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A  B  S  T  R  A  C  T  

 
Technology innovation is widely recognised as a critical means in tackling climate change and fulfilling energy policy objectives. The objective of this paper is twofold: 

first, to provide a descriptive analysis of innovation in energy technology across countries and sectors and over time; and second, to explore the determining factors of 

patented knowledge diffusion of energy technologies by distinguishing between renewables and other energy patents, i.e., fossil and nuclear patents) thorough a 

regression analysis. The data employed in this paper consists of an original database on renewables and other energy patents applied by firms in the period 1990–2015 

and contained in PATSTAT. By drawing on patent citations as an indicator of knowledge diffusion and focusing on characteristics extracted from patent documents, a 

set of econometric models is estimated. Our results show that those patents containing more citations to previous scientific literature and patents attain greater diffusion. 

Joint patents with  other firms or universities exert  a negligible effect on technology regarding renewables. Co ownership with universities has a negative effect on the 

diffusion of other types of energy technology. Several policy implications can be determined from our results: for example, the justification for policies oriented to wards 

enhancing the incorporation of scientific knowledge and co-inventorship in energy innovation. 
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1. Introduction 

 
Technology innovation is widely recognised as a critical means in tackling  climate  change  and  attaining energy  policy  objectives, including those of 

increasing energy access and reducing air pollution (IEA, 2020). Mitigating the harmful effects of climate change involves working  towards the best use of 

clean energy and encouraging the transition of the world energy system towards electricity generation from low-carbon sources and other gasses (IEA, 

2017). Due to increasing concerns over the environmental consequences of greenhouse gas emissions from fossil fuels, renewable energy has emerged as 

a substitute energy source, since the reduction of CO2 emissions and the control of climate change must include the reorganization of the energy sector 

(Abulfotuh, 2007; Apergis and Payne, 2012; Balsalobre-Lorente et al., 2018). It is clear that the energy sector will only reach net-zero emissions through a 

global effort for innovation (IEA, 2020). Furthermore, investing in renewable energy sources can contribute towards other public-policy objectives, such 

as greater energy security, in the face of the uncertain markets of fossil fuels (Johnstone et al., 2010). Furthermore, this sector constitutes a driving force 

for innovation, since it exerts a significant impact on other sectors that are indirectly affected, such as transport and waste management (Schmidt et al., 

2012). 

Previous research has revealed the importance of external knowledge sourcing and knowledge diffusion across sectors (Nemet, 2012; Duch-Brown and 

Costa-Campi, 2015), and geography (Binz and Ana don, 2018; Gosens et al., 2015; Li et al., 2021). It has also shown the relevance of collaboration for 

green innovation (Ghisetti et al., 2015; Araújo and Franco, 2021) and in general for innovation, which is in line with the open innovation paradigm. 

Additionally, there is an observed increase towards the incorporation of science into energy patents, especially in renewables (Hötte et al., 2021; Perrons 

et al., 2021). 

This paper addresses two limitations of the extant literature. First, previous contributions on the diffusion  of energy  technology using patent data have 

focused on the effect of policy incentives in inducing innovation (Battke and Schmidt, 2015; Noailly and Shestalova, 2017; Popp, 2006; Johnstone et al., 

2010; Miremadi et al., 2019; Hötte, 2020) or in the international or regional knowledge flows (Binz and Anadon, 

2018;  Gosens et al., 2015;  Li et al., 2021). Second,  the literature exploring the effect of in-text patent indicators on knowledge diffusion has not focused 

on the energy sector and extant non-specific energy   sector reserch provides mixed evidence on the effect of scientific link ages, backward citations, and 

co-ownership on the diffusion of technology (e.g., see Acosta et al., 2009 for environmental technologies; Schmid, 2018 for military technologies; and 

Belderbos et al., 2014, Briggs, 2015, and Peeters et al., 2020 for general evidence). 

This paper aims to fill these gaps by providing a comprehensive analysis of patented energy technology generation and of the factors affecting its 

diffusion based on patent data. Firstly, a description is provided of the temporal evolution of patented energy technology over the period 1990–2015, and 

of its distribution across technological fields. Light is also shed on which countries lead the process of patented technology in the  energy  sector.  

Additionally, descriptive statistics enable comparisons between renewables and other energy technologies. Secondly, a set of econometric models is 

estimated to identify the factors that determine the diffusion of renewable energy technologies and other energy technologies, which includes scientific 

linkages, backward citations, and co-ownership of patents. For this purpose, two technological sectors are distinguished: renewable technologies, and 

other technologies producing energy. Renewable energy technologies include Wind, Solar, Geothermal, Marine, Hydro, Biomass, Waste, and Storage 

technologies. Other technologies producing energy include Fossil Fuels and Nuclear technologies. Our analysis is based on the number of citations a 

patent receives in subsequent patents, that is, forward citations, as a proxy for knowledge diffusion. 

The consequences of patent diffusion make this research relevant both from the firms’ and policy-makers’ perspectives. At the firm level, empirical 

literature has shown a strong relationship between patent diffusion  (e.g., the impact  of a patent on subsequent patented inventions) and several 

indicators of firm performance (Chen and Chang, 2010; Hall and MacGarvie, 2010; Hall et al., al., 2005; Harrigan et al., al., 2018; Hirschey and 

Richardson, 2004; Patel and Ward, 2011): for example, stock prices (Hall and MacGarvie, 2010), market value (Hall et al., 2005; Kim et al., 2018 for the 

renewables sector), and reputation for technological innovation, which in turn correlate with the firm’s competitive advantage (Henard and Dacin, 2010; 

Höflinger et al., al., 2018). Furthermore, patent diffusion promotes innovation by reducing transaction costs and coordinating R&D efforts between 

rivals (Sag and Rohde, 2007; Thomas, 2002). From the policy-makers’ perspective, understanding innovation and diffusion of energy technologies 

become essential for efficient energy and environmental policy design, and may contribute towards explaining why certain existing technological 

solutions in the market diffuse slowly, even when they are technologically superior (Hötte, 2020). These crucial consequences of patent quality for the 

firm and for society trigger political and academic interest in understanding the factors affecting patent diffusion in the energy sector. 

 
2.  Theoretical background 

 
Broadly speaking, comprehension of the mechanisms underlying knowledge creation and diffusion is essential for economic growth to be understood 

(Silverberg et al., 1988; Klarl, 2014; Andergassen et al., 

2017). In one of the seminal  contributions of knowledge diffusion, Rogers (1962, p. 5) defined diffusion as “a process by which an innovation is 

communicated through certain channels over time among the members of a social system”. This concept of diffusion conveys both market and non-

market channels. However, in this paper, a more con strained concept of diffusion is adopted, which is centered on knowledge spillovers. These can be 

defined as external knowledge sources upon which organisations are built and in which there is no compensation, or said compensation lies below the 

actual value of the knowledge (Jaffe, 1998; Korres, 2012). From a macroeconomic viewpoint, knowledge diffusion  through spillovers  plays  a key role  in 

the  literature on endogenous economic growth (Grossman and Helpman, 1991, 2018; Griliches,  1992;  Aghion and  Howitt,  1992;  Acemoglu  and  

Akcigit, 2012). From a microeconomic viewpoint, technological diffusion pro vides a key factor for productivity growth (Baumol, 1991). Furthermore, 

the identification and understanding of the processes of technological knowledge diffusion and acquisition is essential in the design of successful business  

strategies (Bonesso et al., 2011; Momeni and Rost, 2016). However, the process of knowledge diffusion is not automatic, as shown by a large set of studies 

initiated by Jaffe et al. (1993), but instead depends on agents’ absorptive capacity (Cohen and Levinthal, 1990; Lane et al., 2006). 

 
2.1.  The diffusion of technology in the energy sector 

 
Although not precisely focused on the factors affecting knowledge diffusion, a growing number of studies rely on patent data to examine innovation 

and knowledge sourcing in the energy sector and provide relevant clues for this research. 

Motivated by the fact that technological change is considered accumulative process in which new technologies result from the recombination of 

existing knowledge in innovative ways (Arthur, 2007), several papers have provided evidence on knowledge flows through the analysis of  backward 

patent  citations within/across  technological sectors (Nemet, 2012; Duch-Brown and Costa-Campi, 2015) or geography (Binz and Anadon, 2018; Gosens 

et al., 2015; Li et al., 2021). In the case of renewables, evidence has revealed that energy innovation depends on a broad range of knowledge sources 

since it usually involves the combination  of diversified and  complex  knowledge areas  (Nemet,  2012; Garrone  et al., 2014;  Noailly and Smeets, 2015;  
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Popp, 2017). This highlights the importance of external knowledge sourcing to foster innovation and diffusion. However, the rate of diffusion depends 

on the type of technology. For example, green technologies exert a higher impact on future inventions (Barbieri et al., 2020). Overall, patents in wind, 

storage, and solar technologies tend to be more frequently cited than other renewable technologies (Noailly and Shestalova, 2017). 

Additionally, previous research has found that energy innovation increasingly relies on science (Hötte et al., 2021; Perrons et al., 2021), particularly 

in the case of renewable energies  (Perrons et al., 2021; Persoon et al., 2020), which may indicate an increasing dependence of invention on scientific 

research over time. 

From an institutional point of view, open innovation becomes a relevant paradigm (see Lacerda and Van den Bergh, 2020 for renewable 

technologies). The open innovation perspective stresses the value of external knowledge by arguing it is a necessary strategy to increase R&D 

productivity in the face of growing competition and faster technology development cycles. Nevertheless, successful  environmental innovations are 

highly dependent on the participation of different stake holders in their development/uptake, that is, they are likely to result from the cooperation 

between the public sector, academia, and business (Carrillo-Hermosilla et al., 2010).  However, it has been found that universities play a less important 

role in wind research than they do for solar and biofuels, which the authors interpret as being wind energy research at a more applied stage where 

commercialization and final product development has become more important than basic research (Hötte et al., 2021). In particular, green energy 

innovations rely on technologies developed outside the field of power generation (Noailly and Ryfish, 2015) and often require the combination of 

various items of knowledge developed by different actors in different countries (Corrocher and Mancussi, 2021), which exemplifies the relevance of open 

innovation. 

Despite the importance of building upon previous extant techno logical, scientific knowledge and cooperation for energy innovation, their effect on 

diffusion has yet to be explored. Therefore, in the sub sequent section, the non-specific energy empirical evidence on the determinants of patent 

diffusion is reviewed. 

 
2.2.  Determinants of patent diffusion 

 
The cumulative nature of knowledge and path dependancy make it crucial to rely on previous knowledge for innovation. Two prominent 

sources of knowledge are those of previous codified knowledge (either in patent or non-patent literature), and R&D cooperation (either with 

universities or firms). In this section, our hypotheses are derived, as summarised in Fig. 1. 

 
2.2.1.  Citations to non-patent literature 

Scientific research has been largely discussed as being relevant for technological innovation (e.g., Bush, 1945; Brooks, 1994; Godin, 2006; Balconi et 

al., 2010 ; Fleming et al., 2019) Fleming & Sorenson (2004.) suggested that science functions as a map of the technological landscapes that can guide 

private research towards useful combinations, thereby avoiding dead-end research efforts. Furthermore, the growth of markets for technology 

including those from academia, implies that firms have access to a larger scientific pool than ever (Marx and Fuegui, 2020). 

Several papers have found a close relationship between scientific citations and  the value  of patented inventions (e.g., Sorenson  and Fleming, 2004; 

Branstetter, 2005; Gambardella et al., 2005; Ahmadpoor and Jones, 2017; Poege et al., 2019 provide non-specific sector evidence;  see, Harhoff et al. 

(2003), for pharmaceutical and chemical patents). However, the empirical evidence remains mixed. For example, Harhoff et al. (2003) found a positive 

effect of citations to the non-patent literature and the value of pharmaceutical and chemical patents, but not in other technical fields Cassiman et al. 

(2008). found that references to scientific publications are not relevant in explaining forward citations in patents from a set of technological classes, 

which they justify because patents citing science may be uncovering knowledge of a more complex and fundamental nature, which is less readily diffused 

or remains far from market applications Petruzzelli et al. (2015)., using a sample of biotechnology patents, found that the use of scientific knowledge 

varies in its impact depending on the level of analysis of knowledge diffusion. According to their results, non-patent citations do not affect the number of 

forward citations, nor do patent citations from the same technology  domain, nor the number of citations from other assignees. However, they did find 

a negative effect of scientific citations on a patent’s impact on subsequent patents outside  the biotechnology industry, and they found a positive effect of 

the technological relevance of the patent for the assignee’s future inventions. 

On the whole, the empirical evidence on the effect of scientific linkages of technological innovations remains largely unclear, although it does seem to 

remain dependent on the technological sector under analysis, whereby it has greater relevance in technologically complex sectors. The widely 

discussed relationship between science and technology, and the increasing importance of science for energy innovations (Hötte et al., 2021; Perrons et 

al., 2021), motivates the following hypothesis: 

H1. More scientific knowledge sourcing exerts a positive effect on energy patent diffusion. 

 
2.2.2.  Backward patent citations 

Backward citations have been used in other studies as a proxy for spillover effects and show a positive effect on the market value of firms (e.g., non-

specific sector evidence available in Harhoff et al., 2003; Duguet and Macgarvie, 2005; Gay and Le Bas, 2005). 

Backward citations can be directed towards patents owned by others or to self-owned patents. In the specific case of self-citations, these are a 

measure of path-dependent technologies (Sørensen and Stuart, 2000 for high-tech industry; Song et al., 2003 for non-specific sector evidence). 

Interestingly, Hall et al. (2005) provided general empirical evidence that self-citations have an even stronger effect on market value than do other 

citations. Liu et al. (2008) found that US pharmaceutical and biotechnology patents that are part of sequential inventions show increased technological 

value.  Thus,  the  higher  the  number of self-citations included in a patent, the higher the expected number of forward citations, since it signals that the 

firm maintains greater accumulated technological knowledge (Gay et al., 2005). 
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Fig. 1. Research model and hypotheses. 

 
In consideration of the positive effect of citations and self-citations on innovation performance and diffusion, we advance the following hypothesis: 

H2. More citations to the patents of others exerts a positive effect on the diffusion of energy patents. 

H3. More citations to one’s own patents exerts a positive effect on the diffusion of energy patents. 

 
2.2.3.  R&D collaboration and co-patenting 

Collaboration with external organisations is generally viewed as positive for the firm’s innovation because it provides access to resources, especially 

knowledge, that the focal firm lacks (Un et al., 2010). In the particular case of industry-university collaboration, universities can provide the scientific 

basis for technological progress and basic research (Peeters et al., 2020). Co-patenting implies the joint ownership of collaborative outcomes and has been 

used as an instrument to analyze the effect on value creation and appropiation (Belderbos et al., 2014). However, co-patenting creates uncertainty over 

the control that each co-owner possesses of the co-owned patent (Hagedoorn, 2003). 

Empirical evidence on the effect of co-ownership reveals mixed re sults. Belderbos et al. (2014) find that co-ownership between firms re ceives more  

forward citations than  do single-owned patents, while co-ownership with a university yields no statistical difference in the number of forward 

citations received compared to single-owned patents. With respect to the latter, Briggs (2015) obtained similar results when using forward patent 

citations within three years, but found a positive effect of co-ownership with universities on quality when using the total number of forward citations over 

the whole life of the patent. Recently, Peeters et al. (2020) found a positive effect of co-ownership with uni versities in exploratory trajectories, but a 

negative effect on forward citations for exploitative trajectories. They justify this result by stating that the more ‘certain’ exploitative trajectories are 

developed in-house, whereas the more uncertain types are more likely to be outsourced. 

Given the distinct benefits of collaborating with different types of partners, we consider that in-depth studies are needed into the effect of co-

ownership with universities and firms on patent diffusion in the “era of open innovation” (Enkel et al., 2009). This leads us to advance the following 

hypotheses: 

H4. Co-patenting with  other  firms has a positive  effect on the diffusion of energy patents. 

H5. Co-patenting with  universities has a positive  effect on the diffusion of energy patents. 

 
3.  Methods and data 

 
3.1.  Measuring knowledge diffusion through the forward citations of patents 

 
This paper relies on patent citations as an indicator of technological diffusion. Patent applicants are required to cite all “prior art” related to the 

invention (Criscuolo and Verspagen, 2008; Jaffe et al., 2000). Thus, patent citations are added to the patent documents if the knowledge in the cited 

patent is relevant to the citing patent. In other words, if patent B cites patent A, then it may be indicative of a knowledge flow from patent A to B (Hall 

et al., 2001). Following this reasoning, there is a large body of research using citation indicators of technological relations between the citing and cited 

patents (see, for example, Jaffe et al., 1993; Jaffe and Trajtemberg, 1999; Hall et al., 2001; Hu and Jaffe, 2003; Maurseth, 2005; Gay et al., 2005; Liu and 

Roseau, 2010; Schmid, 2018). However, patent citations fail to constitute a perfect measure of tech nological diffusion for two basic reasons 

(Verspagen, 2000). First, they depend on the consideration of patents as a reliable indicator of innovation. Thus, in sectors where inventions are less 
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prone to be patented, patent citations provide a limited indicator of diffusion. Second, patent citations serve a legal purpose by limiting the claims that can 

be made on the invention: on recognizing previous technology, they narrow the innovativeness of the invention. For this reason, it is the ultimate 

responsibility of the  patent examiner to determine which  references should be included. It can happen, therefore, that the inventor remains unaware of 

the cited patent1 (Alcácer and Gittelman, 2006; Cockburn et al., 2002). Several studies have focused on the validation of patent citations as indicators of 

knowledge flows (for a review, see Jaffe and de Rassenfosse, 2017). The overall conclusion of these studies is that patent citations are an accurate, 

though noisy, indicator of actual knowledge flows. Nevertheless, they constitute “the most widely employed measure of knowledge flows in the 

economics, management, and policy litera tures” (Roach and Cohen, 2013). 

From this literature, a number of studies have built upon the use of forward citations to measure technological diffusion  (Sorenson and Fleming, 

2004; Hoetker and Agarwal, 2007; Schmid, 2018). In addition, forward patent citations can be considered a measure of patent quality and hence a 

proxy for the economic value of a patent and its diffusion. An increased count of forward citations (citation of a patent in subse quent patents) means 

that the patent contributes with relevant knowl edge to other inventions (e.g., Trajtenberg, 1990; Gambardella et al., 2008; Fischer and Leidinger, 2014; 

Briggs and Wade, 2014; Abrams et al., 2018). The relationship between forward patent citations and economic value suggests that patents related to a 

significant new tech nical knowledge receive more citations than other patents, which in turn reveals a close association between citations and the 

socioeconomic value of innovations (Carpenter et al., 1981; Albert et al., 1991; Harhoff et al., 2003; Lanjouw and Schankerman, 2004; Gay et al., 2005). 

 
3.2.  Variables, model, and data 

 
3.2.1.  Variables 

A regression analysis of patent families (hereinafter referred to as“patents”) is conducted. 

Table 1 summarises variables and definitions. Our dependent variable (forward_citations_5years) is the count of citations that an invention (i.e., 

patent family) receives within a 5-year window from the first publication date (for more details, see de Rassenfosse et al., 2014; Squicciarini et al., 

2013).The mechanisms generating applicant and examiner citations differ widely (see discussions regarding the role of the examiner in Alcácer et al., 

2009; Chen, 2017; Azagra-Caro and Tur, 2018). Examiner citations are excluded since the inventor might remain unaware of the cited patents and may fail 

to utilize them for the creation of inventions and therefore may fail to truly indicate knowledge diffusion (Jaffe et al., 2000) .2 Self-citations (i.e., citations 

made by an assignee to their own previous patents3) have also been excluded from the dependent variable (see, for example, Acosta et al., 2012). 

Further to factors mentioned in Section 2.2, other factors have also been i dentified as determinants of forward patent citations: 

 
 Previous experience of the applicant. Given the path dependancy nature of knowledge creation, it is assumed that  inventors that  have previously 

innovated are more likely to develop relevant patents than inventors with no experience (Gambardella et al., 2005). 

 Family size. The number of different jurisdictions where the same invention has been filed positively affects forward citations (e.g., Duch-

Brown and Costa-Campi, 2015 for the oil and gas industries). The main argument explaining this relationship is that applying for protection is 

costly, therefore applicants are more likely to apply for protection in multiple countries for their most valuable inventions (Harhoff et al., 2003; 

Lanjouw and Schankerman, 2004 for manufacturing firms; Sampat, 2005). 

 Number of claims. Each claim represents a distinct inventive contri bution (Tong and Frame, 1992). Patents with more claims delimit broader 

property rights and thus are expected to be more frequently cited (see Bessen, 2008 for a set of technological sectors; Nemet, 2012 for energy 

technologies). 

 Number of inventors. Increased team size increases richness of the knowledge involved in the patent and the access to a wider and more 

heterogeneous network (for non-energy specific evidence, see: Guellec and Van Pottelsberghe de la Potterie, 2001; Lee et al., 2007; Singh, 

2008; Cassiman et al., 2008; Sun et al., 2020). 

 Originality. Patent originality refers to the breadth of the fields of technology upon which a patent relies (Squicciarini et al., 2013). It is expected 

that the most original patents receive, on average, more citations since a broader search is the base for a broader range of subsequent 

innovations (Petruzelli et al., 2015 provide evidence for biotechnology). However, it has also been argued  that searching widely is a risky 

process that conveys uncertainty regarding the outcomes (Petruzelli et al., 2015). 

 Technological scope. A higher frequency of citations is expected when the patent family is assigned to a broader range of technological fields 

(Trajtenberg et al., 1997). 

 Triadic families. It has been shown that EP patents simultaneously applied to US and Japan receive, on average, a higher number of 

               citations than EP-only patents (Criscuolo, 2006 for a set of techno logical sectors, but not specific to energy). 

 Accumulated stock of knowledge. The number of citations also depends on the number of opportunities to be cited: a large number of patents in 

a given technological domain indicate more inventors working on related technologies and thus the increased propensity of a given patent to 

be diffused (Acosta et al., 2013, and Schmid, 2018, for military technologies). 

  

 
 

1  An analysis of the influence of citations included by the inventor and by the examiner, and the deviation generated in the determination of technological flows can be 

found in Alcácer & Gittelman (2006) and Thompson (2006). 
2  Following the recommendation of one anonoymous reviewer, we replicated  our mainstream models using examiner citations as the dependent variable. Similar 

conclusions are reached regarding our hypotheses testing, except for Hypothesis 5. For brevity, the  results are not displayed here  but  they  are available from the 

authors upon request.  
3  To identify self-citations, we first harmonise companies’ names. To this end, we consider two applicants as being the same applicant if they have the same name (even if 

they have different legal forms) and belong to the same country (Callaert et al., 2011). 
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Table 1 

Variables and definitions. 
 

Variable Definition 
 

Dependent variable 

Forward_citations_5years No. of forward citations within the window of 5 years 

Independent  variables 

Non_patent_literature  No. of citations to non-patent literature  

Backward_others_citations No. of backward citations  

Backward_self_citations No. of backward self-citations 

Collaboration_firm Dummy: 1 indicates collaboration with a firm,0 otherwise 

Collaboration_university Dummy: 1 indicates collaboration with a university,0 otherwise 

Previous_experience  No. of total inventions in energy technologies of the firms owning the patent in the previous ten years before the application date of the patent (as a logarithm) 

Family_size  No. of different patent jurisdictions in the patent family 

Claims  No. of claims in the patent family 

Inventors  Maximum number of inventors in the patent family 

Original  Originality index based on Trajtenberg et al. (1997). If all cited patents belong to exactly the same set of technologies, then the originality index is 0. A large 

“originality” value indicates broader technological roots of the invention 

Scope  No. of different 4-digit IPC subclasses 

US_JP Dummy: 1 indicates protection in the US and JP, 0 otherwise 

Stock  No. of inventions that already exist in the particular technological field over the last 10 years (as a logarithm) 

Control variables 

Year dummies Year effects: Dummy variable from 1990 to 2005, taking 2006 as base category 

Field dummies Field effects: Dummy variable. Renewables (Wind, Solar, Geothermal, Marine, Hydro, Biomass, Waste and Storage) and other technologies (Fossil and Nuclear) 

Source: Author’s own based on Patstat data. 

 
 

All regressions control  for year  and  field  effects  by including dummies. The year’s fixed effects capture differences in the quality of patents 

relative to the  last year  in the  sample.  Similarly,  several dummies capture possible differences between technological sub categories in the energy 

sector, both in renewables (Wind, Solar, Geothermal, Marine, Hydro, Biomass, Waste, and Storage) and other technologies (Fossil and Nuclear) (see Noailly 

and Shestalova, 2017, and Albino et al., 2014 for the list of IPC codes identifying each category). Each variable takes the value of 1 if the corresponding 

technological field appears in the group of IPC classification assigned to the patent family, and 0 otherwise. 

Table 2 shows the frequencies of citations over 5 years for the whole sample. Our data shows that 74.45% of the patents in our sample do not receive  

citations in a 5-year  window  and  8.16%  receive  only one citation. 

 
3.2.2.  Model specification 

As mentioned above, in order to estimate the influence of the various factors on the diffusion of knowledge in the energy sector, we estimate a model 

using the count data of forward citations over a 5-year window as a dependent variable (forward_citations_5years). The nature of the data implies the 

formulation and estimation of a counting model (Poisson or Negative Binomial), since estimates obtained from linear regression can be inconsistent, 

inefficient, and biased (Amano and Fujita, 1970; Long, 

1997). Similar to many other studies, a baseline specification is assumed following a Poisson distribution with non-linear form. However, one restriction 

of the Poisson model is that it assumes the mean and variance of the dependent variable to be equal. When the dependent variable shows over-

dispersion, (i.e., when the variance of the dependent vari able is greater than  the mean), then  negative binomial models are preferred (for details, see 

Cameron and Trivedi, 1986). Given the large number of zeros in our sample (as shown in Table 2, almost 75% of the patents in our sample fail to receive 

citations in a 5-year window), zero-inflated negative binomial regression models could be considered. However, these  models  assume  that  there  is a 

mixed  distribution composed of the two processes, one representing the count (Poisson or NB) and the other the excess of zeros (e.g., a logistic function). 

Following Bornmann and Leydesdorff (2015), since there is no known difference in the mechanism for the first citation and the later citations, zero-

inflated negative binomial models  are not used in this paper  Thelwall  and Wilson (2014). recommended the use of the generalised linear model with 

lognormal residuals for scientific citation data, although they recognize limitations to their study that probably provoke the over estimation of the 

unreliability of negative binomial regression for citations.  Despite  these  limitations, and  given  the  similarities in the distribution of patent and 

scientific citations, ordinary least squares models based on logarithmised citation data were additionally calculated to test the robustness of our results.4 

 
 

 
Table 2 

Frequency of 5-year forward citations (1990–2015). 
 

No. of forward 

citations 

No. of 

patents 

Cumulative 

count 

% of patents 

over total 

Cumulative 

% 

0 40,632 40,632 74.45 74.45 

1 4451 45,083 8.16 82.60 

2 2566 47,649 4.70 87.30 

3 1681 49,330 3.08 90.38 

4 1138 50,468 2.09 92.47 

5 864 51,332 1.58 94.05 

6 673 52,005 1.23 95.29 

7 460 52,465 0.84 96.13 

8 375 52,840 0.69 96.82 

9 284 53,124 0.52 97.34 

10 220 53,344 0.40 97.74 

>10 1234 54,578 2.26 100 
 

Source: Author’s own based on Patstat data. 
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3.2.3.  Data 

The empirical data consists of 54,578 energy patent families applied for by firms and which includes at least one application to the European Patent 

Office (EPO) in the period 1990–2015, considering the earliest filing year of the family, that is, the priority date. The source of data is the EPO Worldwide 

Patent Statistical Database (Patstat, autumn 2017 edition). In order to uniquely identify patent applicants, the OECD HAN database is employed together 

with manual harmonization. The OECD HAN database provides harmonised patent applicants’ names, but it is only available for patent applicants at 

the EPO. Hence, our sample is limited to families of patents that include at least one application at the EPO. We follow the classification scheme based on 

the International Patent Classification Codes (IPC) as proposed in Noailly & Shestalova (2017) for renewables and fossil technologies, and in Albino et 

al. (2014) for nuclear technologies. 

The DOCDB simple  patent family concept  is employed to build families, that is, a collection of patent documents that share identical technical content 

and are considered to protect a single invention. Our data is obtained from patent families instead of individual patents for several reasons (see 

Martínez, 2011, for a discussion on patent families). Since the same invention can be patented in multiple offices (Popp, 

2005), in order to avoid duplication, patent families are used as an inventive integral unit, instead of using the individual counting of appli cations 

(Martínez, 2011). Furthermore, patent families can be associated to a unique priority filing (i.e., the earliest priority date), which should be that closest to 

the invention (Bastianin et al., 2021). From the side of citations, the focus on families prevents the multiple counting of citations (Fischer and Leidinger, 

2014; Nesta et al., 2014). Moreover, if an application of the family receives a citation, it is just as valid as that received directly to the initial application 

(Bakker et al., 2016). Given these benefits  of patent families,  it is not  unusual that  they  are increasingly used as the unit for counting patents (e.g., 

Baruffaldi and Shimeth, 2020;  Bastianin et al., 2021), and  examining knowledge diffusion across sectors (Nemet, 2012; Duch-Brown and Costa-Campi, 

2015) or geographical areas (e.g., Li et al., 2021, for energy technologies). 

Since citations can continue accumulating over a patent’s life, the count of patent citations presents a truncation problem. Additionally, since older 

patents have had more time to be cited, they are expected to have received more citations. In accordance with previous contributions, we deal with these 
issues by using citations within a five-year time window (Petruzzelli et al., 2015) subsequent to when the invention was first published (Hall and Helmers, 

2013; Moaniba et al., 2018). 

However, our data is still truncated for two reasons. First, there is a publication delay: an application takes 18 months to be published after the initial 

filing date. Second, many EP applications are increasingly based on earlier PCT applications. For PCT applications, the applicant has 31 months to decide 

whether or not the application becomes a European application. In this paper, families with at least one EP application with priority date between 1990 

and 2015 are considered, and hence the analysis of the data beyond 2011, which is the latest comprehensive year in our sample, should be approached with 

caution. In order to deal with these data truncation issues in regression analysis, 

 
 

4  Whereby 1 is added to the citation data, the logarithm is taken, and ordinary least squares regression is used. 
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the time frame of our sample is limited to enable the citation window to be completed. For example, the main set of econometric models is estimated using 

data for 1990–2006 patents to have complete information for the 5-year citation window. 

 
4.  Results 

 
In this section, the results of our descriptive analysis are provided together with the estimation of an econometric model to identify the factors affecting 

forward citations of patented energy technology. Separate models for renewables and other technologies are estimated. In so doing, allowances are  made  

for differences in the  factors  that encourage the diffusion of renewables and other technologies. 

 
4.1.  Descriptive analysis 

 
For the purpose of contextualization, a brief description is presented of patent families in our sample to provide insights into innovation in energy  

over  time  and  its  distribution across  technological fields. Regarding the temporal evolution, Fig. 2 shows the number of patents related to renewable 

energy, related to other types of energy, and the total number of energy patents. For the joint series of renewables and other types of technologies, a 

consistent increase in the number of patents is observed from 1990 to 2011, and a decay from 2012 onwards. With the focus on renewables, the data  reveals  

the catching up of innovation in renewable energies rising from 117 in 1990 to 2040 in 2011 (a 1643.59% increase), while other technologies rise from 

984 in  1990 to 2160 in 2011 (119.51%). In 2011, renewable patents represented 49.95% of the total number of patented energy technologies. As in 

Haščič et al. (2015), the drop in recent years is likely to be due to a temporary phenomenon whereby certain batches  of new  data  are included with a 

time lag. 

Fig. 3 depicts the number of 5-year forward citations to energy patents, which shows an increasing trend from 1990 to 2007, but a notable decrease 

from 2008. This result can be explained: since citations are computed at the family level, and recent patent families might still be incomplete in that 

further applications might be expected to be added to the family. Moreover, it is worth mentioning that the number of citations that an invention receives 

becomes 0 in 2015, because these patents have not had enough time to be cited (5-year  window  not completed). Comparing these two types of energy 

technologies, Fig. 3 confirms the relevance of renewable energy technologies as having inventions that are more frequently cited for the generation of 

electricity since 2004. 

Finally, by focusing on 5-year forward citations per patent over time, Fig. 4 shows a major increase in renewable energies, which surpass other 

technologies. 

Table 3 reports the distribution of patent families and forward citations per technological field. Our results show that other technologies account for 

the largest  share  of total  patents in the energy  sector (65.25%). However, renewable energy technologies are cited more often than other traditional 

technologies for the generation of electricity (the former accounts for 51.58% of 5-year forward citations in the energy sector). Focusing on technological 

fields, our results also reveal that Solar (12.22%), Wind (11.63%), and Storage (6.37%) technologies account for the largest number of patents among the 

renewable energy technologies. These are also the fields with the largest share of citations in the energy sector. Furthermore, the minor importance of 

nuclear technologies in terms of patents and citations can be observed in comparison to fossil fuel technologies. The last column in Table 3 depicts 

information regarding citations over 5 years per patent family, once again revealing a higher impact of renewable energies (1.67) than for other 

technologies (0.84). Wind, Biomass, and Storage are the fields that receive more citations per patent family. 

In order  to shed  light  on which  countries lead  the  process  of knowledge generation in the energy sector, Table 4 presents the top ten countries with the 

highest number of energy inventions in the European Patent Office. Our data shows that 60.31% of the inventions in total energy originate from the United 

States, Germany, and Japan, with a high concentration in a few countries. This value falls to 57.19% in renewables, led by Germany, and rises to 62.07% 

in other technologies, led by the US. Regarding citations over 5 years per invention, Table 4 also shows the importance of the US as the leader of 5-year 

forward citations and 5-year citations per patent in renewables, other technologies, and total energy. Our data confirms the concentration of innovation 

activity in energy (for evidence on renewable technologies, see Garrone et al., 2014; Haščič and Migotto, 2015; Noailly and Ryfisch, 2015). When focusing on 

5-year citations per patent, the best performing countries are Spain (1.39) and Republic of Korea (1.32) in renewable energy technologies, Japan in other 

technologies (0.73), and Denmark in total energy (1.06). 

 

 

 
 

Fig. 2. Number of inventions per type of energy technology (1990–2015), Source: Authors’ own based on Patstat data. 
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Fig. 3. Number of 5-year-window forward citations (1990–2015). 

 
 

 
 

Fig. 4. Number of 5-year forward citations per patent (1990–2015), Source: Authors’ own based on Patstat data. 
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Technological 

field 

A. No. of patent 

families 

No. of patent families per field 

/total no. of energy patents (%) 

B. No. of 5-year 

forward citations 

No. of 5-year forward citations per field/ total 

no. of energy 5-year forward citations 

B/A5-year forward 

citations per patent family 

Wind 6565 11.63 11,445 18.00 1.74 

Solar 6901 12.22 10,357 16.28 1.50 

Geothermal 274 0.49 300 0.47 1.09 

Marine 878 1.55 1049 1.65 1.19 

Hydro 522 0.92 792 1.25 1.52 

Biomass 310 0.55 540 0.85 1.74 

Waste 573 1.01 489 0.77 0.85 

Storage 3597 6.37 7834 12.32 2.18 

Renewables 19,620 34.75 32,806 51.58 1.67 

Fossil 33,493 59.31 29,465 46.33 0.88 

Nuclear 3355 5.94 1330 2.09 0.40 

Other 36,848 65.25 30,795 48.42 0.84 

Total energy 56,468 100 63,601 100 1.13 

 

 
Table 3 

Distribution of patent families and forward citation per technological field (1990–2015). 

 
 
 
 
 
 
 
 
 
 
 
 
 

technologies 

 
Note that a patent family may be related to more than one technological sector. For this reason, the sum of patent families is greater than the total sample. Source: 

Authors’ own based on Patstat data. 

 
 
 

 
 
4.2.  Main estimation results 

 
Table 5 reports the descriptive statistics for all the explanatory variables, including patents from renewable energy technologies and other 

technologies. Renewable energy  patents receive  more  citations on average than do other technologies (3.0573 vs. 1.1864). Several of the most notable 

differences are subsequently highlighted. Renewable energy patents are more prone to cite previous patents (Back ward_others_citations and 

Backward_self_citations). The mean number of inventors and claims is also higher for renewable energy patents than for other technologies. On the other 

hand, average previous experience and scope is larger for other technologies than for renewables. Interestingly, co-ownership with other firms is more 

usual for other technologies than for renewable energy patents (0.3259 vs. 0.3080, respectively), while co-ownership with universities is more 

frequent in renewable energy technologies than  in other  technologies (0.0102 vs. 0.0018, respectively). 

As explained above, the dependent variable is the number of times that a patent family is cited as being the relevant state of the art in subsequent 

patent families filed within 5 years after the first publication of the patent family, excluding examiner citations and self-citations 

(Forward_citations_5years). According to Table 5, the variance (square of standard deviation) is greater than the mean. This difference suggests that over-

dispersion is present and that a Negative Binomial model would be appropriate. 

Table 6 shows the main econometric results using Negative Binomial models. Models 1, 3, and 5 explain knowledge diffusion in the renewable sector 

and include binary variables for each field. Models 2, 4, and 6 are estimated for other technologies and include two binary variables to control for nuclear 

and fossil energy innovations. In all the regressions, we also control for temporal effects. Patents that share codes from both renewables and other 

technologies are excluded. Furthermore, since Backward_self_citations and Backward_others_citations are components of the total backward citations, and 

despite not showing high linear cor relations to each other and the fact that the VIFs are low, we estimate our Negative  Binomial  model by including 

Backward_others_citations and omitting Backward_self_citations (and vice versa). Given the space limitations herein, only the results of Negative Binomial 

regressions for these separated regressions are included in Table 6, which  are the preferred models, given the over-dispersion of citations. 

The results show certain similarities in the variables in the explanation  of the diffusion of renewables and other technologies. In all models, backward 

citations to other patents show a positive and significant coefficient, which emphasises the importance of knowledge sourcing for knowledge diffusion. 

Backward self-citations are also significant in all models, thus supporting the cumulative nature of knowledge. Co-ownership with other firms is not 

relevant in any model. The number of inventors, claims, scope, originality, and previous experience in the development of innovations exert a positive 

and significant effect on enhancing knowledge diffusion. Non-patent literature citations are only relevant for renewable energy technologies, but they 

also become significant for other technologies when omitting Back ward_self_citations or Backward_others_citations from the main regression (see Models 4 

and 6). While being wary of encountering a possible multicollinearity problem, we conclude that scientific knowledge is relevant for innovations in the 

energy sector, both in renewables and other technologies. 

Additionally, several differences across renewables and other technologies are also observed. There is a negative effect of co-ownership with 
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universities and a positive effect of triadic families on knowledge diffusion within 5 years for other energy technologies, but this effect does not hold for 

renewable energy technologies. The stock of knowledge in the energy sector is only relevant in fossil and nuclear technologies, which exerts a negative 

effect on the number of citations thus suggesting that the competition effect for citations is greater than the size effect. In contrast, family size only 

increases the impact of renew able patented technologies since it is not relevant for the diffusion of other energy technologies. 

 
 
Table 5  

Descriptive statistics (1990–2006). 

    RENEWABLES                                               OTHER TECHNOLOGIES 

 Mean SD Min Max Mean SD Min Max 

Forward_citations_5years 3.0573 6.1617 0 99 1.1864 3.6416 0 186 

Non_patent_literature 2.5193 12.2941 0 300 0.9785 7.5843 0 374 

Backward_others_citations 6.4541 14.6875 0 176 3.6455 10.4930 0 197 

Backward_self_citations 0.8803 2.8636 0 65 0.6937 2.3606 0 88 

Collaboration_firm 0.3080 0.4617 0 1 0.3259 0.4687 0 1 

Collaboration_university 0.0102 0.1003 0 1 0.0018 0.0419 0 1 

Previous_experience 2.7610 2.3586 0 9.5613 3.8262 2.5453 0 10.0459 

Family_size 5.4917 3.0381 1 30 5.4201 3.3320 1 33 

Claims 16.8781 15.5567 0 199 14.1813 11.3574 0 373 

Inventors 2.7742 1.9072 0 20 2.5751 1.7979 0 26 

Original 0.6177 0.2443 0 0.9731 0.6990 0.2019 0 0.9750 

Scope 2.3607 1.6393 1 23 2.9768 1.5925 1 26 

US_JP 0.4583 0.4983 0 1 0.4487 0.4974 0 1 

Stock 8.7658 0.5643 5.8579 10.0685 11.1509 0.4754 9.3248 11.6006 

No. Obs. (year<=2006) 5900    19,343    
 
 

Table 6 

Negative binomial estimations. Dependent variable: 5-year forward citations (1990–2006). 
 

Negative Binomial  Negative BinomialBackward_self_citations omitted  Negative BinomialBackward_others_citations omitted 

 Renew.(1) Other(2) Renew.(3) Other(4) Renew.(5) Other(6) 

Non_patent_literature 0.0047** 0.0024 0.0055*** 0.0032* 0.0126*** 0.0092*** 

 (0.0021) (0.0016) (0.0021) (0.0017) (0.0023) (0.0019) 

Backward_others_citations 0.0111*** 0.0152*** 0.0123*** 0.0170***   
 (0.0018) (0.0020) (0.0018) (0.0019)   

Backward_self_citations 0.0231*** 0.0445***   0.0318*** 0.0568*** 

 (0.0060) (0.0079)   (0.0065) (0.0080) 

Ccollaboration_firm 0.0720 -0.0860 0.0725 -0.0879 0.0731 -0.0778 

 (0.0570) (0.0568) (0.0567) (0.0569) (0.0567) (0.0565) 

Collaboration_university 0.3676* -0.8377** 0.3651* -0.8840** 0.3041 -0.7812** 

 
(0.2207) (0.3957) (0.2175) (0.3964) (0.2104) (0.3945) 

Previous_experience 0.0511*** 0.0686*** 0.0569*** 0.0791*** 0.0468*** 0.0602*** 

 (0.0109) (0.0096) (0.0107) (0.0093) (0.0109) (0.0093) 

Family_size 0.0468*** -0.0004 0.0469*** 0.0005 0.0517*** 0.0009 

 (0.0092) (0.0088) (0.0092) (0.0088) (0.0092) (0.0088) 

Claims 0.0187*** 0.0320*** 0.0189*** 0.0329*** 0.0204*** 0.0353*** 

 (0.0019) (0.0022) (0.0019) (0.0021) (0.0019) (0.0021) 

Inventors 0.0449*** 0.0503*** 0.0451*** 0.0511*** 0.0490*** 0.0524*** 

 (0.0145) (0.0119) (0.0145) (0.0119) (0.0145) (0.0116) 

Original 0.5039*** 1.0320*** 0.5201*** 1.0376*** 0.5170*** 1.0979*** 

 (0.1289) (0.1462) (0.1283) (0.1465) (0.1284) (0.1457) 

Scope 0.0490*** 0.0625*** 0.0501*** 0.0613*** 0.0515*** 0.0704*** 

 (0.0153) (0.0160) (0.0153) (0.0160) (0.0152) (0.0157) 

US_JP 0.0809 0.6745*** 0.0741 0.6801*** 0.1012 0.6904*** 

 (0.0933) (0.0731) (0.0931) (0.0730) (0.0936) (0.0735) 

Stock 0.0340 -2.7247*** 0.0404 -2.7627*** -0.0127 -2.6944*** 

 (0.2117) (0.6258) (0.2117) (0.6260) (0.2126) (0.6173) 

_cons -1.4396 23.1848*** -1.4969 23.5537*** -1.0962 22.8783*** 

 (1.6464) (5.9100) (1.6457) (5.9110) (1.6491) (5.8284) 

Time dummies YES YES YES YES YES YES 

Sector dummies YES YES YES YES YES YES 

lnalpha 1.2641*** 1.6633*** 1.2667*** 1.6672*** 1.2723*** 1.6734*** 

 (-0.0302) (-0.0243) (-0.0301) (-0.0243) (-0.0301) (-0.0241) 

No. obs. 5900 19,343 5900 19,343 5900 19,343 

pseudo R
2

 0.044 0.058 0.043 0.058 0.043 0.057 

Log-likelihood -10,825.3080 -21,385.0997 -10,828.4833 -21,396.5387 -10,836.3758 -21,409.9299 

Wald chi2 1147.9718*** 1759.5052*** 1136.2801*** 1695.8557*** 1079.6083*** 1705.5769*** 

Standard errors are given in parentheses. 
* p < 0.1. 
**  p < 0.05. 
***  p < 0.01. 
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4.3.  Robustness checks 

 
In addition to the sensitivity analysis provided in the previous section, we estimate the models using the number of 3-year forward patent citations 

as a dependent variable (Table 7). Given the shorter 3-year citation window, we extend the period of the sample used in the estimations until 2009. The 

results of the alternative specifications included in Table 7 largely mirror the results from the main models in Table 6 regarding the principal conclusions. 

However, one notable result can be observed: the coefficient of co-ownership (either with universities or firms) is negative and significant in other 

energy patents, which strongly supports the conclusion that co-patenting with other companies or universities significantly hinders the diffusion of 

knowledge in the 3 year shorter run for fossil and nuclear technologies. The effect of co ownership on the diffusion  of renewable patented 

technologies remains insignificant. Table 8 presents ordinary least squares regression models based on logarithmised citations, both for 5-year forward citations 

and 3-year forward citations. Due to the limited space, only the re-calculation of models 1, 2, 7, and 8 are presented (those including Back ward_self_citations and 

Backward_others_citations). The comparison of the results of these models with those of the negative binomial regression models largely confirms the robustness of 

our results. 

 
Table 7 Negative binomial estimations. Dependent variable: 3-year forward citations (1990–2008). 

Negative Binomial Negative BinomialBackward_self_citationsomitted Negative BinomialBackward_others_citationsomitted 

 Renew.(7) Other(8) Renew.(9) Other(10) Renew.(11) Other(12) 

Non_patent_literature 0.0051** 0.0044* 0.0056** 0.0053** 0.0151*** 0.0111*** 

 (0.0021) (0.0023) (0.0022) (0.0023) (0.0023) (0.0023) 

Backward_others_citations 0.0119*** 0.0164*** 0.0135*** 0.0185***   
 (0.0020) (0.0028) (0.0020) (0.0027)   

Backward_self_citations 0.0265*** 0.0497***   0.0388*** 0.0645*** 

 (0.0086) (0.0117)   (0.0086) (0.0116) 

Collaboration_firm 0.0848 -0.2808*** 0.0767 -0.2738*** 0.0960 -0.2683*** 

 (0.0724) (0.0902) (0.0721) (0.0903) (0.0722) (0.0897) 

Collaboration_university 0.4288 -1.5744*** 0.4162 -1.6640*** 0.3765 -1.4455** 

 (0.3205) (0.6093) (0.3203) (0.5993) (0.3137) (0.6225) 

Previous_experience 0.0248* 0.0576*** 0.0306** 0.0698*** 0.0202 0.0468*** 

 (0.0134) (0.0146) (0.0133) (0.0140) (0.0134) (0.0140) 

Family_size 0.0441*** 0.0088 0.0446*** 0.0086 0.0474*** 0.0090 

 (0.0114) (0.0169) (0.0114) (0.0169) (0.0114) (0.0169) 

Claims 0.0186*** 0.0310*** 0.0189*** 0.0319*** 0.0209*** 0.0355*** 

 (0.0024) (0.0032) (0.0023) (0.0032) (0.0024) (0.0031) 

Inventors 0.0613*** 0.0828*** 0.0608*** 0.0831*** 0.0650*** 0.0847*** 

 (0.0186) (0.0172) (0.0186) (0.0173) (0.0185) (0.0170) 

Original 0.5433*** 1.3965*** 0.5511*** 1.3878*** 0.5694*** 1.4685*** 

 (0.1632) (0.2392) (0.1624) (0.2401) (0.1629) (0.2381) 

Scope 0.0766*** 0.0986*** 0.0786*** 0.0975*** 0.0810*** 0.1040*** 

 (0.0188) (0.0236) (0.0188) (0.0235) (0.0186) (0.0233) 

US_JP -0.0313 0.5014*** -0.0405 0.5074*** -0.0082 0.5247*** 

 (0.0967) (0.1096) (0.0972) (0.1097) (0.0961) (0.1096) 

Stock -0.1859 -2.0636** -0.1752 -2.0957** -0.2129 -2.0958** 

 
(0.1975) (0.9137) (0.1967) (0.9206) (0.1969) (0.8987) 

_cons -0.1174 16.0783* -0.2027 16.4102* 0.0608 16.2942* 

 
(1.5700) (8.5704) (1.5639) (8.6335) (1.5655) (8.4271) 

Time dummies YES YES YES YES YES YES 

Year dummies YES YES YES YES YES YES 

lnalpha 2.0534*** 2.7004*** 2.0552*** 2.7031*** 2.0605*** 2.7096*** 

 (0.0297) (0.0308) (0.0296) (0.0308) (0.0296) (0.0304) 

No. obs. 8559 22,256 8559 22,256 8559 22,256 

pseudo R
2

 0.0371 0.0460 0.0368 0.0456 0.0363 0.0451 

Log-likelihood -10,496.1332 -13,775.3583 -10,498.5317 -13,781.0434 -10,504.6038 -13,789.0086 

Wald chi2 37,333.4499*** 936.0816*** 34,582.4743*** 890.6581*** 37,490.0924*** 916.8443*** 

Robust standard errors are given in parentheses. 
* p < 0.1. 
**  p < 0.05. 
***  p < 0.01. 
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Table 8 Ordinary least squares regression models based on logarithmised citation data. 
  

Dependent variable: 5-year forward citation Dependent variable: 3-year forward citation 

 Renew.(13) Other(14) Renew.(15) Other(16) 

Non_patent_Literature 0.0040** 0.0038*** 0.0048*** 0.0033*** 

 (0.0017) (0.0009) (0.0018) (0.0010) 

Backward_others_citations 0.0089*** 0.0081*** 0.0062*** 0.0045*** 

 (0.0013) (0.0009) (0.0012) (0.0007) 

Backward_self_citations 0.0264*** 0.0187*** 0.0134** 0.0092*** 

 (0.0050) (0.0047) (0.0054) (0.0028) 

Collaboration_firm 0.0007 -0.0166 -0.0251 -0.0260*** 

 (0.0269) (0.0107) (0.0204) (0.0077) 

Collaboration_university 0.0987 -0.2105* -0.0170 -0.1285* 

 
(0.1542) (0.1098) (0.1148) (0.0703) 

Previous_experience 0.0332*** 0.0272*** 0.0153*** 0.0111*** 

 (0.0056) (0.0022) (0.0039) (0.0016) 

Family_size 0.0187*** 

(0.0045) 

-0.0059*** 

(0.0016) 

0.0106*** 

(0.0035) 

-0.0033*** 

(0.0011) 

Claims 0.0082*** 0.0091*** 0.0048*** 0.0047*** 

 (0.0010) (0.0008) (0.0009) (0.0006) 

Inventors 0.0165** 0.0146*** 0.0171*** 0.0120*** 

 (0.0071) (0.0031) (0.0055) (0.0024) 

Original 0.1201** 0.0974*** 0.0781** 0.0552*** 

 (0.0511) (0.0205) (0.0377) (0.0142) 

Scope 0.0415*** 0.0217*** 0.0289*** 0.0141*** 

 (0.0094) (0.0040) (0.0074) (0.0029) 

US_JP 0.0513 0.1244*** -0.0088 0.0503*** 

 
(0.0364) (0.0112) (0.0260) (0.0080) 

Stock 0.1724** 0.2482*** 0.1165** 0.1414*** 

 (0.0819) (0.0487) (0.0524) (0.0286) 

_cons -1.8292*** 

(0.5577) 

-2.4501*** 

(0.4736) 

-1.0180*** 

(0.3607) 

-1.4699*** 

(0.2788) 

Time dummies YES YES YES YES 

Sector dummies YES YES YES YES 

No. obs. 5900 19,343 8559 22,256 

R2 0.2165 0.1593 0.1302 0.0803 

F test 54.53*** 126.14*** 39.78*** 52.25*** 

Robust standard errors are given in parentheses. 
* p < 0.1. 
**  p < 0.05. 
***  p < 0.01. 
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6.  Conclusions and policy implications 

 
Innovation in energy technologies is required for the reduction of the environmental impact of power production. Therefore, ascertaining the factors 

that affect the diffusion of technology is essential. This paper contributes towards identifying the factors that affect the diffusion of patented technology in 

the energy sector. The empirical analysis is based   on forward patent citations. 

Our descriptive analysis shows an increasing trend towards innovation in renewable energy technologies from 1990 to 2011, the latest full year of our 

sample. Our data also confirms the relevance of renewable technologies in terms of the number of forward citations. Since inventions from renewable 

energy technologies are more frequently cited than  other  technologies, their  knowledge is better distributed and environmental improvement is 

therefore encouraged. 

The objective of our econometric model is to determine the factors affecting knowledge diffusion in the energy sector, by focusing on the role of non-

patent literature citations, backward patent citations, and co ownership of patents. Certain  similarities are found  in the  factors affecting forward citations 

between renewables and other patented technologies: backward citations to other patents, backward self citations, co-inventorship, claims, scope, 

originality, previous experience of the applicant in energy technologies, and non-patent literature all exert a positive  effect on knowledge diffusion.  

However, certain differences across sectors can also be found. Family size is a significant variable in enabling the diffusion of renewable energy 

technologies, while triadic families exert a positive effect only in the diffusion of other technologies. An accumulated stock of knowledge negatively 

affects the number of forward citations of patented inventions in fossil and nuclear technologies. Interestingly, we find that co-ownership with other 

firms or universities is not significant for the diffusion of renewable energy technologies. In contrast, when focusing on other technologies, co 

ownership with universities hinders the diffusion of innovations. It is also found that co-ownership with other firms negatively affects the diffusion of 

other energy technologies but only in the shorter 3-year term. 

 

The analysis offered several practical implications for policy-makers and firms. Our results show that patents more extensively based on scientific knowledge 

diffuse more readily, thereby enhancing the development of future innovations. For firms, this result highlights the 

importance of strengthening their scientific base through, for example, the incorporation of scientists  into their  research teams.  Innovation policies 

could therefore be oriented towards creating incentives for this incorporation. Furthermore, this result, together with the positive effect of backward 

citations to other patents, justify initiatives oriented towards the creation of knowledge pools of patents and scientific papers related to research on 

energy technologies in order to enhance knowledge accessibility and the retrieval of potentially interesting information in this line of research. For 

example, the IPC Green Inventory, which facilitates searches for patent information relating to Environmentally Sound Technologies (ESTs), 

constitutes a well-justified initiative according to our results. Similar initiatives could also be addressed for the creation of a pool of publicly available 

scientific papers that would provide a scientific base for the development of further clean technologies. 

 

Our results also show that co-ownership with other firms or universities may hinder the diffusion of fossil and nuclear patented technologies, while it exerts 

a negligible effect on the diffusion of renewable energy technologies. From the perspective of the firm, this finding is relevant because technological 

impact of the research is related to firm performance (e.g., Kim et al., 2018). Additionally, our results do not provide support for public or firm 

initiatives supporting co-patenting strategies if the objective involves the enhancement of the diffusion of patented technologies. In contrast, the role of 

co-inventorship is clear both in renewables and other technologies, and hence company strategies and policies oriented towards the formation of 

research teams are preferred over the facilitation of the R&D co-patenting strategies. 

 

This paper presents several limitations. First, despite the widespread use of patent citations as indicators of knowledge diffusion, its use is not without 

limitations since knowledge diffusion is a complex process that can be measured through a variety of indicators. Second, not all collaborative efforts result 

in the co-ownership of a patent, and hence the conclusions cannot be extended to include all collaboration in R&D. Third, the geographical or sectoral 

profile of the co-assignee remains to be analysed, which could shed light on the characteristics of collabo rations of a more successful nature. Fourth, data 

on knowledge diffusion is truncated (citations are measured at a point in time) and diffusion in longer time windows has yet to be explored. These 

limitations could be addressed in further research. 
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