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Abstract 

This study uses the Just–Pope approach to investigate the effects of seasonal weather variables 

and extremes on the mean yield and yield variability of rice, bajra, chickpea, groundnut and 

sugarcane in India during 1990–2018. Results reveal that changes in rainfall and 

evapotranspiration across seasons largely affect mean yields for most crops, including bajra, 

chickpea and groundnut. However, high summer rainfall and low monsoon evapotranspiration 

extremes reduce groundnut and chickpea yield variability, respectively. Considering the 

importance of water availability to crop yields, this study suggests improving irrigation and 

water reallocation and management to reduce the severity of seasonal climate effects. 

Keywords: Stochastic frontier analysis; climate change; food security; water management; 
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1 Introduction 

Undeniably, the world has been experiencing climate change for more than a century, and the 

most unprecedented variations have been observed in the past few decades. Climate change 

manifests in increasing surface warming, irregular rainfall, tropical cyclones, groundwater 

depletion and dry spells in some regions (Intergovernmental Panel on Climate Change, 2007, 

2014, 2022). Notably, variations in the climate pose a significant threat to stable food 

production (Gourdji et al., 2013; Knox et al., 2012) and, thus, to food security and farmer 

income (Abbass et al., 2022; Battisti & Naylor, 2009). Rising population paired with climate 

change leads to increased food price volatility (von Braun & Tadesse, 2012), which increases 

uncertainty surrounding food availability since times of surplus food consumption cannot 

compensate for times of deficient consumption (Kalkuhl et al., 2015). Moreover, the irregular 

rainfall resulting from climate change leads to extreme variability in the agricultural water 

supply, which needs to be addressed through the implementation of appropriate water 

management measures (Cai et al., 2015). Further, global climate variability contributes to 

nearly 32–39% of the measured yield variability (production risk; Ray et al., 2015), although 

more robust research is required to comprehend the domestic implications of the effects on 

each country and to devise effective adaptation measures without exhausting its resources. 

In this regard, it has been theorised that agricultural production risk exacerbates the 

income risk in developing countries and complicates the national and global food supply 

(Anderson & Hazell, 1989). Marginal farmers in these countries have limited resources to 

engage in contemporary technology and managerial practices in order to strengthen their self-

reliance (Jain et al., 2015). Consequently, they are often locked in a loop of limited adaptive 

capacity, and thus climate vulnerability due to weather fluctuations and critical socioeconomic 

constraints (Amjath-Babu et al., 2016). Inadequate infrastructure, the unavailability of inputs, 

the inability to buy available inputs at preferred rates within ideal timescales, limited access to 

information, regional labour shortage and competing off-farm livelihoods are major challenges 

faced by marginal farmers, which hence constrain agricultural growth. Certainly, not all 

farmers are capable of responding to weather fluctuations and resource depletion in the same 

way, particularly when variations in regional weather parameters are severe. This fact 

highlights the risk and uncertainty of smallholder crop production in the tropics—factors that 

must be addressed to attain equitable economic growth (Morton, 2007; Shah et al., 2021). 

Therefore, the following questions about the agricultural sector in emerging economies, such 
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as India, need to be answered: What is the influence of weather and non-weather variables on 

agricultural production and related risks? How should the issue be addressed in light of the 

depletion of natural resources, and in particular, water? 

In the related literature, a large body of studies has measured the effects of climate 

change on crop yield using simulation or regression models. Broadly, two methods have been 

adopted in these studies to determine the effects of climate change on agricultural production: 

the crop modelling method (Mearns et al., 1997) and the Ricardian method (Mendelsohn et al., 

1994). As for the former method, advanced agroeconomic models derived from field 

experiments have been used to predict such effects by integrating control variables and 

randomised use of weather variables (Holzkämper, 2017). Such experiments are conducted in 

controlled field conditions with fixed farming practices. However, this method disregards the 

attitude of farmers towards climate adaptation or resource depletion and thus underestimates 

the positive effects and overestimates the negative ones (Mendelsohn et al., 1994). In contrast, 

the latter—the Ricardian method—uses cross-sectional information to analyse the correlation 

between land value (net revenue) and weather conditions as well as to capture farmer 

flexibility, which influences the net revenue (Su & Chen, 2022). However, the Ricardian 

framework presumes that prices are in equilibrium. Another drawback of this method is the 

potential for omitted variable bias concerning climate-related variables (Deschênes & 

Greenstone, 2007). Further, the lack of information about land prices in developing countries 

does not permit the computation of Ricardian estimates. In addition, this method overlooks the 

effect of weather variables on yield variability. Hence, the panel approach is preferred to assess 

the climate’s effects on the mean and variance of crop yield, which compensates for the 

problem of omitted variable bias by integrating local dummies into the model. Prior studies 

have used the Just–Pope (JP) stochastic frontier approach as a conceptual framework to 

perform the panel analysis, focusing on short-term climate adjustments. 

According to Verma et al. (2020), the JP approach is appropriate for studying the 

agricultural production pattern of a country such as India. Farmers in India face uncertainties 

and stochastic threats, such as climate variability, in the production of various crops. Hence, 

these uncertainties should be considered in the distribution of production function data across 

regions (Mahmood et al., 2019). Thus, the present study employs the JP method to measure the 

heterogeneous seasonal climate effect on the yield distributions of selected crops at the district 

level. This method provides the flexibility to use cross-sectional farm input and output data 
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without time series or panel information (Arshad et al., 2017) and also analyses the effects of 

independent variables on both mean yield and yield variability while accounting for farm 

management behaviour (Guttormsen & Roll, 2014). Notably, the crop production pattern has 

wider variability at the district level because of the varied climatic conditions across the 

country. Further, the input requirements for different crops vary. These aspects make crop 

yields across India more volatile than those in other countries. The JP framework enables study 

of the effect of (varying) inputs (including variations in climate variables) on the yield 

variability (yield risk, as mentioned by Verma et al., 2020) by introducing the multiplicative 

heteroscedasticity error term, as shown in Equation (2) in Section 2.2. In addition to controlling 

for individual heterogeneity, the method provides a higher degree of freedom and is preferable 

to identifying change dynamics through analysing recurring cross-sectional data (Gujarati, 

2004). It explicitly estimates the effects of impartial input variables on the probability 

distribution of output (Just & Pope, 1978). The JP model specifies a production technology 

with output risk and allows us to distinctly test the marginal effects of inputs on the output 

mean and variance. Hence, the approach permits estimation of how the mean and variance of 

agricultural production vary according to weather parameters. 

To date, several studies have explored cross-sectional and time series data by using the 

JP framework to determine the effects of annual weather parameters on crop production and 

associated risks. Literature on India and its neighbours with other types of economies is collated 

in Table 1. The most systematic assessment was conducted by Palanisami et al. (2019), who 

analysed the regional climate effects on rice production across 13 states of India in which 

intensive agriculture is prevalent. Further, for states such as Telangana in India, the maximum 

temperature has been identified as a risk-increasing factor for pulse and maize production, 

while the minimum temperature below the threshold and water stress have been identified as 

the main constraints (Guntukula & Goyari, 2020, 2021). However, analyses employing country 

or state-wide panel data require yearly meteorological factors to be encrypted using one integer. 

This approach could be ambiguous because the effects of the climate vary greatly across 

regions (Kalkuhl & Wenz, 2020). Given the diversity of climate across large geographies, such 

as India, it is difficult to generalise findings from state-specific studies, or studies focusing on 

a few districts. Moreover, earlier studies were not only constrained to conducting cross-

sectional analysis with a small sample size but also incorporated the mean and standard 

deviation of meteorological variables over the farming seasons, which is not considered strictly 

a climate change indicator. Further, prior studies using panel data have examined the effects of 
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temperature and rainfall variations on a single crop or a group of crops, which warrants crop-

specific research since the climate affects different crops in different ways (Iizumi & 

Ramankutty, 2015). In addition, few robust empirical models have been used to explore the 

relationship between weather traits and crop yield variability across farming seasons. 

Furthermore, studies focused on seasonal weather parameters and the asymmetry in the 

response of crop yields to weather extremes are scarce. Although water supply is recognised 

as a prime constraint of agricultural performance under climate shocks, hardly any study has 

focused on this aspect and thus no political or scientific (potential) remedies have been 

provided for this issue. 

[Table 1 here] 

India ranks second in crop production globally, affirming the role of water resources in 

agriculture (Dhawan, 2017), but water use efficiency in farming in the country is fairly low 

(D’Souza et al., 2022). The irrigation sector accounts for 80% of the net water consumption in 

India, and the largest wells pump twice the volume of water pumped by wells in the United 

States; however, this usage is unsustainable (Chandrakanth, 2021; D’Souza et al., 2022). Indian 

farmers use two to four times more water than those in Brazil and China do to grow a unit of 

major grain (Dhawan, 2017). Climate change is expected to exacerbate the water crisis in areas 

where irrigation wells are used for agriculture (Krishnan et al., 2020). The recent drought in 

2015–2018 was less severe than past ones, but it lasted long enough to affect agriculture, which 

highlights risks to water security (Mishra, 2019). Given its growing population, India’s food 

security can be ensured through expanding its irrigation facilities, but this continual expansion 

along with global warming results in decreased labour productivity and revenues (Venugopal 

et al., 2016). Further, effective irrigation is necessary for water management since increased 

irrigation not only worsens moisture stress but also causes groundwater depletion (Mishra et 

al., 2018). Significantly, cropping intensity, a key driver of agricultural production, is expected 

to drop by 20% in India owing to groundwater depletion (Jain et al., 2021). Specifically, the 

overuse of groundwater and inefficient irrigation systems requires attention, because without 

them the agricultural sector will be unable to cope with climate stress. 

Therefore, using comprehensive district-level data and the JP approach, the current 

study explores the effects of seasonal climate on the mean and variance of five different crop 

yields over 29 years in India, a vast agrarian economy where the bulk of the population relies 

directly or indirectly on agriculture and water resources. This study differs from earlier studies, 
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addresses gaps in the related body of literature and adds to it in a range of ways. In terms of 

geographic coverage, this district-level assessment, which reveals that the estimated changes 

in agricultural performance and predictability will be greater in magnitude than the changes in 

climate patterns, encompasses the entire country. Moreover, this focus on India yields research 

findings that could be applied to other agriculture-intensive South Asian countries. In addition, 

this study focuses on five weather parameters across seasons, as well as the climate, and 

extends the extant literature by including seasonal weather anomalies as a measure of climate 

shocks, allowing for asymmetric climate effects by independently estimating positive and 

negative anomalies. Since the use of non-weather variables (inputs) could either avert or 

intensify production risk, the current study also controls for these inputs while estimating the 

production frontier. Furthermore, given the importance of water input, it prioritises water 

management techniques and initiatives. 

The remainder of the paper is organised as follows: Section 2 presents the data sources 

and describes the method used, including variable construction and empirical framework; 

Section 3 reports results, indicating significant seasonal shifts and discussing coping responses 

with a focus on improving water management; and Section 4 presents conclusions and relevant 

policy implications. 

2 Materials and method 

2.1 Data sources 

The current analysis used comprehensive district-level annual agricultural data for 1990–

2018, acquired from the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT) database. This dataset includes 571 districts from 20 states on the basis of the 

2015 district border. Accordingly, the following states are included in this study: Andhra 

Pradesh, Assam, Bihar, Chhattisgarh, Gujarat, Haryana, Himachal Pradesh, Jharkhand, 

Karnataka, Kerala, Madhya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, 

Telangana, Uttar Pradesh, Uttarakhand and West Bengal. The sampling covered 571 districts 

(from these 20 states) out of 766 districts (from 28 states) according to data availability. 

Given that the effects of climate variability on various regions and harvests differ, five 

distinct categories of crops were considered: rice, pearl millet (bajra), chickpea, groundnut 

and sugarcane. Farming seasons vary between area and crop, and each crop significantly 
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contributes to the country’s total agricultural output and exhibits different degrees of climate 

and water sensitivity.Rice is a dominant staple crop grown in the eastern and southern parts 

of the country. A widely cultivated climate-resilient cereal crop, bajra is produced mainly in 

the western and northern states. Groundnut is a prominent oilseed crop cultivated in the 

western and southern regions of India. In the central and northern states, high-protein pulses, 

such as chickpea, are grown. Sugarcane is produced mainly in the northern and western parts 

of the country and is a major cash crop. 

Rice, bajra and groundnut are kharif crops, chickpea is a rabi crop and sugarcane is 

grown in both kharif and rabi seasons. Customarily, the planting, growing and harvesting 

period of kharif crops is the summer, rainy and autumn seasons, respectively, but for rabi 

crops, it is the autumn, winter and summer seasons (Madhukar et al., 2022; Mohapatra et al., 

2022). Notably, kharif crops are monsoon crops grown during the rainy season, whereas rabi 

crops are winter crops grown during the winter season. Following India’s green revolution, 

some monsoon crops, such as rice, are now harvested in winter as well. Currently, India ranks 

first in bajra and chickpea production and second in rice, groundnut and sugarcane 

production globally. Rice, bajra, chickpea, groundnut and sugarcane are grown in humid, 

dry, cooler, subtropical and tropical climates, respectively, and their water requirements are 

900–2500 mm, 450–650 mm, 350–500 mm, 500–700 mm and 1500–2500 mm, respectively, 

during the harvesting period. Both sugarcane and rice are water-intensive crops. During 

1990–2018, rice and sugarcane yields increased by 51.46% and 22.27%, respectively, while 

chickpea, groundnut and millet yields increased by 65.31%, 109.31% and 82.71% in India 

(Food and Agriculture Organization, 2022). 

To study the various aspects of selected crop production, several variables were 

considered, including crop-specific production and area, gross cropped area, gross irrigated 

area, fertiliser use and agricultural labour. The crop-specific yield, the dependent variable, is 

the ratio of crop-specific production to the area. The annual labour counts were generated 

through interpolation of decadal labour data obtained from population censuses. Because data 

on labour, fertiliser and irrigation are available only in the aggregate, the pertinent crop-specific 

input data were constructed through prorating, in line with related studies (Mohapatra et al., 

2022; Padakandla, 2016; Verma et al., 2020). 

Further, extensive district-level weather information was initially sourced from the 

TerraClimate database, capturing monthly spatiotemporal high-resolution data for 1990–2018. 
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The TerraClimate database aligns with the 2015 district boundary of India. Other than 

providing multiple weather variables separately, it converges with the panel for non-weather 

variables sourced from ICRISAT. It is also available openly, unlike the Indian Meteorological 

Department (IMD) database, which has restricted access and limitations. For the present study, 

the maximum and minimum temperature, rainfall, evapotranspiration and windspeed were the 

variables that were considered through IMD-defined seasons, such as winter (January–

February), summer (March–May), rainy or monsoon (June–September) and autumn (October–

December). Naturally, the agricultural (yearly) cycle differs for farming seasons. 

Quadratic terms of the seasonal weather variables were designed to capture potential 

nonlinear behaviour between crop yield and climate characteristics. Deviations of weather 

variables from the climate normal could also affect agricultural performance. Climate normals 

are means of meteorological variables spanning at least two decades, which are used to conflate 

the average climates of a certain region. Hence, seasonal weather anomalies, that is, the 

deviation of seasonal variables from the climate normal, were accounted for in this analysis. 

The seasonal weather anomaly and standardised seasonal weather anomaly are written as 

follows, respectively: 𝑊𝐴𝑖𝑡𝑠 = 𝑊𝑖𝑡𝑠 − �̅�𝑖𝑠 

and 

𝑆𝑊𝐴𝑖𝑡𝑠 = 𝑊𝐴𝑖𝑡𝑠𝜎𝑖𝑠  

where 𝑊𝐴𝑖𝑡𝑠  represents the weather anomaly of season s in district i in period t, 𝑊𝑖𝑡𝑠 represents 

the weather parameter of season s in district i in period t, �̅�𝑖𝑠  represents the average weather 

parameter of season s in district i, 𝑆𝑊𝐴𝑖𝑡𝑠  represents the standardised weather anomaly of 

season s in district i in period t and 𝜎𝑖𝑠 represents the standard deviation of the weather 

parameter of season s in district i. 

The estimated seasonal weather anomaly is considered normal in the following case: 𝑊𝑖𝑡𝑠 ∈  (�̅�𝑖𝑠 ± 𝐶𝑇%𝑠 . �̅�𝑖𝑠) 

where 𝐶𝑇%𝑠  represents the climate threshold of the weather parameter in season s, which is 

expressed as the percentage of �̅�𝑖𝑠. Deviations in the seasonal weather variable within ±𝐶𝑇%𝑠  
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of �̅�𝑖𝑠 are considered normal, where any deviation in the seasonal weather variable beyond 𝐶𝑇%𝑠  of �̅�𝑖𝑠 is considered extreme seasonal weather conditions. Weather extremes have an 

asymmetric effect on the water availability and agricultural output. Hence, 40 anomalies were 

later defined for seasonal weather extremes to capture significant deviations in seasonal 

weather parameters from the respective climate normal, in accordance with the IMD definition 

of weather anomalies. 

Hence, to estimate the seasonal climate threshold, the normality of variables was 

assumed, which is often used to identify outliers (in the present case, weather extremes). Given 

the large sample size, as per the central limit theorem, the sample mean approaches normal 

distribution. To capture seasonal weather extremes, a 99% confidence level was considered, 

and the following measures were used to obtain the seasonal climate threshold: 

𝐶𝑇 𝑠 =  𝑍0.99  𝜎𝑖𝑠√𝑛 =  𝑍0.99. 𝑆𝐸 

then  

𝐶𝑇%𝑠 =  𝐶𝑇 𝑠�̅�𝑖𝑠 × 100 

where 𝑍0.99 represents the z-score at the 99% confidence level (2.576), n represents the number 

of observations and 𝑆𝐸 represents the standard error. The standard error is simply the standard 

deviation of the sample statistics. 𝐶𝑇 𝑠 is essentially the same as the margin of error, a statistical 

measurement representing the amount by which sample results are likely to deviate from the 

values for the population. 

Following this, the climate threshold of five weather variables for four seasons was 

computed, to clarify the maximum anomalies for seasonal weather extremes defined as follows: 

𝐿𝑜𝑤 𝑊𝐴𝑖𝑡𝑠  =  {𝑊𝐴𝑖𝑡𝑠  𝑖𝑓 𝑊𝑖𝑡𝑠 ≤ (1 − 𝐶𝑇%𝑠 ). �̅�𝑖𝑠0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

and 

𝐻𝑖𝑔ℎ 𝑊𝐴𝑖𝑡𝑠 =  {𝑊𝐴𝑖𝑡𝑠  𝑖𝑓 𝑊𝑖𝑡𝑠 ≥ (1 + 𝐶𝑇%𝑠 ). �̅�𝑖𝑠0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

For the definitions and summary statistics of the variables of interest, see Tables 2 and 3. 
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[Table 2 here] 

[Table 3 here] 

2.2 Method 

The aforementioned JP production function was used to investigate the effect of climate 

variations and extremes on the mean and related variability of crop production. Apart from 

accounting for the stochastic effect, this production function considers the effect of predictor 

variables on the probability distribution of crop production, which is helpful in measuring 

production risk. The JP production function is: 𝑦𝑖𝑡 = 𝑓(𝑋𝑖𝑡 , 𝛽) + 𝜇𝑖𝑡 … (1) 

where 𝑦𝑖𝑡  represents the scalar output of crop yield in district i in period t, 𝑋𝑖𝑡 represents the 

vector of input variables in district i in period t, 𝛽 represents the unknown parameter, 𝑓(. ) 

represents the deterministic part of the production and 𝜇𝑖𝑡  represents the heteroscedastic 

disturbance term with mean zero. 

The residual component of the production function is: 𝜇𝑖𝑡 = ℎ0.5(𝑧𝑖𝑡 , 𝛼)𝜀𝑖𝑡 … (2) 

with 𝜀𝑖𝑡 ~ 𝑁 (0, 𝛿2) 

where 𝑧𝑖𝑡  represents the vector of input variables in district i in period t, 𝛼 represents the 

unknown parameter, ℎ (. ) represents the stochastic part of output and 𝜀𝑖𝑡 represents a random 

error (stochastic term) capturing exogenous production shock. 

Expected crop yield 𝐸(𝑦) = 𝑓(. ) and crop variability 𝑉𝑎𝑟(𝜇) = ℎ (. ); hence, 𝑓(. ) and ℎ(. ) represent the mean yield and yield variance function, respectively. With the above 

specification, input variables have independent effects on 𝐸(𝑦) and 𝑉𝑎𝑟(𝜇). Furthermore, the 

JP framework does not impose any restrictions on the marginal risk effect. If 
𝜕𝜕𝑥 ℎ (. ) > 0, then 

additional input to production could be risk-increasing; if 
𝜕𝜕𝑥 ℎ (. ) < 0, then the input could be 

risk-decreasing. 
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The JP production function is conventionally estimated using the feasible generalised 

least squares (FGLS) technique. However, maximum likelihood estimation provides more 

efficient and unbiased estimates for a small sample (Just & Pope, 1978). Given a large sample 

size, the JP model is estimated using a multi-stage FGLS method (see Figure A1). 

The estimation of 𝑓(. ) represents the mean effects of input variables on yield, whereas ℎ(. ) explains the effects of covariates on yield variability. Clearly, mean yield depends on the 

weather and non-weather inputs, whereas yield variance depends upon the anomalies for 

weather extremes. Weather extremes pose a significant risk to agricultural production. 

Three functional forms were used for JP estimation prior to the analysis: the Cobb–

Douglas, quadratic and translog forms. The translog functional form violates the JP 

assumptions owing to the interaction between the mean and variance function. The mean yield 

and yield variance function in the Cobb–Douglas functional form are written as follows, 

respectively: 

𝑙𝑛𝑦𝑖𝑡 =  𝛽0 + 𝛽𝑡𝑇 + ∑ 𝛽𝑗 𝑙𝑛 𝑥𝑗𝑖𝑡 
𝑗 … (3) 

and  𝑙𝑛 𝑢𝑖𝑡2 =  𝛼0 + 𝛼𝑡𝑇 + ∑ 𝛼𝑘 𝑙𝑛 𝑧𝑘𝑖𝑡 … (4) 
𝑘  

where 𝑥𝑗𝑖𝑡 represents the input (weather and non-weather) variable j in district i in period t, 𝑧𝑘𝑖𝑡 

represents the transformed weather anomaly (dummy) variable k in district i in period t, 𝑇 

represents the time trend capturing technological advancement and 𝛽  and 𝛼  are unknown 

parameters to be estimated. 

Earlier, to identify asymmetric crop sensitivity to climate shock, 40 weather anomalies 

were constructed, which captured negative and positive deviations in weather parameters from 

the normal climate. These deviations include low and high anomalies for all weather 

parameters across four seasons. 

The following regression equations were estimated for the selected crops: 𝐸(𝑦)𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝑊𝑖𝑡𝛾 + 𝛼𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 … (5) 
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and 𝑉𝑎𝑟(𝜇)𝑖𝑡 = 𝐴𝑖𝑡𝜃 + 𝛼𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 … (6) 

where 𝐸(𝑦)𝑖𝑡 represents the mean yield in district i in period t; 𝑋𝑖𝑡 represents the vector of non-

weather variables in district i in period t, including agricultural labour, fertiliser used and 

irrigated area; 𝑊𝑖𝑡 represents the vector of seasonal weather variables in district i in period t, 

including minimum temperature, maximum temperature, rainfall, evapotranspiration and 

windspeed; 𝑉𝑎𝑟(𝜇)𝑖𝑡 represents the yield variance in district i in period t; 𝐴𝑖𝑡 represents the 

vector of seasonal weather anomalies in district i in period t; 𝛽, 𝛾 and 𝜃 are unknown 

parameters to be estimated; 𝛼𝑖 are the district fixed-effects; 𝛿𝑡 is the time fixed-effects; and 𝜖𝑖𝑡 

and 𝜀𝑖𝑡 are error terms. 

3 Results and discussion 

The present study used panel data on 571 districts for 29 years and separate panel data for five 

selected crops. Discrete hybrid regressions were performed to investigate the effect of weather 

and non-weather input variables on crop-specific production and production risk using Gretl 

software. The JP model assumes the variable under estimation is stationary since non-stationary 

data lead to spurious regressions. Therefore, the Augmented Dicky–Fuller test was used to 

check for stationarity, and on the basis of the test results, the null hypothesis of all panels 

containing unit roots at the 1% significance level was rejected, which confirmed that the dataset 

was stationary. Furthermore, the variance inflationary factor (VIF) scores showed there was no 

serious collinearity among non-weather variables. The VIF score of most weather variables 

was within the customary limit, other than those of the seasonal maximum and minimum 

temperate variables. The reason for this result could be seasonal overlaps, indicating the 

severity of recent climate changes. Dropping these variables may limit the ability to identify 

individual climate effects (also, the omitted variable bias for a slightly higher VIF score is a 

more serious concern than otherwise). Prior to estimation, the Hausman test was used to select 

the appropriate model (namely, the fixed-effect or a random-effect model, where in the former, 

the district-specific effect is assumed to be correlated with independent variables, but in the 

latter, it is supposed to be uncorrelated), and the results showed that the null hypothesis of no 

correlation between district-specific effects and independent variables could be rejected; hence, 

the fixed-effect model was used to estimate the regression equations. Then, the Breusch–Pagan 

test was used to check for heteroscedasticity, which revealed that the null hypothesis of 
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homoscedasticity could be rejected. As indicated, the multi-stage FGLS method was used to 

estimate the mean and variance equations, which addressed heteroscedasticity and 

autocorrelation issues. After estimation, the probability value of F-statistics and log-likelihood 

indicated the overall significance and goodness of fit of the models. The Akaike criterion was 

used to determine model performance, and the results were validated using the Hannan–Quinn 

and Schwarz criteria. Durbin–Watson statistics indicated the presence of trivial autocorrelation 

among residuals. The share of variance explained by the individual-specific effect is 

represented by rho. For expedience, all diagnostic statistics are stated in Table 4 and the 

stochastic panel estimation is reported in Table 5. 

[Table 4 here] 

[Table 5 here] 

A significant and positive time coefficient (T) indicates that technological progress 

improves the expected yield and associated variability over time. In the estimated 

specifications, the mean equation was used to find the expected yield in response to weather 

and non-weather factors, whereas the variance equation, which incorporates weather 

anomalies, was used to determine the yield risk. Further, to ascertain trajectories and trends, 

the inflexion points, elasticities and semi-elasticities of these weather, non-weather and 

anomaly inputs, respectively, were computed across crops (see Table A1). 

As regards the mean yield regression for seasonal maximum temperature, first, the 

regression results indicate that the yields of all crops, except bajra, are positively related to the 

summer maximum temperature. This finding implies that an increase in this temperature 

reduces bajra yield. This could be because the planting period is impeded by the higher daytime 

heat in summer. However, although the yields of rice, chickpea, groundnut and sugarcane are 

positively associated with the maximum temperature in summer, this association decreases 

after the temperature reaches the optimal level for each crop (the turning points of the summer 

maximum temperature for rice, chickpea, groundnut and sugarcane are 25.63, 35.23, 39.13 and 

33.43 °C, respectively; see Table A2). Second, the regression results indicate that the yields of 

rice, groundnut and sugarcane are adversely affected by the monsoon maximum temperature. 

Conversely, the optimal maximum temperature in monsoon for bajra and chickpea are 15.41 

and 24.00 °C, respectively. Third, the results suggest that groundnut and sugarcane yields are 

negatively related to the maximum temperature in autumn. This result could be attributed to 
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the fact that the harvesting period is hampered by heat stress in autumn for these crops. 

Conversely, the yields of rice and bajra are positively related to the autumn maximum 

temperature. However, as the maximum temperature in autumn rises above 27.30 and 21.62 

°C, the yields of rice and bajra decrease, respectively. Fourth, an increase in the maximum 

temperature in winter decreases chickpea and sugarcane yields at an increasing rate, but it 

increases bajra and groundnut yields at a decreasing rate. Overall, the sugarcane yield is most 

susceptible to changes in the maximum temperature across all seasons except summer. The 

results are consistent with those of Saei et al. (2019), who established that higher daytime heat 

reduces crop production. In addition, a more than optimal daytime temperature leads to the loss 

of water required for farming in temperate regions. Accordingly, it is recommended that heat-

resistant varieties be adopted, and water transportation and drip irrigation increased, as 

measures to solve these heat- and water-related challenges (Howden et al., 2007; Wolfe et al., 

2014). 

Next, the results of the yield variance regression for maximum temperature anomalies 

indicate that the low maximum temperature anomaly in summer and autumn is risk-increasing 

for the sugarcane yield. A maximum temperature of 1 °C below the climate normal in summer 

and autumn increases the yield variability of sugarcane by 29.98% and 26.47%, respectively. 

The low maximum temperature anomaly in summer is also risk-increasing for rice and bajra 

yields. However, a maximum temperature of 1 °C below the climate normal in monsoon 

decreases the yield variability of bajra by 40.94%. In addition, the low maximum temperature 

anomaly in winter and monsoon is risk-increasing for chickpea and groundnut yields, 

respectively. In summary, a low maximum temperature extreme increases yield 

unpredictability sharply, mostly in summer and monsoon. This could be due to insufficient 

water transfer and crop disease, which affect crop growth. 

Moreover, the results indicate that the high minimum temperature anomaly in winter 

and summer, and the low minimum temperature anomaly in winter are risk-decreasing for 

sugarcane yield. However, for groundnut and rice crops, the low minimum temperature 

anomaly in summer and monsoon is risk-increasing, respectively. A minimum temperature of 

1 °C below the climate normal in summer and monsoon increases the yield variability of 

groundnut and rice by 51.98% and 35.71%, respectively. Thus, a low minimum temperature 

extreme, mainly in monsoon and summer, increases yield risks. This could be due to frost 

conditions and limited water intake, which halt crop development. 
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Concerning the effect of the minimum temperature on mean yields, the results reveal 

that bajra yield is negatively related to the minimum temperature in summer and autumn. The 

reason could be that the planting and harvesting periods are affected by changes in night-time 

heat. Further, as the winter and monsoon minimum temperature rises above 10.23 and 35.27 

°C, respectively, the yield of bajra decreases. As for rice yield, when the minimum temperature 

in summer rises beyond 13.41°C, it decreases, and it is negatively related to the winter and 

autumn minimum temperature as well. Furthermore, an increase in the minimum temperature 

in winter and monsoon decreases the chickpea yield at an increasing rate and the turning points 

are 9.95 and 14.37 °C, respectively. This could be because the growing period is mainly 

impaired by warmer night-times. In contrast, an increase in the minimum temperature in 

monsoon and autumn increases the groundnut yield. However, the groundnut yield is inversely 

related to the winter minimum temperature such that an increase in this temperature decreases 

its yield at an increasing rate—the turning point is 13.14 °C. Furthermore, the results indicate 

that the sugarcane yield is positively related to the minimum temperature in winter, but 

negatively related to the minimum temperature in summer and monsoon. Nevertheless, as the 

winter and autumn minimum temperatures rise beyond 6.53 and 25.00°C, respectively, the 

yield of sugarcane decreases. Thus, changes in the minimum temperature in winter affect most 

crop yields (i.e. rice, chickpea and groundnut yields). In addition, temperatures above the 

optimal night-time temperature lead to decreased water uptake, wasteful respiration and dry 

matter and pathogen accumulation. Hence, crop rotation and enhancing the use of integrated 

pest management and sprinkler irrigation are recommended (Shea, 2014; Wolfe et al., 2014). 

Furthermore, the results presented in Tables 5 and A2 indicate that bajra and sugarcane 

yields are negatively related to the rainfall in monsoon. This could be because the growing 

periods of these crops are affected by excess rain. Moreover, as the monsoon rainfall increases 

above 397.44 mm, the groundnut yield decreases. Further, bajra and chickpea yields are 

adversely affected by the rainfall in autumn, such that an increase in rainfall decreases both at 

an increasing rate. In addition, as the autumn rainfall rises beyond 128.72, 425.43 and 

255.05 mm, the yields of rice, groundnut and sugarcane decrease, respectively. As for crops 

such as bajra, chickpea and groundnut, the rainfall in winter is inversely related to their yields. 

Moreover, although the winter rainfall raises the rice and sugarcane yields, rainfall above 85.35 

and 88.79 mm reduces the yields of rice and sugarcane, respectively. Next, as the rainfall in 

summer rises beyond 46.03 and 235.69 mm, the yields of bajra and chickpea decrease. In 

addition, an increase in the summer rainfall decreases the groundnut yield at an increasing rate, 
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which could be due to the adverse effects of heavy rain in the planting period. Overall, the 

bajra yield is most susceptible to changes in rainfall across most seasons. The results are 

consistent with that of Carew et al. (2018), namely, that excess rain reduces crop production. 

A more than optimal precipitation leads to erosion, ponding and nutrient leaching, which delays 

and ruins the harvest. Accordingly, to overcome these challenges, it is recommended that 

production zones be shifted from flood-prone regions, flood-tolerant crop varieties be used and 

modern drainage practices be implemented (Tobin et al., 2015; Wolfe et al., 2014). Since 

sugarcane is a water-intensive crop, rainfall anomalies in monsoons are risk-reducing. It is 

further observed that the low rainfall anomaly in monsoon and summer reduces the variability 

of rice and groundnut yields, respectively. 

Next, as regards evapotranspiration, the results show that rice yield is negatively related 

to evapotranspiration in monsoon and that as the winter and summer evapotranspiration rises 

above 37.60 and 83.46 mm, respectively, the yield of rice decreases. In contrast, bajra yield is 

positively related to evapotranspiration in monsoon and negatively in summer and autumn. 

Nonetheless, an increase in monsoon evapotranspiration beyond 74.69 mm reduces bajra yield. 

Further, evapotranspiration in summer raises sugarcane yield, whereas winter 

evapotranspiration is inversely related to this yield. The yield of chickpea is negatively related 

to evapotranspiration in three seasons—an increase in evapotranspiration in winter, summer 

and monsoon decreases its yield at an increasing rate, and the turning points are 70.57, 149.41 

and 49.42 mm, respectively. The yield of groundnut is also inversely related to summer and 

monsoon evapotranspiration. In addition, low and high evapotranspiration anomalies in autumn 

reduce the risk of variability in groundnut and rice yields, respectively. Further, the low 

evapotranspiration anomaly in monsoon is risk-decreasing for chickpea yield variability. The 

results show that evapotranspiration of 1 mm below the climate normal in monsoon decreases 

the yield variability of chickpea by 35.44%. 

As regards windspeed, the results presented in Table 5 show that all crop yields, except 

bajra and sugarcane yields, are positively related to the autumn windspeed. An increase in the 

windspeed decreases the yield of bajra and sugarcane at an increasing rate, and the turning 

points are 0.82 and 1.94 m/s, respectively. However, as the autumn windspeed rises above 1.08, 

2.54 and 1.33 m/s, rice, chickpea and groundnut yields decrease, respectively. Likewise, the 

yields of sugarcane and rice are negatively related to the monsoon windspeed, whereas that of 

bajra is positively related. Further, as the windspeed in summer rises above 1.89 m/s, the yield 
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of chickpea decreases. Similarly, bajra and groundnut yields are inversely related to summer 

windspeed. Furthermore, as the winter windspeed rises beyond 1.51 and 1.70 m/s, the yields 

of bajra and sugarcane decrease, respectively. To summarise, a more than optimal wind 

velocity leads to plant dwarfing and tissue abrading and also increases evapotranspiration and 

the root-to-shoot ratio. Accordingly, the measures recommended to address these challenges 

are maintaining grain residues, windbreaks and vegetative barriers and increasing soil organics 

to improve water-holding (Derner et al., 2015; Janowiak et al., 2016). 

Next, the high windspeed anomaly in monsoon and autumn is risk-increasing for 

chickpea yield, but the low windspeed anomaly in winter and autumn is risk-decreasing for 

chickpea and groundnut yields, respectively. A windspeed of 1 m/s below the climate normal 

in winter and autumn decreases the yield variability of chickpea by 37.35% and of groundnut 

by 36.11%, respectively. The high windspeed anomaly in autumn and winter is risk-decreasing 

and risk-increasing, respectively, for groundnut yield, but the high windspeed anomaly in 

monsoon and autumn is risk-increasing and risk-decreasing, respectively, for sugarcane yield. 

As the windspeed exceeds the climate normal by 1 m/s in monsoon and autumn, the yield 

variability of sugarcane changes by 59.26% and −45.15% respectively. In addition, the low 

windspeed anomaly in monsoon is risk-increasing for rice yield, whereas the high windspeed 

anomaly in summer is risk-decreasing for bajra yield (see Table A2). 

For the non-weather variables, the results show that the elasticity of yield of rice, bajra, 

chickpea, groundnut and sugarcane with respect to fertiliser use are 0.16, 0.34, 0.05, 0.09 and 

0.03, respectively. In the current scenario of climate change, fertiliser and irrigation are both 

recognised as the most crucial farm inputs for agricultural sustainability. The yields of all the 

crop included in this study, other than bajra and groundnut, are positively related to irrigation. 

A unit increase in the irrigated area decreases the mean yields of bajra and groundnut by 620.6 

and 36.2 kg/ha, respectively, and the yield elasticity is −0.49 and −0.02, respectively. The 

reason could be crop failures caused by increase in traditional irrigation, resulting in the waste 

of water (Guttormsen & Roll, 2014). Excessive irrigation often decreases soil quality, leading 

to waterlogging, groundwater loss and lower crop production. Conversely, rice, bajra and 

sugarcane yields are negatively related to labour input. Additions to the labour force decrease 

the mean yields of rice, bajra and sugarcane by 90.6, 211.1 and 245.5 kg/ha, respectively, and 

the yield elasticity is −0.04, −0.22 and −0.04, respectively, which indicates that the possible 

reason for this inverse relationship is disguised unemployment (i.e. the adverse relationship 
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between the labour variable and crop yields may be attributable to the low marginal 

productivity of surplus labour). 

Next, the computed trajectories of non-weather and weather variables are delineated in 

Figures 1 and 2, respectively. Variables such as irrigation, rainfall and evapotranspiration 

across seasons are depicted as largely influencing changes in expected crop yields. Seasonal 

weather extremes are also observed as raising yield risks, which could be owing to the water 

availability for crops. This finding implies that agricultural water inputs are an important aspect 

of crop production that must be addressed through improved water management for sustainable 

agricultural growth. Further, the results indicate that the area under irrigation is inversely 

related to the yield of crops such as bajra and groundnut, likely because these crops need less 

water to grow; another likely reason is that these are under grown under conventional irrigation, 

which leads to the wastage of water. Therefore, reallocating water to crops that gain from 

irrigation expansion or substituting these crops with water-intensive kharif crops, such as rice 

and sugarcane, could increase farm production while reducing water loss. Other than water 

reallocation and crop substitution, crop-wise irrigation management accounting for climate 

variations could also be beneficial (Cai et al., 2015; Risal et al., 2022). 

[Figure 1 here] 

[Figure 2 here] 

Rainfall and evapotranspiration negatively affect the yields of crops such as bajra, 

chickpea and groundnut over most of the seasons. The reason could be sharp variations in water 

supply for crop growth. Excess rainfall in a season could lead to a higher runoff and damage 

crop harvests. In order to reduce yield loss and water waste, surplus rain must be managed by 

conserving rainwater for dry seasons. It could be used to relieve the high water demand for 

crops caused by the increased evapotranspiration over these seasons. Drawing excess water 

from croplands to storage tanks could mitigate the harmful effects of heavy rain in the winter, 

and this water could then be used to meet the high crop water demands in the summer. The 

increased use of rainwater to meet increases in crop water demand would further relieve the 

pressure on groundwater, which would otherwise be used. Irrigation that accounts for the 

evapotranspiration rate could also help to mitigate water stress for crops that benefit from 

irrigation, such as chickpea (Govindarajan et al., 2008). 
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Although sugarcane is a water-intensive crop, high rainfall in monsoon adversely 

affects its yield, possibly because such rainfall has negative effects on crop growth owing to 

waterlogging and runoff. Therefore, managing excess rainwater by making it available across 

seasons through efficient field drainage systems is crucial in order to conserve water and 

minimise yield loss. Since the adversely affected crops are low-tolerance ones and consume 

large volumes of water to sustain yields, replacing them with high-tolerance crops, as shown 

in Figure 3, could help conserve water. In addition, high rainfall and temperature extremes 

often lead to flood and drought conditions, respectively, which require effective irrigation 

governance to ensure the availability of water across seasons. In order to reduce the risks and 

preserve the required water supplies, reservoir irrigation could be useful in harvesting water 

stored from flood events. 

[Figure 3 here] 

The crop water demand is expected to increase as the climate becomes warmer, 

necessitating increased irrigation, including in areas receiving more rain (Zaveri et al., 2016). 

Yet, critical concerns remain as regards water resource depletion and the underuse of irrigation 

projects (Kuriachen et al., 2022; Sikka et al., 2022). The Organisation for Economic Co-

operation and Development's (2014) systematic review of the three-way linkage between 

climate, water and agriculture has identified certain adaptation policies for developing regions. 

Several other studies have also reviewed the same for other economies (Cai et al., 2015; He et 

al., 2018; Kang et al., 2009; Melkonyan, 2015; Srivastav et al., 2021). However, Indian water 

policies are contradictory and lack regional mechanisms for water allocation and management 

(Aslam et al., 2021; Grafton et al., 2013; Shanabhoga et al., 2020). Thus, in Table 6 scientific 

solutions are proposed as corrective measures and presented alongside the political initiatives 

to retain crop water management under the current scenario of climate change. Notably, the 

Ministry of Jal Shakti was launched in 2019 to coordinate sustainable water management. The 

current study emphasises the issue of water elements being primarily affected by climate 

transitions. 

[Table 6 here] 
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4 Conclusion and policy implications 

The study examined the effects of seasonal weather variables and extremes on the mean yield 

and yield variability of rice, bajra, chickpea, groundnut and sugarcane in India during 1990–

2018 by using the JP approach. The analysis results indicate that changes in rainfall and 

evapotranspiration over seasons largely affect the mean yields of most crops, whereas weather 

extremes increase yield variability. Although the sensitivity varies across crops and seasons, 

the yields of bajra, chickpea and groundnut are most receptive to climate variations. The 

discussion weighs the importance of water availability in agricultural production. In order to 

reduce the severity of seasonal weather fluctuations and conserve water, the study explores 

coping responses with a focus on better irrigation and water management. 

The seasonal weather variables that reduce most crop yields are monsoon maximum 

temperature (for rice, groundnut and sugarcane), winter minimum temperature (for rice, 

chickpea and groundnut), winter rainfall (for bajra, chickpea and groundnut), summer 

evapotranspiration (for bajra, chickpea and groundnut) and monsoon evapotranspiration (for 

rice, chickpea and groundnut). Higher evapotranspiration in most of the seasons (except 

autumn) affects chickpea yield, whereas higher rainfall in most seasons (except summer) 

affects bajra yield. However, the high rainfall extreme in summer and monsoon reduces the 

yield risk of groundnut and sugarcane, whereas the low evapotranspiration extreme in monsoon 

and autumn lowers the yield risk of chickpea and groundnut. 

In addition, this study emphasises that changes in the water supply are an essential 

factor for crop growth, which contributes to the heterogeneous climate effects on different crop 

yields. The crop-specific assessment of climate effects aids to identify high-tolerance crops 

that could be substituted for low-tolerance ones. It also identifies crops that benefit from 

irrigation, thus assisting with irrigation diversification. Conversely, season-wise assessment 

recognises the changes in water availability due to climate change for crops in different farming 

seasons. Excess water in a season could be conserved to avoid yield loss and could then be 

used to meet crop water demands in water-scarce seasons. To achieve these goals, appropriate 

irrigation and water management would be greatly beneficial. Irrigation expansion accounting 

for climate variations is an effective agricultural adaptation measure to address climate change. 

Modern irrigation methods based on scientific techniques would lessen the severity of climate 

shocks on crop production. 
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To rethink policy options, greater focus and precision are required in understanding the 

scope and nature of climate effects on farm water management in India. This study helps in 

identifying potential crop-specific seasonal climate effects and aligns the significance of 

irrigation and other forms of water management. Policymakers must make decisions about 

whether to maintain the reliance on irrigation to protect farmers from climate risks or to make 

better economic use of limited water resources by reallocating irrigation supply to higher-

potential crops. The government should improve the use of rainfall and predictive techniques 

to facilitate crop-wise water management. In policy and local governance, climate-smart 

agriculture should be prioritised. The government needs to frame multi-pronged climate 

adaptation strategies to address yield risks. Successful programs can be tied to many regionally 

viable and sustainable agricultural management programs. The progressive involvement of 

farmers in water management would result in conducive outcomes in terms of efficiency, 

equity and economy. 

Last, the current study does have some limitations, which future research could address. 

The JP approach in the study did not evaluate the costs and benefits of agricultural management 

by considering regional heterogeneity, risk management in water security or social response to 

deal with rising climate variability, which needs to be improved in future research. Moreover, 

further research could also refine the understanding of seasonal climate uncertainties through 

providing enhanced predictions and incorporating institutional factors in risk management for 

water security, regional variability, shifts in infrastructure and socioeconomic factors, 

smallholder agriculture and strategic adaptation for agricultural water management. 
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Figures 

Figure 1. Elasticities clustered for non-climate parameters across crop yields 
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Figure 2. Inflexions stacked for seasonal climate parameters across crop yields 
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Figure 3. Crop with highest tolerance (turning point) across seasonal weather variables 
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Tables 

Table 1. Literature related to the Just–Pope framework, on India or its neighbours, and on other regions 

South Asian contexts Others 

Mahmood et 

al. (2019) 

The authors used primary crop output–input, managerial, institutional, 

socioeconomic and meteorological data; quantified climatic effects on 

average yield and related variability of wheat crops in the rainfed 

areas of Pakistan; and outlined implications for climate-resilient 

farming. 

Ginbo (2022) Using Ethiopian household data, the author predicted that wheat, 

maize and barley production would fall by 10%, 48% and 22.7% 

at high altitudes, respectively, whereas coffee output would fall 

by 3% at low altitudes.  

Sarker et al. 

(2017) 

Using district-level panel data, the authors evaluated climatic effects 

on rainfed Aman rice crop production in Bangladesh during 1975–
2012, confirming that precipitation and highest temperature are risk-

increasing components for yield variability. 

Saei et al. 

(2019) 

The authors investigated the climatic effects on the average yield 

and related variability of maize, rice and wheat crops in Iran 

using panel data for 1983–2014.They found that maximum 

temperature raises the risk of wheat yield while lowering the risk 

of rice and maize yield; thus, minimum temperature and rainfall 

positively influence expected crop yields. 

Arshad et al. 

(2017) 

Employing household-level data, the authors isolated the effects of 

agroeconomic management from those of weather variation on wheat 

and rice yield variability across eight agroecological zones in Pakistan, 

emphasising the significance of risks to farmers’ ability to secure 

consistent yields. 

Carew et al. 

(2018) 

Using field-level data, the authors found a positive relationship 

between fertiliser use and wheat yield in Manitoba, but they also 

stated that rainfall is unfavourable for average crop production 

since it increases yield risk. 

Singh et al. 

(2016) 

The authors analysed the influence of weather variables on the 

expected yield and associated variability of wheat, chickpea, rice and 

maize in 15 Indian states during 1971–2012, concluding that the 

negative effect varies by planting, growing and harvesting periods, as 

well as crop and state, and recommending that producers implement 

crop-specific policies. 

Haile et al. 

(2017)  

The authors examined the drivers of global production for 

maize, soybeans, rice and wheat using seasonal output and price 

fluctuation data at the country level, as well as future weather 

data from 32 circulation models, and predicted that climate 

variation could reduce crop output by 23% worldwide by 2050. 

Kabir (2015) Using the agronomic rice model, the author stated that climate 

variation is expected to lessen the production of two types of boro rice 

across 12 districts in Bangladesh, citing temperature variations as the 

main risk factor. 

Guttormsen 

and Roll 

(2014) 

The authors demonstrated the risk characteristics of non-weather 

inputs; they investigated the effects of production risk on risk-

averse producers in the Kilimanjaro region of Tanzania, in terms 

of the selection of the optimal input level. 

Arumugam 

et al. (2015) 

The authors investigated the climatic effects on mean yields and 

correlated variances in prime rainfed crops as well as yield variations 

under 2,030 climate scenarios in multiple agroclimatic zones of Tamil 

Nadu and discovered pulses, sorghum, spiked millet and cotton yield 

are the most affected. 

Holst et al. 

(2013) 

The authors analysed the effects of regional weather anomalies 

on grain production, reporting that climate change would affect 

grain yield quite differently in South and North China. 
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A. Kumar et 

al. (2015) 

The authors estimated the effects of weather and non-weather 

variables on the average yield and yield variability of sugarcane for 

various agroecological zones and seasons across 14 major sugarcane 

growing states in India during 1971–2009. They found that the highest 

temperature during summer and the lowest temperature during 

monsoon adversely affect expected yield. 

Boubacar 

(2012) 

The author assessed maize, millet and sorghum yield responses 

to continual dry spells across eight countries of Sahel during 

1970–2000 and concluded that higher degree-days are 

detrimental to all crops. 

Hasanthika 

et al. (2014) 

The authors found that weather and non-weather factors were both 

directly correlated with the probability distribution of paddy output 

across six agriculturally intensive districts in Sri Lanka during 1980–
2010, highlighting the importance of crop insurance schemes. 

 

Picazo-Tadeo 

and Wall 

(2011) 

Using survey data from Spanish rice farmers, the authors 

concluded that farmers exhibit risk-averse behaviour, with 

labour being the risk-decreasing, and fertiliser being the risk-

increasing, input. 

M. Poudel et 

al. (2014) 

The authors indicated that climate extremes significantly affect rice 

and maize yield in Nepal. 

Cabas et al. 

(2010) 

The authors extensively studied the effects of weather and non-

weather factors on winter wheat, soybean and corn yield in 

southwestern Ontario during 1981–2006, reporting that weather 

variables have significant effects on mean yields, although 

increased variation in climate parameters raises the variances, 

whereas expected yields rise at a declining rate with input usage. 

Sarker et al. 

(2014) 

The authors evaluated the effects of weather elements on the mean and 

variance in yield of three rice crops in Bangladesh during 1972–2009, 

revealing that these effects vary by crop, and the projected climate 

scenario is likely to enhance this heterogeneity. 

Kim and 

Pang (2009) 

Using pooled panel data for 1977–2008 on Korea, the authors 

showed that expected rice yield is negatively related to rainfall 

and positively associated with temperature but specified both 

parameters as risk-increasing weather inputs that positively 

correlate with rice yield variability. 

S. Poudel 

and Kotani 

(2013)  

The authors identified a weak climatic effect on expected wheat and 

rice production and allied variability in central Nepal during 1990–
2006, concluding that change in the average weather has 

heterogeneous effects that are considered harmful, beneficial or 

negligible according to the altitude and crop type. 

McCarl et al. 

(2008) 

According to the authors, historical weather variations 

contributed significantly to the average production of winter 

wheat, soybean, sorghum, cotton and corn, as well as their 

distribution, in the US during 1960–2007. 

 

Palanisami et 

al. (2011) 

The authors employed an optimisation model, quantified the effects of 

climate change on expected rice production and the associated risk in 

the Godavari River Basin (India), predicted the output will drop by 

16% towards mid-century, and identified water availability as the 

primary constraint. 

Isik and 

Devadoss 

(2006) 

The authors used a statistical framework to assess the potential 

effects of climate parameters on the mean, variance and 

covariance of crop production in Idaho. They found that the 

average yields of selected crops would improve slightly under 

future climatic conditions, and that variability would decline for 

sugar beets, wheat and barley, whereas it would increase 

whereas for potatoes. 

Barnwal and 

Kotani 

(2010) 

Using the quantile regression approach, the authors indicated that 

increased temperature has negative effects on rice yield in Andhra 

Pradesh, whereas increased rainfall has a positive impact, denoting 

Chen et al. 

(2004) 

Estimating panel data, the authors examined the influence of 

annual mean weather on major crop production in the US during 

1973–1997, indicating that weather variation significantly 
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that yield variability increases with rising climate parameters, and the 

negative impact is more severe in lower quantiles. 

influenced average yield and yield variability and that the effects 

varying across crops. They suggested that corn yield variability 

decreased with increased rain and increased with increasing 

temperature, whereas sorghum yield variability decreased with 

rising temperature and increased with heavy rain. 
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Table 2. Variable tags 

Variable Definition Variable Definition 

Yield  Yield in tonne per hectare WSR2 Square of wind speed in monsoon 

AgriLab Number of agricultural labourers per hectare WSA2 Square of wind speed in autumn 

FertCons Fertiliser consumption in tonne per hectare MXT1 High maximum temperature anomaly in winter 

IrriArea Irrigation area per hectare MXT2 Low maximum temperature anomaly in winter 

MAXTW Maximum temperature in winter MXT3 High maximum temperature anomaly in summer 

MAXTS Maximum temperature in summer MXT4 Low maximum temperature anomaly in summer 

MAXTR Maximum temperature in monsoon MXT5 High maximum temperature anomaly in monsoon 

MAXTA Maximum temperature in autumn MXT6 Low maximum temperature anomaly in monsoon 

MAXTW2 Square of maximum temperature in winter MXT7 High maximum temperature anomaly in autumn 

MAXTS2 Square of maximum temperature in summer MXT8 Low maximum temperature anomaly in autumn 

MAXTR2 Square of maximum temperature in monsoon MNT1 High minimum temperature anomaly in winter 

MAXTA2 Square of maximum temperature in autumn MNT2 Low minimum temperature anomaly in winter 

MINTW Minimum temperature in winter MNT3 High minimum temperature anomaly in summer 

MINTS Minimum temperature in summer MNT4 Low minimum temperature anomaly in summer 

MINTR Minimum temperature in monsoon MNT5 High minimum temperature anomaly in monsoon 

MINTA Minimum temperature in autumn MNT6 Low minimum temperature anomaly in monsoon 

MINTW2 Square of minimum temperature in winter MNT7 High minimum temperature anomaly in autumn 

MINTS2 Square of minimum temperature in summer MNT8 Low minimum temperature anomaly in autumn 

MINTR2 Square of minimum temperature in monsoon RA1 High rainfall anomaly in winter 

MINTA2 Square of minimum temperature in autumn RA2 Low rainfall anomaly in winter 

RFW Rainfall in winter RA3 High rainfall anomaly in summer 

RFS Rainfall in summer RA4 Low rainfall anomaly in summer 

RFR Rainfall in monsoon RA5 High rainfall anomaly in monsoon 

RFA Rainfall in autumn RA6 Low rainfall anomaly in monsoon 

RFW2 Square of rainfall in winter RA7 High rainfall anomaly in autumn 

RFS2 Square of rainfall in summer RA8 Low rainfall anomaly in autumn 
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Variable Definition Variable Definition 

RFR2 Square of rainfall in monsoon EV1 High evapotranspiration anomaly in winter 

RFA2 Square of rainfall in autumn EV2 Low evapotranspiration anomaly in winter 

EVW Evapotranspiration in winter EV3 High evapotranspiration anomaly in summer 

EVS Evapotranspiration in summer EV4 Low evapotranspiration anomaly in summer 

EVR Evapotranspiration in monsoon EV5 High evapotranspiration anomaly in monsoon 

EVA Evapotranspiration in autumn EV6 Low evapotranspiration anomaly in monsoon 

EVW2 Square of evapotranspiration in winter EV7 High evapotranspiration anomaly in autumn 

EVS2 Square of evapotranspiration in summer EV8 Low evapotranspiration anomaly in autumn 

EVR2 Square of evapotranspiration in monsoon WS1 High windspeed anomaly in winter 

EVA2 Square of evapotranspiration in autumn WS2 Low windspeed anomaly in winter 

WSW Windspeed in winter WS3 High windspeed anomaly in summer 

WSS Windspeed in summer WS4 Low windspeed anomaly in summer 

WSR Windspeed in monsoon WS5 High windspeed anomaly in monsoon 

WSA Windspeed in autumn WS6 Low windspeed anomaly in monsoon 

WSW2 Square of windspeed in winter WS7 High windspeed anomaly in autumn 

WSS2 Square of windspeed in summer WS8 Low windspeed anomaly in autumn 
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Table 3. Summary statistics 

 
 

Rice Bajra Chickpea Groundnut Sugarcane 

Variable Measurement Mean SD Mean SD Mean SD Mean SD Mean SD 

MAXTW in degree Celsius  26.342 5.335 26.367 5.393 26.372 5.292 26.367 5.351 26.372 5.359 

MAXTS in degree Celsius  35.398 4.655 35.353 4.684 35.424 4.609 35.409 4.663 35.422 4.664 

MAXTR in degree Celsius  32.196 3.218 32.219 3.256 32.212 3.195 32.195 3.230 32.210 3.231 

MAXTA in degree Celsius 28.561 3.718 28.585 3.741 28.585 3.673 28.575 3.721 28.581 3.730 

MINTW in degree Celsius 12.747 5.110 12.797 5.194 12.772 5.080 12.777 5.132 12.763 5.139 

MINTS in degree Celsius 21.836 3.810 21.812 3.842 21.859 3.769 21.847 3.817 21.852 3.821 

MINTR in degree Celsius 24.549 2.981 24.541 3.011 24.563 2.954 24.536 2.983 24.547 2.985 

MINTA in degree Celsius 15.926 3.868 15.950 3.922 15.946 3.839 15.928 3.881 15.931 3.889 

RFW in millimetre 14.819 20.322 14.860 20.453 14.643 19.879 14.887 20.448 14.743 20.464 

RFS in millimetre 35.746 54.019 35.597 53.130 35.588 53.714 35.241 52.500 35.235 53.139 

RFR in millimetre 233.361 145.396 231.528 148.067 233.345 145.565 233.291 146.443 233.088 145.699 

RFA in millimetre 40.840 53.533 41.674 54.682 40.864 53.636 40.979 53.983 40.788 53.973 

EVW in millimetre 30.394 19.427 30.176 19.742 30.352 19.433 30.362 19.589 30.225 19.552 

EVS in millimetre 36.911 31.430 36.802 31.703 36.820 31.390 36.735 31.397 36.651 31.399 

EVR in millimetre 106.290 19.970 105.976 20.308 106.293 19.984 106.160 20.104 106.135 20.104 

EVA in millimetre 53.940 24.442 53.861 25.010 53.961 24.479 53.863 24.655 53.886 24.644 

WSW in metre per second 1.176 0.434 1.190 0.438 1.177 0.435 1.179 0.436 1.178 0.437 

WSS in metre per second 1.689 0.399 1.699 0.401 1.689 0.399 1.690 0.400 1.688 0.400 

WSR in metre per second 1.802 0.637 1.829 0.640 1.804 0.638 1.810 0.638 1.807 0.641 

WSA in metre per second 0.907 0.440 0.919 0.446 0.907 0.441 0.910 0.443 0.909 0.443 

FertCons  in tonne per hectare 0.109 0.089 0.112 0.082 0.102 0.084 0.107 0.085 0.112 0.085 

AgriLab in number per hectare 0.792 0.787 0.653 0.532 0.737 0.753 0.676 0.530 0.720 0.660 

IrriArea in area per hectare 0.438 0.305 0.490 0.282 0.425 0.290 0.438 0.280 0.458 0.296 

Yield  in tonne per hectare 1.809 1.050 0.621 0.709 0.673 0.441 0.821 0.731 4.567 3.353 

 Area in thousand hectares 84.990 100.415 19.960 70.635 14.843 33.233 13.902 52.935 9.148 25.300 
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Rice Bajra Chickpea Groundnut Sugarcane 

Variable Measurement Mean SD Mean SD Mean SD Mean SD Mean SD 

 Production in thousand tonnes 176.837 247.183 17.245 53.302 12.173 28.347 15.445 59.636 16.944 51.137 
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Table 4. Diagnostic tests 

 
 

Rice Bajra Chickpea Groundnut Sugarcane 

Pre estimation 

  ADF χ2 VIF ADF χ2 VIF ADF χ2 VIF ADF χ2 VIF ADF χ2 VIF 

 Yield 4635.886 ***  3133.295 ***  5144.578 ***  3446.794 ***  3512.813 ***  

 AgriLab 1424.108 *** 1.491 923.761 *** 2.515 1189.135 *** 1.591 1178.830 *** 2.162 956.150 *** 1.610 

 FertCons 1703.492 *** 1.945 944.002 *** 2.187 1300.392 *** 2.001 1172.176 *** 2.235 1474.470 *** 2.136 

 IrriArea 2699.425 *** 2.873 1762.063 *** 3.071 2546.085 *** 2.623 1917.161 *** 2.655 2123.414 *** 3.098 

 MAXTW 12600.000 *** 23.049 11900.000 *** 21.693 12500.000 *** 22.038 12100.000 *** 21.029 12200.000 *** 19.519 

 MAXTS 11500.000 *** 20.798 11000.000 *** 10.475 11400.000 *** 19.627 11200.000 *** 13.854 11300.000 *** 13.955 

 MAXTR 17100.000 *** 18.905 16300.000 *** 9.806 17100.000 *** 13.720 16700.000 *** 12.463 16800.000 *** 10.636 

 MAXTA 5615.821 *** 18.727 5348.927 *** 7.567 5589.269 *** 11.696 5444.199 *** 9.691 5468.781 *** 6.575 

 MINTW 10900.000 *** 24.934 10400.000 *** 28.535 10900.000 *** 20.638 10700.000 *** 26.344 10700.000 *** 25.835 

 MINTS 7454.070 *** 26.003 7085.734 *** 12.479 7426.537 *** 19.688 7233.286 *** 15.423 7285.706 *** 14.298 

 MINTR 8069.062 *** 23.563 7602.591 *** 11.596 8020.399 *** 15.400 7754.129 *** 13.949 7816.034 *** 12.142 

 MINTA 7081.927 *** 25.538 6681.016 *** 16.609 7049.178 *** 14.080 6814.810 *** 16.786 6859.780 *** 16.180 

 RFW 10800.000 *** 2.862 10300.000 *** 2.867 10800.000 *** 3.156 10600.000 *** 2.784 10600.000 *** 2.791 

 RFS 9976.581 *** 6.072 9534.380 *** 12.984 9933.010 *** 6.181 9713.546 *** 6.724 9764.609 *** 6.481 

 RFR 10100.000 *** 2.429 9623.552 *** 3.367 10000.000 *** 2.545 9803.453 *** 2.339 9875.160 *** 2.562 

 RFA 10600.000 *** 5.233 10100.000 *** 6.388 10500.000 *** 4.408 10300.000 *** 5.410 10300.000 *** 5.343 

 EVW 9966.325 *** 4.463 9548.927 *** 6.795 9936.749 *** 4.321 9741.109 *** 5.981 9810.492 *** 5.176 

 EVS 9933.183 *** 10.211 9488.972 *** 19.981 9877.564 *** 9.296 9685.941 *** 12.348 9732.466 *** 10.731 

 EVR 13700.000 *** 1.915 13000.000 *** 2.646 13700.000 *** 2.145 13300.000 *** 2.077 13400.000 *** 1.953 

 EVA 9281.866 *** 6.352 8857.913 *** 7.378 9246.779 *** 5.779 9051.307 *** 6.590 9094.675 *** 6.186 

 WSW 2753.159 *** 6.233 2646.009 *** 5.308 2739.192 *** 4.921 2699.056 *** 5.714 2709.686 *** 6.399 

 WSS 2201.662 *** 5.243 2127.912 *** 5.253 2196.018 *** 4.700 2161.865 *** 4.743 2172.742 *** 5.747 

 WSR 2203.841 *** 8.850 2122.640 *** 9.829 2199.511 *** 9.045 2153.705 *** 8.495 2161.748 *** 9.834 

 WSA 3669.089 *** 8.971 3541.201 *** 7.462 3653.565 *** 6.481 3601.612 *** 7.190 3614.201 *** 8.640 
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Rice Bajra Chickpea Groundnut Sugarcane 

 Hausman χ2 842.655 *** 295.909 *** 222.705 *** 463.405 *** 608.319 *** 

 Breusch–Pagan χ2 27145.600 *** 7144.710 *** 7671.370 *** 7940.470 *** 15232.400 *** 

Post estimation 

  Mean eq Var eq Mean eq Var eq Mean eq Var eq Mean eq Var eq Mean eq Var eq 

 F-stats 4.2E+26 7.3E+00 2.6E+28 5.4E+01 2.8E+02 4.2E+00 3.6E+28 3.2E+01 2.6E+02 5.4E+00 

 p-value (F) 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.4E-179 0.0E+00 0.0E+00 0.0E+00 1.2E-247 

 Log-likelihood -3.0E+04 -2.4E+04 -2.0E+04 -1.4E+04 -2.5E+04 -2.1E+04 -2.3E+04 -1.7E+04 -2.8E+04 -2.0E+04 

 Akaike criterion 6.0E+04 5.0E+04 4.0E+04 2.9E+04 5.0E+04 4.3E+04 4.6E+04 3.5E+04 5.6E+04 4.1E+04 

 Schwarz criterion 6.0E+04 5.4E+04 4.1E+04 3.1E+04 5.0E+04 4.7E+04 4.6E+04 3.8E+04 5.6E+04 4.5E+04 

 Hannan–Quinn 6.0E+04 5.1E+04 4.0E+04 3.0E+04 5.0E+04 4.5E+04 4.6E+04 3.6E+04 5.6E+04 4.2E+04 

 Rho  5.1E-02  1.4E-02  3.3E-02  4.7E-02  7.4E-02 

 Durbin–Watson  1.8E+00  1.8E+00  1.8E+00  1.8E+00  1.7E+00 

*** p < 0.01  
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Table 5. Just–Pope stochastic panel estimation 

  Rice Bajra Chickpea Groundnut Sugarcane 

  Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Mean eq 

 const 2.0165 *** 0.5721 −10.5517 *** 0.7205 −2.1377 *** 0.4714 −7.9281 *** 0.9765 10.9710 ** 4.3559 

 T 0.0147 *** 0.0009 0.0221 *** 0.0012 0.0069 *** 0.0005 0.0148 *** 0.0011 −0.0046  0.0041 

 AgriLab −0.0907 *** 0.0111 −0.2112 *** 0.0158 0.0209 *** 0.0048 0.0018  0.0047 −0.2456 *** 0.0483 

 FertCons 2.6208 *** 0.0835 1.8636 *** 0.0405 0.3574 *** 0.0452 0.6778 *** 0.0434 1.1998 *** 0.3900 

 IrriArea 1.2293 *** 0.0268 −0.6206 *** 0.0215 0.0526 *** 0.0143 −0.0362 ** 0.0170 3.0828 *** 0.1253 

 MAXTW 0.0267  0.0238 0.2529 *** 0.0274 −0.0576 *** 0.0173 0.0893 ** 0.0381 −0.2841 ** 0.1345 

 MAXTW2 -1.86E-04  0.0004 -1.35E-03 *** 0.0005 7.60E-04 ** 0.0003 -1.81E-03 *** 0.0007 7.56E-03 *** 0.0026 

 MAXTS 0.1814 *** 0.0380 −0.2928 *** 0.0557 0.0734 *** 0.0285 0.6141 *** 0.0544 2.9197 *** 0.2357 

 MAXTS2 -3.54E-03 *** 0.0005 6.54E-03 *** 0.0007 -1.04E-03 *** 0.0004 -7.85E-03 *** 0.0008 -4.37E-02 *** 0.0033 

 MAXTR −0.5503 *** 0.0663 0.2783 *** 0.0771 0.1139 *** 0.0442 −0.6109 *** 0.1002 −1.0302 ** 0.4546 

 MAXTR2 1.11E-02 *** 0.0010 -9.03E-03 *** 0.0012 -2.37E-03 *** 0.0007 8.18E-03 *** 0.0015 1.87E-02 *** 0.0069 

 MAXTA 0.4847 *** 0.0429 0.4970 *** 0.0878 −0.0285  0.0316 −0.4300 *** 0.0644 −0.7451 *** 0.2785 

 MAXTA2 -8.88E-03 *** 0.0008 -1.15E-02 *** 0.0015 8.47E-04  0.0005 9.32E-03 *** 0.0011 1.33E-02 *** 0.0049 

 MINTW −0.0927 *** 0.0144 0.3594 *** 0.0176 −0.1373 *** 0.0117 −0.5647 *** 0.0259 0.1762 ** 0.0857 

 MINTW2 5.96E-03 *** 0.0005 -1.76E-02 *** 0.0007 6.90E-03 *** 0.0004 2.15E-02 *** 0.0009 -1.35E-02 *** 0.0034 

 MINTS 0.0978 ** 0.0429 −0.5752 *** 0.0505 0.1064 *** 0.0360 0.0023  0.0635 −1.7272 *** 0.2860 

 MINTS2 -3.65E-03 *** 0.0010 5.98E-03 *** 0.0012 -3.03E-03 *** 0.0008 -1.60E-03  0.0014 3.81E-02 *** 0.0064 

 MINTR −0.0648  0.0657 1.4963 *** 0.0720 −0.1466 *** 0.0450 1.0934 *** 0.0867 −1.9320 *** 0.4264 

 MINTR2 -1.49E-03  0.0013 -2.12E-02 *** 0.0015 5.10E-03 *** 0.0009 -2.20E-02 *** 0.0017 3.85E-02 *** 0.0084 

 MINTA −0.1796 *** 0.0312 −1.4921 *** 0.0383 0.2129 *** 0.0198 0.2736 *** 0.0475 1.3829 *** 0.1680 

 MINTA2 6.65E-03 *** 0.0010 4.92E-02 *** 0.0013 -8.59E-03 *** 0.0006 -6.87E-03 *** 0.0015 -2.77E-02 *** 0.0055 

 RFW 0.0044 *** 0.0008 −0.0122 *** 0.0014 −0.0015 *** 0.0005 −0.0024 ** 0.0011 0.1025 *** 0.0037 

 RFW2 -2.60E-05 *** 0.0000 8.47E-05 *** 0.0000 9.48E-06 ** 0.0000 -1.26E-05  0.0000 -5.77E-04 *** 0.0000 

 RFS −0.0007  0.0006 0.0158 *** 0.0013 0.0013 *** 0.0003 −0.0113 *** 0.0011 −0.0039  0.0027 
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  Rice Bajra Chickpea Groundnut Sugarcane 

  Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

 RFS2 5.94E-07  0.0000 -1.72E-04 *** 0.0000 -2.80E-06 *** 0.0000 3.46E-05 *** 0.0000 1.33E-05 ** 0.0000 

 RFR −0.0001  0.0001 −0.0043 *** 0.0003 0.0001  0.0001 0.0037 *** 0.0002 −0.0062 *** 0.0007 

 RFR2 8.62E-08  0.0000 1.08E-05 *** 0.0000 -1.84E-07  0.0000 -4.68E-06 *** 0.0000 3.19E-06 *** 0.0000 

 RFA 0.0036 *** 0.0004 −0.0062 *** 0.0006 −0.0020 *** 0.0002 0.0035 *** 0.0005 0.0179 *** 0.0018 

 RFA2 -1.40E-05 *** 0.0000 3.82E-05 *** 0.0000 7.19E-06 *** 0.0000 -4.09E-06 * 0.0000 -3.50E-05 *** 0.0000 

 EVW 0.0102 *** 0.0012 −0.0012  0.0010 −0.0016 ** 0.0006 0.0447 *** 0.0014 −0.0689 *** 0.0050 

 EVW2 -1.36E-04 *** 0.0000 2.76E-05  0.0000 1.12E-05  0.0000 -4.95E-04 *** 0.0000 -1.77E-04 *** 0.0001 

 EVS 0.0024 ** 0.0010 −0.0265 *** 0.0015 −0.0046 *** 0.0005 −0.0044 *** 0.0015 0.0420 *** 0.0041 

 EVS2 -1.43E-05 ** 0.0000 2.45E-04 *** 0.0000 1.54E-05 *** 0.0000 8.55E-05 *** 0.0000 -2.75E-04 *** 0.0000 

 EVR −0.0054 *** 0.0016 0.0102 *** 0.0022 −0.0014 * 0.0008 −0.0211 *** 0.0021 −0.0112  0.0084 

 EVR2 3.28E-05 *** 0.0000 -6.84E-05 *** 0.0000 1.45E-05 *** 0.0000 6.11E-05 *** 0.0000 8.78E-05 ** 0.0000 

 EVA −0.0005  0.0012 −0.0033 * 0.0017 0.0055 *** 0.0007 0.0113 *** 0.0016 −0.0089  0.0058 

 EVA2 -4.37E-06  0.0000 6.51E-05 *** 0.0000 -3.01E-05 *** 0.0000 -1.16E-04 *** 0.0000 1.65E-04 *** 0.0001 

 WSW −0.0981  0.0897 2.2763 *** 0.1111 −0.0667  0.0440 −0.1992 ** 0.0954 4.1555 *** 0.3414 

 WSW2 -2.63E-02  0.0308 -7.52E-01 *** 0.0409 2.28E-02  0.0145 8.96E-02 ** 0.0360 -1.22E+00 *** 0.1129 

 WSS 0.1770  0.1260 −2.4979 *** 0.1505 0.1879 *** 0.0687 −1.4661 *** 0.1597 −0.3490  0.5261 

 WSS2 -1.14E-01 *** 0.0334 6.43E-01 *** 0.0410 -4.96E-02 *** 0.0183 3.20E-01 *** 0.0449 8.52E-02  0.1440 

 WSR −0.8641 *** 0.0746 0.3472 *** 0.1015 0.0764 * 0.0392 0.4425 *** 0.0936 −1.9855 *** 0.3024 

 WSR2 2.45E-01 *** 0.0172 -1.10E-01 *** 0.0238 -2.91E-02 *** 0.0087 -1.19E-01 *** 0.0228 6.40E-01 *** 0.0703 

 WSA 0.4495 *** 0.0887 −0.5414 *** 0.1075 0.2349 *** 0.0423 1.8950 *** 0.0923 −1.5271 *** 0.3305 

 WSA2 -2.07E-01 *** 0.0351 3.32E-01 *** 0.0518 -4.63E-02 *** 0.0158 -7.12E-01 *** 0.0397 3.93E-01 *** 0.1257 

 N 11117 6380 9589 7890 9165 

 R2 1.0000 1.0000 0.5674 1.0000 0.5552 

 Adj R2 1.0000 1.0000 0.5654 1.0000 0.5531 

Var eq 

 const −4.8876 *** 0.7037 −4.3403 *** 0.9910 −5.3069 *** 0.7542 −3.8035 *** 0.8153 −1.6080 ** 0.7874 

 T 0.0206 *** 0.0037 0.0352 *** 0.0052 0.0393 *** 0.0043 0.0177 *** 0.0045 0.0185 *** 0.0042 
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  Rice Bajra Chickpea Groundnut Sugarcane 

  Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

 MXT1 0.0477  0.1938 −0.1167  0.2664 0.1367  0.2008 −0.1281  0.2315 0.1048  0.2229 

 MXT2 0.1287  0.1922 0.2822  0.2614 0.4160 ** 0.1997 0.1351  0.2312 0.3306  0.2210 

 MXT3 0.2114  0.1429 0.0094  0.1801 −0.2156  0.1609 0.1355  0.1647 0.2199  0.1591 

 MXT4 0.2475 * 0.1452 0.4316 ** 0.1864 −0.0416  0.1657 0.2412  0.1704 0.2998 * 0.1612 

 MXT5 0.0914  0.1447 0.2340  0.2265 0.0743  0.1547 0.2031  0.1627 0.0103  0.1588 

 MXT6 −0.1925  0.1479 −0.4094 * 0.2314 −0.1592  0.1578 0.5216 *** 0.1689 0.0646  0.1617 

 MXT7 0.1530  0.1236 −0.0656  0.1605 −0.1210  0.1321 0.1884  0.1524 0.1954  0.1405 

 MXT8 0.1809  0.1258 −0.0190  0.1647 0.2041  0.1348 0.1982  0.1585 0.2647 * 0.1423 

 MNT1 0.2263  0.1658 0.1642  0.2582 0.0329  0.1751 0.3005  0.1956 −0.4223 ** 0.1961 

 MNT2 0.1139  0.1620 0.0085  0.2597 0.2003  0.1714 0.0086  0.1945 −0.3689 * 0.1897 

 MNT3 −0.0118  0.1437 0.2020  0.1680 0.0474  0.1529 0.0081  0.1628 −0.4686 *** 0.1548 

 MNT4 0.0867  0.1464 0.2217  0.1720 0.1055  0.1561 0.5198 *** 0.1690 −0.0570  0.1583 

 MNT5 0.5028 *** 0.1722 −0.3715  0.2834 −0.0201  0.1851 0.1605  0.2070 −0.0371  0.1903 

 MNT6 0.3571 ** 0.1792 −0.3668  0.2829 0.0056  0.1901 −0.0423  0.2099 0.0632  0.1971 

 MNT7 0.1144  0.1497 0.2554  0.2083 0.0223  0.1571 −0.0981  0.1795 −0.1091  0.1762 

 MNT8 0.0710  0.1497 0.0854  0.2042 0.0161  0.1553 0.0370  0.1766 −0.0912  0.1740 

 RA1 0.0394  0.1651 −0.0010  0.2206 0.0559  0.1874 −0.1697  0.2071 0.1855  0.1845 

 RA2 0.0610  0.1645 −0.0864  0.2188 −0.0829  0.1856 −0.2933  0.2058 0.2105  0.1837 

 RA3 −0.1362  0.1667 0.2097  0.2436 −0.1298  0.1979 −0.4576 ** 0.1980 −0.1844  0.1911 

 RA4 −0.2512  0.1695 0.2171  0.2415 −0.1341  0.2002 −0.4987 ** 0.1995 −0.0276  0.1936 

 RA5 −0.2016  0.1414 0.0945  0.2021 −0.0915  0.1503 −0.0639  0.1701 −0.3503 ** 0.1590 

 RA6 −0.3745 *** 0.1406 −0.0801  0.1958 0.1118  0.1495 −0.0216  0.1686 −0.3476 ** 0.1575 

 RA7 0.0520  0.1826 0.4258  0.2669 0.0614  0.1987 0.0809  0.2073 0.0065  0.2033 

 RA8 0.1364  0.1812 0.2047  0.2647 −0.0819  0.1968 0.0037  0.2053 −0.1116  0.2022 

 EV1 −0.0949  0.1801 0.1538  0.2720 −0.1107  0.1990 0.2629  0.2380 −0.0197  0.2163 

 EV2 −0.0833  0.1809 0.0324  0.2724 −0.1575  0.1998 0.0784  0.2371 −0.0468  0.2164 

 EV3 −0.0767  0.2034 −0.3270  0.3100 0.2563  0.2267 −0.0719  0.2498 0.0549  0.2304 
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  Rice Bajra Chickpea Groundnut Sugarcane 

  Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

 EV4 −0.1073  0.1985 −0.2771  0.3024 0.3589  0.2208 0.0802  0.2451 −0.0622  0.2247 

 EV5 0.1860  0.1624 −0.0910  0.2108 −0.2648  0.1822 −0.0999  0.1899 0.0772  0.1773 

 EV6 0.1711  0.1636 −0.0234  0.2122 −0.3544 * 0.1842 0.1345  0.1913 0.0460  0.1787 

 EV7 −0.2727 * 0.1445 −0.2178  0.2184 −0.2208  0.1551 −0.2767  0.1786 −0.1092  0.1637 

 EV8 −0.1233  0.1436 −0.2491  0.2133 0.0610  0.1534 −0.3671 ** 0.1777 −0.0122  0.1628 

 WS1 0.2170  0.1855 −0.1443  0.2269 −0.1910  0.1872 0.3221 * 0.1919 −0.0537  0.2086 

 WS2 0.0113  0.1824 −0.2502  0.2267 −0.3735 ** 0.1848 0.2269  0.1907 0.0519  0.2059 

 WS3 −0.0341  0.1681 −0.3825 * 0.2252 −0.0210  0.1773 −0.1007  0.1855 0.3113  0.1893 

 WS4 −0.0594  0.1665 −0.3049  0.2240 −0.1407  0.1758 −0.0949  0.1847 0.2662  0.1879 

 WS5 0.0895  0.1871 0.3708  0.2316 0.3271 * 0.1924 −0.1173  0.1900 0.5926 *** 0.2042 

 WS6 0.4591 ** 0.1872 0.3066  0.2313 0.3031  0.1924 −0.2469  0.1924 0.2273  0.2045 

 WS7 0.1681  0.2035 0.1039  0.2573 0.3419 * 0.1998 −0.3287 * 0.1971 −0.4515 ** 0.2192 

 WS8 0.0650  0.2024 −0.1851  0.2568 0.1154  0.1994 −0.3611 * 0.1981 −0.2141  0.2185 

 N 11117 6380 9589 7890 9165 

 LSDV R2 0.2730 0.7925 0.1982 0.6624 0.2387 

 Witnin R2 0.0130 0.0230 0.0208 0.0152 0.0104 

* p < 0.1, ** p < 0.05, *** p < 0.01 
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Table 6. Water management techniques and initiatives pertinent for India 

Political Scientific 

Atul Bhujal Yojana 

(2020) 

Focuses on demand-side management and community 

involvement in order to ensure sustainable groundwater 

use. 

Ambika and 

Mishra (2022) 

Using the Water Research Forecasting model, the authors 

reported that drip irrigation increases water saving and lowers 

moist heat in populated regions of India. 

Micro Irrigation Fund 

(2020) 

Aims to facilitate state-level social reforms for raising 

money to increase the area under micro irrigation. 

M. D. Kumar et 

al. (2022) 

In order to assess the complete benefits of irrigation and 

improve irrigation statistics, the authors called for water 

accounting studies. 

Sahi Fasal Campaign 

(2019) 

Motivates farmers in water-stressed areas to grow less 

water-intensive crops efficiently. 

Shukla et al. 

(2021) 

The authors contended that an environment for increasing 

agricultural water use efficiency must include multiple 

components, such as cropping patterns, technology, policy 

legislation and governance institutions. 

Pradhan Mantri 

Krishi Sinchayee 

Yojana (2015) 

Extends defensive irrigation and investment in water 

saving techniques, enlarges aquifers for recharging and 

encourages sustainable water use in agriculture, towards 

expanding irrigation coverage and improving water use 

efficiency under the tagline, ‘more crop per drop’. 

Baccar et al. 

(2021) 

Using an Approach for Building Adaptation Scenarios with 

Stakeholders, the authors reported that runoff harvesting and 

drip irrigation are the most effective practices for water 

conservation.  

Atal Mission for 

Rejuvenation and 

Urban 

Transformation 

(2015) 

Strives to revitalise water bodies while also replenishing 

groundwater. 

Gupta et al. 

(2020) 

The authors identified the watershed approach as suitable for 

managing blue-green water and conserving agriculture. 

Soil Health Card 

Scheme (2015) 

Assists farmers by providing soil details with crop-specific 

nutrient and moisture recommendations. 

Padhee (2020) The author proposed diversification with crops such as 

sorghum, millets, maize and soybean to resolve the problem of 

groundwater depletion.  

National Mission for 

Sustainable 

Agriculture (2014) 

Aims to enhance crop yields, particularly in rainfed areas, 

by focusing on integrated farming and water use 

efficiency. 

Jat et al. (2019) The authors demonstrated that micro irrigation is energy saving, 

conserves water by 30% and increases yield by 30%–40%. 

Likewise, subsurface drip irrigation saves water by 58%–95%, 

increasing yield by 10%–20%. 

National Water 

Policy (2012) 

Stresses on Participatory Irrigation Management Act and 

addresses water use prioritisation, budgeting, technology 

progress, resolving human and natural challenges in its 

revised advanced frame. 

Sharma et al. 

(2018) 

To determine whether cropping patterns in India correspond to 

water resource distribution, the authors provided strategic policy 

options, such as appropriate pricing, input subsidies and assured 

water and electricity supply in agriculture. 

Punjab Preservation 

of Subsoil Water Act 

(2009) 

Instructs farmers to safeguard groundwater by delaying 

paddy transplantation to avoid high evapotranspiration. 

Kakraliya et al. 

(2018) 

The authors showed that conservation agriculture improves 

fertiliser efficiency and saves irrigation water by 14%–30%, 

increasing yield by 3%–16%. 
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Political Scientific 

Participatory 

Irrigation 

Management Act 

(2007) 

Involves stakeholders and beneficiaries in irrigation 

management by forming Water Users Association. 

Upadhyaya 

(2018) 

The author showed that alternate drying and wetting methods of 

irrigation save water by 23%–43%, reducing global warming 

potential by 30%–90%.  

Jawaharlal Nehru 

National Urban 

Renewal Mission 

(2005) 

Establishes the foundation for subsequent water policies, 

infrastructure and management. 

Dhawan (2017) Blaming India’s water shortage on poor resource management, 

the author suggested a connection between food security and 

called for infrastructure development and improved resource 

utilisation, recommending bed planting on ridges (e.g. of 

soybean) to conserve water; establishing water pricing and 

rights to incentivise waste reduction; increased investment in 

watershed services; and the collection of rainwater by 

landowners. 

Accelerated Irrigation 

Benefits Program 

(1996) 

Offers federal assistance to states towards spurring the 

implementation of effective irrigation projects that have 

been stalled by a lack of funds. 

Varadan and 

Kumar (2014) 

The authors indicated that contingent cropping, such as 

swapping from groundnut to sesame, would sustain farm 

revenue during water shortages. 

 

Command Area 

Development 

Programme (1974) 

Directs the quick use of devised irrigation potential and 

maximum crop output from irrigated land. 

Descheemaeker 

et al. (2013) 

Inspired by the acceptance that increasing water productivity is 

essential for climate-smart agriculture, the authors investigated 

the challenges in this field. They suggested that synergies across 

scales and between various agricultural sectors and the 

environment can lead to sustainable water management as a 

solution for sustainable water management. 

 



 

 

Appendix 

Figure A1. Steps involving FGLS estimation for the JP framework 

 

  

The mean yield function (in Equation (1)) is estimated by 
running an ordinary least squares regression of 𝑦𝑖𝑡 on 𝑓(. )

Residuals 𝜇𝑖𝑡 are computed.

The natural logarithm of the square of estimated residuals is 
regressed on yield variance function ℎ (. ) and residuals are 
obtained, which can be written as: 𝑙𝑛 Ƹ𝜇𝑖𝑡2 = ℎ0.5 𝑧𝑖𝑡 , 𝛼 +𝜀𝑖𝑡

The antilogarithm of residuals computed in the previous step 
is obtained, which gives consistent estimates of ℎ (. ).

Mean yield function 𝑓 . is re-estimated by running a 
weighted least square regression with the exponential 

predicted values of 𝑙𝑛 Ƹ𝜇𝑖𝑡2
as weights, which hence yields 

consistent estimates of 𝑓(. ); these can be written as: 𝑦𝑖𝑡ℎ−0.5 𝑧𝑖𝑡 , ො𝛼 = 𝑓 𝑥𝑖𝑡 , 𝛽 ℎ−0.5 𝑧𝑖𝑡 , ො𝛼 + 𝜇𝑖𝑡ℎ−0.5 𝑧𝑖𝑡 , ො𝛼
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Table A1. Computation of trajectories of variables of interest 

Point of inflexion 

 

The point of inflexion of the weather input is calculated by considering the partial derivative with respect 

to W of the nonlinear mean yield equation as zero and can be written as:  𝜕𝑦𝜕𝑊 = 𝜕𝜕𝑊 (𝛾0 + 𝛾1𝑊 + 𝛾2𝑊2) = 0 

or 𝑊𝑃𝐼 =  − 𝛾12𝛾2 

where when the average weather is above 𝑊𝑃𝐼  for positive 𝛾1 and negative 𝛾2, the marginal climate effect 

on yield is found to be negative; hence, the function is concave. In addition, when the average weather is 

above 𝑊𝑃𝐼  for negative 𝛾1 and positive 𝛾2, the marginal effect is found to be non-negative; hence, the 

function is convex. However, when the average weather is higher than 𝑊𝑃𝐼  for negative 𝛾1 and negative 𝛾2, the marginal effect is found to be negative. 

Elasticity 

 

The elasticity of non-weather input (𝜖𝑋) with respect to yield is calculated by multiplying the estimated 

coefficient (𝛽1) by the ratio of the mean non-weather factor (�̅�) to average yield (�̅�) and can be written as: 𝜖𝑋 = 𝛽1  �̅��̅� 

for  𝜕𝑦𝜕𝑋 = 𝛽1 

Semi-elasticity 

 

Given that the yield variance equation is log-linear and considering 𝜇 = 100 as a base, the coefficient 

representing the semi-elasticity of weather anomalies can be written as:  𝜕𝜕𝐴 𝑙𝑛𝜇 = 𝜕𝜕𝐴 (𝜃0 + 𝜃1𝐴) 

or  𝜕𝜇𝜕𝐴 = 𝜃1 × 100 
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Table A2. Computed trajectories of non-weather and weather variables 

   Rice Bajra Chickpea Groundnut Sugarcane 

Mean eq 

 Yield elasticity for 

  AgriLab −0.04 −0.22 0.02  −0.04 

  FertCons 0.16 0.34 0.05 0.09 0.03 

  IrriArea 0.30 −0.49 0.03 −0.02 0.31 

 Point of inflexion for 

  MAXTW  omitted 37.85 24.67 18.78 

  MAXTS 25.63 22.40 35.23 39.13 33.43 

  MAXTR 24.88 15.41 24.00 37.34 27.62 

  MAXTA 27.30 21.62  23.06 27.91 

  MINTW 7.79 10.23 9.95 13.14 6.53 

  MINTS 13.41 48.05 17.56  22.65 

  MINTR  35.27 14.37 24.84 25.10 

  MINTA 13.51 15.17 12.39 19.92 25.00 

  RFW 85.35 71.91 77.00 omitted 88.79 

  RFS  46.03 235.69 163.00  

  RFR  199.68  397.44 978.11 

  RFA 128.72 81.76 136.12 425.43 255.05 

  EVW 37.60  70.57 45.19 omitted 

  EVS 83.46 54.04 149.41 25.69 76.38 

  EVR 82.56 74.69 49.42 172.60  

  EVA  25.09 91.15 48.58  

  WSW  1.51  1.11 1.70 

  WSS  1.94 1.89 2.29  

  WSR 1.76 1.58 1.31 1.86 1.55 

  WSA 1.08 0.82 2.54 1.33 1.94 

Var eq 

 Semi elasticity of yield for 

  MXT2   41.60   

  MXT4 24.75 43.16   29.98 

  MXT6  −40.94  52.16  

  MXT8     26.47 

  MNT1     −42.23 

  MNT2     −36.89 

  MNT3     −46.86 

  MNT4    51.98  

  MNT5 50.28     

  MNT6 35.71     

  RA3    −45.76  

  RA4    −49.88  

  RA5     −35.03 

  RA6 −37.45    −34.76 

  EV6   −35.44   



 

4 

 

   Rice Bajra Chickpea Groundnut Sugarcane 

  EV7 −27.27     

  EV8    −36.71  

  WS1    32.21  

  WS2   −37.35   

  WS3  −38.25    

  WS5   32.71  59.26 

  WS6 45.91     

  WS7   34.19 −32.87 −45.15 

  WS8    −36.11  

Italic numbers indicate that the marginal effect is negative beyond it; bold numbers indicate 

that the marginal effect is positive above it; outliers are omitted.   
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