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Abstract

This paper introduces a two-step procedure for convex penalized estimation in dynamic

location-scale models. The method uses a consistent, non-sparse first-step estimator to con-

struct a convex Weighted Least Squares (WLS) optimization problem compatible with the

Least Absolute Shrinkage and Selection Operator (LASSO), addressing challenges associated

with non-convexity and enabling efficient, sparse estimation.

The consistency and asymptotic distribution of the estimator are established, with finite-

sample performance evaluated through Monte Carlo simulations. The method’s practical

utility is demonstrated through an application to electricity prices in France, Belgium, the

Netherlands, and Switzerland, effectively capturing seasonal patterns and external covariates

while ensuring model sparsity.
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1. Introduction

Submodel selection in time series modeling becomes more difficult as the number of model

parameters increases. When the parameter dimension N is small, all 2N submodels can

be evaluated using criteria such as the Akaike Information Criterion (AIC) (Akaike, 1974,

1998) or the Bayesian Information Criterion (BIC) (Schwarz, 1978). However, as N increases,

exhaustive evaluation becomes computationally infeasible and risks overfitting.

Penalized estimation methods address these issues by automating model selection. Among

these, the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) is

widely used, combining estimation and model selection. It has been extensively studied, for

example, in (Fan and Peng, 2004; Zou, 2006; Bunea et al., 2007; Zhang and Huang, 2008;

Chan et al., 2015; Adamek et al., 2023; Nielsen and Rahbek, 2024), among others. Studies

have been done on the sparse estimation for Autoregressive (AR) models and Autoregressive

Conditional Heteroskedasticity (ARCH) models (Engle, 1982) with the Least Squares (LS)

approach: Wang et al. (2007) implemented LASSO techniques to linear regression model with
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AR errors, penalizing both regression and AR coefficients. Nardi and Rinaldo (2011) devel-

oped a LS estimator (LSE) for AR models under a double asymptotic framework, allowing

the maximal AR order to grow with sample size. Kock (2016) studied Adaptive LASSO (Zou,

2006) for non-stationary AR processes and established its “oracle property”. Grouped LASSO

for multivariate ARCH models was explored in Poignard and Fermanian (2021). These ap-

proaches aim to estimate and select model parameters simultaneously to achieve sparsity. The

AR nature of such models allows the construction of estimators from convex LS problems,

simplifying the derivation of the asymptotic properties of M-estimators and facilitating nu-

merical optimization. Still, these models often fail to adequately capture persistence effects

in time series.

To account for the complexity of real-world data, models incorporating persistent compo-

nents, such as Auto-Regressive Moving Average (ARMA) and Generalized ARCH (GARCH)

(Bollerslev, 1986), are essential. At the same time, persistence introduces non-convexity in

estimation, complicating theoretical analysis and numerical optimization. For instance, the

LS loss function for ARMA(p,q) models is non-convex due to the residual structure, which

combines AR terms and recursive MA terms, with the latter introducing non-convexity. Sim-

ilarly, GARCH models often rely on Quasi-Maximum Likelihood (QML) estimation, which is

non-convex and prone to boundary issues (Francq and Thieu, 2019). These approaches in-

herently involve non-convex loss functions, creating challenges such as establishing estimator

asymptotic properties, addressing local optima, and increasing computational costs (Wang

et al., 2014; Loh, 2017).

To mitigate these challenges, Chan and Chen (2011) proposed a two-step adaptive LASSO

estimator for ARMA models. Their method uses residuals from an initial AR model as ex-

ogenous variables, effectively convexifying the LS optimization problem, achieving asymptotic

normality and the “oracle property”. The initial AR order is selected using information cri-

teria. Extending this work, Chan et al. (2020) introduced a non-convex LS approach with

adaptive LASSO penalty for ARMA models with a unit root. They established the asymptotic

properties using piecewise arguments from Ling and McAleer (2010). To address local optima

caused by non-convexity, Chan et al. (2020) proposed an iterative algorithm to identify the

global optimum. Yet, this approach increases computational cost. These approaches either

rely on an auxiliary AR model selected via information criteria, shifting the complexity from

ARMA model selection to AR model selection by information criteria, or face the drawbacks

of non-convex loss functions, necessitating computationally intensive iterative procedures.

Building on the two-step approach of Chan et al. (2020), this work introduces an estimation

method for dynamic location-scale models to address these non-convexity issue. In the first

step, a consistent, non-sparse estimator provides initial parameter estimates. In the second

step, a penalized Weighted LS (WLS) optimization is performed, achieving sparsity while

addressing non-convexity by using the first-step estimate of persistence terms. This approach
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draws on Hannan and McDougall (1988), where AR model residuals were used as exogenous

variables, and Aknouche and Francq (2023), who employed WLS to avoid imposing high-order

moment assumptions on the Data Generating Process (DGP).

The advantages of the proposed method are threefold. First, the proposed method applies

to a broad class of dynamic location-scale models, allowing penalized estimation of the scale

component even when the scale process is indirectly observed through residuals. Second,

the two-step approach, relying on a consistent first-step estimator, addresses non-convexity

from persistent components without depending on auxiliary (information criteria selected)

models to provide proxies for these components. This ensures consistency and asymptotic

properties under mild conditions, as in Fu and Knight (2000), and eliminates the need for high-

order moment assumptions on the DGP, making the method particularly suitable for financial

applications. Third, by convexifying the optimization problem, the approach makes use of

the LARS-LASSO algorithm (Efron et al., 2004) for linear location or scale specifications,

avoiding iterative procedures and significantly reducing computational complexity.

The method’s practical utility is demonstrated through an application to electricity day-

ahead prices. The approach achieves sparsity in the Integrated AR model with GARCH

innovations and exogenous covariates (IARX-GARCHX), identifies seasonal effects known

in electricity markets (Liu and Shi, 2013), and validates the relevance of realized measures

highlighted by Frömmel et al. (2014). Stability analysis reflects the dynamic behavior of

electricity prices, consistent with observations by Janczura and Weron (2012) and Samitas

and Armenatzoglou (2014).

The paper begins with a presentation of the model, notations, and estimator in Section 2.

Section 3 introduces the assumptions and main theorems, proving the strong consistency of the

estimator and deriving its asymptotic distribution in the style of Fu and Knight (2000) under

mild conditions. Section 4 presents Monte Carlo experiments, followed by an application to

electricity prices in France, Belgium, the Netherlands, and Switzerland in Section 5. Detailed

proofs are provided in Appendix I.

2. Convexification with a Two-Step Procedure

This section introduces the mathematical tools and outlines a two-step procedure for con-

vexifying parameter estimation in dynamic location-scale models. The approach is illustrated

with examples of specific models.

2.1. Two-Step Estimator

The reference model is defined as follows:

yt “ µt ` ϵt, (1)

ϵt “ σtηt, (2)
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where tyt, t P Zu and tϵt, t P Zu denote real-valued processes, and tηt, t P Zu is an independent

and identically distributed (i.i.d.) innovation process with zero mean and unit variance. Let

tYYY t, t P Zu and tXXXt, t P Zu represent two vector-valued exogenous processes. The location µt

and the scale σt are assumed to follow the parametric forms:

µt “ m pϵt´1, . . . , yt´1, . . . ,YYY t´1, . . . ;ϕϕϕ0q , (3)

σ2t “ h
`

ϵt´1, . . . , σ
2
t´1, . . . ,XXXt´1, . . . ;θθθ0

˘

ą 0, (4)

where ϕϕϕ0 and θθθ0 are respectively ν-dimensional and n-dimensional parameter vectors that

describe the model. Each belongs to a corresponding compact and convex set: Φ Ă Rν and

Θ Ă Rn. The functions m and h are measurable mappings, where m : R8 ˆ Φ ÞÑ R and

h : R8 ˆΘ ÞÑ R. To build the two-step optimization problem based on the parameteric forms

(3)-(4), the following recursive functions are assumed to exist:

ϕϕϕ ÞÑ µt pϕϕϕq “ m pϵt´1 pϕϕϕq , . . . , yt´1, . . . ,YYY t´1, . . . ;ϕϕϕq , (5)

ϕϕϕ ÞÑ ϵt pϕϕϕq “ yt ´ µt pϕϕϕq , (6)

pϕϕϕ,θθθq ÞÑ σ2t pϕϕϕ,θθθq “ h
`

ϵt´1 pϕϕϕq , . . . , σ2t´1 pϕϕϕ,θθθq , . . . ,XXXt´1, . . . ;θθθ
˘

. (7)

The functions (5), (6) and (7) are referred to as the “recursive mean”, “recursive error”, and

“recursive variance”, respectively. Since ϵt is not directly observed, the recursive variance

function depends on two parameters, pϕϕϕ,θθθq: the parameter ϕϕϕ is used to compute the recursive

errors, providing a proxy for ϵt in the parametric form (4).

Consider the simple case of an ARMA(1,1) for which ϵt pϕϕϕ0q “ yt ´ a0yt´1 ´ b0ϵt´1 pϕϕϕ0q

with ϕϕϕ0 “ pa0, b0q
1. The function ϵ2t p¨q is non-convex, and thus the LSE of ϕϕϕ0 is a non-convex

optimization problem:

ϕϕϕ ÞÑ
ÿT

t“1
ϵ2t pϕϕϕq . (8)

Now, if a first-step estimator pϕϕϕ
p1q

is available, one can define a second-step penalized LSE of

ϕϕϕ0 by minimizing the convex objective function:

ϕϕϕ ÞÑ
ÿT

t“1

ˆ

yt ´ ayt´1 ´ bϵt´1

ˆ

pϕϕϕ
p1q
˙˙2

` pT pϕϕϕq ,

where ϕϕϕ “ pa, bq1 and pT p¨q is a LASSO-type penalty term. Applying this idea in a general

context, a “two-step mean” function and a “two-step variance” function are introduced and

defined as follows:

ϕϕϕ,υυυ P Φ, ft pϕϕϕ,υυυq “ m pϵt´1 pϕϕϕq , . . . , yt´1, . . . ,YYY t´1, . . . ;υυυq , (9)
`

ϕϕϕ1, θθθ1,ψψψ1
˘1

P Φ ˆ Θ ˆ Θ, gt pϕϕϕ,θθθ,ψψψq “ h
`

ϵt´1 pϕϕϕq , . . . , σ2t´1 pϕϕϕ,θθθq , . . . ,XXXt´1, . . . ;ψψψ
˘

. (10)
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A more intuitive understanding of these two-step functions is provided in the next section

through illustrative examples. The following WLS loss functions are defined to target the

estimation of specific components of the model:

LT pϕϕϕ,υυυq “
ÿT

t“1
lt pϕϕϕ,υυυq with lt pϕϕϕ,υυυq “

´

yt´ftpϕϕϕ,υυυq

wt

¯2
, (11)

L˚
T pϕϕϕ,θθθ,ψψψq “

ÿT

t“1
l˚t pϕϕϕ,θθθ,ψψψq with l˚t pϕϕϕ,θθθ,ψψψq “

´

ϵ2t pϕϕϕq´gtpϕϕϕ,θθθ,ψψψq

w˚
t

¯2
, (12)

where the weight processes wt and w˚
t , introduced to control the moments required for the

procedure to converge, are defined as two measurable functions of the past observations,

mapping R8 to rω,8q and rω˚,8q, respectively, such that:

wt “ w pyt´1, . . . ,YYY t´1, . . . ,XXXt´1, . . .q ě ω ą 0,

w˚
t “ w˚ pyt´1, . . . ,YYY t´1, . . . ,XXXt´1, . . .q ě ω˚ ą 0.

Adding LASSO penalties to (11)-(12) gives the penalized loss functions:

QT pϕϕϕ,υυυq “
LT pϕϕϕ,υυυq`pT pυυυq

T with pT pυυυq “
ÿ

jPS
λT,j |υj | , (13)

Q˚
T pϕϕϕ,θθθ,ψψψq “

L˚
T pϕϕϕ,θθθ,ψψψq`p˚

T pψψψq

T with p˚
T pψψψq “

ÿ

jPS˚
λ˚
T,j |ψj | , (14)

where S Ă t1, . . . , νu and S˚ Ă t1, . . . , nu denote the sets of indices of the vectors υυυ

and ψψψ (respectively) to penalize. The sequences pλλλT qTPN “
`

pλT,iqiPS
˘

TPN and pλλλ˚
T qTPN “

´´

λ˚
T,i

¯

iPS˚

¯

TPN
are vectors with non-negative, deterministic components.

These loss functions assume that the process is fully observed, meaning all its infinite past

values are known. In practice, however, only a finite sample tOOOt, t P t1, . . . , T uu is available,

whereOOOt “ pyt,YYY
1
t,XXX

1
tq

1. Consequently, the previously defined functions can only be computed

with truncation, as observations are unavailable for the distant past. Let rOOO0, rOOO´1, . . . be initial

values used to replace OOO0,OOO´1, . . .. The truncated versions of µt, ϵt, σ
2
t , gt, ft, wt, and w

˚
t ,

denoted as rµt, rϵt, rσ
2
t , rgt,

rft, rwt, and rw˚
t , are obtained by substituting OOO0,OOO´1, . . . with the

initial values in equations (5)-(14). Similarly, rQT , rLT , rlt, rQ˚
T ,

rL˚
T and rl˚t are defined by

replacing their respective functions with these truncated forms. Under mild assumptions, it is

shown that these initial values become asymptotically irrelevant in the estimation framework.

The convexified WLS problem can now be formulated. First, note that for a wide range

of model specifications, the functions rLT pϕϕϕ, ¨q and rL˚
T pϕϕϕ,θθθ, ¨q are convex. Given a strongly

consistent estimator

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T

˙

of pϕϕϕ0, θθθ0q obtained from the observed sample, the functions

rLT

ˆ

pϕϕϕ
p1q

T , ¨

˙

and rL˚
T

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T , ¨

˙

also remain convex. This leads to the following two-step

convex estimation procedure:
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Algorithm 1 Two-Step Estimation Procedure

Step 1: Compute

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T

˙

.

Step 2-1: Minimize υυυ ÞÑ rQT

ˆ

pϕϕϕ
p1q

T ,υυυ

˙

, yielding pϕϕϕT .

Step 2-2: Minimize ψψψ ÞÑ rQ˚
T

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T ,ψψψ

˙

, yielding pθθθT .

The objective of this study is to establish the asymptotic properties of the resulting esti-

mators.

2.2. Examples for Specific Models

This section gives examples to explain the two-step procedure. It shows how to estimate

the location parameter using (13) and why the scale parameter needs the more general loss

function (14).

2.2.1. ARMAX(1,1) Model

Suppose the DGP follows the ARMAX model:

yt “
`

yt´1, ϵt´1,YYY
1
t´1

˘

ϕϕϕ0 ` ϵt.

Assume a first step estimator pϕϕϕ
p1q

T of ϕϕϕ0, such as the LSE, is available. Using this estimator,

the residuals are:

rϵ0

ˆ

pϕϕϕ
p1q

T

˙

“ rϵ0 and rϵt

ˆ

pϕϕϕ
p1q

T

˙

“ yt ´

ˆ

yt´1,rϵt´1

ˆ

pϕϕϕ
p1q

T

˙

,YYY 1
t´1

˙

pϕϕϕ
p1q

T . (15)

Using the two-step mean function, the following expression is obtained:

rft

ˆ

pϕϕϕ
p1q

T ,υυυ

˙

“

ˆ

yt´1,rϵt´1

ˆ

pϕϕϕ
p1q

T

˙

,YYY 1
t´1

˙

υυυ.

The two-step mean function is linear in υυυ, which ensures that the minimization problem in

Step 2-1 is convex. This convexity arises because the residuals, computed from pϕϕϕ
p1q

T , are

treated as exogenous in the optimization problem.

2.2.2. GARCHX(1,1) Model

Suppose the DGP follows the GARCHX(1,1) model:

σ2t “
`

1, ϵ2t´1, σ
2
t´1,XXX

1
t´1

˘

θθθ0 ą 0,

ϵt “ σtηt,
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where the parameter θθθ0 and the exogenous process tXXXt, t P Zu are non-negative to ensure

that the conditional variance remains positive with probability one. The squared process
␣

ϵ2t , t P Z
(

can be expressed as:

ϵ2t “
`

1, ϵ2t´1, σ
2
t´1,XXX

1
t´1

˘

θθθ0 ` σ2t
`

η2t ´ 1
˘

.

This shows that
␣

ϵ2t , t P Z
(

behaves as a location model, where the term σ2t acts as a location

component. With appropriate assumptions on the moments of η2t , this problem can be adapted

to Step 2-1. A natural choice for the first-step estimator pθθθ
p1q

T of θθθ0 is the QMLE.

2.2.3. ARMAX(1,1)-GARCHX(1,1) Model

Suppose the DGP follows the ARMAX(1,1)-GARCHX(1,1) model:

yt “
`

yt´1, ϵt´1,YYY
1
t´1

˘

ϕϕϕ0 ` ϵt,

σ2t “
`

1, ϵ2t´1, σ
2
t´1,XXX

1
t´1

˘

θθθ0 ą 0,

ϵt “ σtηt,

The penalized estimator pϕϕϕT of ϕϕϕ0 remains the same as in the ARMAX(1,1) case. However,

the penalized estimation of θθθ0 requires a different approach. After computing the first-step

estimator

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T

˙

of pϕϕϕ0, θθθ0q, only the residuals (15) are observed rather than the true

values of the underlying GARCHX(1,1) process. As a result, the loss function (13) is no longer

suitable, as it must account for the approximation rϵt p¨q. To address this, the loss function

(14) is formulated as an adaptation of (13). This formulation leads to the minimization

problem defined in Step 2-2, enabling estimation of θθθ0 while accounting for the residual-

based approximation.

All the previously discussed examples are compatible with the LARS-LASSO algorithm,

which efficiently computes the full LASSO path. The best sub-model is selected in a final

step using criteria such as AIC or BIC. This method reduces computational complexity and

achieves significant efficiency gains.

3. Theoretical Results

This section establishes the strong consistency and derives the asymptotic distributions of

the two-step estimators. Let Ft denote the sigma-field generated by tOOOu, u ď tu, and consider

the following assumption.

A0 The process
␣

pyt, ϵtq
1 , t P Z

(

is a solution to (1)-(4) and
␣

pyt, ϵt,YYY
1
t,XXX

1
tq

1 , t P Z
(

is strictly

stationary, ergodic, and non-anticipative with respect to the filtration F , with ηt independent

of Ft´1.
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This assumption is maintained throughout. The discussion begins with the results for

location parameter estimator, followed by those of the scale parameter estimator.

3.1. Location Parameter Estimator

The consistency of pϕϕϕT is established under the following assumptions.

A1
`

1 ` |yt| ` supΦˆΦ |ft|
˘

at
a.s.

ÝÝÝÑ
tÑ8

0, with at “ supΦˆΦ

ˇ

ˇ

ˇ

rft ´ ft

ˇ

ˇ

ˇ
.

A2
`

1 ` y2t ` supΦˆΦ f
2
t

˘

dt
a.s.

ÝÝÝÑ
tÑ8

0, with dt “
ˇ

ˇ

rw2
t ´ w2

t

ˇ

ˇ.

A3 E
„

´

σt
wt

¯2
ȷ

ă 8.

In the following, the gradient and Hessian with respect to px1, . . . , xkq in Rk, k P N, are
denoted by ∇x1,...,xk and ∇2

x1,...,xk
, respectively. When taken with respect to all parameters

of a function, they are written as ∇ and ∇2. The norm ||¨|| refers to a deterministic vector or

matrix norm, depending on the context.

A4 There exists a neighborhood V pϕϕϕ0q Ă Φ of ϕϕϕ0 such that ft is a.s. of class C
1 on V pϕϕϕ0qˆ

˝

Φ

and E
„

´

Mt
wt

¯2
ȷ

ă 8 with Mt “ sup
Vpϕϕϕ0qˆ

˝

Φ
||∇ft|| where

˝

Φ stands for the interior of Φ.

A5 pϕϕϕ0,1I1RS , . . . ,ϕϕϕ0,νIνRSq
1

P
˝

Φ, with I denoting the indicator function.

A6 pϕϕϕ
p1q

T
a.s.

ÝÝÝÑ
TÑ8

ϕϕϕ0.

A7 @ϕϕϕ P V pϕϕϕ0q, the functions lt pϕϕϕ, ¨q and rlt pϕϕϕ, ¨q are a.s. strictly convex on Φ.

Assumptions A1 and A2 ensure that initial values have no impact asymptotically. These

assumptions are broadly applicable since the influence of initial values diminishes exponen-

tially in many models. The choice of the weight process twt, t P Zu is guided by the Assump-

tion A3, which avoids the need for high-order moments of the DGP. Assumption A4 requires

that the true parameter ϕϕϕ0 lie in the interior of the parameter space Φ and Assumption A5

is sufficient to avoid boundary issues. Since the L1 penalty induces a shrinkage effect on the

estimator, there is a non-zero probability that it lies on the segment between 000 and ϕϕϕ0. Φ

must be defined so that ϕϕϕ0 P
˝

Φ and for each penalized component i P S, the corresponding

dimension in Φ includes 0 in its interior. This is not restrictive since the estimator is based

on WLS, it suffices to choose Φ large enough. Lastly, Assumption A7 is generally straightfor-

ward; for instance, in models like ARMAX, GARCHX, or GJR-GARCHX, the loss function

υυυ ÞÑ lt pϕϕϕ,υυυq is convex.

Remark 3.1. If the observed process is tϵt, t P Zu, following a scale model defined by (2) and

(4), it follows that ϵ2t “ σ2t ` σ2t
`

η2t ´ 1
˘

. It is a location process with a weak white noise as

error term. To apply the results of this section in the context of scale models, an additional

moment assumption on ηt is required:
`

η2t ´ 1
˘

must have a finite second order moment.
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Under the previous assumptions, the following consistency result can be stated.

Theorem 3.1. Assume that 1
TλλλT ÝÝÝÑ

TÑ8
ιιι8 ă `8 component-wise. Then, under Assump-

tions A0, A3-A4, the function Q8 pϕϕϕ,υυυq :“ E rl1 pϕϕϕ,υυυqs `
ř

jPS ι8,j |υj | exists. Adding As-

sumptions A1-A2 and A5-A7, the following holds:

pϕϕϕT
a.s.

ÝÝÝÑ
TÑ8

argmin
υυυPΦ

Q8 pϕϕϕ0,υυυq .

If ιιι8 “ 000, then pϕϕϕT
a.s.

ÝÝÝÑ
TÑ8

ϕϕϕ0.

Theorem 3.1 demonstrates that the estimator converges to a biased limit when ιιι8 is non-

zero. To derive the asymptotic distribution, 1
TλλλT must converge to 000 at an appropriate rate.

The asymptotic distribution of the estimator is established under the following assumptions.

A8 E
„

´

σt
wt

¯4
ȷ

ă 8.

A9 The function ft is a.s. of class C
2 on V pϕϕϕ0q ˆ V pϕϕϕ0q and E

„

´

Mt
wt

¯4
`

´

Kt
wt

¯2
ȷ

ă 8, with

Mt “ supVpϕϕϕ0qˆVpϕϕϕ0q ||∇ft pϕϕϕ,υυυq||,

Kt “ supVpϕϕϕ0qˆVpϕϕϕ0q

ˇ

ˇ

ˇ

ˇ∇2ft pϕϕϕ,υυυq
ˇ

ˇ

ˇ

ˇ .

Throughout, for a symmetric positive definite matrix JJJ , the norm xxx ÞÑ
?
xxx1JJJxxx is denoted

by ||¨||JJJ .

A10 There is a closed and convex subset C of Rν and a sequence of symmetric positive definite

ν ˆ ν matrices pJJJ T qTPN converging a.s. to a symmetric positive definite matrix JJJ such that:

?
T

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙

“ argmin
ξξξPC

||ZZZT ´ ξξξ||JJJ T
` oP p1q with ZZZT “ 1?

T

ÿT

t“1
∆∆∆tγ pηtq ,

where ∆∆∆t is an Ft´1-measurable ν ˆ k matrix for some positive integer k and γ : R Ñ Rk is a

measurable function such that ∆∆∆t and γ pηtq belong to L2, E rγ pηtqs “ 000 and V rγ pηtqs “: ΓΓΓ.

A11 Letting bt “ supΦˆΦ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ft ´ ∇ rft

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
, the sequences:

dt sup ||∇ft||
`

1 ` |yt| ` supΦˆΦ |ft|
˘

,

at sup
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ rft

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
,

bt
`

1 ` |yt| ` supΦˆΦ |ft|
˘

,

are a.s. of order O pt´κq for some κ ą 1
2 .
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Assumption A10, based on Francq and Zaköıan (2018), addresses cases where the true

parameter ϕϕϕ0 lies on the boundary of the domain for the first-stage estimator pϕϕϕ
p1q

T . This

situation arises, for example, when the first-stage estimator is a QMLE for a GARCH model

with at least one parameter equal to zero. Additional examples can be found in Francq and

Zaköıan (2019) for GARCH models, Francq and Thieu (2019) for APARCHX models, and

Andrews (1999) for more general cases. Since this study focuses on a penalized estimator, the

true parameter ϕϕϕ0 is expected to be sparse, making boundary issues in the first stage likely.

Assumption A11 ensures that initial values are asymptotically irrelevant when deriving the

estimator’s asymptotic distribution. The remaining assumptions extend those in Theorem

3.1.

The asymptotic behavior of pϕϕϕT is derived by studying the asymptotic properties of the

argmin of the following function (and its truncated version). This function, inspired by Fu

and Knight (2000), is defined for φφφ in Rν by:

ΛT pφφφq “ YT pφφφq`pT

ˆ

φφφ
?
T

`ϕϕϕ0

˙

´pT pϕϕϕ0q where YT pφφφq “ LT

ˆ

ϕϕϕ
p1q

T ,
φφφ

?
T

`ϕϕϕ0

˙

´LT pϕϕϕ0,ϕϕϕ0q .

It is straightforward to observe that
?
T
´

pϕϕϕT ´ϕϕϕ0

¯

is the argmin of rΛT , the truncated version

of ΛT . The analysis proceeds by expanding LT on a neighborhood of pϕϕϕ0,ϕϕϕ0q. This expansion

is valid under Assumption B9 and since 1
TλλλT ÝÝÝÑ

TÑ8
000, which means that pϕϕϕT

a.s.
ÝÝÝÑ
TÑ8

ϕϕϕ0 ac-

cording to Theorem 3.1. With the rate of convergence of 1
TλλλT discussed later. The expansion

yields a function that is a continuous transformation of a Gaussian vector, leading to the

asymptotic distribution result.

Before stating the next result, define P pxxxq “ xxxxxx1, for a matrix or column vector xxx. Under

the previous assumptions, the following quantities are well-defined:

`

WWW
ZZZ

˘

„ N
´

000,
´

Ipϕϕϕ0q Rpϕϕϕ0q

Rpϕϕϕ0q
1 ΣΣΣ

¯¯

,

I pϕϕϕ0q “ 4E
„

P

ˆ

σ1
w2
1

∇f1 pϕϕϕ0,ϕϕϕ0q

˙ȷ

,

R pϕϕϕ0q “ E
„

2σ1
w2
1

∇f1 pϕϕϕ0,ϕϕϕ0qE
“

η1γ
1 pη1q

‰

∆∆∆1
1

ȷ

,

ΣΣΣ “ V r∆∆∆1γ pη1qs “ V
”

∆∆∆1ΓΓΓ
1
2

ı

.

The boundary issues of the initial estimator pϕϕϕ
p1q

T , as described in Assumption A10, lead to

the following projection of the Gaussian vector:

WWW “

´

WWW
argminξξξPC ||ZZZ´ξξξ||JJJ

¯

.
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For further details, see Lemma I.6. Lemma I.7 establishes that this projected vector appears

in the quadratic form characterizing the asymptotic distribution of YT , specifically:

Y8 pφφφq :“
`WWW
φφφ

˘1
M pϕϕϕ0q

`WWW
φφφ

˘

with M pϕϕϕ0q “ DDD1
2

„

DDD1 `
1

2
J pϕϕϕ0qDDD2

ȷ

,

whereDDD1 “

´

III2ν 0002ν

¯

,DDD2 “

´

0002ν III2ν

¯

, and III2ν denotes the 2νˆ2ν identity matrix, while

0002ν denotes the 2νˆ 2ν zero matrix and J pϕϕϕ0q “ 2E
”

P
´

∇f1pϕϕϕ0,ϕϕϕ0q

w1

¯ı

exists as in Lemma I.5.

Theorem 3.2. Assume that 1?
T
λλλT ÝÝÝÑ

TÑ8
ιιι˚8 ă `8 component-wise. Then, under Assump-

tions A0-A2, A6-A11, the following holds:

?
T
´

pϕϕϕT ´ϕϕϕ0

¯

d
ÝÝÝÑ
TÑ8

arg min
φφφPRν

Λ8 pφφφq ,

with Λ8 pφφφq “ Y8 pφφφq `
ř

jPS ι8,j

“

φjsign pϕ0,jq Iϕ0,j‰0 ` |φj | Iϕ0,j“0

‰

.

Theorem 3.2 demonstrates that if 1
TλλλT converges to zero at an appropriate rate, the lim-

iting distribution remains influenced by the LASSO shrinkage effect, even when the estimator

is asymptotically unbiased. However, if 1?
T
λλλT ÝÝÝÑ

TÑ8
000, the asymptotic distribution coincides

with that of a WLSE without penalty.

In this section, it was shown that pϕϕϕT is strongly consistent and its asymptotic distribution

was derived under standard assumptions, assuming direct observation of process realizations

without proxies. The next section focuses on the scale part, where the scale parameter is

estimated from the residuals computed from the first-step estimator.

3.2. Scale Parameter Estimator

In this section, it is assumed that a first-stage estimator

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T

˙

is available. The

parameters of the location component can be estimated separately, as previously described,

without accounting for the scale component. However, estimating the scale component re-

quires certain adaptations. Specifically, in the location-scale case, the process tϵt, t P Zu is not

directly observed; only residuals derived from the first-step estimation (via pϕϕϕ
p1q

T ) are available.

Thus, assumptions on the functions describing these residuals must be introduced.

The consistency of pθθθT is established under the following assumptions.

B1 a˚
t

“

1 ` y2t ` supΦ µ
2
t ` supΦˆΘˆΘ |gt|

‰ a.s.
ÝÝÝÑ
tÑ8

0, with

a˚
t “ sup |µt pϕϕϕq ´ rµt pϕϕϕq| p1 ` sup |µt pϕϕϕq|q ` sup |rgt ´ gt|.

B2 d˚
t

“

1 ` y4t ` supΘ µ
4
t ` supΦˆΘˆΘ g

2
t

‰ a.s.
ÝÝÝÑ
tÑ8

0, with d˚
t “

ˇ

ˇ

ˇ
rw˚2

t ´ w˚2

t

ˇ

ˇ

ˇ
.

B3 E
„

´

σ2
t

w˚
t

¯2
ȷ

ă 8.
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B4 There exists two neighborhoods V pϕϕϕ0q Ă Φ of ϕϕϕ0 and V pθθθ0q Ă Θ of θθθ0 such that

gt and µt p¨q are a.s. of class C1 on V pϕϕϕ0q ˆ V pθθθ0q ˆ
˝

Θ and V pϕϕϕ0q, respectively, and

E
„

´

Gt
w˚
t

¯2
`

´

E2
t

w˚
t

¯2
ȷ

ă 8, with

Gt “ sup
Vpϕϕϕ0qˆVpθθθ0qˆ

˝

Θ
||∇gt|| ,

Et “ supVpϕϕϕ0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bµt
Bϕϕϕ pϕϕϕq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
.

B5
`

θθθ0,1I1RS˚ , . . . , θθθ0,νIνRS˚

˘1
P

˝

Θ.

B6

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T

˙

a.s.
ÝÝÝÑ
TÑ8

pϕϕϕ0, θθθ0q.

B7 @ pϕϕϕ,θθθq P V pϕϕϕ0q ˆ V pθθθ0q, the functions l˚t pϕϕϕ,θθθ, ¨q and rl˚t pϕϕϕ,θθθ, ¨q are strictly convex on Θ.

The equivalence between the assumptions in the previous sections and those stated here

is straightforward.

Theorem 3.3. Assume that 1
Tλλλ

˚
T ÝÝÝÑ

TÑ8
ιιι˚8 ă `8 component-wise. Then, under As-

sumptions A0, B3-B4, the function Q˚
8 pϕϕϕ0, θθθ0,ψψψq :“ E rl˚1 pϕϕϕ0, θθθ0,ψψψqs `

ř

jPS˚ ι˚j,8 |ψj | exists.

Adding B1-B2, B5-B7, the following holds:

pθθθT
a.s.

ÝÝÝÑ
TÑ8

argmin
ψψψPΘ

Q˚
8 pϕϕϕ0, θθθ0,ψψψq .

If ιιι˚8 “ 000, then pθθθT
a.s.

ÝÝÝÑ
TÑ8

θθθ0.

Remark 3.2. When 1
TλλλT ÝÝÝÑ

TÑ8
000, the penalized location estimator pϕϕϕT converges almost

surely to ϕϕϕ0 as stated in Theorem 3.1. As a result, Assumption B6 is satisfied. This allows
pθθθT to be computed using the residuals rϵt

´

pϕϕϕT

¯

. In other words, pϕϕϕT replaces pϕϕϕ
p1q

T in ψψψ ÞÑ

rQ˚
T

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T ,ψψψ

˙

during Step 2-2.

The consistency of pθθθT follows from arguments nearly identical to those in the previous

section. However, deriving the asymptotic distribution requires additional assumptions on

the distribution of ηt.

B8 E
„

´

σ2
t

w˚
t

¯4
` η6t

ȷ

ă 8 and E
“

η3t
‰

“ 0.

B9 The functions ϵt p¨q and gt are almost surely of class C2 on V pϕϕϕ0q and V pϕϕϕ0q ˆ V pθθθ0q ˆ
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V pθθθ0q, respectively, and E
„

´

Gt
w˚
t

¯4
`

´

Ht

w˚
t

¯2
`

´

E2
t

w˚
t

¯4
`

´

ζ2t
w˚
t

¯2
ȷ

ă 8, with

Et “ supVpϕϕϕ0q ||∇ϵt pϕϕϕq|| ,

ζt “ supVpϕϕϕ0q

ˇ

ˇ

ˇ

ˇ∇2ϵt pϕϕϕq
ˇ

ˇ

ˇ

ˇ ,

Gt “ supVpϕϕϕ0qˆVpθθθ0qˆVpθθθ0q ||∇gt pϕϕϕ,θθθ,ψψψq|| ,

Ht “ supVpϕϕϕ0qˆVpθθθ0qˆVpθθθ0q

ˇ

ˇ

ˇ

ˇ∇2gt pϕϕϕ,θθθ,ψψψq
ˇ

ˇ

ˇ

ˇ .

B10 Let τ “ ν`n. There is a closed and convex subset C˚ of Rτ and a sequence of symmetric

positive definite τˆτ matrices pJJJ ˚
T qTPN converging a.s. to a symmetric positive definite matrix

JJJ ˚ such that:

?
T

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

pθθθ
p1q

T ´θθθ0

˙

“ arg min
ξξξPC˚

||ZZZ˚
T ´ ξξξ||JJJ ˚

T
` oP p1q with ZZZ˚

T “ 1?
T

ÿT

t“1
∆∆∆˚
t γ

˚ pηtq ,

where ∆∆∆˚
t is an Ft´1-measurable τ ˆk matrix for some positive integer k and γ˚ : R Ñ Rk is a

measurable function such that ∆∆∆˚
t and γ˚ pηtq belong to L2, E rγ˚ pηtqs “ 000 and V rγ˚ pηtqs “:

ΓΓΓ˚.

B11 Letting

b˚
t “ sup |µt ´ rµt| sup ||∇µt|| ` p1 ` |yt| ` sup |µt|q ||∇µt ´ ∇rµt|| ` sup ||∇gt ´ ∇rgt|| ,

the sequences

d˚
t

´

1 ` |yt|
2

` supΦ |µt|
2

` supΦˆΘˆΘ |gt|
¯

`

p1 ` |yt| ` supΦ |µt|q supΦ ||∇µt pϕϕϕq|| ` supΦˆΦ ||∇gt||
˘

,

a˚
t

“

p1 ` |yt| ` supΦ |µt|q supΦ ||∇µt pϕϕϕq|| ` supΦˆΦ ||∇gt||
‰

,

b˚
t

´

1 ` |yt|
2

` supΦ |µt|
2

` supΦˆΘˆΘ |gt|
¯

,

are a.s. of order O pt´κq for some κ ą 1
2 .

As in the previous section, the asymptotic behavior of pθθθT is derived using the function

defined for ϑϑϑ P Rn as follows:

Λ˚
T pϑϑϑq “ Y˚

T pϑϑϑq`p˚
T

ˆ

ϑϑϑ
?
T

` θθθ0

˙

´p˚
T pθθθ0q where Y˚

T pϑϑϑq “ L˚
T

ˆ

ϕϕϕ
p1q

T , θθθ
p1q

T ,
ϑϑϑ

?
T

` θθθ0

˙

´L˚
T pϕϕϕ0, θθθ0, θθθ0q .
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The following objects exist under the previous assumptions:

`

WWW˚

ZZZ˚

˘

„ N
´

000,
´

I˚pϕϕϕ0,θθθ0q R˚pϕϕϕ0,θθθ0q

R˚pϕϕϕ0,θθθ0q
1 ΣΣΣ˚

¯¯

,

I˚ pϕϕϕ0, θθθ0q “ E
„

P

ˆ

´2pϵ21´σ2
1qp2ϵ1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qq

w˚2

1

˙ȷ

,

R˚ pϕϕϕ0, θθθ0q “ E
„

´2pϵ21´σ2
1qp2ϵ1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qqγ˚1

pη1q∆∆∆˚1

1

w˚2

1

ȷ

,

ΣΣΣ˚ “ V r∆∆∆˚
1γ

˚ pη1qs “ V

«

∆∆∆˚
1ΓΓΓ

˚

1
2

ff

.

Similar to the previous section, the boundary issues of

ˆ

pϕϕϕ
p1q

T

pθθθ
p1q

T

˙

are accounted for through

Assumption B10 and results in the following projection of the Gaussian vector:

WWW˚ “

´

WWW˚

argminξξξPC˚ ||ZZZ˚´ξξξ||JJJ˚

¯

.

The function Y˚
T is shown to converge in distribution to:

Y˚
8 pϑϑϑq “

`WWW˚

φφφ

˘1
M˚ pϕϕϕ0, θθθ0q

`WWW˚

φφφ

˘

with M˚ pϕϕϕ0, θθθ0q “ DDD˚1

2

„

DDD˚
1 `

1

2
J˚ pϕϕϕ0, θθθ0qDDD˚

2

ȷ

,

where DDD˚
1 “

´

IIIp2τ`nq 000p2τ`nq

¯

, DDD˚
2 “

´

000p2τ`nq IIIp2τ`nq

¯

and

J˚ pϕϕϕ0, θθθ0q “ 2E
„

P

ˆ

2ϵ1∇ϕϕϕ,θθθ,ϑϑϑϵt pϕ0ϕ0ϕ0q ´ ∇g1 pϕϕϕ0, θθθ0, θθθ0q

w˚
1

˙ȷ

.

Theorem 3.4. Assume that 1?
T
λλλ˚
T ÝÝÝÑ

TÑ8
ιιι˚8 ă `8 component-wise. Then, under Assump-

tions A0, B1-B2 and B6-B11, the following holds:

?
T
´

pθθθT ´ θθθ0

¯

d
ÝÝÝÑ
TÑ8

arg min
ϑϑϑPRn

Λ˚
8 pϑϑϑq ,

with Λ˚
8 pϑϑϑq “ Y˚

8 pϑϑϑq `
ř

jPS˚ ι˚8,j

“

ϑjsign pθ0,jq Iθ0,j‰0 ` |ϑj | Iθ0,j“0

‰

.

Remark 3.3. Under the conditions of Theorem 3.1, if the estimator pϕϕϕT is asymptotically

unbiased, it can replace pϕϕϕ
p1q

T in Step 2-2. However, the non-differentiability of rΛ8 results in

an estimator that does not satisfy Assumption B10, making Theorem 3.4 inapplicable in such

cases.
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3.3. Application to ARMAX(1,1)-GARCHX(1,1)

This section establishes sufficient conditions under which the previous results are valid for

the ARMAX(1,1)-GARCHX(1,1) model:

yt “ ϕ0,1yt´1 ` ϕ0,2ϵt´1 ` ςςς 1
0YYY t´1 ` ϵt, (16)

ϵt “ σtηt, (17)

σ2t “ ω0 ` α0ϵ
2
t´1 ` β0σ

2
t ` πππ1

0XXXt´1. (18)

The noise process tηt, t P Zu is assumed to be an i.i.d. process with zero mean and unit

variance, and the process
␣

pηt,YYY
1
t,XXX

1
tq

1 , t P Z
(

is strictly stationary and ergodic. To ensure

that σ2t is positive with probability one, the components of πππ0 and those of tXXXt, t P Zu are

assumed to be positive.

Let θθθ “ pω, α, β,πππ1q
1

P Θ and ϕϕϕ “ pϕ1, ϕ2, ςςς
1q

1
P Φ, where both parameter sets are compact,

convex, and contain the true parameters. The two-step recursive functions for this model are

defined as follows:

ft pϕϕϕ,υυυq “
`

yt´1, ϵt´1,YYY
1
t´1

˘

υυυ, (19)

gt pϕϕϕ,θθθ,ψψψq “
`

1, ϵ2t´1 pϕϕϕq , σ2t´1 pϕϕϕ,θθθq ,XXX 1
t´1

˘

ψψψ. (20)

The convexity conditions A7 and B7 are satisfied. The next step is to select the weight

processes to ensure that the moment assumptions A3-A4, A8-A9, B3-B4, and B8-B9 are

met. A unique strictly stationary and ergodic solution to equations (16)-(18) exists under the

following assumptions.

C1 E
“

ln
`

α0η
2
1 ` β0

˘‰

ă 0.

C2 ϕ0,1 ‰ ´ϕ0,2.

C3 supϕϕϕPΦ |ϕ1| ă 1 and supϕϕϕPΦ |ϕ2| ă 1.

C4 Dδ ą 0 : E
”

||YYY 1||
δ

` ||XXX1||
δ
ı

ă 8.

C5 supθθθPΘ |β| ă 1.

Assumption C1 and the existence of a small order moment C4 are standard requirements

for the existence of a strictly stationary, ergodic, and causal solution to equations (17)-(18)

with small order moments, see Lemma 2 in Francq and Thieu (2019). Adding Assumptions C2

and C3, Proposition 1 in Pan et al. (2007) ensures the existence of a strictly stationary, ergodic,

causal, and invertible solution for (16). Under Assumption C5, since the parameter set ΦˆΘ

is compact, there exists a constant 0 ă ρ ă 1 such that supϕϕϕPΦ |ϕ1| ă ρ, supϕϕϕPΦ |ϕ2| ă ρ, and
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supθθθPΘ |β| ă ρ. The weight process is defined as follows:

wt “ 1 `
ÿ

tPN
ci ||OOOt´i´1||1 ,

where ||¨||1 denotes the L1 norm, and c is a decay coefficient satisfying:

C6 ρ ă c ă 1.

The scale weight process is given by w˚
t “ w2

t . Alternatively, the scale weight process can

be defined as w˚
t “ 1 `

ř

tPN c
i ||OOOt´i´1||

2
2, where ||¨||2 denotes the L2 norm. Both definitions

provide the necessary control over the moments of the GARCHX process.

The first-step estimator is assumed to be the QMLE, which is strongly consistent and

satisfying Assumptions A10 and B10. The following result applies.

Corollary 3.1. Under C1-C6 Theorems 3.1, 3.2 and 3.3 hold. Furthermore, if E
“

η6t
‰

ă `8

and E
“

η3t
‰

“ 0, Theorem 3.4 also holds.

In practice, the fitted conditional variance of the first-step QMLE is used as the weight

process for the second-step penalized WLSE of the scale component, and the fitted conditional

volatility is used as the weight process for the second-step penalized WLSE of the location

component.

4. Numerical Experiments

In this section, a series of Monte Carlo experiments is presented to illustrate the conver-

gence properties of the estimators and their effectiveness in selecting relevant variables. The

model used for these experiments is specified as follows:

yt “ ϕ0,1yt´1 ` ϕ0,2yt´2 ` ψ0,1ϵt´1 ` ψ0,2ϵt´2 ` ςςς 1
0YYY t´1 ` ϵt,

ϵt “ σtηt,

σ2t “ ω0 ` α0ϵ
2
t´1 ` β0σ

2
t´1 ` πππ1

0XXXt´1.

The parameters are defined as ϕϕϕ0 “ pϕ0,1, ϕ0,2, ψ0,1, ψ0,2, ςςς
1
0q

1 and θθθ0 “ pω0, α0, β0,πππ
1
0q

1. The

exogenous components are specified as:

YYY t “ pv1,t, v2,t, v1,t´1, v2,t´1, v1,t´2, v2,t´2q
1 , XXXt “ px1,t, x2,t, x1,t´1, x2,t´1, x1,t´2, x2,t´2q

1 ,

where:

@t P Z :

ˆ v1,t
v2,t
z1,t
z2,t

˙

“ 0.7

ˆ y1,t´1
y2,t´1
z1,t´1
z2,t´1

˙

` eeet,
` x1,t
x2,t

˘

“
`

ez1,t

ez2,t

˘

, eeet
i.i.d.
„ N p0004, III4q . (21)
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The parameter values used in the simulations are:

ςςς0 “ p1, 0.9,´0.5, 0, 0, 0q
1 , ϕϕϕ0 “

`

0.9, 0,´0.3, 0, ςςς 1
0

˘1
, πππ0 “ p0.15, 0.3, 0, 0, 0, 0q

1 , θθθ0 “
`

0.1, 0.09, 0.84,πππ1
0

˘1
.

The DGP is ARMAX(1,1)-GARCHX(1,1), the true AR(2) and MA(2) coefficients are zero.

An ARMAX(2,2)-GARCHX(1,1) model is fitted, applying penalization to the AR(2), MA(2),

and all exogenous coefficients. The penalized and non-penalized index sets are:

S “ t2, 4, 5, . . . , 10u , S “ t1, 3u , S˚ “ t4, . . . , 9u , S˚ “ t1, 2, 3u .

The sets of active and inactive index sets are:

A “ t1, 3, 5, 6, 7u , A “ t2, 4, 8, 9, 10u , A˚ “ t1, . . . , 5u , A˚ “ t6, . . . , 9u .

A total of 103 trajectories, each of length 5500, are generated. The initial 500 observations

are treated as a burn-in period and excluded from the analysis. To examine convergence, the

procedure is applied to progressively larger observation windows of sizes 250, 500, 1500, 2500,

and 5000. For each window size and trajectory, the QMLE is first computed, followed by the

LARS-LASSO paths for the ARMAX and GARCHX components (see Step 2-1 and Step

2-2, Section 2.1). Since these paths are computed separately, two hyperparameters, λλλT and

λλλ˚
T , must be tuned.

The first approach, referred to as “separate selection”, proceeds as follows. For each step

in the LARS-LASSO path for the ARMAX component, the post-LASSO QMLE is computed

while keeping all GARCHX parameters active, and the AIC or BIC is used to select the

subset of active ARMAX parameters. Similarly, for each step in the LARS-LASSO path for

the GARCHX component, the post-LASSO QMLE is computed while keeping all ARMAX

parameters active, and the AIC or BIC is used to select the subset of active GARCHX

parameters. A final post-LASSO QMLE is then performed using the active parameter subsets

identified in the previous steps.

The second approach, called “nested selection”, evaluates all combinations of steps in the

LARS-LASSO paths for both the ARMAX and GARCHX components. For each combination,

the post-LASSO QMLE is computed using the parameters which are active at the correspond-

ing ARMAX-GARCHX (joint) LARS-LASSO step, and the AIC or BIC is evaluated. The

post-LASSO QMLE with the best AIC or BIC score is then selected.

In the experiments, both methods produced nearly identical results, with selection rate

differences of approximately 2% in the worst cases. The “separate selection” method was

preferred due to its lower computational cost. The number of criteria evaluated is of or-

der |S| `
ˇ

ˇSscale
ˇ

ˇ for the “separate selection” method, compared to
`

|S| `
ˇ

ˇSscale
ˇ

ˇ

˘2
for the

“nested selection”. The procedure was applied across all window sizes, reusing the same set
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of trajectories while progressively expanding the observation windows as defined in the grid.

Remark 4.1. The hyperparameters λλλT and λλλ˚
T are used to select the optimal subset of

parameters, improving model sparsity. Instead of directly tuning these hyperparameters,

the active parameters were identified using the AIC and BIC criteria. Consequently, these

hyperparameters are not explicitly referenced, as they function solely as tools for sub-model

selection.

Figure 1: Selection rates using AIC and BIC criteria for varying sample sizes (103 trajectories).

The selection of parameters in S and S˚ is conducted with the aim of correctly identifying

active variables (S X A and S˚ X A˚) while minimizing the inclusion of inactive variables

(S X A and S˚ X A˚).

As shown in Figure 1, both AIC and BIC improve in distinguishing active from inactive

variables as sample sizes increase. BIC, being more conservative, emphasizes model simplicity

and is particularly effective at excluding irrelevant variables, especially with larger sample

sizes. This aligns well with our focus on achieving model sparsity to avoid overfitting. In

contrast, AIC is more inclusive, capturing a broader set of variables, which can be beneficial

for detecting subtle signals but may include a few irrelevant ones.

The method shows high accuracy in identifying active variables in the ARMAX compo-

nent. For small samples (e.g., 250 observations), the selection rate for active variables is

nearly 100%, with inactive variables mostly excluded. In the GARCHX component, selection

accuracy is lower due to the reliance on residuals instead of observed variables. However,

the accuracy for GARCHX parameters improves as the sample size increases, reflecting the

method’s consistency.

Figures 2 and 3 illustrate the convergence of the two-step and post-LASSO estimators for

non-penalized coefficients (S and S˚) and penalized coefficients (S and S˚), respectively.
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Figure 2 shows significant variability in the estimation of the GARCHX intercept pωT . This

occurs because, when LASSO shrinks GARCHX coefficients to zero–classifying them as S˚ X

A˚ instead of S˚XA˚–the intercept absorbs the mean effect of the omitted variables. In Figure

3, this shrinkage mechanism is shown to affect the convergence of active penalized coefficients

(SXA and S˚XA˚), particularly for smaller samples. This interdependence between penalized

coefficients and the intercept demonstrates how shrinkage of relevant variables destabilizes the

intercept through compensatory adjustments.

Figure 2: Box plots of two-step and post-LASSO QMLE estimation errors, across 103 trajectories, for the non-penalized
parameters.
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Figure 3: Box plots of two-step and post-LASSO QMLE estimation errors, across 103 trajectories, for the penalized
active parameters.

This Monte Carlo experiment demonstrates that the finite sample performance of the

procedure aligns with theoretical expectations. Active and inactive variables are correctly

identified, and the active variables are estimated with increasing accuracy as the sample size

grows. Furthermore, the number of fitted sub-models required to identify the optimal model

is significantly reduced thanks to the LARS-LASSO algorithm.

5. Application to Electricity Data

In this real-data application, day-ahead electricity prices at 6 PM are modeled for France

(FR), Belgium (BE), Switzerland (CH), and the Netherlands (NL). These prices are deter-

mined the day before production and delivery through hourly auctions for the following day.

Unlike other commodities, electricity prices exhibit mean reversion, price spikes, and negative

values due to the inability to store electricity.

The analysis covers the period from January 5, 2015, to June 30, 2021, using data from

the ENTSO-E website. The dataset consists of hourly time series for each country, denoted

as pNLt,j , pBEt,j , pFRt,j , and pCHt,j , where t represents the day and j P t1, . . . , 24u the hour. By

convention, pt,0 corresponds to the 6 PM price of day t´ 1. To address non-stationarity and

capture day-to-day fluctuations, the 6 PM price increments for each country are computed as

the difference in prices at 6 PM between consecutive days and are denoted as NLt, BEt, FRt,
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and CHt, as the difference in prices at 6 PM between consecutive days. Figure 4 presents the

6 PM prices and their corresponding increments.

Figure 4: Electricity prices and increments at 6 PM from January 5, 2015 to June 30, 2021 in France, Belgium,
Switzerland and Netherlands

In the work of Liu and Shi (2013) and Frömmel et al. (2014), ARIMA-GARCH models

with limited lag orders have been shown to effectively describe electricity price dynamics.

Liu and Shi (2013) used an ARMA-GARCH model with five-month AR lags and various

GARCH specifications to model hourly electricity prices, achieving residuals without signif-

icant autocorrelation. Frömmel et al. (2014) extended this approach by including realized

measures as exogenous variables in the GARCHX component and adding seasonal indicators,

such as holidays, weekends, and broader seasonal cycles, in the AR component to account for

seasonality.

This study adopts an Integrated AR model of order 30, one differentiation order and

exogenous covariates (IARX) with GARCHX(1,1) innovations, applying penalization to all

coefficients except the GARCHX intercept (ω) to ensure a parsimonious specification. The

IAR order 30 allows the two-step estimator to shrink irrelevant parameters, potentially leading

to a sparse model consistent with a lower-order seasonal structure. For each country, an

IARX(30)-GARCHX(1,1) model is estimated using QMLE. The exogenous variables in the

IARX component include the log-returns of the Dutch TTF Natural Gas Calendar (sourced

from Macrobond), the log-returns of the USD/EUR exchange rate (from Yahoo Finance), and

lagged price increments from neighboring countries. Additionally, two realized measures are

included:

• The realized variance:

RVt “
ÿ23

j“1
r2t,j where rt,j “ pt,j ´ pt,j´1, (22)
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• The intra-day range:

IRt “

ˆ

max
j
pt,j ´ min

j
pt,j

˙2

. (23)

The stationarity of the dataset was assessed using the Phillips-Perron, KPSS, and ADF tests,

all of which confirmed stationarity. The notation follows the definitions provided in equations

(16)–(18), with the exogenous variables specified as follows:

YYY FR
t “ pUSD{EURt, Gast, NLt, BEt, CHtq

1 , XXXFR
t “

`

RV FR
t , IRFRt , USD{EUR2

t , Gas
2
t , NL

2
t , BE

2
t , CH

2
t

˘1
,

YYY NL
t “ pUSD{EURt, Gast, BEt, FRt, CHtq

1 , XXXNL
t “

`

RV NL
t , IRNLt , USD{EUR2

t , Gas
2
t , BE

2
t , FR

2
t , CH

2
t

˘1
,

YYY BE
t “ pUSD{EURt, Gast, NLt, FRt, CHtq

1 , XXXBE
t “

`

RV BE
t , IRBEt , USD{EUR2

t , Gas
2
t , NL

2
t , FR

2
t , CH

2
t

˘1
,

YYY CH
t “ pUSD{EURt, Gast, NLt, BEt, FRtq

1 , XXXCH
t “

`

RV CH
t , IRCHt , USD{EUR2

t , Gas
2
t , NL

2
t , BE

2
t , FR

2
t

˘1
.

Here, the variable USD{EURt represents the log-return of the USD/EUR exchange rate, and

Gast denotes the log-return of the Dutch TTF Natural Gas Calendar. The realized measures

specific to each country are denoted by their corresponding superscripts.

The robustness of the variable selection procedure was further evaluated by applying the

two-step estimation method to the full dataset and to a 730-day rolling window, updated

every 15 days.

Figure 5: Frequency of selection across rolling windows (top) and selection results on the full sample (bottom).

Figure 5 presents the variable selection results for the proposed estimator. Autoregressive

coefficients for lags 1 through 5, as well as 7 (one week), 14 (two weeks), 21 (three weeks),

and 28 (four weeks), are consistently retained across the rolling window and the entire period.

This stability suggests a significant and persistent seasonal effect in electricity prices. Real-
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ized measures, particularly the intra-day range, ARCH and GARCH components, are also

frequently selected, indicating their relevance in explaining volatility.

These results are consistent with findings in the existing literature. For example, Frömmel

et al. (2014) highlighted the significance of realized measures in explaining electricity price

volatility using a different ARMA-GARCH framework. Similarly, Liu and Shi (2013) employed

SARIMA models on hourly electricity prices, utilizing seasonal structures similar to those

identified in this application.

The observed temporal variability in variable selection may indicate structural changes

in electricity markets. While regime-switching dynamics are not explicitly modeled in this

analysis, such variability could suggest their presence—a topic frequently addressed in the lit-

erature through Markov Regime Switching models. For instance, Janczura and Weron (2012)

and Samitas and Armenatzoglou (2014) demonstrated that regime-switching frameworks ef-

fectively capture price spike regimes, which may align with the parameter evolution identified

here. The frequent selection of the intra-day range could also reflect its role in signaling spike-

driven regime switches. These observations suggest that regime-switching dynamics warrant

further investigation in future research.

Figure 6: Parsimonious model residuals with the usual significance band.

Figure 6 confirms that the residuals of the selected model exhibit auto-correlations consis-

tent with a GARCH process. The used significance bands are approximations using the usual

˘1.96?
T
. A general significance band formula for non-i.i.d. white noise can calculated using

generalized Bartlett formula (see Francq and Zaköıan (2009)).
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6. Conclusion

In conclusion, this paper develops a penalized two-stage estimator for dynamic location-

scale models. The first stage relies on an initial estimator with standard properties, such as

strong consistency and a Bahadur expansion, while accounting for potential boundary issues,

as is common with QMLE. In the second stage, a penalized WLSE is employed, avoiding

higher-order moment assumptions. Under mild conditions, the penalized two-stage estimator

is shown to converge to the true parameters, with its asymptotic distribution derived. For

standard models, these conditions reduce to simple and standard assumptions. The computa-

tional efficiency of the method is enhanced by the LARS-LASSO algorithm, which computes

the full solution path for standard GARCH and ARMA-GARCH models at low computational

cost. Future extensions to adaptive LASSO remain a potential avenue for further research.

The theoretical properties are supported by simulations and a real-world application. Sim-

ulation results show that, as sample sizes increase, the selection of the most parsimonious

model using AIC and BIC criteria approaches 100%. Post-selection, WLS and post-LASSO

QMLE estimators demonstrate convergence. The methodology is applied to electricity prices

in France, Belgium, the Netherlands, and Switzerland through an IARX-GARCHX model.

The results highlight the model’s ability to achieve sparsity while identifying the seasonal

effects typical of electricity markets.

Future work could extend the two-step penalization framework to multidimensional

GARCHX processes. A multidimensional extension would allow joint estimation of inter-

dependencies across assets, improving applications in risk management and portfolio opti-

mization.
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I. Proofs and technical lemmas

The appendix provides the proofs of the main results. Throughout, C represents a positive

deterministic constant that may vary between lines.

The following Lemmas support the proofs of Theorems 3.1 and 3.2.

Lemma I.1. Under Assumptions A1-A2, the following holds:

supϕϕϕ,υυυPΦ
1
T

ˇ

ˇ

ˇ
LT pϕϕϕ,υυυq ´ rLT pϕϕϕ,υυυq

ˇ

ˇ

ˇ

a.s.
ÝÝÝÑ
TÑ8

0.

Proof. To simplify, function parameters are omitted in this proof, with the assumption that

ϕϕϕ,υυυ P Φ. Define ut “ ft ´ yt and rut “ rft ´ yt, then:

ˇ

ˇ

ˇ
lt ´ rlt

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

rw2
t u

2
t´w2

t ru
2
t

w2
t rw

2
t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

p rw2
t´w2

t qu
2
t´w2

t prut´utqprut`utq

w2
t rw

2
t

ˇ

ˇ

ˇ

ˇ

ď C
“

dtu
2
t ` |rut ´ ut| p|rut| ` |ut|q

‰

.

(A.1)

Using u2t ď 2
`

y2t ` f2t
˘

ď 2
`

1 ` y2t ` sup f2t
˘

, Assumption A1 ensures that for sufficiently

large t:

supΦˆΦ

ˇ

ˇ

ˇ

rft

ˇ

ˇ

ˇ
ď 1 ` supΦˆΦ |ft| almost surely.

This leads to:

ˇ

ˇ

ˇ
lt ´ rlt

ˇ

ˇ

ˇ
ď C

“

dt
`

1 ` y2t ` supΦˆΦ f
2
t

˘

` at
`

1 ` |yt| ` supΦˆΦ |ft|
˘‰

. (A.2)

Under Assumptions A1-A2, the right term in (A.2) converges almost surely to 0 as t Ñ 8.

The result follows by applying Cesàro’s lemma.

Lemma I.2. Under Assumptions A0, A3-A4, the expectation E rl1 pϕϕϕ,υυυqs exists and is finite

for any pϕϕϕ,υυυq in V pϕϕϕ0q ˆ
˝

Φ.

Proof. Rewriting l1 using ϵ1 “ σ1η1 gives:

l1 pϕϕϕ,υυυq “

´

σ1η1
w1

`
µt´f1pϕϕϕ,υυυq

w1

¯2
.

Under Assumptions A0 and A3, the term σ1
w1
η1 belongs to L2. Additionally, by Assumption

A4 and the mean value inequality:

ˇ

ˇ

ˇ

µ1´f1pϕϕϕ,υυυq

w1

ˇ

ˇ

ˇ
ď D

`

Φ2
˘

M1
w1
,

where D pAq represents the diameter of a set A, defined as:

D pAq “ supxxx,yyyPA ||xxx´ yyy|| P R`
.
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The compactness of Φ ensures that D
`

Φ2
˘

is finite. Assumption A4 guarantees that M1
w1

belongs to L2. This establishes the result.

Lemma I.3. Under Assumptions A0, A3-A6, the following holds:

sup
pϕϕϕ,υυυqPVpϕϕϕ0qˆ

˝

Φ

ˇ

ˇ

ˇ

ˇ

1
T

BLT
Bϕϕϕ1 pϕϕϕ,υυυq

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙ˇ

ˇ

ˇ

ˇ

a.s.
ÝÝÝÑ
TÑ8

0.

Proof. For pϕϕϕ,υυυq P V pϕϕϕ0q ˆ
˝

Φ and under Assumption A4, the derivative BLT
Bϕϕϕ pϕϕϕ,υυυq exists. Us-

ing the equivalence of norms in finite-dimensional spaces and the Cauchy-Schwarz inequality:

ˇ

ˇ

ˇ

ˇ

1
T

BLT
Bϕϕϕ1 pϕϕϕ,υυυq

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙ˇ

ˇ

ˇ

ˇ

ď C
T

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BLT
Bϕϕϕ pϕϕϕ,υυυq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϕϕϕ
p1q

T ´ϕϕϕ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϕϕϕ
p1q

T ´ϕϕϕ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
T

ÿT

t“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Blt
Bϕϕϕ pϕϕϕ,υυυq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
.

Applying the mean value theorem:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Blt
Bϕϕϕ pϕϕϕ,υυυq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď 2 |ftpϕϕϕ,υυυq´µt|`|ηt|σt

w2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bft
Bϕϕϕ pϕϕϕ,υυυq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C

M2
t `|ηt|σtMt

w2
t

.

Therefore:

ˇ

ˇ

ˇ

ˇ

1
T

BLT
Bϕϕϕ1 pϕϕϕ,υυυq ¨

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϕϕϕ
p1q

T ´ϕϕϕ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
T

ÿT

t“1

M2
t `|ηt|σtMt

w2
t

. (A.3)

Under Assumption A0, the process
!

M2
t `|ηt|σtMt

w2
t

, t P Z
)

is strictly stationary and ergodic.

Furthermore, under Assumptions A3-A4 and using Hölder’s inequality, this process belongs

to L1. Applying the ergodic theorem ensures that the average in the right side of (A.3)

converges almost surely to a finite value. Assumption A6 guarantees the strong consistency

of the first-step estimator, which leads to the conclusion.

The proof of Theorem 3.1 relies on specific results from Rockafellar (1970) and Davis et al.

(1992), which will be stated.

Theorem I.1 (Rockafellar (1970) Theorem 10.8). Let C be a relatively open convex set,

and let f1, f2, . . . be a sequence of finite convex functions on C. Suppose that the sequence

converges pointwise on a dense subset of C, i.e. that there exists a subset C 1 of C such that

C Ă closure pC 1q and, for each xxx P C 1, the limit of f1 pxxxq , f2 pxxxq , . . ., exists and is finite. The

limit then exists for every xxx P C, and the function f , where

f pxxxq “ lim
iÑ8

fi pxxxq ,

is finite and convex on C. Moreover the sequence f1, f2, . . ., converges to f uniformly on each

closed bounded subset of C.
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The following Lemma is an adaptation of Davis et al. (1992) Lemma 2.2.. Its statement

and proof are presented below with slight modifications to fit the context of this paper. The

original lemma establishes the convergence in distribution of argmins, and the same arguments

are employed here to justify this property in an almost sure framework.

Lemma I.4. Let tVT p¨qu and V p¨q be stochastic processes continuous and strictly convex on

an open convex set A Ă Rp and suppose that for each xxx P A

VT pxxxq
a.s.

ÝÝÝÑ
TÑ8

V pxxxq .

Let ξξξT minimize VT p¨q and ξξξ minimize V p¨q such that ξξξT , ξξξ P A. Then

ξξξT
a.s.

ÝÝÝÑ
TÑ8

ξξξ.

Proof. The strict convexity insures the uniqueness of the argmins in the following. Using

Theorem I.1, for any given compact set K Ă A:

supuPK |VT puuuq ´ V puuuq|
a.s.

ÝÝÝÑ
TÑ8

0.

For γ ą 0, let Bγ “ tuuu : ||uuu´ ξξξ|| “ γu and suppose that ||ξξξT ´ ξξξ|| ą γ for infinitely many T .

Since VT Ñ V uniformly on Bγ and VT pξξξq Ñ V pξξξq, it follows that for infinitety many T and

all uuu P Bγ

VT puuuq ą VT pξξξq ą VT pξξξT q .

But this contradicts the convexity of VT by choosing uuu P Bγ such that the points uuu,ξξξ, ξξξT are

collinear.

Proof of Theorem 3.1. Under Assumptions A4-A6, and for sufficiently large T , pϕϕϕ
p1q

T P V pϕϕϕ0q

almost surely. Using a Taylor-Lagrange expansion for LT with respect to ϕϕϕ, the following

holds for any υυυ P
˝

Φ:

LT

ˆ

pϕϕϕ
p1q

T ,υυυ

˙

“ LT pϕϕϕ0,υυυq ` 1
T

BLT
Bϕϕϕ1 pϕϕϕ˚

T ,υυυq

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙

, (A.4)

where ϕϕϕ˚
T lies between ϕϕϕ0 and pϕϕϕ

p1q

T . By Assumption A0, the process tlt pϕϕϕ,υυυq , t P Zu is sta-

tionary and ergodic. Applying Lemma I.2 gives:

@υυυ P
˝

Φ : 1
T LT pϕϕϕ0,υυυq

a.s.
ÝÝÝÑ
TÑ8

E rl1 pϕϕϕ0,υυυqs .

Since ϕϕϕ˚
T lies between ϕϕϕ0 and pϕϕϕ

p1q

T , it is necessarily contained within V pϕϕϕ0q. Using Lemmas
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I.1 and I.3, the following holds:

@υυυ P
˝

Φ : 1
T
rLT

ˆ

pϕϕϕ
p1q

T ,υυυ

˙

a.s.
ÝÝÝÑ
TÑ8

E rl1 pϕϕϕ0,υυυqs .

The penalty term 1
T pT converges to a convex, finite function p8 pψψψq :“

ř

iPS ι8,i |ψi|.

It remains to establish the convergence of pϕϕϕT to argminυυυPΦQ8 pϕϕϕ0,υυυq. Define CT p¨q “

rQT

ˆ

pϕϕϕ
p1q

T , ¨

˙

on
˝

Φ. Pointwise almost sure convergence CT p¨q
a.s.

ÝÝÝÑ
TÑ8

C8 p¨q :“ Q8 pϕϕϕ0, ¨q holds

on
˝

Φ.

Assumption A7 and the positivity of pT ensure that CT is almost surely convex and

continuous for each T . Since C8 is almost surely continuous, Theorem I.1 implies uniform

convergence of CT p¨q to C8 p¨q on any compact subset K Ă
˝

Φ.

Assumption A7 further ensures strict convexity of C8, guaranteeing uniqueness of the

argmin. Assumption A5 guarantees that the argmin belongs to
˝

Φ. By Lemma I.4, pϕϕϕT

converges almost surely to the unique argmin of Q8 pϕϕϕ0, ¨q.

If ιιι8 “ 000, the vector ϕϕϕ0 minimizes C8. This follows from the following equation:

BC8

Bυυυ pϕϕϕ0q “ E
„

2ηt
σt
w2
t

´

Bftpϕϕϕ0,¨q
Bυυυ

¯

υυυ“ϕϕϕ0

ȷ

“ E rηtsE
„

2 σt
w2
t

´

Bftpϕϕϕ0,¨q
Bυυυ

¯

υυυ“ϕϕϕ0

ȷ

“ 000.

Given that E rηts “ 0, the gradient at ϕϕϕ0 is zero. The strict convexity of C8 guarantees that

ϕϕϕ0 is the unique global minimizer.

Lemma I.5. Under Assumptions A0 and A8-A9, the matrix J pϕϕϕ0q exists, and:

1
T∇

2LT pϕϕϕ˚
T ,φφφ

˚
T q

a.s.
ÝÝÝÑ
TÑ8

J pϕϕϕ0q ,

for any sequence
´

ϕϕϕ˚
T

φφφ˚
T

¯

a.s.
ÝÝÝÑ
TÑ8

´

ϕϕϕ0
ϕϕϕ0

¯

.

Proof. Using Assumptions A8-A9 and the mean value theorem:

ˇ

ˇ

ˇ

ˇ∇2lt
ˇ

ˇ

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
2P p∇ftq`pft´ytq∇2ft

w2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
2P p∇ftq´σtηt∇2ft`pft´µtq∇2ft

w2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C

M2
t`pMt`σt|ηt|qKt

w2
t

.

(A.5)

Thus, J pϕϕϕ0q exists.

Let B
´´

ϕϕϕ0
ϕϕϕ0

¯

, 1j

¯

denote the
`

R2ν , ||¨||
˘

-ball centered at
´

ϕϕϕ0
ϕϕϕ0

¯

with radius 1
j , where j is

a sufficiently large integer insuring B
´´

ϕϕϕ0
ϕϕϕ0

¯

, 1j

¯

Ă V pϕϕϕ0q ˆ V pϕϕϕ0q. For T large,
´

ϕϕϕ˚
T

υυυ˚
T

¯

P

B
´´

ϕϕϕ0
ϕϕϕ0

¯

, 1j

¯

almost surely. This leads to:

ˇ

ˇ

ˇ

ˇ

1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T q ´ J pϕϕϕ0q

ˇ

ˇ

ˇ

ˇ ď 1
T

ÿT

t“1
Zt,j `

ˇ

ˇ

ˇ

ˇ

1
T∇

2LT pϕϕϕ0,ϕϕϕ0q ´ J pϕϕϕ0q
ˇ

ˇ

ˇ

ˇ , (A.6)
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where Zt,j “ sup
B
ˆˆ

ϕϕϕ0
ϕϕϕ0

˙

,
1
j

˙

ˇ

ˇ

ˇ

ˇ∇2lt pϕϕϕ,υυυq ´ ∇2lt pϕϕϕ0,ϕϕϕ0q
ˇ

ˇ

ˇ

ˇ. The triangle inequality gives:

Zt,j ď 2 sup
B
ˆˆ

ϕϕϕ0
ϕϕϕ0

˙

,
1
j

˙

ˇ

ˇ

ˇ

ˇ∇2lt
ˇ

ˇ

ˇ

ˇ ď 2 supVpϕϕϕ0qˆVpϕϕϕ0q

ˇ

ˇ

ˇ

ˇ∇2lt
ˇ

ˇ

ˇ

ˇ .

The right term of the inequality belongs to L1 and is independent of j. Under Assumption

A0 and by the ergodic theorem, 1
T

řT
t“1 Zt,j

a.s.
ÝÝÝÑ
TÑ8

E rZ1,js. Using the dominated convergence

theorem, E rZ1,js ÝÝÝÑ
jÑ8

0. Moreover, E
“

∇2l1 pϕϕϕ0,ϕϕϕ0q
‰

“ J pϕϕϕ0q ` E
”

2η1σ1
w2

1
∇2f1 pϕϕϕ0,ϕϕϕ0q

ı

,

where the second term equals 000. By the ergodic theorem:

ˇ

ˇ

ˇ

ˇ

1
T∇

2LT pϕϕϕ0,ϕϕϕ0q ´ J pϕϕϕ0q
ˇ

ˇ

ˇ

ˇ

a.s.
ÝÝÝÑ
TÑ8

0.

Lemma I.6. Under Assumptions A0, A8-A10, the matrices I pϕϕϕ0q, R pϕϕϕ0q, and ΣΣΣ exist.

Defining:

WWWT “

˜

1?
T
∇LT pϕϕϕ0,ϕϕϕ0q

?
T
´

ϕϕϕ
p1q

T ´ϕϕϕ0

¯

¸

, (A.7)

it holds that:

WWWT
d

ÝÝÝÝÝÑ
TÑ`8

WWW.

Proof. Using Assumption A10, substitute the Bahadur expansion into (A.7) gives:

WWWT “

ˆ

1?
T
∇LT pϕϕϕ0,ϕϕϕ0q

argminξξξPC ||ZZZT´ξξξ||JJJT
`oPp1q

˙

Define:

UUUT “ 1?
T

ÿT

t“1
UUU t ` oP p1q where UUU t “

ˆ

2ηtσt
w2
t

∇ftpϕϕϕ0,ϕϕϕ0q

∆∆∆tγpηtq

˙

.

Here, ∆∆∆tγ pηtq belongs to L
1, with ∆∆∆t being Ft´1-measurable and E rγ pηtqs “ 000. Additionally,

under Assumptions A0, A8-A9, the process
!

2ηtσt
w2
t
∇ft pϕϕϕ0,ϕϕϕ0q , t P Z

)

is strictly stationary,

ergodic and belongs to L2 because:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2ηtσt
w2
t
∇ft pϕϕϕ0,ϕϕϕ0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

CrMt`σt|ηt|sMt

w2
t

.

Since ∇ft pϕϕϕ0,ϕϕϕ0q is Ft´1-measurable, tUUU t, t P Zu forms a L2 martingale difference sequence.

Applying the martingale central limit theorem from Billingsley (1961) and Slutsky’s lemma

gives:

UUUT
d

ÝÝÝÝÝÑ
TÑ`8

`

WWW
ZZZ

˘

„ N p000,V rUUU1sq .
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The variance calculation is as follows:

I pϕϕϕ0q “ V
”

2η1σ1
w2

1
∇f1 pϕϕϕ0,ϕϕϕ0q

ı

“ 4E
”

P
´

σ1
w2

1
∇f1 pϕϕϕ0,ϕϕϕ0q

¯ı

,

R pϕϕϕ0q “ Cov
”

2η1σ1
w2

1
∇f1 pϕϕϕ0,ϕϕϕ0q ,∆∆∆1γ pη1q

ı

“ E
”

2σ1
w2

1
∇f1 pϕϕϕ0,ϕϕϕ0qE

“

η1 pγ pη1qq
1
‰

∆∆∆1
1

ı

V r∆∆∆1γ pη1qs “ E
„

P

ˆ

∆∆∆1ΓΓΓ
1
2

˙ȷ

“ V
„

∆∆∆1ΓΓΓ
1
2

ȷ

“ ΣΣΣ.

Using Francq and Zaköıan (2019) Section 8.2, argminξξξPC ||ZZZT ´ ξξξ||JJJ T
is continuous with re-

spect to
´

ZZZT
JJJ T

¯

. Therefore,WWWT is a continuous transformation of
´

UUUT
JJJ T

¯

. By Slutsky’s theorem

and the continuous mapping theorem:

´

WWWT
JJJ T

¯

d
ÝÝÝÝÝÑ
TÑ`8

ˆ

WWW
argminξξξPC ||ZZZ´ξξξ||JJJ

JJJ

˙

.

For the following, the definition and theorems from Van der Vaart and Wellner (1996) are

required.

Definition I.1 (Space of locally bounded functions (Van der Vaart and Wellner (1996)).

Let T1 Ă T2 Ă . . . be arbitrary sets and T “
Ť8
i“1 Ti. The space l8 pT1, T2, . . .q is defined

as the set of all functions zzz : T ÞÑ R that are uniformly bounded on every Ti (but not

necessarily on T). This is a complete metric space with respect to the metric d pzzz1, zzz2q “
ř8
i“1

`

||zzz1 ´ zzz2||Ti ^ 1
˘

2´i. A sequence converges in this metric if it converges uniformly on

each Ti.

Theorem I.2 (Van der Vaart andWellner (1996) Theorem 1.6.1). Let T1 Ă T2, . . . be arbitrary

sets and T “
Ť8
i“1 Ti. Let Xα pωq : Ωα ÞÑ l8 pT1, T2, . . .q be arbitrary maps (random function).

Then, the net Xα converges weakly to a tight limit if and only if the nets of restrictions

Xα|Ti : Ω ÞÑ l8 pTiq converges weakly pi P Nq to a tight limit.

Corollary I.1 (Corollary of Van der Vaart and Wellner (1996) Theorem 1.6.1 for convex

processes). Let XXXα be a net of stochastic processes indexed by a convex, open subset C of Rk

such that every path t ÞÑ XXXα ptq is convex on C. If the net converges marginally in distribution

to a limit, then it converges in distribution to a tight limit in the space l8 pK1,K2, . . .q for

any sequence of compact sets K1 Ă K2 Ă . . . Ă C.

Lemma I.7. For φφφ in Rν and under Assumptions A0, A4-A6, A8-A10,

YT p¨q
d

ÝÝÝÝÝÑ
TÑ`8

Y8 p¨q in l8 pK1,K2, . . .q ,

for any sequence of compact sets K1 Ă K2 Ă . . . Ă Rν .
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Proof. Using Assumptions A6 and A9, a Taylor-Lagrange expansion of LT gives:

YT pφφφq “

´?
T
´

pφφφ
p1q

T ´φφφ0

¯

φφφ

¯1
1?
T
∇LT pϕϕϕ0,ϕϕϕ0q`1

2

´?
T
´

pφφφ
p1q

T ´φφφ0

¯

φφφ

¯1
1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T q

´?
T
´

pφφφ
p1q

T ´φφφ0

¯

φφφ

¯

,

(A.8)

where
´

ϕϕϕ˚
T

υυυ˚
T

¯

lies between
´

ϕϕϕ0
ϕϕϕ0

¯

and

ˆ

ϕϕϕ
p1q

T
φφφ

?
T

`ϕϕϕ0

˙

. Using Lemma I.6, defineWWWT as in the lemma.

Then:
´?

T
´

pφφφ
p1q

T ´φφφ0

¯

φφφ

¯

“ D2

`WWWT
φφφ

˘

, 1?
T
∇LT pϕϕϕ0,ϕϕϕ0q “ D1

`WWWT
φφφ

˘

.

Rewriting YT pφφφq:

YT pφφφq “
`

DDD2

`WWWT
φφφ

˘˘1 `

DDD1

`WWWT
φφφ

˘˘

` 1
2

`

DDD2

`WWWT
φφφ

˘˘1 1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T q

`

DDD2

`WWWT
φφφ

˘˘

“
`WWWT

φφφ

˘1
DDD1

2DDD1

`WWWT
φφφ

˘

` 1
2

`WWWT
φφφ

˘1
DDD1

2
1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T qDDD2

`WWWT
φφφ

˘

“
`WWWT

φφφ

˘1
DDD1

2

“

DDD1 ` 1
2
1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T qDDD2

‰ `WWWT
φφφ

˘

.

Set MT pϕϕϕ˚
T ,υυυ

˚
T q “ DDD1

2

“

DDD1 ` 1
2
1
T∇

2LT pϕϕϕ˚
T ,υυυ

˚
T qDDD2

‰

, so:

YT pφφφq “
`WWWT

φφφ

˘1
MT pϕϕϕ˚

T ,υυυ
˚
T q

`WWWT
φφφ

˘

.

For k P N, let uuu1, . . . ,uuuk P R and φφφ1, . . . ,φφφk P Rν . Then:

ÿk

i“1
uuuiYT pφφφiq “

¨

˚

˝

WWWT
φφφ1

...
WWWT
φφφk

˛

‹

‚

1

¨

˚

˚

˚

˝

uuu1MT pϕϕϕ
˚,1
T ,υυυ˚,1

T q 000 ... 000

000
. . . 000

...
. . .

...
000 ... uuukMT

´

ϕϕϕ˚,k
T ,υυυ˚,k

T

¯

˛

‹

‹

‹

‚

¨

˚

˝

WWWT
φφφ1

...
WWWT
φφφk

˛

‹

‚

, (A.9)

where for all i P t1, . . . , ku,

ˆ

ϕϕϕ˚,k
T

υυυ˚,k
T

˙

lies between
`

ϕϕϕ0
υυυ0

˘

and

ˆ

pϕϕϕ
p1q

T
φφφi?
T

`ϕϕϕ0

˙

.

First, Lemma I.5 ensures almost sure convergence of the Hessian term and Lemma I.6 gives

the asymptotic distribution of WWWT . Second, by the continuous mapping theorem, Slutsky’s

lemma, and Lemma I.5,
řk
i“1uuuiYT pφφφiq converges weakly to

řk
i“1uuuiY8 pφφφiq. Then, by the

Cramér-Wold theorem, the finite-dimensional distributions of YT converge to those of Y8.

Finally, using Corollary I.1, YT converges weakly to a tight limit in l8 pK1,K2, . . .q for any

sequence of compact sets K1 Ď K2 Ď . . . Ď Rν . Since a measure is determined by its finite-

dimensional marginals, YT converges weakly to Y8 in l8 pK1,K2, . . .q.

Proof of Theorem 3.2. Lemma I.7 establishes the weak convergence of YT to Y8 in

l8 pK1,K2, . . .q for any sequence of compact sets K1 Ď K2 Ď . . . Ď Rν . The determinis-

tic limit of the penalty term follows from Fu and Knight (2000), Theorem 2.

For large T ,

ˆ

pϕϕϕ
p1q

T
φφφ

?
T

`ϕϕϕ0

˙

belongs to V pϕϕϕ0qˆV pϕϕϕ0q almost surely. Applying the mean value
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theorem to LT ´ rLT gives:

ˇ

ˇ

ˇ
ΛT pφφφq ´ rΛT pφφφq

ˇ

ˇ

ˇ
ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

?
T

ˆ

pϕϕϕ
p1q

T ´ϕϕϕ0

˙

φφφ

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1?
T

ÿT

t“1
supVpϕϕϕ0qˆVpϕϕϕ0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇lt ´ ∇rlt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
.

Using ut “ yt ´ ft, the following holds:

||∇lt´∇rlt||
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rw2
t ut∇ut´w2

t rut∇rut
w2
t rw

2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r rw2
t´w2

t sut∇ut´w2
t rrut∇rut´ut∇uts

w2
t rw

2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

yielding:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇lt ´ ∇rlt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C rdt sup |ut| sup ||∇ut|| ` sup |rut ´ ut| sup ||∇ut||s

` C rsup |rut| sup ||∇ut ´ ∇rut||s ,
(A.10)

with

supΦˆΦ |ut| ď 1 ` |yt| ` supΦˆΦ |ft|

supΦˆΦ ||∇ut|| “ supΦˆΦ ||∇ft||

sup |rut ´ ut| “ at

sup ||∇ut ´ ∇rut|| “ bt.

Under Assumption A11, at Ñ 0 almost surely. For large t, sup |rut| ď 1 ` |yt| ` supΦˆΦ |ft|.

Substituting:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇lt ´ ∇rlt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C

“

dt sup ||∇ft||
`

1 ` |yt| ` supΦˆΦ |ft|
˘‰

` C
“

at sup ||∇ut|| ` bt
`

1 ` |yt| ` supΦˆΦ |ft|
˘‰

.
(A.11)

Assumption A11 ensures that
ˇ

ˇ

ˇ
ΛT pφφφq ´ rΛT pφφφq

ˇ

ˇ

ˇ
Ñ 0 almost surely as T Ñ 8, uniformly

on any compact K Ă Rν . Thus, ΛT ´ rΛT
a.s.

ÝÝÝÑ
TÑ8

0 in l8 pK1,K2, . . .q for any sequence of

compact sets K1 Ď K2 Ď . . . Ď Rν . Under Assumptions A7 and A9, rΛT is strictly convex and

continuous on Rν for all T , as is Λ8, ensuring a unique argmin. Since rΛT p¨q
d

ÝÝÝÝÝÑ
TÑ`8

Λ8 p¨q

marginally, Corollary I.1 gives convergence in l8 pK1,K2, . . .q.

Using Theorem 1.10.3 of Van der Vaart and Wellner (1996) and Skorokhod’s representation

theorem, Lemma 2.2 of Davis et al. (1992) establishes the asymptotics of
?
T
´

pϕϕϕT ´ϕϕϕ0

¯

as

the argmin of rΛT . This concludes the proof of Theorem 3.2.

The following Lemma supports the proofs of Theorems 3.3 and 3.4.
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Lemma I.8. Under Assumptions B1-B2, the following holds:

supΦˆΘˆΘ
1
T

ˇ

ˇ

ˇ
L˚
T pϕϕϕ,θθθ,ψψψq ´ rL˚

T pϕϕϕ,θθθ,ψψψq

ˇ

ˇ

ˇ

a.s.
ÝÝÝÑ
TÑ8

0.

Proof. To simplify, function parameters are omitted in this proof, with the assumption that

pϕϕϕ,θθθ,ϑϑϑq P Φ ˆ Θ ˆ Θ. Define u˚
t “ gt ´ ϵ2t p¨q and ru˚

t “ rgt ´ ϵ̃2t p¨q. Under Assumption B1,

for sufficiently large t, the equivalent of the equation (A.1), and the following bounds are

established:

|u˚
t | ď 2

`

y2t ` µ2t pϕϕϕq
˘

` |gt| ď C
`

1 ` y2t ` µ2t pϕϕϕq ` |gt|
˘

,

u˚2

t ď 2
`

ϵ4t pϕϕϕq ` g2t
˘

ď 2
`

ϵ4t pϕϕϕq ` g2t
˘

ď 8
`

y2t ` µ2t pϕϕϕq
˘2

` 2g2t ď C
`

1 ` y4t ` µ4t pϕϕϕq ` g2t
˘

,

|ũ˚
t ´ u˚

t | ď sup |µt pϕϕϕq ´ rµt pϕϕϕq| psup |µt pϕϕϕq| ` sup |rµt pϕϕϕq|q ` sup |rgt ´ gt| ,

yielding:

ˇ

ˇ

ˇ
l˚t ´ rl2t

ˇ

ˇ

ˇ
ď Cd˚

t

`

1 ` y4t ` µ4t pϕϕϕq ` g2t
˘

` C psup |µt pϕϕϕq ´ rµt pϕϕϕq| p1 ` sup |µt pϕϕϕq|q ` sup |rgt ´ gt|q
`

1 ` y2t ` µ2t pϕϕϕq ` |gt|
˘

ď C
“

d˚
t

`

1 ` y4t ` µ4t pϕϕϕq ` g2t
˘

` a˚
t

`

1 ` y2t ` µ2t pϕϕϕq ` |gt|
˘‰

.

The conclusion follows by Assumptions B1-B2, and Cesàro’s lemma.

Remark I.1. The uniform bound in (A.3) is the key argument in the proof of Lemma I.3.

The same reasoning applies to both the location parameter estimator and the scale parameter

estimator. In the proof of Theorem 3.3, it suffices to establish a uniform bound analogous to

(A.3). Similarly, the inequality in (A.5) is central to the proof of Lemma I.5, and an equivalent

result ensures the same conclusion for the scale parameter estimator.

Proof of Theorem 3.3. The proof of this Theorem follows the same reasoning as for Theorem

3.1. A sketch of proof is provided following these steps: First, expanding L˚
T as in (A.4),

establishing the equivalents of Lemmas I.2 and I.3, then proving the convergence of the argmin

of C˚
T p¨q :“ rQ˚

T

ˆ

pϕϕϕ
p1q

T ,pθθθ
p1q

T , ¨

˙

to the argmin of C˚
8 p¨q :“ Q˚

8 pϕϕϕ0, θθθ0, ¨q.

Lemma I.8 corresponds to Lemma I.1, and the counterparts of Lemmas I.2 and I.3 are

derived using the following results and similar arguments as in the previous section. First,

the expectation E rl˚1 pϕϕϕ,θθθ,ψψψqs exists and is finite for pϕϕϕ,θθθ,ψψψq P V pϕϕϕ0q ,V pθθθ0q ˆ
˝

Θ. This is

demonstrated as follows:

ˇ

ˇ

ˇ

ϵ2t pϕϕϕq´gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ϵ2t pϕϕϕq´ϵ2t`ϵ2t´σ2
t`σ2

t´gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

pµt´µtpϕϕϕqqp2σtηt`µt´µtpϕϕϕqq`σ2
t pη

2
t´1q`σ2

t´gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ

ˇ

ď C
Etp2σt|ηt|`Etq`σ2

t |η
2
t´1|`Gt

w˚
t

.
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By Assumptions B3-B4 and Hölder’s inequality, the dominant term belongs to L2. This

establishes the equivalent of Lemma I.2. Second, the key point for the counterpart of Lemma

I.3 is the uniform bound (A.3) on ||∇l˚t pϕϕϕ,θθθ,ψψψq|| for pϕϕϕ,θθθ,ψψψq P V pϕϕϕ0q ,V pθθθ0qˆ
˝

Θ. Specifically:

||∇l˚t pϕϕϕ,θθθ,ψψψq|| “ 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϵ2t pϕϕϕq´gtpϕϕϕ,θθθ,ψψψqqp´2ϵtpϕϕϕq∇ϕϕϕ,θθθ,ψψψµtpϕϕϕq´∇gtpϕϕϕ,θθθ,ψψψqq

w˚2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Etp2σt|ηt|`Etq`σ2

t |η
2
t´1|`Gt

w˚
t

2pEt`σt|ηt|qEt`Gt
w˚
t

.

Under Assumptions B3-B4, the dominant term belongs to L2. Since the gradient is uniformly

bounded by an L1 process, it also belongs to L1. Under these assumptions and Assumption

B6, the same reasoning as for Lemma I.3 applies. Finally, the consistency follows by the

same arguments as for Theorem 3.1. When ιιι˚8 “ 000, the estimator pθθθT converges to the true

parameter θθθ0 since it satisfies the following equation:

E
„

´

Bl˚t
Bψψψ pϕϕϕ0, θθθ0, ¨q

¯

ψψψ“θθθ0

ȷ

“ E
„

´2
σ2
t pη

2
t´1q

w˚2
t

´

Bgt
Bψψψ pϕϕϕ0, θθθ0, ¨q

¯

ψψψ“θθθ0

ȷ

“ 000.

Proof of Theorem 3.4. This Theorem’s proof follows the structure of Theorem 3.2, considering
ˆ

ϕϕϕ
θθθ
ψψψ

˙

P V pϕϕϕ0q ˆ V pϕϕϕ0q ˆ V pϕϕϕ0q. With an expansion equivalent to (A.8), the Hessian term

can be bounded by:

ˇ

ˇ

ˇ

ˇ∇2l˚t
ˇ

ˇ

ˇ

ˇ ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pp2ϵtpϕϕϕq∇ϕϕϕ,θθθ,ψψψµtpϕϕϕq`∇gtpϕϕϕ,θθθ,ψψψqq

w˚2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϵ2t pϕϕϕq´gtpϕϕϕ,θθθ,ψψψqq
´

2Pp∇ϕϕϕ,θθθ,ψψψµtpϕϕϕqq´2ϵtpϕϕϕq∇2
ϕϕϕ,θθθ,ψψψµtpϕϕϕq´∇2gtpϕϕϕ,θθθ,ψψψq

¯

w˚2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Each term is uniformly bounded as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2ϵtpϕϕϕq∇ϕϕϕ,θθθ,ψψψµtpϕϕϕq`∇gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C

E2
t `σt|ηt|Et`Gt

w˚
t

,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϵ2t pϕϕϕq´gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď C

pEt`σt|ηt|qEt`σ2
t |η

2
t´1|`Gt

w˚
t

,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2Pp∇ϕϕϕ,θθθ,ψψψµtpϕϕϕqq´2ϵtpϕϕϕq∇2
ϕϕϕ,θθθ,ψψψµtpϕϕϕq´∇2gtpϕϕϕ,θθθ,ψψψq

w˚
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
E2
t `pEt`σt|ηt|qζt`Ht

w˚
t

.

Under Assumptions B8-B9, these terms are bounded by L2 processes. Thus,
ˇ

ˇ

ˇ

ˇ∇2l˚t
ˇ

ˇ

ˇ

ˇ is uni-

formly bounded by an L2 process, giving the equivalent of (A.5). The equivalent of Lemma

I.5 holds with the same arguments. The martingale Central Limit Theorem is also used in
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this context. Define:

WWW˚
T “

¨

˚

˝

1?
T
∇L˚

T pϕϕϕ0,θθθ0,θθθ0q

?
T
´

ϕϕϕ
p1q

T ´ϕϕϕ0

¯

?
T
´

θθθ
p1q

T ´θθθ0

¯

˛

‹

‚

,

and

UUU˚
T “ 1?

T

ÿT

t“1
UUU˚
t ` oP p1q with UUU˚

t “

˜

´2σ2
t pη

2
t´1qp2σtηt∇ϕϕϕ,θθθ,ψψψµtpϕϕϕ0q`∇gtpϕϕϕ0,θθθ0,θθθ0qq

w˚2
t

∆∆∆˚
t γ

˚pηtq

¸

.

Under Assumptions B8-B9, the bound:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´2σ2
t pη

2
t´1qp2σtηt∇ϕϕϕ,θθθ,ψψψµtpϕϕϕ0q`∇gtpϕϕϕ0,θθθ0,θθθ0qq

w˚2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
|η2t´1|σ2

t pσt|ηt|Et`Gtq
w˚2
t

,

belongs to L2. Furthermore, since E
“

η3t
‰

“ 0, UUU˚
t is an L2 martingale difference. By Billings-

ley’s Central Limit Theorem:

UUU˚
T

d
ÝÝÝÝÝÑ
TÑ`8

`

WWW˚

ZZZ˚

˘

„ N p000,V rUUU˚
1sq .

The variance terms are:

I˚ pϕϕϕ0, θθθ0q “ V
„

´2pϵ21´σ2
1qp2ϵ1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qq

w˚2

1

ȷ

“ E
„

P

ˆ

´2σ2
1pη21´1qp2σ1η1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qq

w˚2

1

˙ȷ

,

R˚ pϕϕϕ0, θθθ0q “ Cov

„

´2pϵ21´σ2
1qp2ϵ1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qq

w2
1

,∆∆∆˚
1γ

˚ pη1q

ȷ

“ E
„

´2σ2
1pη21´1qp2σ1η1∇ϕϕϕ,θθθ,ψψψµ1pϕϕϕ0q`∇g1pϕϕϕ0,θθθ0,θθθ0qqγ˚1

pη1q∆∆∆˚1

1

w˚2

1

ȷ

V r∆∆∆˚
1γ

˚ pη1qs “ E

«

P

˜

∆∆∆˚
1ΓΓΓ

˚

1
2

¸ff

“ V

«

∆∆∆˚
1ΓΓΓ

˚

1
2

ff

“ ΣΣΣ˚.

The counterpart for Lemma I.7 holds with the exact same arguments. Finally, for large t
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under Assumption B11:

supΦˆΦ |u˚
t | ď 1 ` 2 |yt|

2
` 2 supΦ |µt|

2
` supΦˆΘˆΘ |gt| ,

supΦˆΦ ||∇u˚
t || ď 2 p1 ` |yt| ` supΦ |µt|q supΦ ||∇µt pϕϕϕq|| ` supΦˆΦ ||∇gt|| ,

sup |ru˚
t ´ u˚

t | ď supΦ |µt ´ rµt| p1 ` supΦ |µ|t ` supΦ |rµt|q ` sup |gt ´ rgt|

ď 2 supΦ |µt ´ rµt| p1 ` supΦ |µ|tq ` sup |gt ´ rgt| ď 2a˚
t ,

sup ||∇u˚
t ´ ∇ru˚

t || ď 2 sup ||ϵt pϕϕϕq∇ϵt ´ rϵt pϕϕϕq∇rϵt ´ p∇gt ´ ∇rgtq||

ď 2 rsup |µt ´ rµt| sup ||∇µt|| ` p1 ` |yt| ` sup |µt|q ||∇µt ´ ∇rµt||s ` sup ||∇gt ´ ∇rgt||

ď 2 rsup |µt ´ rµt| sup ||∇µt|| ` p1 ` |yt| ` sup |µt|q ||∇µt ´ ∇rµt|| ` sup ||∇gt ´ ∇rgt||s

ď 2b˚
t .

The conclusion follows by the same arguments as Theorem 3.2.
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