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Chapter 4 
Competitive Balance 

4.1 Introduction 

People follow sport — either as spectators or through newspapers, television, radio, and the internet 

— for essentially two reasons: first, to witness thrilling displays of skill by individual players, and 

second, to participate in the uncertainty of a close contest in which the tension of an unpredictable 

outcome is maintained into the game’s dying moments. This last factor is particularly important for 

league sports where a commonly held view is that the long-term sustainability of sporting leagues, in 

terms of both retaining the interest of their fans and generating income from games, depends upon the 

degree of unpredictability in the outcome of matches or, in other words, the competitive balance 

(hereafter, CB) in the league. 

  The importance attached to CB is predicated on the belief that it is uncertainty about the 

outcomes of sporting contests that attracts spectators and persuades fans to follow a game through the 

media. In a perfectly balanced competition, each team would have an equal chance of winning each 

match and, therefore, of winning the championship or the league. By contrast, the absence of CB 

would mean that the outcomes of sporting contests would be predictable and, in consequence, the 

numbers following those contests would decline.1 This was termed the ‘league standing effect’ by 

Neal (1964): if a league lacked competitive balance, then fan interest in the weaker teams would 

decline and, eventually, this would also lead to a withering of interest in the stronger teams. Quirk and 

Fort (1997) attributed the demise of the All-American Football Conference to a lack of CB. 

 Indeed, the most colourful example of the importance of CB has been provided by the Nobel-

prize winning economist Amartya Sen in his book, Home in the World: A Memoir (Sen, 2021). Soccer 

in Calcutta (now Kolkata) is infused with a long-standing rivalry between two local teams: Mohun 

Bagan and East Bengal. In the 1940s of Sen’s youth, supporters of Mohun Bagan celebrated a victory 

by feasting on a particular type of fish, ruhi, while supporters of East Bengal, when their team won, 

feasted on a different type of fish, hilsa. Consequently, depending on which team won, the post-match 

 
1 See inter alia Zimbalist (2002); Szymanski (2003, 2007); and Michie and Oughton (2004). 
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price of ruhi or hilsa shot up in response to a sudden surge of demand. The curious thing is that 

fishmongers in Calcutta did not lay in extra supplies of ruhi or hilsa to take advantage of the demand 

surge that they knew would occur. That they did not do so was because, in common with the rest of 

Calcutta, they did not know which of the two evenly matched teams would win. That is competitive 

balance encapsulated in the price of fish!  

 The importance of CB to a league’s success gives rise to the question of how CB should be 

measured (Humphreys, 2002; Michie and Oughton, 2004; Avila-Cano et al., 2021). The general 

theme that underpins these measures is that of inequality analysis. In the context of a league — which 

is the subject of this chapter — the more equitable the inter-team distribution of the total number of 

points associated with the games’ outcomes, the greater will be its CB.  

 However, the identification of competitive balance with inter-team inequality in the 

distribution of league points raises several ancillary questions. First, and foremost, how should 

inequality be measured? One of the drawbacks of existing analyses of CB is that they do not fully 

mine the rich vein of methodology that the study of inequality provides. To use the language of 

Cowell (1995), many of the measures that are currently used came about more or less by accident, 

with concepts borrowed from statistics being pressed into service as tools of inequality measurement.  

 Second, if there is a lack of competitive balance in a league, can one identify its source? Is 

there considerable CB within subgroups of teams in the league but relatively little CB between teams 

in the subgroups? Or does the lack of CB permeate the league in its entirety and affect all the teams? 

One of the problems with measures of CB is that they treat the league as a single unit and do not pay 

heed to the subgroups of teams within the league. Consequently, CB in the league considered in its 

entirety may be low but CB within subgroups of teams may be high as, say, the top teams fight to be 

promoted and the bottom teams fight to avoid relegation.  

 Third, given that the teams in a league enjoy different degrees of success, as measured by 

their end of season points, what is the effective number of teams in a league? In essence, calculating 

the effective number of teams in a league involves assigning a scalar value to a vector of inter-team 

distribution of points. At one extreme, this scalar value will (should) equal the number of teams that 

play in the league. This will occur when points are distributed equally among the teams. However, 
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when the points are distributed unequally between the teams, the effective number of teams will be 

less than the actual number of teams. 

 The focus of most research on CB has been on sports leagues in the USA, particularly in 

baseball (Lenton, 2015). Characteristically these are closed leagues in which promotion and relegation 

do not figure and, in this respect, they differ from European leagues in which both promotion and 

relegation play an important role. The franchise teams of the Indian Premier League (IPL), Australia’s 

Big Bash League (BBL) and Women’s Big Bash League (WBBL), and the Hundred in England, 

however, share the US characteristic of being closed leagues in which teams play a fixed number of 

matches without facing either the threat of demotion or the promise of promotion.2 This chapter 

examines CB in the context of such cricket leagues.3 In doing so, it proposes a general measure of 

competitive balance based on the Generalised Entropy (GE) approach (due to Theil, 1967) to 

measuring inequality and shows how this might be used to study CB, both within and between 

subgroups of teams in a league. 

4.2 Background  

In a sports league consisting of N teams, each team plays every other team twice during a season: 

home and away. There are ( 1)N N× −  independent games: team 1 plays the other 1N − teams twice; 

team 2 plays the other 2N −  teams twice (excluding team 1, whom it has already played); team 3 

plays the other 3N −  teams twice (excluding teams 1 and 2, whom it has already played); and so on. 

Leagues comprising eight teams — such as India’s IPL, and the BBL and WBBL in Australia — 

result in 56 round-robin games with each team playing 14 pre-qualifying matches. If, as is usually the 

case, a team is awarded two points for a win, one point for a tie or no-result, and zero points for a 

defeat then the maximum and minimum number of points a team can obtain are, respectively, 28 (a 

team wins all its matches) and zero (a team loses all its matches). If WX is the total number of matches 

 
2 Other characteristics of these cricket leagues which mirror those of sports leagues in the USA are salary caps 
and the draft system. 
3 In this respect the analysis of this chapter differs from that of Mondal et al. (2021) who examine CB in the 
context of international cricket. The problem with their analysis, as they themselves recognise, is that 
international cricket teams play an unequal number of matches, some countries have not played each other for a 
long time (for example, India and Pakistan), and South Africa was excluded from international cricket from 
1970 until 1991. 
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won by team X at the end of the round-robin then VX=2×WX is its total number of points, where VX is 

a number between 0 and 28 (inclusive).  

 In the absence of ties and no-results, each team, under perfect CB, would be expected to win 

the same number of matches, that is with eight teams, each team should win seven matches and earn 

14 points.4 On the other hand, imperfect CB implies an unequal division of wins between the teams, 

the degree of imperfection increasing with the degree of inequality. Suppose the eight teams were 

ranked in descending order of the points they obtained (say team 1 with the maximum, and team 8 

with the minimum, points). Then inequality would be greatest — competition would be most 

unbalanced — if all the results were perfectly predictable: team 1 wins all its 14 matches, 1 28V = ; 

team 2 wins 12 matches, 2 24V = ; and so on until the last team loses all its games and finishes without 

any points, 8 0V = . 

 Suppose that vX is the share of team X in the total number of points where these shares, over 

all the eight teams, sum to one. Since each of the 56 round-robin matches results in a win, the total 

number of points is 112 and, computed over the eight teams, the average number of points is 14. 

Then, under perfect CB, each team secures the average number of points by winning 7 of its 14 

matches and receiving 14 points with a share of 1/8 in the total number of points (vX=1/8). When CB 

is most imperfect, team 1’s share in the total number of points is v1=28/112=0.25 since it wins all is 

14 matches; team 2’s share in the total number of points is v2=24/112=0.21 since it wins 12 matches; 

team 3’s share in the total number of points is v3=20/112=0.18 and so on until team 8 whose share in 

the total number of points is zero. These points are elaborated in a more general context in the 

mathematical box below. 

  

 
4 In T20 games, ties are resolved by a ‘super over’ and bad weather interruptions are resolved using the 
Duckworth-Lewis method.  
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Box 4.1: Formal Representation of Matches and Points 

In a sports league consisting of N teams, each team plays every other team twice in a season: home and away. Suppose 

that, for every game that it plays, a team is awarded wp points for a win, Tp points for a tie or no-result, and 0 points 

for a loss: 2 .w Tp p≥  Suppose, in a season, a proportion α of games have a winner (loser) and (1-α) end in a tie or no-

result. Consequently, in a season, the total number of wins (W) and ties (T) result in a total (Z) of points awarded in 

the league: 

 
[ ]

2 ( 1) 2 (1 ) ( 1)
( 1) 2 (1 ) ( 1)[( 2 ) 2 ]

w T w T

w T w T T

Z p W p T p N N p N N
N N p p N N p p p

α α
α α α

= + = − + − −

= − + − = − − +
 (4.1) 

Suppose that in a season, team i wins iW games and that iT  of its games end in a tie or no-result. Then team 

i’s end-of-season points are: i w i T iV p W p T= + . Since each team plays 2( 1)N − games, the maximum and minimum 

points a team can obtain in a season are, respectively, 2 ( 1)wp N −  and 0. Consequently, 0 2 ( 1)i wV p N≤ ≤ − . 

If α=1 (that is, all the N(N-1) matches are won/lost, then, under perfect CB, each team would be expected to 

win the same number of games: 1 2 ... ( 1) /NW W W N N N= = = − . So, under perfect competitive balance, each team 

would be expected to end the season with the same number of points: 1 2 ... ( 1)N wV V V p N= = = − . On the other hand, 

imperfect CB implies that the total number of wins would be unequally divided between the teams, the degree of 

imbalance increasing with the degree of inequality. 

 Suppose the teams were ranked in descending order of the points they obtained (say team 1 with the 

maximum, and team N with the minimum, points). Then inequality would be greatest — competition would be most 

unbalanced — if all the results were perfectly predictable: team 1 wins all its 2(N-1) games, 1 2 ( 1)wV p N= − ; team 2 

wins all its 2(N-2) games, 2 2 ( 2)wV p N= − ; and so on till, say, team r, 2 ( )r wV p N r= − ; the Nth team loses all its 

games and finishes without any points, 2 ( ) 0N wV p N N= − = . 

Let the points share of the ith team be denoted by 0iv ≥ , / /i i iv V T V NV= = , where V  is the average number of 

points computed over all the teams and 1 1N
i iv= =∑  . Then under perfect competitive balance, 1/iv N=  and when 

competition is most unbalanced, [2 ( )] / [ ( 1)] 2( ) / ( 1), 1...i w wv p N i p N N N i N N i N= − − = − − = . So, when competition 

is most unbalanced, the points share of the teams would be: 2/N for team 1; [2( 2)] / [ ( 1)]N N N− −  for team 2; till 

[2 / [ ( 1)]N N −  for team N-1 and 0 for team N. 
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4.3 Properties of Inequality Indices and Measures of Inequality 

The measurement of competitive balance, as argued above, is synonymous with the measurement of 

inequality and a ‘good’ measure of inequality should satisfy certain properties:5 

1. The weak principle of transfers (also known as the Pigou-Dalton property): an egalitarian 

transfer of points (that is, from a stronger to a weaker team) causes the value of the inequality 

index to fall and a regressive transfer of points (that is, from a weaker to a stronger team) 

causes it to rise. 

2. Scale independence: if everyone’s quantity (points, income etc.) increased by the same 

proportion, inequality would remain unchanged.6 

3. Population homogeneity: if the population of N teams is replicated, then inequality in this 

larger population of 2×N teams would remain unaltered. 

4. Decomposability: if the population is divided into mutually exclusive groups, a decomposable 

inequality measure is one which can be expressed as the weighted average of inequality 

existing within subgroups and inequality existing between them. More specifically, additive 

decomposability allows total inequality to be expressed as the sum of within-subgroup and 

between-subgroup inequalities. 

Not all inequality measures proposed in the literature satisfy all the above properties and only a 

special class of inequality measures satisfy the fourth property, that of additive decomposability. 

One of the most popular ways of measuring inequality is the Gini coefficient which is computed as 

follows: 

a. First add up the absolute value of the differences in points between the teams. Here, the 

difference in points between teams X and Y are added twice: first as X-Y and then as Y-X. 

Note also, the difference in points between X with itself (zero) is also included. 

Consequently, there are N2 differences.  

 
5 See Coulter (2018, chapter 2) for a discussion of these properties. 
6 For example, if under a new system, the points were awarded as four for a win, two for a tie or no-result, and 
zero for a loss, then each team’s points would double but inequality would remain unchanged. 
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b. Then compute the average of these differences as the sum, computed above, divided by 

N2. 

c. Lastly, express this average as a ratio of twice the average number of points awarded in 

the league. The resulting ratio is the Gini coefficient.  The average in the denominator is 

multiplied by 2 to overcome the problem of double counting differences in the numerator. 

So, G=0.45 implies that the difference in points between two teams chosen at random will be 

90% of the average number of points: if V =14, this difference will be 13 points. On the other hand, 

G=0.2 implies that the difference in points between two teams chosen at random will be 40% of the 

average number of points, that is 6 points. Consequently, higher values of the Gini coefficient are 

associated with higher levels of inequality. 

It is also possible to compute from the Gini coefficient a measure of welfare (W) due to Sen 

(1976). The idea behind this measure, represented by (1 )W V G= − , is that welfare rises with increases 

in the average number of points, V , but falls as inequality in the distribution of points rises. There is 

thus a trade-off between the welfare-enhancing property of the average number of points and the 

welfare-diminishing property of inequality in the points distribution and it is this trade-off that Sen’s 

(1976) welfare measure seeks to capture. 

The Gini coefficient embodies the first three desirable properties of inequality indices, set out 

above, but it does not satisfy the last property, that of decomposability. The Gini coefficient is not 

decomposable in the sense defined above and has seldom been used for this purpose (Bourguignon, 

1979). To analyse decomposition through the lens of decomposability one must turn to entropy-based 

indices. 

 

  

Box 4.2: Mathematical Representation of the Gini coefficient 

If N is the number of teams, Vi is the points of the ith team, and V  is the average of the total number of 

points computed over the N teams, the Gini coefficient is defined as: 2
1 1

Sum of absolute differenes

1 | |
2

N N

i j
i j

G V V
N V = =

= −∑∑


 

 In other words, the Gini coefficient is computed as half the mean of the difference in points between pairs 

of teams, divided by the average number of points (V ).  
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4.4 Entropy-based Inequality Indices 

The term entropy, as used in thermodynamics, means the degree of disorder or randomness in the 

system; in terms of inequality analysis, it means deviations from perfect inequality (Bellù and 

Liberati, 2006). The basic building block of entropy-based inequality measures is deviations of the 

outcomes of individuals (in respect of points for teams, incomes for households) from the mean 

outcome. This deviation is expressed as the average of the difference between individual outcomes 

and the mean outcome. For N individuals, this can be expressed more succinctly as:  

 1 21 1...
N

N i

i

V VV V
N V V V N V
       + + + =                

∑  (4.2) 

where Vi is the individual, and V is the average, outcome. For two special cases, discussed below, it is 

the logarithmic difference of the team points from the mean, 
1

1 log
N

i

i

V
N V=

 
 
 

∑ , that is used. Entropy is 

introduced into the analysis by raising the term in equation (4.2) to the power of a non-negative 

number, 0θ ≥ , to give: 1 N
i

i

V
N V

θ
 
 
 

∑ . The number θ is then the entropy parameter. 

Interpretation of the Entropy Parameter 

How is this parameter to be interpreted? All inequality indices should embody property 1, above, 

for inequality indices: the weak principle of transfers. In the case under discussion, this principle (also 

known as the Pigou-Dalton property: Dalton, 1920) requires that a transfer of points from a ‘stronger’ 

to a ‘weaker’ team should cause the value of the inequality index to fall. But by how much the value 

of the inequality index will fall, following this ‘egalitarian’ points transfer, will depend upon the value 

of the parameter, θ. The value of θ , therefore, measures the ‘transfer sensitivity’ of the inequality 

index: the larger the value of θ, the greater will be the fall in inequality, following an egalitarian 

transfer of points from a stronger to a weaker team. In that sense, the parameter θ represents the 

analyst’s aversion to inequality: the greater the value of θ, the greater the league’s aversion to 

competitive imbalance reflected in a willingness to sacrifice larger amounts of the points of strong 

teams in favour of weak teams.  
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Some Entropy-based Inequality Measures 

Specific entropy-based measures can be obtained by assigning specific values to the entropy 

parameter θ. The most usual values are: θ=0, 1, and 2. When θ=0, the entropy index (EI) is simply 

the mean logarithmic deviation (MLD): 

 

logarithmic deviation

1(0) log
N

i

i

VMLD EI
N V

 = =  
 

∑


 (4.3) 

  When θ=1, the resulting entropy index, known as the Theil index (Theil, 1967), weights the 

individual logarithmic deviations from the mean with everyone’s share of the total: 

 


1

weights logarithmic deviation

1Theil Index (1) log
N

i i

i

V VEI
N V V=

   = = ×   
   

∑


 (4.4) 

 When θ=2, the resulting entropy index is equivalent to the Herfindahl index of concentration: 

 


2

Herfindahl Index

1Herfindhal Equivalent = (2)
2 i
NEI v

N

 
 = −
  
∑  (4.5) 

where vi is the share of the individual in the total. The Herfindahl index (Hirschman, 1964) is a 

popular measure of concentration, used in the industrial economics literature, to measure the degree of 

competition in a market and is defined as the sum of squares of the firms’ market shares: 2

1

N

i
i

v
=
∑ . The 

minimum value of the Herfindahl Index occurs when each firm has an equal share in the total so that 

vi=1/N, 2

1
1 /

N

i
i

v N
=

=∑ and EI(2)=0. Its maximum value occurs when a single firm completely 

dominates the market, leaving nothing for the other firms: v1=1,v2=0…vN=0 implying that the 

Herfindahl index = 1 and (2) ( 1) 2EI N N= × − .  

Decomposability 

Entropy-based inequality measures are important because, as Shorrocks (1980) showed, only 

inequality indices belonging to the family of Entropy Indices are additively decomposable. The 

method of inequality decomposition divides overall inequality into two parts: ‘between-group’ and 

‘within-group’’ inequality. The technical details of how this is achieved are shown in Box 4.3 below 
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with the intuition behind these details set out in the main text here.  When the decomposition is 

additive, overall inequality can be written as the sum of within-group and between-group inequality: 

 
  

overall ineqality within-group inequality between-group inequality
I A B= +   (4.6) 

 Suppose there are two groups: a high-performing group, H and a low-performing group, L 

with four teams in each group. Then the following steps are needed to compute within-group 

inequality, that is, the term A above, and between-group inequality, the term B above. 

1. First compute inequality separately for groups H and L using an entropy index. This entails 

choosing a value of θ. If θ=0, inequality is calculated using the MLD index (see 4.3, above); 

if θ=1, inequality is calculated using the Theil index (see 4.4, above); if θ=2, inequality is 

calculated using a variant of the Herfindahl index (see 4.5, above). The choice of θ will 

depend on the league’s aversion to inequality or, equivalently, to competitive imbalance: the 

greater the aversion, the higher the value of θ chosen. The empirical work of this chapter is 

based on θ=0 which expresses mild inequality aversion. Call the resulting values of inequality 

for groups H and L, respectively, IH and IL. 

2. Then construct the weighted average of IH and IL using weights wH and wL. Then within-group 

inequality (the term A, above) is: H H L LA w I w I= × + × . The weights depend upon the choice of 

θ. In general, if there are N teams divided into K groups with Nk teams in each group, 

Shorrocks (1980) showed that the general form of the weights is: k k
k

N V
w

N V

θ
 = × 
 

.  

If θ=0, k
k

N
w

N
= , that is, the number of teams in group in k, Nk, as a proportion of the total 

number of teams, N. If there are eight teams (N=8) with four teams in each of the H and L 

groups, (Nk=4), then wH=wL=1/2. 

If θ=1, k k
k

N V
w

N V
 = × 
 

, that is, the number of points obtained by group k, k kN V× , as a 

proportion of the total number of league points, N V× . If group H and L receive, respectively 

two-thirds and one-third of the total number of points, then wH=2/3 and wL=1/3. 
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3.  The between-group calculation is computed by setting, for every group, all the team scores in 

a group to that group’s average score and then computing inequality using one of the entropy 

indices. The resulting value is the between-group contribution, B. So, if the average score of 

groups H and L are, respectively,  and H LV V , all the four team scores in group H are set equal 

to HV  , all the four team scores in group L are set equal to LV  and inequality is computed as 

B. 

When inequality is additively decomposed then one can say that the basis on which the individual 

teams were subdivided (say, high/low scoring teams) contributed [(B/I)×100] % to overall inequality, 

the remaining inequality, [(A/I)×100] %, being due to inequality within the team subgroups.  

Inequality decomposition thus provides a way of analysing the extent to which inter-team 

inequality in points is ‘explained’ by the factor (or a set of factors) used to assemble them into groups. 

If, indeed, inequality can be ‘additively decomposed’ then, as Cowell and Jenkins (1995) have shown, 

the proportionate contribution of the between-group component (B) to overall inequality is the income 

inequality literature’s analogue of the R2 statistic used in regression analysis: the size of this 

contribution is a measure of the amount of inequality that can be ‘explained’ by the factor (or factors) 

used to subdivide the sample.   
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Box 4.3: Mathematical Representation of Entropy Indices 

Suppose a random variable x can take values 1... Nx x  with probabilities 1... Np p  , 0 1ip≤ ≤ , 1ip =∑ . 

Hence the information content hi of observing x take the value xi can be regarded as a decreasing 

function of pi: if pi is large/small, then it would not/would be a surprise if ix x=  and so the 

‘information content’, hi of the observation would be small/large (Renyi, 1965). A measure of the 

‘expected amount of information’ or entropy conveyed by the observations, 1... Nx x  is ( )i ie p h p= ∑ . 

A formulation of the function h(.) in terms of a parameter β is: 

 1( )  if 0 and ( ) log( ) if 0zh z h z z
β

β β
β
−

= ≠ = − =  (4.7) 

 The family of information-theoretic measures is obtained by subtracting the actual entropy of the 

distribution of point shares across the N teams, 1... Nv v , from the maximum possible value of this 

entropy which obtains when every team gets an equal share of points ( 1 / , iv N i= ∀ ). This family is 

derived from the definition of h(.) in equation (4.6) and is defined as: 

 1 1

1
2 2

1 1

1 1 1( ) ( )
1

1 1

N N

i i
i i

N N

i i i
i i

H h v h v
N N

v v N v Nβ β β β

β
β

β β β β

= =

− + −

= =

  = −  +   
  = − = −  + +  

∑ ∑

∑ ∑
 (4.8) 

The family of information-theoretic measures, ( )H β in equation (4.7), does not satisfy the principle of 

population homogeneity because of the presence of the term N β− . However, dividing through by N β  

ensures the property is satisfied. 
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4.5 T20 Franchise Teams in Australia, England, and India 

The methodology set out in the previous sections was applied to measuring competitive balance in the 

following closed T20 leagues: the Indian Premier League, the Australian Big Bash and Women’s Big 

Bash Leagues, and the English Women’s Kia Super League (KSL) which ran for four seasons starting 

in 2016 and ending in 2019.7 

The Indian Premier League 

The IPL, which was established in 2008 by the Board of Cricket Control India (BCCI) has, so far, 

completed 13 consecutive annual tournaments with the 14th tournament, which began in April 2021, 

yet to be completed because of the second COVID wave in India. The tournament is usually played 

over six weeks during April and May in various locations in India, with the exceptions of the 2020 

tournament which was played in September in the United Arab Emirates, because of COVID, and the 

 
7 The Kia Super League was replaced in 2020 by the 50-over Rachel Heyhoe Flint Trophy supplemented by the 
T20 Charlotte Edwards Cup. Both involve eight teams playing round-robin matches followed by knock-out 
matches. 

Box 4.3 (continued) 

The generalised entropy measure family of measures is defined by the parameter θ and written: 

 

2
1

2
1

1 1( ) 1

1 1 1 ,  if 0,1

N
i

i

N
i

i

VEI
N V

V
N V

θ

θ

θ
θ θ

θ
θ θ

=

=

   = −    −     
  = − ≠  −    

∑

∑
 (4.9) 

 
1

1Theil Index (1) log
N
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The EI measure in equation (4.8) can be derived from the information theoretic measure of 

equation (4.7) by setting θ=1+β in equation (4.7) and normalising for the population principle by 

multiplying equation (4.7) by N β . 
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2009 tournament which was played in South Africa because of the Indian General Election in that 

year.  

The IPL usually involves eight teams — Chennai Super Kings, Delhi Capitals, Kolkata 

Knight Riders, Mumbai Indians, Punjab Kings, Rajasthan Royals, Royal Challengers Bangalore, 

Sunrisers Hyderabad — but, exceptionally, there were nine teams in 2013, the additional team being 

Pune Warriors India, and in 2011, there were 10 teams, the additional teams being Pune Warriors 

India and Kochi Tuskers Kerala. Sunrisers Hyderabad is a 2014 reincarnation of the earlier Hyderabad 

franchise, Deccan Chargers. 

With eight teams, each team played 14 round-robin (that is, pre-qualifying) matches obtaining 

two points for a win, one for a tie or no-result, and nothing for a defeat. In 2013, each of the nine 

teams played 16 round-robin matches. In 2011, when there were 10 teams, it was felt that the 90 

round-robin matches that the original format would entail, would be excessive. Thus, in order to retain 

the original number of 14 round-robin matches per team, the teams were divided into two groups of 

five (the allocation determined randomly) so that each team: (i) played the other four times in their 

group twice — home and away — resulting in eight games; (ii) played four teams in the other group 

once and the remaining team in the other group twice, resulting in six games. In total, therefore each 

of the 10 teams in 2011 played 14 games at the round-robin stage. 

After the round-robin matches had been completed, the top four teams in the points table (a 

tie involving an equal number of points being resolved by the Net Run Rate) proceeded to the 

playoffs. In these playoffs, the third and fourth ranked teams played an eliminator match, with the 

loser eliminated from the tournament, while the first and second ranked teams played a qualifying 

match, with the winner proceeding to the final of the tournament. There was then another qualifying 

match between the winner of the eliminator and the loser of the first qualifier with the winner of this 

qualifier becoming the second finalist. The last match of the IPL, the finals, was between the winners 

of the first and second qualifiers and the winner of this match was declared the IPL champion for that 

year. 
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The Big Bash and Women’s Big Bash Leagues  

The Big Bash League for men was started in 2011 by Cricket Australia and featured eight city-based 

franchises: Sydney Sixers and Sydney Thunder; Melbourne Renegades and Melbourne Stars; 

Brisbane Heat; Adelaide Strikers; Perth Scorchers; and Hobart Hurricanes. The points structure was 

the same as that of the IPL: two points for a win, one for a tie or no-result, and nothing for a defeat. At 

its inception in 2011, each of the eight BBL teams played seven matches, with each team playing the 

others once; between 2012 and 2016 each team played eight matches — six of the other teams once 

and the remaining team twice. In 2017, each team played 10 matches; and from 2018, the BBL 

adopted the IPL format of each team playing the others twice, resulting in 14 matches for each team. 

After the round-robin matches were completed, there began a series of matches to determine the BBL 

champion. From 2019, this began with an eliminator match between the fourth and fifth teams in the 

points table ranking with the losing team eliminated from the competition. There then followed a 

qualifier match between the first and second teams in the table ranking with the winner proceeding to 

the final. Then, there was a knockout between the team that was third in the table ranking and the 

winner of the eliminator. After that, there was a challenger match between the loser of the qualifier 

and the winner of the knockout. Lastly, the final was contested between the winner of the qualifier 

and the winner of the knockout. So, the BBL had five post-robin matches compared to the IPL’s four. 

The Women’s Big Bash League, which started in 2015, also under the aegis of Cricket 

Australia, was the successor to the Australian Women’s Twenty20 Cup which ran from 2007 to 2014, 

and comprised the same franchise teams as the BBL. The matches are all played in various Australian 

venues from December till February and the teams comprise current and former players from the 

Australian national team supplemented by up to three overseas signings.8 

From its inception, the WBBL adopted the IPL format of each team playing the other teams 

twice — home and away — for a total of 14 matches per team, with two points for a win, one for a tie 

or no-result, and nothing for a defeat. The WBBL schedule is intensive. Unlike the IPL which 

schedules only one game per day and two on Saturday and on Sunday, the WBBL features two games 

 
8 Except that, because of COVID restrictions, all the 2020 matches were played in Sydney. 
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Monday–Friday, and four matches played on Saturday and on Sunday. After the conclusion of the 

round robin matches, the top four teams in the table ranking play semi-finals followed by the final. 

This contrasts with the eliminator, qualifying, knockout, challenger format of the BBL described 

above. 

The Kia Super League 

The England and Wales Cricket Board’s (ECB) T20 Kia Super League ran from 2016 to 2019, being 

replaced in 2021 by the ECB’s Hundred competition and the T20 Charlotte Edwards Cup. The KSL 

comprised six teams with each team hosted or partnered by a county team or a university: Lancashire 

Thunder (hosted/partnered by Lancashire County Cricket Club); Loughborough Lightning 

(hosted/partnered by Loughborough University); Southern Vipers (hosted/partnered by 

Hampshire/Berkshire/Dorset/Isle of Wight/Oxfordshire/Sussex/Wiltshire Cricket Clubs and Solent 

University); Surrey Stars (hosted/partnered by Surrey County Cricket Club); Western Storm 

(hosted/partnered by Somerset/Gloucestershire County Cricket Clubs and Exeter University); 

Yorkshire Diamonds (hosted/partnered by Yorkshire Cricket Club). 

Each of the teams played the other five teams once in 2016 and 2017 and twice in 2018 and 

2019. During the round-robin matches, each team received two points for a win and an additional 

point if their run rate was 25% higher than that of their opponents. After the round-robin matches had 

been concluded there followed a ‘finals day’ in which the second and third placed teams in the league 

table played a semi-final, with the winner facing the first placed team in a final.   

4.6 Competitive Balance in T20 Franchise Teams 

This section puts empirical flesh on the framework for measuring CB in respect of the four closed 

leagues — IPL, BBL, WBBL, and KSL — described in the preceding analysis. The central themes of 

the chapter so far have been, firstly, that CB is synonymous with inequality such that the more 

inequitable the inter-team distribution of total points, the greater will be the imbalance in competition 

and, conversely, competition will be balanced when there is an equitable inter-team distribution of 

total points. In the results presented below, the overall CB in a league is measured using the Gini 

coefficient, described earlier.  
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The second theme of this chapter is that even if competition in unbalanced in the league 

considered in its entirety, it may still be the case that competition is balanced for groups of teams 

within the league. This hypothesis can be tested by examining the contributions of within-group and 

between-group to overall inequality. If the between-group contribution is high then this suggests that, 

even in the face of high overall inequality or lack of CB in the league, there could still be CB within 

groups of teams in the league. As discussed earlier, going down the path of decomposing inequality 

into within- and between-group components requires that inequality be measured using an entropy 

index, the specific form of which is determined by assigning a specific value to θ, the entropy 

parameter. In the analysis of this section, the value of θ is set to zero or, in other words, it is the MLD 

index of equation (4.3) that is used. 

Table 4.1 provides the inequality analysis for the IPL, BBL, WBBL, and KSL. Examining the 

averages of the Gini values over the time periods that the leagues were functioning suggests that 

competition was most balanced (CB was highest) in the IPL with Gini=0.148 and least balanced (CB 

was lowest) in the KSL with Gini=0.245. In the Australian leagues, CB was higher in the WBBL than 

in the BBL with Gini coefficients of, respectively, 0.160 and 0.175. So, comparing the leagues with 

the highest and lowest CB — respectively, the IPL and the KSL — a Gini=0.148 for the IPL implies 

that the difference in points between two teams chosen at random will be 29.6% of the average 

number of points (that is, 4 points for an average of 14) while a Gini=0.245 for the KSL implies that 

the difference in points between two teams chosen at random will be 49% of the average number of 

points (that is, 7.4 points for an average of 15).9 Comparing the men’s and women’s Australian 

leagues, a Gini=0.175 for the BBL implies that the difference in points between two teams chosen at 

random will be 35% of the average number of points (that is, 4 points for an average of 11) while 

Gini=0.160 for the WBBL implies that the difference in points between two teams chosen at random 

will be 32% of the average number of points (that is, 4.5 points for an average of 14). 

<Table 4.1> 

 
9 Remembering that in the KSL additional points were awarded for a suitably high run rate. 
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Examining movements in CB over time, competition has become more balanced in the men’s 

leagues — the IPL and the BBL — as the leagues have grown older. For the IPL, the Gini coefficient 

was 0.219 when it started in 2008 but the last three tournaments show Gini values of 0.111, 0.114, and 

0.076 for, respectively, the years 2018, 2019, and 2020. By contrast, with the passage of time, 

competition has become more unbalanced in the women’s leagues: the WBBL and the KSL. The 

WBBL began with Gini=0.107 when it started in 2015 but this value has climbed steadily since then, 

reaching a peak of Gini=0.212 in 2019 before falling to Gini=0.141 in 2020. The KSL began with 

Gini=0.289 when it started in 2016 and this had increased to Gini=0.299 by 2019 when the KSL was 

wound up. 

The decomposition of inequality by subgroups was examined in the context of two groups: 

for the eight-team IPL, BBL, and WBBL, the first group comprised the four teams that finished 

highest, and the second group comprised the four teams that finished lowest in the round-robin points 

table; for the KSL, with six teams, the first and second groups comprised the three highest and three 

lowest ranked teams, respectively. Overall inequality in points earned by the teams in each of these 

leagues was measured by the MLD index (equation 4.3) and this could then be expressed as the sum 

of within-group and between-group inequality (respectively, terms A and B of equation (4.6)).  

Table 4.1 shows that the average between-group contributions, expressed as a percentage of 

total inequality in points, was 51.2% for the IPL, 64.4% for the BBL, 48.8% for the WBBL, and 

61.5% for the KSL.10 Remembering that the between-group contribution is a measure of the capacity 

of the factor, or factors, used to divide the sample to explain overall inequality (Cowell and Jenkins, 

1995), between half and two-thirds of inequality in the distribution of points in these four leagues 

could be explained by a division of the leagues’ teams into ‘top’ and ‘bottom’ teams. Thus, between 

half and two-thirds of imbalance in competition in these four leagues could be attributed to imbalance 

between the groups of the ‘top’ and ‘bottom’ four teams — ‘top’ and ‘bottom’ three for the KSL — 

with the remainder attributed to imbalance in competition within these groups. Nor were these results 

 
10 In terms of equation (4.6), this is 100B

I
×  
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greatly changed when, instead of using the MLD index (that is, setting θ=0), the Theil and Herfindahl 

indices were used (that is, setting θ=1 and θ=2, respectively).11 

4.7 Competitive Balance by Source of Points 

Competitive balance, in terms of the inter-team distribution of a league’s total points, can also be 

examined in terms of the source of these points in respect of: (i) home matches; (ii) away matches. 

One may, therefore, ask how much of the overall inequality in the distribution of points between the 

league’s teams stems from inequality in the distribution of points from home venue, neutral venue, 

and opposition venue games. This is analogous to identifying the sources of income (wages, 

dividends, benefits etc.) and enquiring about the proportions of overall income inequality that could 

be explained by inequality in the distribution of its different components. 

Shorrocks (1982) showed that the proportionate contribution sj of income component j to 

overall inequality was given by: covariance( , )
variance( )

j
js =

y y
y

, where: and were, respectively, the 

vector of values of income component j (say, wages) and total income across the N income earners 

and 1js =∑ . The decomposition rule embodied in the above equation is unique and invariant in that it 

‘avoided one of the major problems encountered in applied work on distributions: that of having 

constantly to qualify results by stating that they hold only for the particular index selected’ 

(Shorrocks, 1982, p. 205). 

The following steps are required to implement Shorrocks’ (1982) methodology in respect of 

points earned from home and away matches: 

1. Compute the covariance between the number of points earned by the league’s teams from 

home/away matches and their total number of points. Represent these as cov(home points, 

total points) and cov(away points, total points). 

2. Compute the variance of the total points of the teams and represent this as var(total points) 

 
11 The use of θ=2 implies that the competitive imbalance (inequality) was measured using the coefficient of 
variation. The coefficient of variation embodies the property of being transfer neutral: three points transferred 
from the top team to the team ranked second would improve competitive balance (reduce inequality) by as much 
as a transfer of three points from the second-lowest ranked team to the lowest ranked team. 
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3. Then the percentage contributions of inter-team inequality in home and in away points, to 

inter-team inequality in total points, are computed as:  

 home awaycov(home points, total points) cov(away points, total points) and 
var(total points) var(total points)

s s= =  

    The contributions shome and saway were computed for two leagues: the IPL and the Caribbean Premier 

League (CPL). It was not possible to compute the home/away contributions for the BBL, the WBBL, 

and the Kia Super League because matches in most of these leagues were played at neutral venues, 

that is, they were ‘away’ matches. For example, of the roughly 82 matches played in the WBBL from 

its inception in 2015 until 2021, almost all were away matches played at neutral venues. Similarly, of 

the 30 matches played in the KSL between its inception in 2016 and its termination in 2019, nearly 23 

were played as away matches at neutral venues. It was only the IPL and the CPL that had a significant 

demarcation between home and away (that is, played at the opposition’s venue) matches.  

 The CPL is a T20 cricket competition founded by Cricket West Indies (CWI) in 2013. It 

comprises six teams — Barbados Tridents, Guyana Amazon Warriors, Jamaican Tallawahs, St. Kitts 

and Nevis Patriots, St. Lucia Zouks, Trinbago Knight Riders — and while most of the CPL venues are 

in the Caribbean, one of the venues is in Florida. Each of the teams has a well-defined ‘home ground 

— for example, Kensington Oval, Sabina Park, and Queen’s Park Oval are the home grounds of, 

respectively, the Barbados Tridents, the Jamaican Tallawahs, and the Trinbago Knight Riders — and 

there is a clear distinction between home and away matches. 

 Applying Shorrocks’ (1982) analysis to the contribution of inter-team inequality in home and 

away wins to overall inequality in inter-team wins showed that, for the CPL, the distribution of home 

wins contributed 31%, and the distribution of away wins contributed 69%, to overall inequality in 

wins. For the IPL, the contributions of home and away wins were much more muted: the distribution 

of home wins contributed 49%, and the distribution of away wins contributed 51%, to overall 

inequality in wins.  

4.8 Conclusions 

This chapter examined the issue of how competitive balance should be measured against the backdrop 

of four T20 cricket leagues — the IPL, the BBL, the WBBL, and the KSL — where the first two 
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leagues pertained to men’s, and the last two to women’s, cricket. The argument of this chapter was 

that the insights provided by the methods of inequality analysis — in this case, those of generalised 

entropy — deepened our understanding of competitive balance and provided valuable insights into the 

implications of a lack of balance.  

  It was found that when the teams comprising the four leagues were divided by their round-

robin points into the top and bottom halves of the league, half to two-thirds of the leagues’ 

competitive imbalance could be attributed to between-group imbalance. This confirms the conjecture 

that, in its present form, the various T20 leagues are segmented into several (effectively) non-

competing groups: the group of top teams who aspire to proceed to the qualifying stages with the aim 

of winning the league championship, and the group of the bottom teams whose aim, at least for the 

current year, is simply to be part of the league. The competitive aspects of the league take place within 

groups of teams and competitive imbalance results from disparities in personnel and resources 

between the teams. When within-group competition is high then, despite the lack of competition 

between teams in the different groups, a sporting league may still be successful. 

 The use of entropy methods to analyse competitive balance raises the question of what is the 

effective number of teams in a league? In essence, calculating the effective number of teams in a 

league is analogous to calculating the effective number of parties in an electoral system: it involves 

assigning a scalar value to the inter-team distribution of points.12 At one extreme, with perfect 

equality and with all the teams getting an equal number of points, the effective number of teams is the 

actual number of teams in the league. As equality diminishes (equivalently, inequality increases), the 

effective number of teams falls. Consequently, when points are distributed unequally between the 

teams, the effective number of teams will be less than the actual number of teams. League success 

does not require effective competition between all the teams in the league. However, should a league 

seek to move towards more balanced competition between all its teams, an analysis of the effective 

number of teams suggests that a possible solution might be a reduction in the number of teams in the 

league. 

 
12 The concept of the effective number of parties is used in the analysis of electoral systems where votes are 
unequally distributed between parties: see Laasko and Taagepera (1979) and Borooah (2013).  
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Table 4.1: Inequality Analysis for T20 Cricket Franchise Teams 
 Indian Premier 

League (IPL)+ 
Big Bash League 
(BBL)+ 

Women’s Big 
Bash League 
(WBBL)+ 

Kia Super 
League++ 

 Gini Between 
Group 
Inequality* 
(%) 

Gini Between 
Group 
Inequality* 
(%) 

Gini Between 
Group 
Inequality* 
(%) 

Gini Between 
Group 
Inequality* 
(%) 

2020 0.076 59.5 0.106 49.2 0.141 56.2   
2019 0.114 67.9 0.165 49.5 0.212 52.1 0.299 32.0 
2018 0.111 79.6 0.127 54.3 0.194 45.3 0.204 65.0 
2017 0.176 63.2 0.200 63.2 0.196 44.6 0.188 72.5 
2016 0.121 53.1 0.117 73.9 0.112 52.2 0.289 76.3 
2015 0.129 35.3 0.203 74.7 0.107 42.2   
2014 0.205 43.2 0.203 86.1     
2013 0.194 46.1 0.285 58.0     
2012 0.134 15.5 0.134 49.9     
2011 0.142 72.9 0.205 86.7     
2010 0.116 36.9       
2009 0.145 48.6       
2008 0.219 44.2       
Average 0.148 51.2 0.175 64.4 0.160 48.8 0.245 61.5 

+ The standard format for the IPL, BBL, and WBBL is eight teams, each playing 14 matches. In IPL 2013 and 
IPL 2011, however, there were, respectively, nine and 10 teams. In 2011, each BBL team played seven matches; 
between 2012 and 2016, each BBL team played eight matches; in 2017, each BBL team played 10 matches; and, 
from 2018, each BBL team played 14 matches. The eight WBBL teams have always played 14 matches each.  
++ The KSL had six teams with each team playing five matches in 2016 and 2017 and 10 matches in 2018 and 
2919. 
*Percentage of total inequality (as measured by the Mean Logarithmic Deviation (MLD) index) that could be 
explained by inequality between the two groups of the top and the bottom four teams. For IPL 2013, the groups 
were the top four and bottom five teams and, for IPL 2011, the groups were the top and bottom five teams. 
Source: Own calculations using Stephen Jenkins’ ineqdeco command in Stata. 
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