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1 Introduction  
 

University patenting is one of the roles that universities conduct as part of the “third mission”, 

conceptualised as an additional function to teaching and research (Etzkowitz et al., 2000). Other activities 

include a variety of technology transfer mechanisms such as spin-offs, licensing, entrepreneurial 

education, publications with industry scientists, etc. (Etzkowitz and Zhou, 2006; Rothaermel et al. 2007; 

Link et al. 2007). Although patents are a small part of the knowledge produced by universities, the 

analysis of university patenting is relevant because of its consequences for both the productive system and 

the university. 

On the one hand, the positive effects of university patenting on industry stem from at least three 

separate but complementary factors. Firstly, there is a direct contribution when a university produces 

useful patented technologies with some application to industrial processes and transfers them to private 

firms, thereby increasing private innovation and inducing regional economic growth (e.g. Bercovitz and 

Feldmann, 2006; Carlsson et al. 2009). Secondly, the production of a patent may affect innovation in 

surrounding areas because of the flow of technological knowledge between universities and firms. This 

flow of knowledge can occur through a variety of interaction channels between academics and firms 

(such as by reading the patent, or via direct conversation or informal meetings with the inventors). This 

situation may induce localized spillovers from university to industry, with effects on firms’ innovative 

outputs (Anselin et al. 1997, 2000; Feldman and Florida, 1994; Fischer and Varga, 2003; Jaffe, 1989; 

Varga, 1998) or new company formation across geographical areas (Acosta et al. 2011; Audretsch and 

Lehmann, 2005; Di Gregorio and Shane, 2003; Woodward et al. 2006; Zucker et al. 1998, Bonaccorsi et 

al. 2014). Thirdly, academic researchers may use patents to exploit these technological outputs by 

creating new companies (spin-offs) that will increase the technological capacity of neighbouring areas 

(Chiesa and Piccaluga, 2000; Mustar et al., 2006, Djokovic and Souitaris, 2008; O’Shea et al. 2008; Zahra 

et al. 2007). 

On the other hand, patenting also has positive consequences for universities. Patents have great 

potential as a source of licensing revenues for academic institutions (Siegel et al. 2004, Link et al., 2007). 

Universities benefit from patenting when they gain revenue through licensing or by participating in spin-

offs to exploit the results of a patent (Geuna and Nesta, 2006; Sterckx, 2011, include some recent data for 

the US and Europe). Moreover, in some contexts, there is evidence that researchers can tap into 
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technological knowledge to develop new ideas for research in related scientific fields; for example, 

Stephan et al. (2007) found that patenting US academic researchers publish more than do members of a 

non-patenting control group. Carayol (2007) and Breschi et al. (2007) obtained similar results using data 

from Europe. Van Looy et al. (2006) concluded that inventors publish significantly more than their 

colleagues (non-inventors), which suggests that the two activities - research and patenting - may actually 

reinforce each other. A recent paper by Crespi et al. (2011) indicates that in the UK academic patenting 

may complement publishing, at least up to a certain point. However, patenting and licensing have caused 

some concern about the extent to which the use of proprietary protections for knowledge detracts from 

their primary mission as creators of public knowledge. According to Hall and Harhoff (2012), this is one 

of the main reasons for the enormous interest in this topic by academic researchers, raising questions 

about the effects of patenting on the quantity and quality of research, the changes in its nature towards 

other types of investigations focused on commercial ends, or the consequences of university patenting on 

the diffusion of knowledge by privatizing some of it. Although some literature also points to a 

substitution effect, most of the empirical evidence reveals no such trade-offs and even signals positive 

effects (Franzoni, 2009, Van Looy et al. 2011, Franzoni and Scellato, 2011).  

This previous literature suggests several arguments that support the importance of analysing patenting 

activities in universities. Particularly, providing insight into the causes encouraging or hindering the 

capacity of universities to produce patents would help to design policy measures in order to foster the 

production of university patents. In this respect, an important consideration in managing technology in 

universities is technological diversification, which has an implication on how widely a technology can be 

applied (Lerner, 1994; Leten et al. 2007; Toh, 2014). More specifically, technological diversity, or the 

breadth of technological knowledge, refers to the antecedent quality of the body of knowledge, which 

allows creativity and generates new perspectives and insights into a given problem (Lettl et al. 2009). The 

extent to which the production of university technology is diversified or specialised can have 

consequences on the academic outputs. The scarce empirical research on this topic suggests, for example, 

that the breath of knowledge embedded in patents affects the quality of the patent (Tantiyaswasdikul, 

2012), the probability of commercialization (Nerkar and Shane, 2007), or its value (Jaffe, 2000), which in 

turn is relevant for technology transfer. Moreover the immediate consequence of widening or narrowing 

the scope of technology produced in universities may go beyond the university itself. According to Rosell 
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and Agrawal (2009), university flows of knowledge are narrowing (even only those associated with 

patented inventions in certain fields), and this fact could throw into question the traditionally conceived 

arrangement between academia and society, affecting policies and economic growth. 

In this study, we examine the role of technological diversification in the production of patents by 

including the diversification of technology at university level as an explanatory factor in a patent 

production function. By doing so, we add an additional aspect to the literature on the factors affecting 

university patent production that, to our knowledge, has not been analysed so far. Furthermore, our 

approach differs from previous econometric studies with respect to the empirical framework. While 

previous works have applied one level of analysis (e.g. university), we put forward a multilevel model in 

which the dependent variable is the number of universities, and the independent variables include 

university characteristics (the technological scope along with other variables) and control for regional 

factors at a second level. For testing the role of technological diversification in the production of patents 

we use the university as unit of analysis. Based on a knowledge production function, we estimate several 

empirical models using a cross-sectional sample of university-owned patents for 141 European 

universities located in 74 European regions.  

The paper is organised as follows. Section 2 summarises the relevant literature. Section 3 describes 

the data and the patterns of university technological diversification in university-owned patent production 

across European universities. Section 4 presents the models, explaining the effects of technological 

diversification on the production of new patents. Section 5 provides the results and robustness checks. We 

briefly summarise the conclusions and provide some policy implications in Section 6. 

2 Literature review 

In recent years an increasing number of studies carried out both in Europe and in the US has 

contributed to our knowledge on the factors affecting the production of patents in universities. We know 

which universities produce more patents, which receive more revenues in licensing, in which fields 

patents are being issued, who is patenting in the university and how patent activity relates to personal 

characteristics (Stephan et al., 2007; Azoulay et al., 2007). We also know something about certain 

institutional and regional factors encouraging academic patent activities and others that are hampering the 
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production of patents. For example, prior empirical research on the determinants of university patenting 

has largely evaluated regulatory changes such as the US Bayh-Dole Act (e.g., Henderson et al., 1998, 

Mowery et al. 2001) or IPR regulatory policies in Europe (Geuna and Rossi 2011). Other research has 

focussed on university-specific factors (for example, the size, prestige of the university, universities’ 

policies, etc.) and whether the economic environment can affect the production of patents at university 

level (Coupe, 2003; Payne and Siow, 2003; Saragossi and de la Potterie, 2003; Azagra-Caro et al. 2003; 

Dai et al., 2005; Geuna and Nesta, 2006; Baldini, 2006; Acosta el al. 2009; Rizzo and Ramaciotti, 2014). 

However, the question of whether the breadth of the technologies embedded in university patents can 

contribute to or hinder the production of new patents remains unanswered. In the following paragraphs 

we advance some positive and negative consequences of technological diversification. 

Universities, as with other organisations, can develop knowledge in a variety of technological 

domains; they can make choices about the knowledge fields in which they want to develop their research 

and technological activities. By deciding upon the development of knowledge in one technological 

domain (or discipline), they reduce their options to develop expertise in other domains, and hence 

decisions regarding the knowledge depth and breadth become strategic questions with consequences in 

the long run (Moorthy and Polley, 2010). Therefore, there are two alternatives. On the one hand, 

universities may follow a technological diversification strategy expanding the production of technology 

base embedded in patents into a wide range of fields. On the other hand, universities may promote 

specialisation by reinforcing and stimulating the production of technology in a small number of areas. 

Both options could produce different outcomes. While the final decision about university research might 

remain centred on the individual researcher, some studies show that these decisions are influenced by the 

university environment, societal forces, and policy (Dai et al., 2005).  

In order to provide clues about which hypothesis (diversification or concentration) would be more 

compatible with the increase of patent performance at universities, there are two questions to address. 

First, we discuss some advantages and drawbacks of one or another strategy. Second, we summarise some 

empirical background.  

With respect to the first question, while the role of technological diversification has been studied at 

company level, there is not much research at university scope. Some literature has analysed the 

advantages of diversifying the production of technology. For example, Wade and Gravill (2003) argue 
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that it reduces the risks of innovation and creates synergy in cross-disciplinary technology integration 

(Gambardella and Torrisi, 1998), thereby enhancing the sources of competitive advantage. Henderson and 

Cockburn (1996) point out the benefits of diversity in the research agendas of pharmaceutical firms. They 

suggest that having a range of research approaches and expertise within firms permits the cross-

fertilization of ideas through knowledge spillovers between units and therefore greater innovative output. 

Granstrand (1998) argues that a technological diversification strategy can help firms to enhance 

innovation efficiency because diversification can stimulate firms to generate innovative ideas through the 

combination and recombination of various technologies. By maintaining a broad technology portfolio, 

firms can explore and exploit new opportunities emerging from scientific and technological 

breakthroughs (Lin et al. 2006). Some drawbacks are also inherent in technological diversification. 

Coordination costs may increase exponentially with higher levels of technological diversification because 

more diversified firms are more likely to encounter difficulties in combining mature, or exploitative, 

technologies with explorative trajectories (Leten et al. 2007). Uncertainty in conducting sometimes 

unrelated activities (Brown, 1992) is another of the main negative consequences. Some of these 

advantages and drawbacks at company level can be observed at university level. For example, in 

academic circles, a relationship between the diversity of knowledge and information accessed via network 

connections during the various stages of the research process should positively influence both an actor’s 

creativity and the knowledge creation quality since knowledge diversification offers opportunities to 

exploit and combine inputs from different sources (Chen and Liu, 2012). The costs of co-ordination are 

probably higher for a technological diversification strategy compared to a concentration option. For 

example, diversification in university research sometimes stems from the incorporation into a project of 

researchers from different universities, working in related fields. Many (though not all) European funding 

opportunities require some sort of collaboration with partners in other European countries; for example, 

most of the funding in the framework of the European strategy Horizon 2020 require organisations from 

at least three different countries. When several universities are involved in a project, some face-to-face 

contact between researchers is necessary for co-ordination and exchange of ideas, increasing the 

displacement costs. Another risk is uncertainty; there is no guarantee that technological diversification 

will increase the likelihood of generating technological outputs in the form of patents. Sometimes, 

attempts to cope with several fields of research result in fewer outputs because of lack of expertise in 
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some of them, or perhaps there is the same quantity of outputs, but of worse quality than in a 

specialisation scenario.  

With regard to the empirical background, the consequences of technological diversification has been 

widely analysed at firm level (e.g. Breschi et al. 2003; Lin et al. 2006; García-Vega, 2006; Quintana-

García and Benavides-Velasco, 2008; Chiu et al. 2010). Overall, this literature confirmed the positive 

impact of technological diversification on firms’ technological performance. However, the question of 

whether the scope of technological knowledge embedded in university patents affects the production of 

new patents remains quite unexplored. Only a few number of papers have dealt with a related topic about 

the breadth (knowledge diversification) created in universities with several outcomes, such as the quality 

of patents and commercialisation. The research by Rosell and Agrawal (2009) examined the technological 

breadth of university inventions, which are more likely to be cited by a more concentrated set of 

subsequent patent owners. Their results suggest that the rapid rise in patenting during the 1980s in the US 

was associated with a narrowing of knowledge flows both to and from universities, but only in specific 

technology fields. Tantiyaswasdikul (2012) investigated the effect of the breadth of patent protection – 

including both of the number of IPC classes and the number of claims - to account for breadth or 

diversification on the value of patents measured with patent citation. Using a sample of 1120 Japanese 

university patents the author found a significant effect and concluded that patent diversification does 

influence the value of university patents. Nerkar and Shane (2007) examined the effect of the attributes of 

inventions on their commercialisation, particularly technology scope. Using patents assigned to the 

Massachusetts Institute of Technology between 1980 and 1996 and licensed to a private firm, their work 

supports the hypothesis that the greater the scope of the invention’s patent, the greater the likelihood of its 

commercialisation. These two papers show the positive effects of technological diversification of 

university patents on its quality and commercialisation, but not on the subsequent performance. 

 Diversification seems to bring benefits for technology transfer as well. Some research has shown that 

broader scope of patented inventions provides a wider range of alternative inventions that can be blocked 

by the patent. The size of the region of technology space may exclude other patentees from operating, and 

then a broader patent is more valuable to the patentee (Jaffe, 2000). This idea suggests that a 

diversification patent generates greater appropriateness and increases the value of the patented invention 

(Merges and Nelson, 1990; Lerner, 1995; Shane, 2001). To summarise, the empirical research on 
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technological diversification in other institutions (firms) shows some benefits on technological 

performance, and the limited research of this topic at university level also points in the same direction: a 

positive relationship between diversification and some indicators such as the patent quality and patent 

commercialisation. This similarity with respect to the empirical research between firms and universities is 

not surprising, given that universities have become entrepreneurial in their inner dynamic as well as 

through external connections with business firms in research contracts and transfer of knowledge and 

technology (Etzkowitz, 2003). Moreover, although the intra-organisational processes of these academic 

units are relatively nascent and fragmented (Hunter et al. 2011), some similarities between the production 

of knowledge in firms and universities are clea,r to the extent that universities are divided into research 

groups that operate as firm-like entities; they lack only a direct profit motive to make them companies 

(Etzkowitz, 2003). On these grounds, we expect a positive causal relationship between technological 

diversification and the production of university patents in subsequent periods. 

3 Patent specialisation across European universities 

3.1 University-owned patents across European universities 

Following the terminology in Lissoni et al. (2008), ‘academic patenting’ comprises both university-

owned patents, in which the property is retained by the universities that employ the academic inventors, 

and university-invented patents, where at least one of the inventors is from a university but the owner of 

the patent is a firm. This latter category of patents consists of inventions arising from collaboration with 

industry, with three actors involved in negotiations over the intellectual property: the academic inventor, 

his/her business partner, and the university administration (Lissoni et al, 2013)1. In this paper we consider 

university-owned patents. Lissoni (2012) suggests that, by looking solely at university-owned patents, we 

may end up losing sight of a substantial amount of inventing activity that is registered under a company’s 

or an individual’s heading. However, although our choice might be seen as a partial view (we exclude 

invented patents), the fact is that university-owned patents fit better to the objective of this paper for the 

 
1 Geuna and Nesta (2006) concluded that the number of university-invented patents is higher than the number of 
patents owned by universities. Lissoni et al. (2008) provide figures to show that university-owned patents in France, 
Italy and Sweden constitute no more than 10% of all academic patents (most patent ownership lies with firms), 
although this can be as high as 69% in the US. Recently, some European countries have introduced legislative 
changes in an attempt to retain the rights of invention where universities produce the information included in patents; 
see Geuna and Rossi (2011) for a discussion. 
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following reason. Our research question on how diversification of knowledge embedded in university 

patents can produce additional, subsequent technological knowledge is an issue that, if corroborated, 

would require university competence to put in practice measures affecting the diversification or 

specialisation of patented technology. This control competence over technological research is easier for 

university-owned patents than for university-invented patents because the former relies on university’s 

resources while the latter are totally or partially funded by the firms that end up owning the intellectual 

property. Some empirical research supports this idea; for example, university-owned patents have been 

found to be more responsive to public funding and university-invented patents more responsive to private 

funding (Azagra-Caro et al. 2006; Azagra-Caro, 2014). 

In order to construct our sample of university-owned patents we used the following criterion. A patent 

was assigned to a university when the name of the university appeared in the list of applicants2. When 

there was more than one university applicant, each was assigned a patent. To avoid national distortions 

arising from differing patent application requirements in different countries, we included only European 

Patent Office patents in our sample. We examined the institutions named in the European Indicators, 

Cyberspace and the Science–Technology–Economy–System (EICSTES) Project and in the Worldwide 

Web of Universities (http://univ.cc, a web site with links to 7,884 universities in 190 countries).  

Our search resulted in 3,330 European university-owned patents (obtained from the Derwent 

Innovation Index) related to 391 universities located in Europe-15 (before the 2004 enlargement) for the 

period from 2001 to 20043. Of the 391 universities, 31 have no university-owned patents; 192 universities 

have between one and five such patents; 89 have between six and 10; 37 have 11 to 20; 18 have 21 to 30; 

and 24 universities own more than 30 patents. On average, there are 8.5 patents per university for the 

whole period.  

Table 1 presents the top 10 universities with the highest number of owned patents. Three British 

universities lead the ranking, accounting for 17.5% of all patents. That Table also shows that owned 

patents appear to be concentrated in a few universities; only ten universities (2.5% of the sample) account 

 
2 There are two issues that we had to solve. First, sometimes the college appears as applicant instead of the university. 
Second, it is common that different names and/or abbreviations for the university appear as applicant of the patent. To 
avoid losing information we elaborated a complete list of universities (and colleges) considering different 
abbreviations as well. (This list is available upon request).      
3 Although the first search was performed using the Derwent Innovation Index, we have recently checked and 
compared the entire information with another database (PATSTAT), with little change with respect to our original 
data. 
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for 25.6% of patents. University-owned patents can be analysed by looking at the distribution across 

technological fields. For this purpose, we have classified all patents in the sample according to the 

technological subclasses of the International Patent Classification (IPC) at four digit-level. The IPC offers 

a means of obtaining an internationally-uniform classification of patent documents of which the primary 

objective is the establishment of an effective search tool for the retrieval of patent documents. 

Researching the IPC codes is a way to find out the various technologies embodied in a patent because 

each classified ‘thing’ in a patent is made according to its nature, function, purpose or application (Guide, 

2012)4. The last column in Table 1 shows the number of different technological subclasses for all the 

patents owned by each university and Table 3 exhibits the ten most dynamic technological subclasses of 

the IPC in which European universities have patented in 2001-2004. As this table depicts, more than a 

half of all university-owned patents include at least one of those IPC codes. 

 
 
Table 1. Top Universities by number of university- owned patents ( 2001-2004) 

  University-owned patents No. 
IPC (*) University Country No. % Cum. % 

University of London GB 243 7.30 7.30 114 
University of Oxford GB 168 5.05 12.34 99 
University of Cambridge GB 89 2.67 15.02 81 
Ghent University BE 61 1.83 16.85 48 
University of Southampton GB 50 1.50 18.35 42 
Catholic University of Leuven BE 49 1.47 19.82 51 
Universitat Politecnica de Valencia ES 49 1.47 21.29 39 
University of Bristol GB 48 1.44 22.73 46 
Delft University of Technology NL 48 1.44 24.17 59 
Leiden University NL 47 1.41 25.59 27 
University of Manchester GB 46 1.38 26.97 44 
Eberhard-Karls-Universitat Tubingen DE 45 1.35 28.32 32 
University of Glasgow GB 45 1.35 29.67 27 
Catholic University of Louvain BE 43 1.29 30.96 45 
Utrecht University NL 40 1.20 32.16 20 
Others   2259 67.84 100  
All Universities in the sample (391)  3330 100 100  

(*) Number of different technological fields (IPC codes at four digit-level). 
Source: Derwent Innovation Index. 

 

 

 

 
 
 
 

 
4 Available at http://www.wipo.int/classifications/ipc/en/general/ 
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Table 2. Ten IPC codes with the greater number of university onwed-patents 

IPC Codes 
Patents including the IPC code(*) 

No. % Cum. % 
A61K 1051 10.93 10.93 
C12N 769 7.99 18.92 
G01N 760 7.90 26.82 
A61P 686 7.13 33.95 
C07K 535 5.56 39.51 
C12Q 509 5.29 44.80 
C07H 217 2.26 47.06 
B01J 199 2.07 49.13 
C12P 198 2.06 51.19 
H01L 194 2.02 53.20 
A61K: Preparations for medical purposes; C12N: Micro-organisms or enzymes; 
compositions thereof; G01N: Investigating or analysing materials by 
determining their chemical or physical properties; A61P: Specific therapeutic 
activity of chemical compounds or medicinal preparations; C07K: Peptides; 
C12Q: Measuring or testing processes involving enzymes or micro-organisms; 
C07H: Sugars; derivatives thereof; nucleosides; nucleotides; nucleic acids; 
B01J: Chemical or physical processes, e. g. catalysis, colloid chemistry; their 
relevant apparatus; C12P: Fermentation or enzyme-using processes to 
synthesise a desired chemical compound or composition or to separate optical 
isomers from a racemic mixture; H01L:  Semiconductor devices; electric solid 
state devices not otherwise provided for. 

(*) When a same code appears for example in two patents, these data include both patents.  
Source: Derwent Innovation Index 

 

3.2 Relationship between technological diversification and patent production 

To analyse how universities diversify their patented technology, we suggest an entropy index based on 

Jacquemin and Berry (1979), which measures the degree of technological diversification across 

technological fields: 

,. 

where Pij is the proportion of patents in field j in university i, and ln(1/Pij) is the weight given to each 

field. This measure considers both the number of technological fields and the relative importance of these 

fields compared with all the patents owned by the university. Zero indicates the absence of diversity and 

ln (number of sectors) indicates the maximum extent of diversity.  

In order to calculate the entropy index for each university we have followed two criteria. First, 

according to Lerner (1994) and other subsequent research (e.g. Nerkar and Shane, 2007; Huang and 

Murray, 2009; Czarnitzki et al., 2011), the technological diversification in university patenting is 

measured using the spread of a university’s patent portfolio over technological subclasses of the 

International Patent Classification at four-digit level. Second, to avoid problems over the sensitivity of the 

results to changes in scale (that is, the number of technology fields used to calculate the entropy indexes), 

entro = Pij
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we have considered another way of classifying patents, using an industrial classification instead the IPC 

subclasses. For this purpose, we classified all the university-patented technology (by four-digit IPC 

codes) into 44 industrial sectors, applying an industrial concordance table developed by Schmoch et al. 

(2003). Using this equivalence table, we assigned the original IPC data (all the IPC at the four-digit level) 

for each university-owned patent to the Classification of Economic Activities in the European 

Community at the two-digit level based on the industrial sector where the patent originated. Once all the 

technologies were classified in industrial sectors, we used this information to obtain the entropy indexes 

for all universities in the sample for the period 1998–2000.  

After applying these two criteria explained above we obtained introipc (entropy index obtained from 

IPC codes) and entro (entropy index calculated from industrial sectors). Other alternatives consist of 

weighting the entropy index introducing a weight factor (p/p–1) similar to that proposed by Hall et al. 

(2001).  This diversity index (entroipcw) accounts for the number of technology classes in which a 

university was involved and controls for the size of the patent portfolio by weighting for (p/p-1), which is 

correct for the small sample bias5. Finally, we use the log of the number of different IPC classes for all 

the technologies patented by each university. This is a rough measure (useful for comparing with the 

previous indexes) that takes into account only the technological scope of the patent (or number of 

technologies embedded in the patent). Fig. 1 shows the relationship between the production of university 

patents in the period 2001–2004 and the degree of technological diversification in the previous period 

(1998–2000) using the indexes described above. These graphs provide some intuition, showing that the 

data are consistent with the view that diversification is positively related to the production of patents. The 

graphs also suggest that diversification is important but, above a certain point, there is clearly a positive 

relationship with the production of patents in the subsequent period 2001–2004 when the values of the 

entropy indexes are larger than 1.5. 

 

 

 

 

 
5 For example, when the number of patents owned by the university is large, let us say 1000, the weight factor is near 
1 (p/p-1 = 1000/999) and entroipc is equal to entroipcw; however, if the number of patents is small, e.g. 5, the weight 
factor is 1.25 (p/p-1 = 5/4), which means that entroipcw is larger than entroipc for universities with a small number of 
patents. 
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Fig. 1. Relationship between the number of university-owned patents in 2001-2004 and four measures of 
technological diversification 1998-2000 (*) 
 

 

 

 
 

  
Note: entroipc is the entropy index computed from the number of IPC class at four-digit level for each university; entro is the entropy 
index obtained using the number of economic sectors; entroipcw is the entroipc index weighted by (n/n-1) where n is the number of all 
technological classes in each university; lnipc is the logarithm of the number of different IPC clases in each university. 

4 Variables, data and method 

4.1 Variables and data 

4.1.1 Dependent variable 

The dependent variable, ownedpat, is the number of European patents owned by university ‘u’ located 

in region ‘r’ in period ‘t’. As explained above, the data for this variable were obtained through a search 

using the Derwent Citation Index for the period 2001-2004. 

4.1.2 Variable of main interest 

Our main independent variable is the degree of diversification of the patented technologies produced 

in universities in a period before the patent production. We have used the four measures of diversification 

described above that were obtained at university level for the period 1998-2000: entroipc, entro, 

entroipcw and lnipc. 
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4.1.3 Control variables 

• University size (lnpub). The empirical literature seems to support the view that large universities 

are more likely to produce technology outputs. For example, Schartinger et al. (2002), in a study of 309 

Austrian university departments, found that department size is a significant determinant of industry–

university knowledge and technology transfer. Likewise, Carlsson and Fridh (2002) investigated 

technology transfer in the US using data from 170 universities, hospitals and research institutes. One of 

their more important findings was the significant relation between institution size and the total number of 

patents. Friedman and Silberman (2003) also found that university size was a relevant factor in explaining 

the number of invention disclosures in 83 US universities. These references indicate the relevance of size 

to the production of more patents or other kinds of technology outputs, but including size in the model is 

also important for controlling by the fact that larger universities can count on more resources (such as 

researchers or facilities) and consequently have more opportunities to produce patents. For capturing the 

size of the university, we employed the number of scientific publications (lnpub). These data refer to the 

scientific articles containing at least one author affiliated with a European university for 1998–2000. The 

information was retrieved from the Science Citation Index Expanded (SCI) and includes papers from all 

scientific fields and engineering, which are the more related to the production of technology (fields in 

social sciences and humanities were excluded).6  

• Collaborations with firms or universities in producing patents (collabo). Collaboration provides 

benefits that include access to a wide variety of resources, to new foundations or instruments needed to 

solve complex problems, and to the creation of new knowledge or technologies (Belkhodja and Landry, 

2007). To estimate the existence of spillovers, we need to assess the level of knowledge exchange or 

knowledge co-operation with other universities or firms. To capture this variable, an approximate 

indicator is the ratio between the number of university patents in collaboration with firms and other 

universities and the total number of patents (collabo) for each university in the period 1998–2000. 

• University R&D expenditure (rdexpend). This is one of the main variables suggested in the 

knowledge production function, and on which the empirical literature has focused most intensely. For 

example, Coupé (2003), Payne and Siow (2003), Azagra-Caro et al. (2003), Azagra-Caro et al. (2006), 

 
6 As is well known, the SCI is a bibliographical database produced by the Information Sciences Institute (ISI), which 
is in turn a part of Thomson Reuters’ Web of Science. The main advantage of ISI citation indexes is that they provide 
a complete list of all authors and their affiliations. . 
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and Acosta et al. (2009) found a significant effect of university R&D expenditure on the production of 

university patents, although with different values for the coefficient depending on the context in which 

the knowledge production function was applied. This variable was measured using the logarithm of the 

annual average for 1998–2000 of Higher Education Expenditure on R&D (HERD) in millions of PPS—

purchasing power standard, at 2000 prices. The source of HERD is Eurostat. We include regional instead 

of university data for two reasons. First, there are no available indicators of university R&D funds for a 

large sample of European universities, but we can take regional HERD, which is available at the regional 

level. This is the only method of control for university R&D expenditure. Second, our variable of interest 

is ‘diversification’; we do not aim to obtain accurate estimates of the effects of R&D on patent 

production, although it is necessary to control for this factor. Methodologically, there should be no 

problem because we take into account the clustered nature of data in the specification (universities are 

grouped in regions and as regions for our analysis we chose the territorial units from Eurostat in each 

country at the NUTS 2 level of aggregation). 

• Technological environment or demand side for university-patented technology (rdgdp). Regions 

with a strong industrial sector, supported by high-technology activities or with well-trained human 

resources, will demand more intensive university technology than regions with a much lower level of 

knowledge in technology and innovation. The inclusion in the model of a control variable capturing 

regional factors is important because of the spillovers theory reversed (Casper, 2013). This hypothesis 

suggests that the university’s regional environment can significantly affect the university’s success in 

producing and commercialising science and technology. However, the empirical literature does not offer a 

clear-cut conclusion about the effect of regional demand on university technology. For example, Baldini 

et al. (2006) analysed a set of 637 patent applications filed at the Italian Patent and Trademark Office, the 

European Patent Office, and the US Patent and Trademark Office between 1965 and 2002, with at least 

one applicant belonging to the official list of higher education institutions. They found greater university 

patenting activity in the north of Italy, where there is a higher level of industrial development. Using a 

longitudinal dataset of all public Italian universities for 2005-2009, Rizzo and Ramaciotti (2014) found 

that being embedded in an innovative region is a factor that exerts a positive influence on the university 

rate of application for patents. Acosta et al. (2009) found no evidence of the effects of industrial potential 

on the production of university patents in Europe. In our model this variable was captured by the ratio 
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between firm R&D expenditure and regional gross domestic product. We obtain an annual average for 

1998–2000. The source used to construct rdgdp was Eurostat. 

 Note that our list of explanatory variables is comprised of data at two levels: our dependent variable 

(the number of university-owned patents, the main variables of interest (diversification) and the control 

variables capturing size and collaboration are obtained at university level. However, the control variables 

on R&D expenditure and the demand side for patented technologies are obtained at regional level. There 

are two reasons for this choice: first, according to the main empirical literature, R&D is a fundamental 

variable in explaining the production of patent, but this variable is unavailable at university level. 

Secondly, controlling for the university demand of the surrounding economic environment requires 

considering a variable that nests our dependent variable (universities are located in regions). The 

inclusion of these variables at regional level avoids a misspecification problem, and the combination of 

several nested structures can be dealt with the appropriate econometric specification. Unfortunately data 

about some the previous independent variables are not available for all the universities considered in the 

descriptive analysis (391). For some of them was impossible to obtain information about their 

characteristics and, on the other hand, information on several variables such as university R&D 

expenditure exists only for a specific number of European countries. Consequently, the number of 

observations (universities) to estimate the model was 141. Table 3 briefly summarises the variables and 

presents the descriptive statistics, while Table 4 shows the correlations among all variables involved in 

the analysis. Note that the linear correlations between the diversification indexes and the number of 

patents range between 0.32 and 0.56.  
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Table 3 Variables. Summary and Descriptive Statistics 
Variable Description Mean Std. Dev. Min. Max 

ownedpat Dependent variable. Nº of university-owned patents (2001-2004). 8.764 10.508 0 49 

 Level 1: University data     

entroipc Entropy index obtained using technological IPC classes. (1998-
2000). 

1.540 0.873 0 3.802 

entro Entropy index obtained using technological economic sectors. 
(1998-2000). 

0.872 0.710 0 2.723 

entroipcw Entropy index weighted by the university patent activity (1998-
2000). 

1.763 0.858 0 3.862 

lnipc Log of the number of different IPC class for each university. (1998-
2000) 

1.592 0.928 0 3.892 

lnpub Log of number of JCR scientific papers published by each university 
(1998-2000). 

6.730 1.761 0 8.856 

collabo Number of patents in 1998-2000 developed in collaboration with 
firms divided by the number of patents 1998-2000. 

0.171 0.314 0 1.000 

 Level 2: Regional data     

lnrduniv Log of R&D University Expenses (average 1998-2000) 5.534 0.867 3.392 7.550 

rdgdp R&D expenses divided by the regional gross domestic product 
(average 1998-2000) 

0.012 0.009 0.001 0.043 

 
 
Table 4 Correlations 
Variable ownedpat entroipc entro entroipc lnipc lnpub collabo lnrduniv lnrdfirms 

ownedpat 1.0000         

entroipc 0.5192 1.0000        

entro 0.3232 0.8055 1.0000       

entroipcw 0.4660 0.9893 0.8035 1.0000      

lnipc 0.5581 0.9959 0.7808 0.9783 1.0000     

lnpub 0.4142 0.3294 0.1228 0.3 0.3425 1.0000    

collabo -0.0219 0.0262 -0.0017 0.0298 0.0227 0.0571 1.0000   

lnrduniv 0.2351 0.0809 0.0127 0.076 0.096 0.1294 0.1587 1.0000  

rdgdp 0.1297 0.1729 0.1175 0.1628 0.1814 0.0648 0.0942 0.4533 
 

1.0000 

 
 

4.2 Econometric model 

 

This section establishes an econometric model to test the importance of diversification (along with 

other variables) in the production of subsequent university-owned patents. The standard starting point in 

the literature is a ‘knowledge production function’ (Griliches, 1979) in which knowledge is measured 

with a proxy variable (e.g., patents) and the inputs include university R&D funds and other variables. 

Several authors have used this empirical tool to analyse the production of university patents at various 

levels (e.g. Coupé, 2003; Foltz et al. 2000, 2003; Payne and Siow, 2003; Azagra-Caro et al. 2006; Baldini 

et al. 2006; Acosta et al. 2009; Gurmu et al. 2010).  
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Our framework is marked by two differences. First, we introduce the role of diversification as an 

explanatory factor, and, second, we take into account non-observable regional influences that can affect 

the production of university patents. The following paragraphs explain the empirical model, the variables 

and provide some details about the estimation procedure. 

Given the nature of the dependent variable, a suitable framework for dealing with this type of data 

would be any of the family of the count models. The Poisson regression model is usually the starting 

point for the analysis of count data. However, the assumed equality of the conditional mean and variance 

functions is typically taken to be the major shortcoming of the Poisson regression model and thus 

observed data rarely, if ever, display this feature (Greene, 2012, p. 807). The most common is the 

negative binomial (NB) model, which is used to model overdispersion (the extra variability compared 

with the mean).7 Additionally, we extend the standard NB model to incorporate normally distributed 

random effects at different hierarchical levels. More specifically, our base empirical specification is a 

count model in which the conditional mean explaining the production of university-owned patents 

depends on technological diversification along with a set of explanatory variables (Table 3) plus regional 

unobserved heterogeneity: 

    [1] 

Where diversif is captured by one of the four diversification indexes put forward in Section 3.2 (see 

Table 3 for a summary) and  is a random coefficient of unobserved heterogeneity over 

regions. This term should capture other characteristics of the regional innovation system (not explicitly 

included as explanatory factors in the model) that could affect the production of patents, such as 

incentives and other policy measures and interface centres. 

All independent variables refer to a previous period, t–µ, in which the patents are produced, because it 

takes time for the factors included as independent variables to generate effects on the dependent variable. 

Because universities are grouped into regions, the model has two hierarchical levels. The first level of 

university effects considers the characteristics of universities affecting the production of patents. The 

second level clusters all universities in the same region. This hierarchical structure suggests the extension 

 
7 Other alternatives have been proposed in the literature, for example when the fraction of zeros is too high to be 
compatible with standard underlying count data, zero inflated models or hurdle models can be a good option. But in 
our analysis it is not appropriate to estimate this model as our sample contains 12.8% of zeros. 

E(ownedpaturt |  diversifurt−µ, lnpuburt−µ, collabourt−µ  ln rdunivrt−µ, rdgdprt−µ,ζr
(2) ) =

exp(α +γdiversifurt−µ +φ1 ln puburt−µ +φ2collabourt−µ +β1 ln rdunivrt−µ +β2rdgdprt−µ +ζr
(2) )

),0(| )2()2( jz NXr »
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of the simple count regression to a grouped-data model with unobserved effects capturing regional 

heterogeneity. The adoption of a grouped-data model to analyse factors at two hierarchical nested levels 

has several advantages in avoiding potential endogeneity problems in simple cross-sectional regression 

models caused by the omission of variables and intragroup correlations. First, the grouped-data model 

takes into account unobserved factors affecting the production of university patents on a regional scale. 

Second, the geographical area where the patent is produced may have some influence. For example, 

patents produced in the same region may be influenced by identical incentives or transfer office 

characteristics (that is, we assume a high probability of intragroup correlation between universities in the 

same region). Consequently, the decision to use hierarchical analysis has the main objective of avoiding 

bias caused by both the omission of relevant variables and unobserved regional heterogeneity. Failure to 

consider clustering of data could result in serious bias when we estimate the effects of the aggregate 

explanatory variables on the individual-specific response variables (see, for example, Moulton, 1990; 

Antweiler, 2001; Wooldridge, 2003). Furthermore, this procedure makes it possible to estimate 

confidence intervals correctly for the estimated coefficient of diversification after controlling for regional 

unobserved heterogeneity. 

The log-likelihood of the multilevel count model (Poisson or NB) has no closed form, and so must be 

approximated. All the multilevel Poisson models in the next section are estimated by adaptive Gaussian 

quadrature, using the seven-quadrature points in the Stata statistical package, version 13. The technical 

details of the procedure can be found in Raudenbush and Bryk (2002), Pinheiro and Chao (2006) and 

Rabe-Hesketh and Skrondal (2012). 

5 Results 

5.1 Baseline results 

Following our empirical specifications and the procedure proposed above, we estimated four negative 

binomial regressions with random cluster effects. These models are obtained from a process whereby the 

response is generated by counting the number of patents for each level-1 unit (university) and where, 

conditional on the fitted explanatory variables and higher-level terms (regions), the mean count for each 

university level-1 unit has a Poisson-gamma mixture distribution. This specification may capture some 
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additional overdispersion stemming from unexplained heterogeneity between universities. Table 5 

presents the results. The dependent variable ownedpat (number of university-owned patents in 2001–

2004) is explained using four diversification indexes along with other variables that, according to the 

standard literature on this topic, affect the production of patents (see Table 3 for a short description of the 

variables and the descriptive statistics). Each model in Table 5 corresponds to one of the indexes 

capturing the diversification of patented technology. Model I includes the entropy index computed using 

IPC codes (entroipc); Model II uses the entropy index calculated from the number of industrial sectors; 

Model III is presented with the entropy index weighted by the size of the university portfolio (entroipcw); 

and Model IV considers the number of different IPC codes. The coefficient of overdispersion (lnalpha) is 

significant in all models, pointing to the gain of the NB model with respect to the Poisson regression for 

capturing the variability of the dependent variable. Analysing first the random part of the models, we find 

the regional variance is not significant and ranges from 0.03 to 0.11. On the other hand, the LR statistic 

that compares the two level random effect negative binomial models with standard NB regressions (last 

row in Table 5) is only significant at 10% in one model. This test suggests that there are no unobservable 

regional factors affecting the production of university-owned patents that had not been controlled for in 

all models, and consequently there is little difference with respect to standard NB regressions.  

Focusing now on our main variables of interest, the indexes of diversification, their coefficients 

are positive and highly significant in all models. Consequently, the more diversified the number of 

patented technologies in a university in a period, the greater the number of new patents produced by the 

university in the subsequent period. In order to provide some direction about the magnitude of the effect 

of diversification, it can be noted that the estimated coefficients can be interpreted as semielasticities, or 

elasticities when the variable enters logarithmically in the exponential conditional mean (Cameron and 

Trivedi, 1998, pp. 80-81). The estimates suggest that 10% increase in technological diversification would 

lead to a rise in the number of patents ranging between 4 and 4.8%. For example, using the logarithm of 

the number of IPC codes as a diversification index (Model IV), a university which owns 9 patents (the 

average number of patents in the sample) over 8 different IPC codes at four-level digits (the average 

number of different IPC codes in the sample), doubling the number of technologies in which the 

university investigates in terms of number of IPC codes (or an increase of 100%) would lead to an 

increase of approximately 4 more subsequent patents (an increase of 48%). This result suggests 
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diminishing returns, which means that the increase in the number of subsequent patents is less than the 

enlargement of the level of diversification. This is not surprising since part of the research in new 

knowledge may be fruitless in terms of future patents. The other coefficients for the indexes based on 

entropy have a similar interpretation (Models I, II and III), although it should be taken into account that 

the entropy indexes consider both the number of technological fields and the internal distribution of 

patents in each field (the increase in entropy can stem from both expanding the number of technologies 

and/or balancing the number of patents in each technology). 

The other variables in the model present the following results. The variable collabo is not significant 

in any model; that is, collaboration with firms to produce new patented technologies in a period is not a 

significant variable when the objective is obtaining a greater number of patents in a subsequent period. 

Regarding the size of the university, the coefficient of the number of publications (lnpub) is highly 

significant. The elasticity of the R&D university expenditure is fairly stable around 0.25, showing 

decreasing returns to scale as the literature on university patents suggests. We find no significant effect 

from the demand side (captured by the ratio between firms R&D expenditure and GDP). 

Table 5 Negative Binomial Models with Nested Random Effects 

 MODEL I MODEL II MODEL III MODEL IV 
  Coeff.  Std. E. Coeff.   Std. E. Coeff.   Std. E. Coeff.   Std. E. 
C -2.420 *** 0.607 -2.478 *** 0.685 -2.565 *** 0.996 -2.357 ** 0.597 

Level 1: University.             
entroipc 0.483 *** 0.087          
entro    0.403 *** 0.112       
entroipcw       0.449 *** 0.091    
lnipc          0.477 *** 0.080 
lnpub 0.333 *** 0.055 0.401 *** 0.056 0.350 *** 0.056 0.322 *** 0.055 
collabo -0.233  0.260 -0.197  0.278 -0.247  0.269 -0.218  0.254 
Level 2: Region             
lnrduniv 0.255 ** 0.110 0.237 * 0.122 0.248 ** 0.111 0.249 ** 0.107 
lnrdfirms -8.696  10.098 -3.799  11.218 -7.527  10.345 -9.118  9.882 
             
lnalpha -0.604 *** 0.224 -0.570 *** 0.221 -0.548 *** 0.221 -0.647 *** 0.224 
             
Lev 2 (region) Variance RE 0.032  0.078 0.112  0.098 0.033  0.084 0.031  0.073 
              
Log-Likelihood -409.537   -416.741   -412.091   -407.702   
              
No. of Level 1 units 
(universities) 141   141   141   141   
No. of Level 2 units (regions) 74   74   74   74   
LR test ML vs. nbinomial 
regression: 0.19   1.65 *  0.18   0.21   
***, **, * denote coefficients statistically different from zero at the 1%, 5% and 10% levels, respectively. Dependent variable (pat) 

is the number of university-owned patents produced in 2001-2004. All independent variables refer to the period 1998-2000. 
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5.2 Robustness check 

As pointed out above, the main coefficients do not change substantially when the technological 

diversity is captured using different indexes, which means that the results are robust to four alternative 

measures of diversification. In this Section we provide additional robustness checks in several ways. First, 

by carrying out a sensitivity analysis to determine any possible change in the coefficients of either 

diversification indexes as a consequence of omitting variables from the main models; secondly, by 

estimating different count data specifications (Poisson models with robust standard errors); and thirdly, 

by choosing Tobit models as an alternative specification to the count models.  

With respect to the sensitivity analysis, we first assess potential multicollinearity computing the 

variance inflation factor (VIF) in the estimated NB models. The mean VIFs range between 1.14 and 1.19 

with a maximum of 1.3. These levels are considerably lower than the usual threshold of 10, and 

consequently the results are not biased by multicollinearity. Additionally, we removed from the models 

the variable capturing the size of the university (lnpub, number of publications), which is the variable 

with the higher coefficient of correlation with the entropy indexes. Dropping this variable does not 

change the main result: the diversification variables remain significant with only small variations in the 

value of the coefficients.  

The NB model is one way to model data in the presence of significant overdispersion, yet this 

commonly chosen specification is not the only one. As pointed out by Cameron and Trivedi (2009, p.561) 

we can simply use Poisson models with robust standard errors. We have followed this procedure to obtain 

four additional Poisson models (one model for each diversification index along with all other variables 

considered in the NB models) with robust standard errors and random effects to capture regional 

unobserved heterogeneity. The results do not change the significance of the four indexes of 

diversification. Although the values of the coefficients are slightly smaller than those obtained for our 

baseline models, all the coefficients of the diversification variables are statistically significant at the 1% 

level.8 

Regarding the alternative specification, Table 6 presents four Tobit models including exactly the same 

variables as in the NB models and the same number of observations. These results show that all the 

 
8 The estimated models for the sensibility analysis and the additional Poisson models are not presented, but are 
available upon request. 
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coefficients of the diversification indexes remain highly significant, and the other significant coefficients 

are the same as in the previous NB models. Note however that the Tobit model should only be viewed as 

an approximation for these data. The dependent variable is a count, not a continuous measurement, and 

thus a count model is always a preferable modelling framework (Greene, 2012, p. 815). 

 

Table 6 Tobit models 
 MODEL V MODEL VI MODEL VII MODEL VIII 
  Coeff.  Std. E.(1) Coeff.  Std. E.(1) Coeff.  Std. 

E.(1) 
Coeff.  Std. 

E.(1) 
C -27.691 *** 6.126 -28.676 *** 6.871 -29.356 *** 6.653 -26.794 *** 5.820 
Level 1: University.             
entroipc 5.529 *** 1.286          
entro    4.555 *** 1.203       
entroipcw       4.997 *** 1.249    
lnipc          5.660 *** 1.275 
lnpub 1.967 *** 0.410 2.651 *** 0.485 2.166 *** 0.425 1.834 *** 0.398 
collabo -1.899  1.684 -1.891  1.591 -1.971  1.644 -1.789  1.706 
lnrduniv 2.588 *** 0.964 2.668 ** 1.061 2.554 ** 0.999 2.519 *** 0.932 
lnrdfirms -21.642  111.610 16.097  115.381 -5.073  114.898 -31.654  109.889 
             
Log-Likelihood -456.55   -464.37   -459.82   -453.62   
 F 9.125 ***  8.849 ***  8.601 ***  9.464 ***  
Pseudo R2 0.070   0.054   0.063   0.076   
No. Obs. 141     141     141     141     
***, **, * denote coefficients statistically different from zero at the 1%, 5% and 10% levels, respectively. 
Dependent variable (ownedpat) is the number of university-owned patents in 2001-2004. All independent variables refer to the 
period 1998-2000. 
(1) Robust standard errors allowing for intra-group correlation (regions were used as a grouped variable for the universities). 
 

6 Conclusions 

In this paper we have analysed the relationship between technological diversification and the 

production of new university patents. Our framework combines the literature on university patent 

production with other theoretical and empirical literature about the consequences of technological 

diversification. As noted in a previous section of the paper, several authors have shown the relevance of 

some particular university characteristics to the encouragement of patents production. This study extends 

these findings by including the role of technological diversification as an additional explanatory variable 

in a modified patent production function that controls for some university characteristics and unobserved 

regional factors. By analysing the effects of technological diversification to the framework on the factors 

affecting university patent production, this paper contributes a new aspect to our knowledge that has not 

been analysed so far at university level. Besides this, our research relates to several papers that have 
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found a significant impact of technological diversification on variables such as the quality of university 

patents and their commercialisation. 

Using a sample of university-owned patents distributed across 141 European universities, our 

findings provide empirical evidence which suggests that greater diversification of the technologies 

embedded in patents is relevant to spur the production of new patents. The estimations are robust as to the 

use of a variety of technological fields to compute several indexes of diversification as well as to 

alternative specifications. Other factors included in the models show evidence that variables usually 

analysed in the university patenting literature, such as university R&D expenditure and the size of the 

university (particularly the size of the research carried out in the university measured by the number of 

published papers), are relevant in explaining the production of university patents.  

Our empirical findings should nonetheless be interpreted with caution because according to the 

broad classification of patents between university-owned patents and university-invented patents, we have 

considered only the first group (patents in which the name of the university appears as applicant) across 

Europe. Despite the fact that the use of university-owned patents is justified for the purpose of this paper, 

we have considered only one side of the story. Although most European countries have been moving 

away from inventor ownership of patent rights towards different systems of institutional ownership 

(Geuna and Rossi, 2011), there are still many university-invented patents where at least one of the 

inventors is a researcher affiliated to a university, but the applicant for the patent is a firm. 

Bearing in mind the stated limitation, this study contributes by providing a new element for 

discussing policy steps regarding how universities should diversify their technology in order to strengthen 

the production of new university patents. Although a lengthy discussion of policy measures is beyond the 

scope of this paper, we suggest some ideas aimed at technological diversification which could be 

explored. For example, supporting projects with outcomes in multiple sectors, particularly with the 

involvement of the private sector; and intensifying network collaboration within and between universities 

and other public research institutes so that they share knowledge, resources and capabilities, thus 

enhancing technological diversification and the subsequent generation of new patented knowledge. 

Another course of action to be considered could consist of providing institutional encouragement for 

researchers towards a wider range of fields or activities in order to promote technology transfer in fields 

with greater industrial demand for university knowledge (e.g. introducing differences in the way in which 
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patents are assessed in the professors’ CVs; release from teaching time to develop complex patents with a 

wide range of technological applications, etc.). 

Finally, there are other ways in which the role of technological diversification at universities can 

be explored. A natural extension of this research would be to analyse the effects of technological 

diversification of European university-invented patents and to compare them with our results based on 

university-owned patents. This contrast would provide a complete picture at European level on the role of 

technological diversification on the production of new patents. Other suggestions consist of using other 

objective variables such as the quality of the outputs or their commercialisation. The researcher and the 

research group as one unit of analysis to study the production of technology could also give an interesting 

perspective, given the recent debate about how patenting (or more generally, a greater involvement in 

technological commercialisation) may divert or delay the research agenda at individual or research-group 

level.  
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