temporal interactions. While early analyses primarily relied on cross-sectional approaches, the

emergence of spatial panel data models, which will be the focus of the following section, represents a

significant advancement, enabling a more nuanced understanding of these interactions.

3.2.1 Spatial Cross-sectional Models Studies

Pioneers in this field, such as Polsky [2004] and Schlenker et al. [2006], initially introduced a spatial

component into a Ricardian approach applied to US counties. These studies questioned the suitability

of classical Ricardian models for assessing the impact of climate change on agriculture, in particular

because of their simplifying assumptions concerning the perfect spatial substitutability of agricultural

land, and the temporal constancy of environmental, economic and social conditions [Polsky, 2004].

The studies will then be presented by region, and their results summarized in table 2 below.

United States (U.S) Case Studies

Polsky [2004], for instance, investigated Ricardian climate sensitivities in the Great Plains, explic-

itly challenging the traditional approach’s neglect of spatial and temporal dynamics. Unlike classical

Ricardian models, which assume perfect spatial substitutability and constant conditions over time,

Polsky [2004] employed a multi-scale spatial econometric approach, integrating six spatial models

for each year (1969, 1974, 1978, 1982, 1987, and 1992). A key innovation was the inclusion of spa-

tial lag terms (SAR model) and spatial groupwise heteroscedasticity (GHET) to capture previously

omitted effects. Results revealed a complex and dynamic picture of climate change impacts on Great

Plains agriculture, contrasting sharply with the more static outcomes of classical Ricardian models.

The aggregate increase in land values following an 8% increase in precipitation and growing season

length varied considerably over the study period, declining from $7.5 billion in 1969 to only $0.7

billion in 1992 (1992 dollars). This rapid decrease reflects imperfect and non-instantaneous adap-

tation, contradicting Ricardian assumptions. Furthermore, the spatial impact was heterogeneous,

exhibiting a northwest-southeast gradient with land value decreases in the northwest and increases

in the southeast. This heterogeneity also varied temporally, as illustrated by significant fluctuations

in county-level impacts (e.g., fluctuations from +19% to -5% in Kidder County, North Dakota).

Finally, the influence of non-climatic factors (inter-county communication, water management, mar-

ket conditions) underscored the complexity of adaptation and the need to move beyond a simple

direct response to climate change. These findings have major implications for adaptation policies,

requiring spatially targeted strategies that consider temporal dynamics and integrate the complex so-

9



cioeconomic factors influencing farmers’ adaptive capacity. A uniform, static approach is inadequate;

flexible and adaptive interventions are necessary.

Schlenker et al. [2006], separately, estimated the impact of climate change (a 5◦C temperature

increase and 8% increase in precipitation) on the value of agricultural land in non-irrigated, non-urban

US counties. They demonstrated that the spatial distribution of agricultural land, variable across and

within counties, significantly impacts model results. This distribution influences not only exogenous

variables (such as soil characteristics and climate, averaged over each county’s agricultural areas) but

also the error term structure. These terms, representing unexplained variations, are not independent

across counties; geographically proximate counties likely share unobserved characteristics, leading

to spatial autocorrelation in the errors. Neglecting this spatial correlation, according to Schlenker

et al. [2006], underestimates the true variance-covariance matrix, leading to an undervaluation of

uncertainty and an overestimation of t-statistics, thus inflating the perceived statistical significance of

regression coefficients. Consequently, to ensure the validity of hedonic land value coefficient estimates

and mitigate overestimation bias, Schlenker et al. [2006]) implemented a two-step procedure involving

spatial correlation parameter estimation (SEM model) and the White estimator for heteroscedasticity.

They compared specifications with and without state fixed effects, justified by the possibility of

unobserved characteristics common to all farms within a state, such as state-specific taxes and unequal

incidence of crop subsidies due to differences in farming practices across states. Results from the log-

linear hedonic regression, using the standardized Queen contiguity matrix, showed that the inclusion

of fixed effects did not reduce the significance level of climatic variables; simultaneously, the spatial

correlation parameter remained virtually unchanged with the inclusion of fixed effects, suggesting the

presence of spillover effects based on spatial proximity rather than administrative assignment to a

specific state. This estimation points to an annual loss of between $5.3 and $5.4 billion—a significant

loss directly affecting agricultural land value in non-irrigated, non-urban US counties.

Southwestern US Case Studies

Dall’Erba and Domínguez [2016] analyzed the impact of climate change on farmland values in

the Southwestern US (124 counties, 2007 data) using a SDM. This model was chosen over SLX and

SAL models due to its superior fit to the data, accounting for spatial autocorrelation. The model

revealed positive effects of irrigation and fertilizer (especially in lowlands), and negative indirect ef-

fects of subsidies (highlands). The surprising positive impact of extreme weather events, particularly

in highlands, suggests farmer adaptation. Significant spatial heterogeneity existed between highland

and lowland counties. The SDM showed that irrigation significantly increased land values in both

areas, with fertilizers positively affecting lowland values and soil characteristics significantly influenc-

ing lowland land values. The lack of a significant negative effect from summer temperatures and the
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positive impact of extreme weather events suggest farmer adaptation.

Europe Case Studies

Lippert et al. [2009] assessed the impact of climate change on German agriculture using a Ricar-

dian analysis that accounts for spatial autocorrelation and relies on high-resolution climate change

projections. Using data from the 1999 agricultural census for 439 German districts, they analyzed the

influence of climate variables (temperature and precipitation) on agricultural land prices. To correct

for biases stemming from incomplete data (particularly regarding average soil quality) and spatial

autocorrelation, they employed a spatial error model (SEM). The analysis revealed a general increase

in land rents with rising temperatures and declining spring precipitation, except in eastern Germany.

Simulations based on three IPCC scenarios (2011-2040, REMO model) projected an overall increase

in land rent equivalent to 5-6% of net German agricultural income. However, losses are possible in

the long term if climate change is more severe.

Africa Case Studies

Ward et al. [2014] employed a spatial econometric model, correcting for sample selection bias

and spatial autocorrelation, to analyze the impact of climate change on cereal yields in Sub-Saharan

Africa. Their analysis, based on a spatial Heckman model, utilized cereal yield data averaged over

1997-2003 (considered representative of the year 2000) from 5′×5′ grid cells, subsequently aggregated

to a resolution of 18′×18′. This resulted in a sample of 2653 observations covering most of mainland

Sub-Saharan Africa (excluding Madagascar and smaller islands). Climate variables (temperature,

diurnal temperature range, precipitation, and coefficient of variation of precipitation) were climatic

averages over the period 1960-1990. Results, comparing OLS, Non-spatial Heckit, and spatial Heckit

(SEM) models, indicated that a 1◦C increase in temperature reduces yields by 6.5%, while a 1%

improvement in irrigation increases yields by 4%. Yields also increased with total precipitation and

its variability, and decreased with increases in the diurnal temperature range.

While previous cross-sectional spatial studies offer valuable insights, they are inherently limited

in their capacity to fully capture the temporal dynamics of climate change impacts on agricultural

systems. Deschênes and Greenstone [2007]; Schlenker et al. [2006] recognized the limitations of

purely cross-sectional models. Indeed, these models, while incorporating spatial aspects, fail to

account for the gradual agricultural adaptations (technological changes, crop diversification) that

unfold over time, nor the cumulative effects of climate change on yields and land values. Moreover,

their static nature prevents analysis of the complex dynamic interactions between climate, agricultural
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practices, and land values, obscuring crucial feedback loops and temporal dependencies essential for

a comprehensive understanding of the phenomenon [Schlenker et al., 2006].

Studies incorporating temporal aspects to varying degrees (pooled data, time series) have yet to

fully grasp these dynamics. For instance, the use of time-series variation by Deschênes and Greenstone

[2007], while innovative, assumes homogenous responses to meteorological changes across counties

within a state, overlooking potential heterogeneities. Baylis et al. [2011] compared results from spatial

models (SAR and SEM with fixed and random effects) to non-spatial panel data models (pooled

model, fixed effects, random effects). Significant differences in coefficient estimates underscored the

importance of considering spatial effects. The magnitude of climate variable effects (temperature

and precipitation) was consistently smaller in spatial models, suggesting that non-spatial models

overestimated the climate’s impact by neglecting spatial dependencies and spillover effects.

These studies collectively illustrate the necessity of transcending cross-sectional spatial models.

They implicitly highlight the limitations of cross-sectional spatial analysis when applied to time-

evolving processes. They thus pave the way for the logical next step: spatial panel data models,

which fully integrate spatial and temporal dependencies, providing a considerably more complete

and precise understanding of how farmers adapt to climate change and the consequential effects on

land values and agricultural profits. This is the precise focus of the following section.

3.2.2 Spatial Panel Models Studies

Spatial econometric theory is applied to panel data analysis to account not only for individual het-

erogeneity but also for existing spatial dependencies [Anselin et al., 2008; Baylis et al., 2011]. Given

the importance of localization and the extensive use of panel data in finance, risk management,

production economics, environmental economics and, increasingly, development economics, recently

developed spatial panel methods have great potential for applied researchers in these fields [Anselin,

2001b; Elhorst, 2003; Elhorst et al., 2010].

To our knowledge, Seo et al. [2008] and Baylis et al. [2011] were among the first studies to utilize

spatial panel models to analyze the impact of climate change on agriculture. While the majority of

Ricardian studies on agricultural land values rely on cross-sectional data, Massetti and Mendelsohn

[2011] advocate for the use of panel data to better capture temporal dynamics. They further highlight

the crucial importance of the spatial dimension, as neighboring agricultural practices and climatic

conditions influence land values, generating spillover effects. Adequate consideration of these spatial

effects can lead to results significantly different from those obtained using non-spatial panel models

or ex-post corrections for spatially correlated errors [Baylis et al., 2011; Vaitkeviciute et al., 2019].

The studies will then be presented by region, and their results summarized in tables 3 and 4 below.
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U.S Case Studies

[Baylis et al., 2011] extended the analysis of [Schlenker et al., 2005] by formally integrating spatial

econometric models—SAR and SEM—with fixed and random effects into a panel data framework.

Unlike [Schlenker et al., 2005], who employed only ex-post corrections for spatial correlation, [Baylis

et al., 2011] directly modeled spatial dependence, enabling a more rigorous analysis. This approach

revealed the importance of considering both direct and indirect spillover effects. Spatial models

consistently yielded lower estimates of climate effects (temperature and precipitation) than aspatial

models, highlighting an overestimation of impacts in the latter due to the neglect of spatial depen-

dencies. The use of SAR models facilitated the decomposition of the total impact into direct (within

a county) and indirect (on neighboring counties) effects, illustrating the spatial propagation of cli-

mate variable influence. Even SEM models, addressing spatial correlation through the error term,

exhibited significant differences from aspatial models. The calculation of average total, direct, and

indirect impacts, following LeSage and Pace [2009], confirmed the influence of spillover effects and

demonstrated that their consideration could, in some instances, even increase the estimated overall

impact. In conclusion, the [Baylis et al., 2011] study underscores the necessity of explicitly integrating

the spatial dimension into panel data models in future research to achieve a precise understanding

of climate change impacts on agriculture, avoiding the overestimation resulting from the omission of

spatial spillover effects.

More recently, Yun and Gramig [2022] analyzed spatial econometric models and specifications of

crop yield response functions to evaluate the empirical alternatives available to researchers. Using

county-level corn yield data from the United States (east of the 100th meridian, from 1981 to 2018),

they compared 14 competing panel regression models, including spatial models (SEM, SAR, SLX,

KKP) and non-spatial models (pooled, fixed effects, random effects). A comparative analysis of

prediction performance (in-sample, out-of-sample, and bootstrapped out-of-sample) was conducted.

Results show that fixed effects spatial error models (SEM) were the best out-of-sample predictors,

outperforming both non-spatial models and the spatial autoregressive model (SAR), which showed

poor out-of-sample performance. The inclusion of spatial correlation in the error terms significantly

improved predictive capabilities, with important implications for public policies adapting to climate

change. The study builds upon extensive prior research on climate impacts on US agriculture, high-

lighting the underutilization of spatial econometrics in crop yield response functions despite the

growing attention to spatial correlation in Ricardian studies.

South American Case Studies

The study by Seo et al. [2008], which analyzed the impact of climate change on South American
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agriculture, utilized panel data from surveys of over 2,000 farms across seven countries (Argentina,

Uruguay, Chile, Brazil, Venezuela, Ecuador, and Colombia) covering the 2003-2004 agricultural sea-

sons. Seo et al. [2008] compared four econometric models: Ordinary Least Squares (OLS), a fixed-

effects panel model, and two spatial models (SAR and SEM). Results revealed that the aspatial mod-

els (OLS and fixed effects), by neglecting the spatial correlation of land values, overestimated the

impact of climate change. These models, failing to account for spatial dependence, exhibited larger

and statistically significant effects of climate change (temperature and precipitation) compared to the

spatial models. The estimated climate parameters were higher and statistically significant, indicating

an overestimation of climate change’s impact on land values. This overestimation stems from the

failure to account for the spatial correlation of land values (nearby farms exhibiting similar values).

Variations in land values attributed to climate could, in reality, originate from geographic proxim-

ity and correlated spatial factors. Incorporating spatial dependence yielded substantially different

estimates. The marginal effects of climate change (temperature and precipitation) were significantly

lower than in the aspatial models. The elasticities, measuring the sensitivity of land values to climate

variations, were also considerably lower, indicating that the true impact of climate change is less

pronounced than aspatial models suggest. A slight difference was observed between the SAR and

SEM models. For temperature effects, the SEM model showed even lower marginal effects than the

SAR model. Conversely, for precipitation effects, the SEM model showed slightly larger effects than

the SAR model. This difference underscores the sensitivity of results to the choice of spatial model.

Finally, the study tested the robustness of the results using an alternative spatial weights matrix,

based on provincial instead of district land values. Although spatial correlation statistics were lower

with this new matrix, the marginal effect of temperature was substantially larger (twice as large as in

the SAR and SEM models), yet remained twice as small as that of the OLS model. This highlights

the importance of spatial weights matrix selection but confirms that spatial models provide more

realistic estimates of climate change impact than aspatial models. Based on these findings, Seo et al.

[2008] suggested that adaptation, particularly through crop diversification and the adoption of more

resilient agricultural practices, might be a more effective and less costly strategy than large-scale

mitigation in certain contexts. However, this does not imply that mitigation is unnecessary; both

strategies are complementary.

ASIA Case Studies

[Kumar, 2011] examined the impact of climate change on net farm revenue in India using spatial

panel data for 271 districts over the period 1966–1986. The analysis incorporated spatial econometric

models (SAR and SEM) to correct for the significant spatial autocorrelation detected. Compared to

aspatial models, spatial models produced consistently lower estimates of climate change’s impact on
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agricultural income, suggesting that aspatial models overestimated the negative effects. For example,

in an illustrative scenario of a temperature increase +2◦ C and a precipitation increase +7%, the

aspatial model estimated an average annual decline of 8.4% in net farm revenue [Kumar and Parikh,

2001] or even 12% according to other studies. In contrast, the preferred spatial model (the spatial

error model, with an adjusted R2 of 0.72 compared to 0.65 for the spatial lag model) estimated an

annual decline of only 3%. This result underscores the importance of accounting for spatial effects,

with autocorrelation leading to a significant overestimation of negative impacts in aspatial models.

The study also showed that the impact varied spatially, with some eastern regions (Bihar, West

Bengal, and parts of Karnataka) potentially experiencing less negative impacts than others. The

author thus recommended improvements in the dissemination of agricultural information through

market forces and local leadership for better adaptation, along with further research on large-scale

public adaptation strategies for better integration into national development. However, the study did

not offer a precise quantification of the economic impact of the recommended adaptation policies.

[Chen et al., 2016] analyzed the impact of climate change on corn and soybean yields in China. Us-

ing a county-level panel dataset (approximately 2570 counties, excluding the Qinghai-Tibet Plateau)

covering the period 2001–2009, they estimated spatial error models to account for the significant

spatial autocorrelation of error terms, as revealed by statistical tests. Unlike previous studies that

omitted this spatial dimension or used only ex-post corrections, this study demonstrates that omit-

ting solar radiation in the models leads to an underestimation of the effect of precipitation. The

analysis highlights non-linear relationships (inverted U-shaped) between yields and climate variables,

along with the negative impact of extremely high temperatures. Estimates indicate an economic loss

of $595–858 million for the corn and soybean sectors during the decade studied. The projections for

2100, based on the Hadley III model, predict significant yield declines (3 to 12% for corn and 7 to

19% for soybeans), primarily due to higher temperatures. The authors conclude that more rigorous

analyses are needed to inform adaptation policies in China, and their results suggest necessary adap-

tations depending on projected climate change scenarios.

Europe Case Studies

Vaitkeviciute et al. [2019] investigated the impact of climate change on European agriculture by

analyzing the choice of climate variables in Ricardian models and taking into account spatial cor-

relation. Using panel data from the EU Farm Accountancy Data Network (FADN) for the period

2004-2012, aggregated to the FADN regional level (107 regions), the authors tested three hypotheses

related to the use of degree-day models. They compared the results of Ricardian models incorporat-

ing a spatial error model with random effects (SEM-RE) with those of non-spatial models (pooled

OLS, random effects, fixed effects, and a SEM model without random effects) to assess the impact of

18



heterogeneity and spatial autocorrelation. Their analysis revealed the importance of climate variables

outside the growing season, highlighting the risk of underestimating the impacts of climate change if

these data are omitted. Climate change simulations, based on RCP 2.6 and 8.5 scenarios, indicated

heterogeneous impacts on agricultural land values, with potential benefits for northern Europe and

losses for southern Europe. Vaitkeviciute et al. [2019] highlighted the need for effective and efficient

adaptation policies, particularly within the European Common Agricultural Policy (CAP), promot-

ing the development of climate resilient technologies and varieties and considering climate variability

beyond the simple growing season.

Middle East and North Africa (MENA) region Case Studies

Amouzay et al. [2024] investigated the economic impact of climate change on agriculture in the

MENA region using a spatial panel econometric approach. Employing data from 20 countries over

the period 1991–2018, they explicitly addressed spatial autocorrelation by estimating a fixed-effects

spatial error model (FE-SEM) that incorporates spillover effects between neighboring countries. This

model revealed a non-linear relationship between agricultural production and meteorological variables

(temperature and precipitation), with short-term marginal effects varying across countries. A direct

comparison of FE-SEM results with those from a non-spatial (fixed-effects OLS) model demonstrated

the spatial model’s superiority in terms of estimation precision. Simulations based on the SSP5 8.5

scenario (2020–2039) projected a substantial negative impact on the MENA region’s agricultural

production index, with an average decline of -29.1%. These findings, supported by analyses of the

variability in marginal climate impacts across countries, underscore the need for policymakers to

prioritize adaptation strategies, invest in sustainable resource management, and foster international

collaboration to mitigate the effects of climate change on agriculture in the region.

Sub-Saharan Africa Case Studies

Emediegwu et al. [2022] studied the economic impact of climate change on agricultural production

in sub-Saharan Africa, focusing on pearl millet yields, a major cereal for regional food security. Using

panel data from 31 countries over the period 1970-2016, aggregated to the level of main production

areas (MPAs), the authors employed a sophisticated spatio-temporal econometric methodology, in-

corporating a spatial Durbin model (SDM) to capture spatial and temporal correlations in yields and

explanatory variables (temperature, wet-day frequency, vapor pressure deficit). Unlike previous stud-

ies that often neglected spatial effects in sub-Saharan Africa, this analysis highlights the importance

of these effects, showing that local production is influenced by the weather conditions in neighboring

areas. The results, robust to multiple sensitivity checks, confirm the significant and contemporaneous
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impact of local meteorological variables (vapor pressure deficit, wet-day frequency, temperature) on

millet yields. For instance, the direct effect of vapor pressure deficit (VPD) on yield is estimated

at -0.27 in the non-spatial (NS) model and -0.21 in the SDM model, illustrating the attenuation of

the negative VPD effect when spatial effects are integrated. Similarly, the total effect of wet-day

frequency (WDF) increases from 0.023 in the NS model to 0.028 in the SDM model, highlighting

the amplification of the positive impact when spatial diffusion effects are considered. Projections

for 2040-2069, incorporating global climate models (GCMs) under the RCP 8.5 scenario, predict

heterogeneous impacts on yields, with potentially substantial declines in certain regions, particularly

in sub-Saharan Africa. Emediegwu et al. [2022] concluded by emphasizing the importance of con-

sidering the spatial and temporal dimensions of climate change impacts when developing adaptation

policies in sub-Saharan Africa, encouraging the development of climate-resilient technologies and

crop varieties. The comparison with non-spatial models, illustrated by the quantitative differences in

the estimated effects of VPD and WDF, underscores the crucial contribution of spatial modeling for

a better understanding and prediction of climate change impacts on the region’s agricultural systems.

Consequently, the studies reviewed demonstrate that analyzing the impact of climate change

on agriculture necessitates incorporating spatial autocorrelation. Spatial econometric models, unlike

their aspatial counterparts, account for the dependence among geographically proximate observations

(e.g., the influence of neighboring counties, spillover effects), thereby yielding more accurate and

reliable impact estimates. These models explicitly consider regional variations in climate conditions,

soil types, and agricultural practices. Ignoring these spatial interactions leads to biased and unrealistic

results.

4 Conclusion

This paper explored the complexities of quantifying the impacts of climate change on agriculture,

highlighting the limitations of traditional econometric approaches like Ricardian and profit models.

While these models provide valuable insights, they fail to adequately capture spatial dependence,

heterogeneity, and spillover effects that significantly influence agricultural outcomes.

The emergence of spatial econometrics offers a promising alternative by explicitly incorporating

spatial relationships, providing a more nuanced and accurate understanding of climate change im-

pacts. This approach acknowledges that agricultural production, land values, and farmer adaptation

strategies are not isolated phenomena but are influenced by the spatial context, including proximity

to markets, resource sharing, information diffusion, and the spatial correlation of climatic variables.

Our review of pioneering studies employing spatial econometric models (SAR, SEM, SLX, SARAR

and SDM) demonstrates the significance of these approaches. These studies reveal that neglecting
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spatial dependence can lead to biased estimations and inaccurate predictions of climate change im-

pacts. The incorporation of spatial effects often results in smaller marginal effects of climate variables,

suggesting that traditional non-spatial models may overestimate the negative consequences of climate

change. Furthermore, these studies highlight the importance of understanding both direct and indi-

rect impacts, including spillover effects, which can influence agricultural practices and land rents.

However, the use of spatial econometrics presents significant methodological challenges. The

choice of the spatial weights matrix is crucial and strongly influences the results; inadequate specifi-

cation can bias estimations. Furthermore, a distinctive characteristic of spatial asymptotics is that

they can be approached in two ways: by increasing domain (adding observations at the boundaries,

similar to time series asymptotics) or by infill (adding observations within a bounded domain, gener-

ating an increasingly dense surface) [Cressie, 2015]. These two approaches are not equivalent, which

complicates the interpretation of results [Anselin, 2001a]. The presence of spatial weights necessi-

tates the use of Central Limit Theorems (CLTs) and Laws of Large Numbers (LLNs) for triangular

arrays, adding further complexity. Finally, the inherent heteroskedasticity in some spatial models

(particularly SAR and SMA) requires robust and more complex estimation methods [Anselin, 2001a].

Despite the methodological complexities related to data availability, model specification, and esti-

mation, the advantages of spatial econometrics—particularly the significant reduction in bias ampli-

fication due to spatially correlated omitted variables—outweigh the challenges. While this approach

does not completely eliminate bias, it mitigates this amplification effect, leading to more robust

estimates [Ortiz-Bobea, 2015]. The insights derived are crucial for developing effective adaptation

policies tailored to specific regional contexts. Understanding the spatial nuances of climate change

impacts allows policymakers to better guide interventions, allocate resources efficiently, and promote

sustainable agricultural practices. However, the inherent limitations of the hedonic approach, includ-

ing its observational nature and reduced-form specification, must be acknowledged. These limitations,

which may overlook major future changes (e.g., increased atmospheric CO2, aquifer depletion) and

prevent a detailed analysis of farmer adaptation mechanisms, highlight the need for future research

focused on adaptation and data-scarce regions [Ortiz-Bobea and Just, 2013]. The use of bioeconomic

models, which integrate biophysical and economic components for a better understanding of com-

plex interactions, could provide more in-depth explanations of climate change impacts on agriculture

[Lokonon et al., 2019].
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