Halkos, George and Bampatsou, Christina and Aslanidis, Panagiotis-Stavros (2025): Combining policy making tools for green transition: eco-efficiency benchmarking and club convergence.
PDF
MPRA_paper_123341.pdf Download (2MB) |
Abstract
This study examines the eco-efficiency performance of green energy transitions in 45 high-emission countries (1995–2022), focusing on convergence in policymaking. Using hybrid window data envelopment analysis (WDEA) models, eco-efficiency was evaluated for non-renewable energy (NRES), renewable energy (RES), and mixed sources. Inputs included capital, labor, and electricity generation; outputs were GDP (desirable) and CO2 and CH4 emissions (undesirable). Efficiency averaged 76.04% (RES), 74.25% (NRES), and 73.61% (mixed). Conditional convergence analysis revealed countries with similar conditions converge to unique steady states, highlighting the need for harmonized energy standards, therefore investments in green technologies can reduce emissions and electricity generation costs.
Item Type: | MPRA Paper |
---|---|
Original Title: | Combining policy making tools for green transition: eco-efficiency benchmarking and club convergence |
Language: | English |
Keywords: | hybrid window DEA; club convergence; imergeclub; logtreg; Log t regression test; energy sectors. |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q42 - Alternative Energy Sources Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q48 - Government Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 123341 |
Depositing User: | G.E. Halkos |
Date Deposited: | 14 Jan 2025 20:07 |
Last Modified: | 14 Jan 2025 20:07 |
References: | Addis, A. K., & Cheng, S. (2023). The nexus between renewable energy, environmental pollution, and economic growth across BRICS and OECD countries: A comparative empirical study. Energy Reports, 10, 3800–3813. https://doi.org/10.1016/j.egyr.2023.10.038 Alam, M. M., Destek, M. A., Haque, A., Kirikkaleli, D., Pinzón, S., & Khudoykulov, K. (2024). Can undergoing renewable energy transition assist the BRICS countries in achieving environmental sustainability? Environmental Science and Pollution Research, 31(6), 9700–9712. https://doi.org/10.1007/s11356-023-31738-4 Antoniades, A., Widiarto, I., & Antonarakis, A. S. (2020). Financial crises and the attainment of the SDGs: an adjusted multidimensional poverty approach. Sustainability Science, 15(6), 1683–1698. https://doi.org/10.1007/s11625-019-00771-z Apergis, N., Aye, G. C., Barros, C. P., Gupta, R., & Wanke, P. (2015). Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs. Energy Economics, 51, 45–53. https://doi.org/10.1016/j.eneco.2015.05.022 Apergis, N., & Christou, C. (2016). Energy productivity convergence: new evidence from club converging. Applied Economics Letters, 23(2), 142–145. https://doi.org/10.1080/13504851.2015.1058899 Asmild, M., Paradi, J. C., Aggarwall, V., & Schaffnit, C. (2004). Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry. Journal of Productivity Analysis, 21(1), 67–89. https://doi.org/10.1023/B:PROD.0000012453.91326.ec Avkiran, N. K., Tone, K., & Tsutsui, M. (2008). Bridging radial and non-radial measures of efficiency in DEA. Annals of Operations Research, 164(1), 127–138. https://doi.org/10.1007/s10479-008-0356-8 Bai, C., Du, K., Yu, Y., & Feng, C. (2019). Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Economics, 81, 698–708. https://doi.org/10.1016/j.eneco.2019.05.004 Bangjun, W., Linyu, C., Feng, J., & Yue, W. (2023). Research on club convergence effect and its influencing factors of per capita energy consumption: Evidence from the data of 243 prefecture-level cities in China. Energy, 263, 125657. https://doi.org/10.1016/j.energy.2022.125657 Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for estimating technical and scale inefficiencies in data development analysis. Management Science, 30(9). Bhattacharyya, S. C. (2019). Energy Economics: Concepts, Issues, Markets and Governance (2nd.). Springer. Borowiecki, M., Giménez, J. C., Federico, G., & Francesco, V. (2023). Accelerating the EU’s green transition. Organisation for Economic Co-Operation and Development. https://www.oecd.org/publications/accelerating-the-eu-s-green-transition-bed2b6df-en.htm Brown, S., & Jones, D. (2024). European Electricity Review 2024: Europe’s electricity transition takes crucial strides forward. EMBER. https://ember-climate.org/insights/research/european-electricity-review-2024/#supporting-material Camioto, F. de C., Moralles, H. F., Mariano, E. B., & Rebelatto, D. A. do N. (2016). Energy efficiency analysis of G7 and BRICS considering total-factor structure. Journal of Cleaner Production, 122, 67–77. https://doi.org/10.1016/j.jclepro.2016.02.061 Camioto, F. de C., Rebelatto, D. A. do N., & Rocha, R. T. (2015). Energy efficiency analysis of BRICS countries: a study using Data Envelopment Analysis. Gestão & Produção, 23(1), 192–203. https://doi.org/10.1590/0104-530X1567-13 Chang, Y.-T., Zhang, N., Danao, D., & Zhang, N. (2013). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 58, 277–283. https://doi.org/10.1016/j.enpol.2013.03.011 Charnes, A., Clark, C. T., Cooper, W. W., & Golany, B. (1984). A development study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces. Annals of Operations Research, 2(1), 95–112. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8 Chen, C.-M. (2013). A critique of non-parametric efficiency analysis in energy economics studies. Energy Economics, 38, 146–152. https://doi.org/10.1016/j.eneco.2013.03.009 Cheng, S., Addis, A. K., Chen, L., & Zhu, Z. (2023). Sustainable development efficiency and its influencing factors across BRICS and G7 countries: An empirical comparison. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1115459 Coelli, T. J., Rao., D. S. P., O’Donnel, C. J., & Batesse, G. E. (2005). An introduction to efficiency and productivity analysis. In Springer (2nd ed.). Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software: Second edition. In Springer. https://doi.org/10.1007/978-0-387-45283-8 DNV. (2024). Energy Transition Outlook: China 2024. A national forecast to 2050. https://www.dnv.com/publications/china-energy-transition-outlook/ Du, K. (2017). Econometric Convergence Test and Club Clustering Using Stata. The Stata Journal: Promoting Communications on Statistics and Stata, 17(4), 882–900. https://doi.org/10.1177/1536867X1801700407 EC (2019). The European green deal. European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN EC (2021). Fit for 55: Delivering the EU’s 2030 Climate Target on the way to climate neutrality. European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0550 EC (2022). REPowerEU Plan. European Commission. https://ec.europa.eu/commission/presscorner/detail/es/ip_22_3131 EC (2024). EU ETS. European Commission. https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European Journal of Operational Research, 157(1), 242–245. https://doi.org/10.1016/S0377-2217(03)00191-7 Färe, R., & Grosskopf, S. (2009). A Comment on Weak Disposability in Nonparametric Production Analysis. American Journal of Agricultural Economics, 91(2), 535–538. https://doi.org/10.1111/j.1467-8276.2008.01237.x Førsund, F. R. (2018). Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empirical Economics, 54(1), 67–99. https://doi.org/10.1007/s00181-016-1219-9 Gerasimchuk, I., Kühne, K., Roth, J., Geddes, A., Oharenko, Y., Bridle, R., & Garg, V. (2019). Beyond Fossil Fuels: Fiscal transition in BRICS. IISD, GSI and LINGO. https://www.iisd.org/system/files/publications/beyond-fossil-fuels-brics.pdf Guo, X., Lu, C.-C., Lee, J.-H., & Chiu, Y.-H. (2017). Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China. Energy, 134, 392–399. https://doi.org/10.1016/j.energy.2017.06.040 Halkos, G. E., & Argyropoulou, G. (2021). Pollution and Health Effects: A Nonparametric Approach. Computational Economics, 58(3), 691–714. https://doi.org/10.1007/s10614-019-09963-2 Halkos, G. E., & Aslanidis, P.-S. C. (2023a). Sustainable energy development in an era of geopolitical multi-crisis. Applying productivity indices within institutional framework. Resources Policy, 85, 103854. https://doi.org/10.1016/j.resourpol.2023.103854 Halkos, G. E., & Aslanidis, P.-S. C. (2023b). Promoting sustainable waste management for regional economic development in European Mediterranean countries. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-023-00405-y Halkos, G. E., & Aslanidis, P.-S. C. (2024). Green Energy Pathways Towards Carbon Neutrality. Environmental and Resource Economics. https://doi.org/10.1007/s10640-024-00856-z Halkos, G. E., & Bampatsou, C. (2022). Measuring environmental efficiency in relation to socio-economic factors: A two stage analysis. Economic Analysis and Policy, 76, 876–884. https://doi.org/10.1016/j.eap.2022.09.024 Halkos, G. E., & Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62, 97–104. https://doi.org/10.1016/j.eap.2019.01.005 Halkos, G. E., & Polemis, M. L. (2018). The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA. Journal of Environmental Management, 211, 334–346. https://doi.org/10.1016/j.jenvman.2018.01.067 Halkos, G. E., & Tzeremes, N. G. (2009). Exploring the existence of Kuznets curve in countries’ environmental efficiency using DEA window analysis. Ecological Economics, 68(7), 2168–2176. https://doi.org/10.1016/j.ecolecon.2009.02.018 Halkos, G. E., & Tzeremes, N. G. (2014). Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers. Journal of Productivity Analysis, 41, 367–382. Iddrisu, I., & Bhattacharyya, S. C. (2015). Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530. https://doi.org/10.1016/j.rser.2015.05.032 IEA (2023). World Energy Outlook: 2023. International Energy Agency. https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf IEA (2024). Electricity 2024: Analysis and Forecast to 2026. International Energy Agency. World Energy%0AOutlook%0A2023 ILO (2022). Employment and just transition to sustainability in the BRICS countries. International Labour Organization. https://www.ilo.org/resource/employment-and-just-transition-sustainability-brics-countries-presentation Iram, R., Zhang, J., Erdogan, S., Abbas, Q., & Mohsin, M. (2020). Economics of energy and environmental efficiency: evidence from OECD countries. Environmental Science and Pollution Research, 27(4), 3858–3870. https://doi.org/10.1007/s11356-019-07020-x IRENA. (2024). Tracking COP28 outcomes: Tripling renewable power capacity by 2030. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/Publications/2024/Mar/Tracking-COP28-outcomes-Tripling-renewable-power-capacity-by-2030#:~:text=pre-industrial levels.-,This World Energy Transitions Outlook brief provides the latest tracking,actions required to achieve it. Ivanovski, K., Awaworyi Churchill, S., & Smyth, R. (2018). A club convergence analysis of per capita energy consumption across Australian regions and sectors. Energy Economics, 76, 519–531. https://doi.org/10.1016/j.eneco.2018.10.035 Karlilar Pata, S., & Balcilar, M. (2024). Decarbonizing energy: Evaluating fossil fuel displacement by renewables in OECD countries. Environmental Science and Pollution Research, 31(21), 31304–31313. https://doi.org/10.1007/s11356-024-33324-8 Kuosmanen, T. (2005). Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs. American Journal of Agricultural Economics, 87(4), 1077–1082. https://doi.org/10.1111/j.1467-8276.2005.00788.x Kuosmanen, T., & Podinovski, V. (2009). Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2), 539–545. https://doi.org/10.1111/j.1467-8276.2008.01238.x Kyrgiakos, L. S., Vlontzos, G., & Pardalos, P. M. (2021). Ranking EU Agricultural Sectors under the Prism of Alternative Widths on Window DEA. Energies, 14(4), 1021. https://doi.org/10.3390/en14041021 Lin, S., Sun, J., Marinova, D., & Zhao, D. (2018). Evaluation of the green technology innovation efficiency of China’s manufacturing industries: DEA window analysis with ideal window width. Technology Analysis & Strategic Management, 30(10), 1166–1181. https://doi.org/10.1080/09537325.2018.1457784 Liu, W. B., Meng, W., Li, X. X., & Zhang, D. Q. (2010). DEA models with undesirable inputs and outputs. Annals of Operations Research, 173(1), 177–194. https://doi.org/10.1007/s10479-009-0587-3 Mamghaderi, M., Mamkhezri, J., & Khezri, M. (2023). Assessing the environmental efficiency of OECD countries through the lens of ecological footprint indices. Journal of Environmental Management, 338, 117796. https://doi.org/10.1016/j.jenvman.2023.117796 Mehdiloo, M., & Podinovski, V. V. (2019). Selective strong and weak disposability in efficiency analysis. European Journal of Operational Research, 276(3), 1154–1169. https://doi.org/10.1016/j.ejor.2019.01.064 Mohammadian, H. D., Langari, Z. G., & Wittberg, V. (2022). Cyber Government for Sustainable Governance: Examining Solutions to Tomorrow’s Crises and Implications through the 5thwave theory, Edu 5.0 concept, and 9PSG model. IEEE Global Engineering Education Conference, EDUCON, 2022-March, 1737–1746. https://doi.org/10.1109/EDUCON52537.2022.9766774 Moutinho, V., Madaleno, M., & Robaina, M. (2017). The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecological Indicators, 78, 85–97. https://doi.org/10.1016/j.ecolind.2017.02.042 OECD (2023). OECD Inventory of Support Measures for Fossil Fuels 2023. Organisation for Economic Co-Operation and Development. https://www.oecd.org/publications/oecd-inventory-of-support-measures-for-fossil-fuels-2023-87dc4a55-en.htm Ouyang, W., & Yang, J. (2020). The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model. Energy, 197, 117161. https://doi.org/10.1016/j.energy.2020.117161 OWID (2024). Total Electricity Generation. Our World In Data. https://ourworldindata.org/grapher/electricity-generation Phillips, P. C. B., & Sul, D. (2007). Transition Modeling and Econometric Convergence Tests. Econometrica, 75(6), 1771–1855. https://doi.org/10.1111/j.1468-0262.2007.00811.x Pinar, M. (2024). Convergence in renewable energy innovation and factors influencing convergence club formation. Renewable Energy, 220, 119607. https://doi.org/10.1016/j.renene.2023.119607 Ramluckun, R., Malumbazo, N., & Ngubevana, L. (2024). A Review of the Energy Policies of the BRICS Countries: The Possibility of Adopting a Just Energy Transition for South Africa. Sustainability, 16(2), 703. https://doi.org/10.3390/su16020703 Saba, C. S., & Ngepah, N. (2022). Convergence in renewable energy consumption and their influencing factors across regions: evidence from convergence algorithm approach. Environmental Science and Pollution Research, 29(40), 61412–61445. https://doi.org/10.1007/s11356-022-19731-9 Sun, H., Kporsu, A. K., Taghizadeh-Hesary, F., & Edziah, B. K. (2020). Estimating environmental efficiency and convergence: 1980 to 2016. Energy, 208, 118224. https://doi.org/10.1016/j.energy.2020.118224 Tao, M., Poletti, S., Wen, L., & Sheng, M. S. (2024). Modelling the role of industrial structure adjustment on China’s energy efficiency: Insights from technology innovation. Journal of Cleaner Production, 441, 140861. https://doi.org/10.1016/j.jclepro.2024.140861 Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509. https://doi.org/10.1016/S0377-2217(99)00407-5 Tone, K. (2004). A Hybrid Measure of Efficiency in DEA. National Graduate Institute for Policy Studies Research Report Series I-2004-0003. https://www.researchgate.net/publication/288870547_A_hybrid_measure_of_efficiency_in_DEA Vaillant, A., Abe, N., & Kuriyama, A. (2024). Analysis of past energy transitions of OECD and BRICS countries in the scope of energy interconnection. Sustainability Science, 19(1), 151–164. https://doi.org/10.1007/s11625-023-01345-w Vlontzos, G., & Pardalos, P. M. (2017). Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renewable and Sustainable Energy Reviews, 76, 155–162. https://doi.org/10.1016/j.rser.2017.03.054 Wang, K., Yu, S., & Zhang, W. (2013). China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58(5–6), 1117–1127. https://doi.org/10.1016/j.mcm.2011.11.067 WBG (2022). World Development Indicators. World Bank Group. https://databank.worldbank.org/source/world-development-indicators Yousefi, H., Ardehali, A., & Ghodusinejad, M. H. (2023). BRICS or G7? Current and future assessment of energy and environment performance using multi-criteria and time series analyzes. Energy Strategy Reviews, 49, 101164. https://doi.org/10.1016/j.esr.2023.101164 Zhang, G., & Cui, J. (2020). A general inverse DEA model for non-radial DEA. Computers & Industrial Engineering, 142, 106368. https://doi.org/10.1016/j.cie.2020.106368 Zhou, P., Poh, K. L., & Ang, B. W. (2007). A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178(1), 1–9. https://doi.org/10.1016/j.ejor.2006.04.038 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/123341 |