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Abstract

The literatures dealing with voting, optimal income taxation, im-

plementation, and pure public goods are drawn on here to address the

problem of voting over income taxes to finance a public good. In con-

trast with previous articles, general nonlinear income taxes that affect

the labor-leisure decisions of consumers who work and vote are allowed.

Uncertainty plays an important role in that the government does not

know the true realizations of the abilities of consumers drawn from a

known distribution, but must meet the realization-dependent budget;

the tax system must be robust. Even though the space of alternatives

is infinite dimensional, conditions on primitives are found to assure ex-

istence of a majority rule equilibrium. JEL numbers: D72, D82, H21,
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1 Introduction

1.1 Background

The theory of income taxation has been an important area of study in eco-

nomics. Interest in a formal theory of income taxation dates back to at least

J.S. Mill (1848), who advocated an equal sacrifice approach to the normative

treatment of income taxes. In terms of the modern development, Musgrave

(1959) argued that two basic approaches to taxation can be distinguished: the

benefit approach, which puts taxation in a Pareto effi ciency context; and the

ability to pay approach, which puts taxation in an equity context. Some of

the early literature, such as Lindahl (1919) and Samuelson (1954, 1955), made

seminal contributions toward understanding the benefit approach to taxation

and tax systems that lead to Pareto optimal allocations. Although the im-

portance of the problems posed by incentives and preference revelation were

recognized, scant attention was paid to solving them, perhaps due to their

complexity and diffi culty.

Since the influential work of Mirrlees (1971), economists have been quite

concerned with incentives in the framework of income taxation. The model

proposed there postulates a government that tries to collect a given amount

of revenue from the economy. For example, the level of public good provi-

sion might be fixed. Consumers have identical utility functions defined over

consumption and leisure, but differing abilities or wage rates. The govern-

ment chooses an income tax schedule that maximizes some objective, such as

a utilitarian social welfare function, subject to collecting the needed revenue,

resource constraints, and incentive constraints based on the knowledge of only

the overall distribution of wages or abilities. The incentive constraints derive

from the notion that individuals’wage levels or characteristics (such as pro-

ductivity) are unknown to the government. The optimal income tax schedule

must separate individuals as well as maximize welfare and therefore is gener-

ally second best.1 The necessary conditions for welfare optimization when the

distribution of ability is bounded generally include a zero marginal tax rate

for the highest wage individual; this result only holds very locally at the top

of the distribution. Intuitive and algebraic derivations of this result can be

found in Seade (1977), where it is also shown that some of these necessary

1If the government knew the type of each agent, it could impose a differential head tax.

As is common in the incentives literature, one must impose a tax that accomplishes a goal

without the knowledge of the identity of each agent ex ante.
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conditions hold for Pareto optima as well as utilitarian optima. Existence of

an optimal tax schedule for a modified model was demonstrated in Kaneko

(1981), and then for the classical model in Berliant and Page (2001, 2006). An

alternative view of optimal income taxation is as follows. Head taxes or lump

sum taxes are first best, since public goods are not explicit in the model and

therefore Lindahl taxes cannot be used. Second best are commodity taxes,

such as Ramsey taxes. Third best are income taxes, which are equivalent to

a uniform marginal tax on all commodities (or expenditure).2 In our view, it

is not unreasonable to examine these third best taxes, since from a pragmatic

viewpoint, the first and second best taxes are infeasible.3

1.2 A Positive Political Model

How can we explain (or model) the income tax systems we observe in the

real political world? We shall attempt to answer this question with a voting

model, a positive political model, in combination with the standard income

tax model described above. As noted in the introduction of Roberts (1977),

one does not need to believe that choices are made through any particular

voting mechanism; one need only be interested in whether choices mirror the

outcomes of some voting process. Thus, what is described below is an attempt

to construct a potentially predictive model with both political and economic

content. It contains elements of the optimal income tax literature as well

as positive political theory; see Calvert (1986) and Austen-Smith and Banks

(2005).

Although much of the optimal income tax literature and most of the work

cited above deals with the normative prescriptions of an optimal income tax,

there is a relatively small literature on voting over income taxes. Most of this

2In certain circumstances, nonlinear income taxes can be second best; see Laroque (2005).
3Ramsey (optimal commodity) taxes typically follow the inverse elasticity rule. There

are several practical issues. First, to compute Ramsey taxes, one must estimate supply and

demand elasticities for each commodity. Second, these elasticities may vary over time, so the

taxes would vary over time. Third, there is a question regarding how fine the classification

of a commodity for the purposes of taxation might be. Demand for vegetables will typically

be more inelastic than that for potatoes and carrots, which in turn will be more inelastic

than demand for Yukon gold potatoes. As Stiglitz (2015, footnote 13) notes regarding the

reasons for grouping commodities, “Partly it is administrative: the cost of having millions of

tax rates, one for each precisely identified commodity, would be large. Partly it is based on

information: private parties would have an incentive to try to get their products classified

as one of the lower taxed products. It is costly for the government to gather the information

required to implement and enforce fine differentiations.”
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literature is either restricted to consideration of only linear taxes, or does not

consider problems due to information (adverse selection and moral hazard), or

both. Examples that might fit primarily into the linear tax category which also

involve no labor disincentives on the part of agents are Foley (1967), Nakayama

(1976) and Guesnerie and Oddou (1981). Aumann and Kurz (1977) use person-

alized lump sum taxes in a one commodity model. Hettich and Winer (1988)

present an interesting politico-economic model in which candidates seek to

maximize their political support by proposing nonlinear taxes. Work disincen-

tives are not present in the model. Chen (2000) extends their work to the

more standard optimal income tax model in the context of probabilistic voting.

Bierbrauer et al (2021) examine redistributive nonlinear income taxes with two

parties, probabilistic voting, endogenous turnout, and ethical voters who care

about the welfare of members of their party. They find that members of the

other party might be demobilized by catering policy to them. Romer (1975),

Roberts (1977), Peck (1986), and Meltzer and Richard (1981, 1983) use linear

taxes in voting models with work disincentives. Roemer (1999) restricts to

quadratic tax functions with no work disincentives but with political parties.

Perhaps the model closest in spirit to the one we propose below is in Snyder

and Kramer (1988), which uses a modification of the standard (nonlinear) in-

come tax model with a linear utility function. The modification accounts for

an untaxed sector, which actually is a focus of their paper. This interesting

and stimulating paper considers fairness and progressivity issues, as well as

the existence of a majority equilibrium when individual preferences are single

peaked over the set of individually optimal tax schedules. (Suffi cient condi-

tions for single peakedness are found.) Röell (1996) considers the differences

between individually optimal (or dictatorial) tax schemes and social welfare

maximizing tax schemes when there are finitely many types of consumers. Of

particular interest are the tax schedules that are individually optimal for the

median voter type. This interesting work uses quasi-linear utility and restricts

voting to tax schedules that are optimal for some type. Brett and Weymark

(2017) push this further in a continuum of types model by characterizing indi-

vidually optimal tax schedules. Then they show, under conditions including

quasi-linear utility, that if the set of tax schedules is restricted to individually

optimal ones, the individually optimal tax for the median voter is a Condorcet

winner.

We propose in this paper to allow general nonlinear income taxes with

work disincentives in a voting model. The main problem encountered in
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trying to find a majority equilibrium, as well as the reason that various sets

of restrictive assumptions are used to obtain such a solution in the literature,

is as follows. The set of tax schedules that are under consideration as feasible

for the economy (under any natural voting rule) is large in both number and

dimension. Thus, the voting literature such as Plott (1967) or Schofield (1978)

tells us that it is highly unlikely that a majority rule winner will exist. Is

there a natural reduction of the number of feasible alternatives in the context

of income taxation?

1.3 The Role of Uncertainty and Feasibility

The answer appears to be yes. The (optimal) income tax model has a natural

uncertainty structure that has yet to be exploited in the voting context. As in

the classical optimal income tax model, all worker/consumers have the same

well-behaved utility function, but there is a nonatomic distribution of wages

or abilities. In standard models, such as the Mirrlees model or its modern

descendants, the distribution of consumers by type is known by all and the

aggregate revenue requirement is fixed at a scalar; it is 0 in models of pure

redistribution. (This applies whether the number of consumer/workers is finite

or a continuum.) Suppose that a finite sample is drawn from this nonatomic

distribution.4 The finite sample will be the true economy, and the revenue

requirement imposed by the government can depend on the draw. In fact

this dependence is just a natural extension of the standard optimal income

tax model. In that model, the amount of revenue to be raised (the revenue

requirement in our terminology) is a fixed parameter, something that makes

perfect sense since the population in the economy and the distribution of the

characteristics of that population are both fixed, and thus we can take public

expenditures also as fixed. But consider now the optimal tax problem for the

cases when the characteristics of the actual population are unknown. That is

exactly what happens when we consider that the true population is a finite

draw from a given distribution. In such circumstances, it is not reasonable to

fix the revenue requirement at some exogenously given target level, but instead

the revenue requirement should be a function of the population characteristics.

It is possible to derive the aggregate revenue requirement from primitives in

different ways. In our analysis below, the revenue requirements for a particular

draw will be derived from the Pareto effi cient level of public good provision for

4This assumption is similar to the one used in Bierbrauer (2011), though the purpose of

that work is entirely different from ours.
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that draw, leading to intrinsic variation in revenue requirements across draws.5

We shall make assumptions on primitives implying that the Pareto effi cient

level of public good is unique but generally different for each draw.

Why do we focus on the Pareto effi cient level for a given draw? Given

utility functions that are separable in the public good, ex post recontracting

on the level of public good provision will not be beneficial.

It seems natural for us to require that any proposed tax system must be

feasible (in terms of the revenue it raises) for any draw, as no player (including

the government) knows the realization of the draw before a tax is imposed. In

other words, the consumers do not transmit information, such as their labor

income, to the government prior to the imposition of the income tax. For

example, an abstract government planner might not know precisely the top

ability of individuals in the economy, and therefore might not be able to follow

optimal income tax rules to give the top ability individual a marginal rate of

zero, as described above. The key implication of using finite draws as the true

economies is that requiring ex post feasibility of any proposable tax system for

any draw narrows down the set of alternatives, which we call the feasible set,

to a manageable number (even a singleton in some cases).6

To be clear, the assumption is that the government must commit to a set

of feasible tax systems (where a tax system maps income to tax liability) be-

fore knowing the realization of the draw of abilities from the distribution of

abilities, this set of feasible tax systems cannot depend on the draw, and it

must raise suffi cient draw-dependent revenue no matter the draw. Voting then

chooses among the feasible tax systems, and the government must implement

this choice.7 All agents are forward looking, and for example each worker can

anticipate their labor supply for any given tax function. Finally, consumers

supply labor and their types are revealed through their choice of labor sup-

ply. If we allowed the set of feasible tax systems to depend on the draw of

abilities, we would be back in the situation the rest of the literature has found

unsolvable, since in general any tax system can be defeated by a majority for

a given draw. In other words, if the government doesn’t have to commit and

5As an alternative, the variation in revenue requirements can be seen as variation in fiscal

pressure on the government; see Heathcote and Tsujiyama (2021) for discussion.
6Pierre Boyer has pointed out that the cost of the public good could be unknown in

addition to or instead of the abilities of the individuals in the economy. This would represent

an aggregate risk to the economy, in contrast with individual abilities, that are idiosyncratic

risks. In accordance with the assumptions concerning asymmetric information in the optimal

tax literature, we stick to unknown individual abilities on the part of the tax designer.
7We shall be much more precise about the voting stage of this game in section 3.1.
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can propose a state or draw contingent set of feasible taxes, we have the same

situation as if there is no uncertainty and a finite number of worker/consumers

with given types, so there generally will be no Condorcet winner in any given

state.

Our model fits naturally into the literature in public finance on robustness,

examining allocation when agents have ambiguous beliefs about the state of

the world. Recent innovations include an application to public goods by

Kocherlakota and Song (2019), that analyzes effi ciency in the context of a

discrete decision about whether or not to produce a public good in a static

environment; and Lensman and Troshkin (forthcoming) that examines optimal

allocative policy in a dynamic environment. Robustness has been used in the

context of voting as well; see Berliant and Konishi (2005).

A significant difference between the work here and the balance of the liter-

ature is how robustness enters the model. In the literature just cited, agents

have multiple priors over the state of the world and are ambiguity averse. In

contrast, we shall assume that the government must generate suffi cient rev-

enue independent of the draw of agent types. One way to envision this is

to assume that the government is ambiguity averse and each element of the

set of distributions it considers possible assigns a draw probability 1. Notice

that in this case, ambiguity enters into a government constraint rather than a

consumer’s objective function.

In sum, given government concerns about robustness, our setup guarantees

that a majority rule equilibrium exists and the government budget constraint

will be met.

Our arguments apply to finite numbers of agents. The model has a dis-

continuity when one goes from a finite to an infinite number of agents. In this

latter case there is no uncertainty about the composition of the draw, so we do

not have a continuum of ex post feasibility restrictions, one for each possible

draw. Instead we have only that the revenue constraint needs to be satisfied

for the known population. Thus, for our purposes, even a little uncertainty

is suffi cient, and it is possible to view perfect certainty about the draw as a

knife-edge case.8 Moreover, there are further conceptual issues pertaining to

models with a pure public good and a continuum of consumers; see Berliant

and Rothstein (2000).

In relation to the literature that deals with voting over linear taxes, our

model of voting over nonlinear taxes will not yield a linear tax as a solu-

8We are indebted to Jim Snyder for some of these thoughts.
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tion without very extreme assumptions. This will be explained in section 6

below. Moreover, our second order condition for incentive compatibility will

generally be much weaker than those used in the literature on linear taxes;

compare our assumptions below with the Hierarchical Adherence assumption

of Roberts (1977). As noted by L’Ollivier and Rochet (1983), these second

order conditions are generally not addressed in the optimal income taxation

literature, though they ought to be addressed there. In what follows, we em-

ploy the results contained in Berliant and Gouveia (2001) and more generally

in Berliant and Page (1996) to be sure that the second order conditions for

incentive compatibility hold in our model.

At this point, it is important to remark on the anatomy of our analysis.

We shall introduce two models: an endowment economy, where there is no

choice of labor supply, where each consumer knows only their own endowment

and the prior distribution from which endowments are drawn, and where all

taxes are lump sum; and an optimal income tax economy, where each consumer

knows only their own productivity and the prior distribution of types, where

the government knows only the prior distribution from which agents’ types

are drawn, where taxes induce distortions in labor supply, and where incentive

constraints on labor supply must be satisfied. Although results on existence

of Condorcet winners for the endowment economy may be of independent

interest, our primary objective is to apply these results to the income tax

model with distortions as follows. The method for accomplishing this is to use

a result on implementation of lump sum taxes from the endowment economy,

the first model, in terms of a tax on labor income in the optimal income tax

economy, the second model. Under assumptions we shall specify, this result

implements the lump sum tax system in the sense that each consumer facing

a labor-leisure choice ends up paying exactly the tax specified by the lump

sum tax system; notice that income taxes are an indirect mechanism. In the

literature on optimal income taxation, this is called the “Taxation Principle.”

Moreover, we show that characteristics of the lump sum tax systems, such as

single crossing, are inherited by the taxes implementing them in the framework

with incentives.

To prove our main result, we combine the restriction on tax systems, as

outlined above, with assumptions on the utility function and the cost func-

tion for public goods. In particular, we assume that the utility function is

quasi-linear in consumption and additively separable in the consumption com-

modity, labor supply, and the public good level; moreover, the public good
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subutility is multiplicative in type. Due to quasi-linearity and separability

of the utility function, the Pareto effi cient level of public good, and thus ag-

gregate revenue requirements, will be unique for each draw. Furthermore,

the aggregate revenue requirements will be concave in the draw, where the

worst case for the government budget occurs when the draw consists of identi-

cal individuals.9 The tangent to the aggregate revenue requirement function

where all individuals in a draw are identical (a one dimensional domain for the

function) represents a minimal feasible individual revenue requirement. These

are single crossing, and their implementations in terms of income taxes or net

income schedules are also single crossing. Among these, the tax system most

preferred by the median voter is a majority rule equilibrium, since induced

preferences over net income schedules are single crossing, as is standard in the

optimal income tax literature.

The structure of the paper is as follows. First, we introduce our framework

and notation in section 2. In section 3 our main result on voting over income

taxes is stated. Section 4 contains a discussion of the techniques we use in the

proofs, whereas section 5 contains two examples of interest. Finally, section

6 contains conclusions and suggestions for further research. The appendix

contains proofs of most results.

2 The Model

2.1 Basic Notation and Definitions

We shall develop an initial model of an endowment economy as a tool. Al-

though it might be of independent interest, our primary purpose is to apply

this model and the results we obtain to the standard optimal income tax model

in the succeeding sections.

There is a single consumption good c and consumers’preferences are iden-

tical and given by the utility function v(c) = c, with c ∈ R+. A consumer’s en-
dowment, which is also her type, is described by w ∈ [w,w], where [w,w] ⊆ R+.
In this section the endowment can also be seen as pre-tax income or, follow-

ing classical terminology in Public Finance, the ability to pay of each agent.

9We have succeeded in proving analogous results when the aggregate draw-dependent

revenue requirements function is convex rather than concave, so the worst case scenario for

the government budget is when the draw consists of a given type and the extreme type most

unlike it. However, we were unable to derive this kind of aggregate revenue requirements

function from primitives.
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References to measure are to Lebesgue measure on [w,w].

The distribution of consumers’endowments has a measurable density f(w),

where f(w) > 0 a.s.

Let k be a positive integer and let A ≡ [w,w]k, the collection of all possible

draws of k individuals from the distribution with density f .10 Formally, a

draw is an element (w1, w2, ..., wk) ∈ A.
In order to be able to determine what any particular draw can consume, it

is first necessary to determine what taxes are due from the draw. Hence, we

first assume that there is a given net revenue requirement function R : A → R.
For each (w1, w2, ..., wk) ∈ A, R(w1, w2, ..., wk) represents the total taxes due

from a draw. For example, if the revenues from the income tax are used to

finance a good such as schooling, then R(w1, w2, ..., wk) can be seen as: the per

capita revenue requirement for providing schooling to the draw (w1, w2, ..., wk)

multiplied by k.11

Although we shall begin by taking revenue requirements as a primitive, in

the end we will justify this postulate by deriving revenue requirements from

the technology for producing a public good. But this is simply an important

example illustrating where aggregate revenue requirements come from.

It is important to be clear about the interpretation of R. One easy in-

terpretation is that the taxing authority provides a schedule giving the taxes

owed by any draw. There are several reasons that revenue requirements might

differ among draws, including differences in taste for a public good that is im-

plicitly provided, income or wealth differences, a non-constant marginal cost

for production of the public good, differences in the cost of revenue collection,

and so forth.

The government and the agents in the economy know the prior distribution

10Note that f(·) plays almost no role in the development to follow, in contrast with its
preeminent role in the standard optimal income tax model. It may be interpreted as a

subjective distribution describing the planner beliefs about the characteristics of the agents

in the economy, but that consideration is immaterial for the model presented here. We have

implicitly assumed that the abilities are drawn independently, but since we never use this,

correlation would also be permissible provided that the support of the joint distribution is

fixed at [w,w]k. In multistage voting in a representative democracy, the equilibria are likely

to be a function of f , as is often the case in signaling games. We expect to study that

problem in the future.
11Actually, regarding schooling, there is a separate literature on the political economy of

public supplements for such goods. The formal structure is slightly different from what we

consider in this paper; see Gouveia (1997).
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f of types of agents in the economy12 as well as the mapping R. Before moving

on to consider the game - theoretic structure of the problem, it is necessary to

obtain some facts about the set of tax systems that are feasible for any draw

in A. These are the only tax systems that can be proposed, for otherwise
the voters and social planner would know more about the draw than that

it consists of k people drawn from the distribution with density f . Voters

can use their private information (their endowment) when voting, but not in

constructing the feasible set. For otherwise either each voter will vote over a

different feasible set, or information will be transmitted just in the construction

of the feasible set.

An individual revenue requirement13 is a function g : [w,w]→ R that takes
w to tax liability. It is a lump sum tax function.

Clearly, there will generally be a range of individual revenue requirements

consistent with any map R. Our next job is to describe this set formally. Fix

k and R. Let

G ≡
{

g : [w,w]→ R | g is measurable,

k∑
i=1

g(wi) ≥ R(w1, w2, ..., wk) a.s. (w1, w2, ..., wk) ∈ A
}

G is the set of all individual revenue requirements that collect enough

revenue to satisfy R. G 6= ∅ if almost surely for (w1, w2, ..., wk) ∈ A,
∑k

i=1wi ≥
R(w1, w2, ..., wk). The constraint that the aggregate revenue requirement be

satisfied for each draw restricts the feasible set G significantly.

2.2 FromCollective to Individual Revenue Requirements

In order to examine the set of feasible individual revenue requirements de-

scribed above, more structure needs to be introduced. It is obvious that some

feasible g’s will raise strictly more taxes than necessary to meetR(w1, w2, ..., wk)

for almost any (w1, w2, ..., wk). For example, take any g ∈ G. Then for ε > 0,

g + ε will satisfy
∑k

i=1 [g(wi) + ε] ≥ R(w1, w2, ..., wk) a.s. (w1, w2, ..., wk) ∈ A,
but clearly the consumers would all prefer g to g+ε. The point is that some in-

dividual revenue requirements functions can be dominated unanimously, and

thus can be eliminated from consideration. We now search for the mini-

mal elements of the set G. We call the set of such elements G∗; it is the
12Actually, all they need to know is the support of that distribution.
13Even though this is simply a tax function on endowments, we will reserve the terminology

“tax function”for an environment with incentives to simplify the exposition.
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set of elements of G that are not dominated by any other element of G

pointwise. In other words, we search for individual revenue requirements

g ∈ G∗ ⊆ G with the following property: there is no g
′
such that almost surely

for (w1, w2, ..., wk) ∈ A, R(w1, w2, ..., wk) ≤
∑k

i=1 g
′
(wi); almost surely for

w ∈ [w,w], g
′
(w) ≤ g(w); and there exists a set of positive Lebesgue measure

in [w,w] where g
′
(w) < g(w).

To this end, define a binary relation � over G by g � g
′
if and only if

g(w) ≥ g
′
(w) for almost all w ∈ [w,w]. Let

G ≡ {B ⊆ G| B is a maximal totally ordered subset of G}.

By Hausdorff’s Maximality Theorem (see Rudin (1974, p. 430)), G 6= ∅. Fi-
nally, define

G∗ ≡ {g : [w,w]→ R| ∃B ∈ G such that g(w) = inf
g′∈B

g′(w) a.s.}.

G∗ is nonempty.

If g ∈ G\G∗ is proposed as an alternative to g∗ ∈ G∗, ∃g′ ∈ G∗ that is

unanimously weakly preferred to g.

Before turning to the model with labor disincentives, it is important to note

that G, G∗, and G all depend implicitly on the underlying revenue requirement
function R, and that the function R is common knowledge, so G, G∗, and G
are as well.

2.3 Notation for the Optimal Income Tax Model

Having dispensed with preliminaries, we now turn to the voting model with

incentives based on Mirrlees (1971). The three goods in the model are a

composite consumption good, whose quantity is denoted by c; labor, whose

quantity is denoted by l; and a pure public good, whose quantity is denoted by

x. Consumers have an endowment of 1 unit of labor/leisure, no consumption

good, and no public good.14 Let u : R+ × [0, 1] × R+ × [w,w] → R be the
utility functions of the agents, writing u(c, l, x, w) as the utility function of type

w, where u is twice continuously differentiable. Subscripts represent partial

derivatives of u with respect to the appropriate arguments. The parameter w,

an agent’s type, is now to be interpreted as the wage rate or productivity of

an agent. Thus w is the value of an agent of type w’s endowment of labor.

14It would be easy to add an endowment of consumption good for consumers, but that

would complicate notation.
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The gross income earned by an agent of type w is y = w · l and it equals
consumption when there are no taxes.

A tax system is a function τ : R → R that takes y to tax liability. A

net income function γ : R → R corresponds to a given τ by the formula

γ(y) ≡ y − τ(y).

First we discuss the typical consumer’s problem under the premise that the

consumer does not lie about its type, and later turn to incentive problems. A

consumer of type w ∈ [w,w] is confronted with the following maximization

problem in this model:

max
c,l

u(c, l, x, w) subject to w · l − τ(w · l) ≥ c with τ , x given,

and subject to c ≥ 0, l ≥ 0, l ≤ 1.

For fixed τ , we call arguments that solve this optimization problem c(w)

and l(w) (omitting τ and x) as is common in the literature. Define y(w) ≡
w · l(w).

The public good financed by the revenue raised through the income tax is

usually excluded frommodels of optimal income taxation due to the complexity

introduced, but here the cost of the public good will be used to derive the

revenue requirements function. Let the cost function for the public good in

terms of consumption good be H(x), which is assumed to be C2.

The basic set of tax functions for the optimal income tax model is defined

as:

T ≡ {τ : R+ → R| τ is measurable}

As is standard in the literature, for τ ∈ T we shall generally write τ(y) to

denote the tax liability of a worker earning income y.

These basic assumptions will be maintained throughout the remainder of

this paper.

We will now use ideas inspired by Bergstrom and Cornes (1983) to obtain

a unique Pareto optimal level of public good for each draw, so the revenue

requirement function is well-defined.

The major assumption that we make to obtain results, beyond requiring

suffi cient revenue to finance the public good for each draw, is that utility is

quasi-linear and separable to a certain degree:15

15In this case we are also using w as a taste parameter. That interpretation is quite

common in both the optimal tax literature and the literature on self-selection.
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Assumptions:

u(c, l, x, w) = c+ b(l, w) + r(x,w)

We assume throughout that ∂b/∂l ≤ 0 a.s., ∂2b/∂l2 < 0, ∂b(l,w)
∂l

∣∣∣
l=1
≤ −w,

b(1, w)−b(0, w) ≥ −w, ∂b(l,w)
∂l

is weakly increasing in w, ∂r/∂x > 0, ∂2r/∂x2 <

0; dH(x)/dx > 0 and d2H(x)/dx2 ≥ 0.

From this, it follows that utility is strictly monotonic in consumption com-

modity (a good) and labor (a bad). The assumption ∂b(l,w)
∂l

∣∣∣
l=1
≤ −w is a

(weak) boundary condition on utility. There are constraints on labor sup-

ply (0 ≤ l ≤ 1) that could bind. The assumption implies that the constraint

l ≤ 1 does not bind. In contrast, b(1, w)−b(0, w) ≥ −w is the lower boundary
condition in the context of quasi-linear utility. The assumption that ∂b(l,w)

∂l
is

weakly increasing in w is the single crossing property. There are several more

remarks to be made. First, if we had more than one effi cient level of pub-

lic good possible for given parameters, as is standard in public goods models

without the Bergstrom-Cornes type of assumptions, then we would have an-

other dimension to vote over, namely the level of the public good. Generally

speaking, this would cause Condorcet cycles and thus no Condorcet winner.

Second, if we made utility more general, for example allowing the subutility

function r(x,w) to depend on consumption good c or labor l or both, then the

public good level and hence the aggregate revenue requirement function would

depend on the tax function, and that tax function would depend on the public

good level and hence the aggregate revenue requirement function. Thus, the

aggregate revenue requirement would not be exogenous and likely not uniquely

defined. Third, when production of the public good is not constant returns to

scale, there is a potential issue of profit distribution. However, when utility

is quasi-linear, profits can be distributed to consumers without affecting the

first order conditions for optimization.

The bottom line is that something has to be done to shut down the feedback

between tax liabilities and the optimal level of the public good. The Bergstrom

and Cornes (1983) specification is a natural starting point and actually is more

general than some of the separability assumptions used in the optimal nonlinear

income tax literature.
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3 Voting Over Income Taxes

3.1 Preliminaries

The next step in our analysis is to find the Pareto effi cient level of public

goods provision for each draw using the Lindahl-Samuelson condition for our

specialized economy, a technique pioneered by Bergstrom and Cornes (1983).

Let (w1, w2, ..., wk) ∈ A, and let ci and li denote the consumption and

labor supply of the ith member of the draw respectively. Then production

possibilities for this given draw are:

k∑
i=1

wi · li −
k∑
i=1

ci ≥ H(x). (1)

Fix (w1, w2, ..., wk) ∈ A. We define an allocation to be interior if the

associated level of public good x satisfies x > 0 and H(x) <
k∑
i=1

wi. Given

our assumptions, a necessary and suffi cient condition for an interior Pareto

optimum is:
k∑
i=1

∂r(x,wi)/∂x |x=0> dH(x)/dx |x=0 and there is x such that

k∑
i=1

∂r(x,wi)/∂x |x=x< dH(x)/dx |x=x and H(x) <
k∑
i=1

wi. More usefully, we

shall assume the following suffi cient boundary condition:

For all w ∈ [w,w], ∂r(x,w)/∂x |x=0> dH(x)/dx |x=0, and k·∂r(x,w)/∂x |x=H−1(kw)<
dH(x)/dx |x=H−1(kw).

The first part of the condition says that for each type, at zero public good

level, the marginal willingness to pay exceeds the marginal cost. The second

part of the condition says that for each type, at public good level that is the

maximum possible for a draw of only the lowest type, the sum of marginal

willingnesses to pay is less than the marginal cost.

See Bergstrom and Cornes (1983, p. 1757) for a detailed explanation of

why we need to restrict the analysis to interior allocations. Briefly, the issue

is boundary optima where some consumer has no private good. In this case,

there may be multiple effi cient levels of public good production. It is ruled out

by the second part of our suffi cient condition. The entire suffi cient condition

allows the use of the Lindahl-Samuelson condition with equality. Without

the first part, a unique effi cient level of public good (possibly 0) could still be

obtained, but its characterization is more diffi cult. Boundary Pareto optima
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could occur, for example, if the sum of the marginal tax rate at zero income

and the marginal disutility of labor at zero labor supply is greater than 1 for

some type.

Lemma 1: Under the basic assumptions listed above, for any given draw
(w1, w2, ...wk), there exists an interior Pareto optimal allocation; moreover, for

all interior Pareto optimal allocations, the public good level x∗ is the same.

Proof: The Pareto optimal allocations are solutions to: maxu(c1, l1, x, w1)

subject to u(ci, li, x, wi) ≥ ui for i = 2, 3, ...k and subject to (1) where the

maximum is taken over ci, li, (i = 1, ..., k) and x.16 The Lindahl-Samuelson

condition for this problem is:

k∑
i=1

∂r(x,wi)/∂x = dH(x)/dx. (2)

Given our assumptions on r and H, there exists a unique interior level

of public good x∗ that solves (2). Since this equation is independent of ci
and li for all i, the interior Pareto optimal level of public good provision is

independent of the distribution of income and consumption for the given draw.

For the class of utility functions defined above we can thus solve for x∗ as

an (implicit) function of (w1, w2, ..., wk), and obtain the revenue requirement

function

R(w1, w2, ..., wk) ≡ H(x∗(w1, w2, ..., wk)).

Let F ⊆ T be the feasible set defined by:

F ≡
{

τ ∈ T | a.s. for (w1, w2, ..., wk) ∈ A,

k∑
i=1

τ(y(wi)) ≥ R(w1, w2, ..., wk)

}
.

Notice that the feasible set does not depend on the level of public good x, since

revenue requirements for Pareto effi cient x must be satisfied for all draws, and

hence for the draw that is actually realized.

16Bergstrom and Cornes (1983, Theorem 3) show that in their context, all interior Pareto

optima can be found by solving the utilitarian maximization problem. The same holds in

our context, but the direct analysis of interior Pareto optima here is short and self-contained.
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With this in hand, a straightforward definition of majority rule equilibrium

follows: a majority rule equilibrium is a mapping from profiles of preferences

into outcomes such that there is no profile in which n > k/2 agents can agree

on an outcome that is strictly better for all n of them. Formally, a majority

rule equilibrium is a correspondence M mapping (w1, w2, ..., wk) into F such

that for almost every (w1, w2, ..., wk) ∈ A, for every τ ∈ M(w1, w2, ..., wk)

(with associated y(w)), there is no subset D of {w1, w2, ..., wk} of cardinality
greater than k/2 along with another τ ′ ∈ F (with associated y′(w)) such that

y′(w) − τ ′(y′(w)) + b(y′(w)/w,w) > y(w) − τ(y(w)) + b(y(w)/w,w) for all

w ∈ D.
It is important to make a couple of remarks about this definition. First,

in the case where aggregate revenue requirements R are taken as primitive

and exogenous, we can simply take the public good level x to be fixed as an

argument in consumers’utility functions. Second, why do we focus on the

first best level of public good provision?

Since our income tax is distortive, it is reasonable to inquire why we should

impose the Pareto effi cient level of public goods provision for each draw. To

be specific, a second-best, lower level of public good provision could be used,

where the amount of revenue that must be collected, and thus the distortion

imposed by the income tax, could be reduced. For example, a draw of all

high types will require a high level of public good provision and thus high per

capita taxes. To ensure that high types do not try to mimic low types, the per

capita tax on low types will generally have to be higher than it would be if the

draw were known to consist of all low types and the first best level of public

good provision for that draw is used. Thus, excess revenue will be generated

from some draws, specifically of all low types, and it might be more effi cient

to reduce the income tax for all draws and types and provide a second best,

lower level of public good and consequent lower tax for each draw.17 The

problem with this argument is that, ex post, after labor is supplied and taxes

are collected, the workers would like to voluntarily contribute lump sum to

raise the level of public good back to first best, say through a constant per

capita tax. In other words, they would like to renegotiate. So we stick to

first best public good levels to avoid this problem. Naturally, this involves

some cooperative behavior ex post.

This example also illustrates how the incentive constraints affect the fea-

sible set of tax instruments since the tax on low types is higher than at first

17These interesting comments belong to Paolo Piacquadio.
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best, where types are known. What we have presented here is a benchmark,

in that the first best public good level is unique for each draw, thus cutting off

feedback between public good level and income tax selection. Such feedback

would make our analysis much more diffi cult.

So to summarize, first, the types are drawn and each person learns their

type. The government constructs the set of feasible tax systems, namely those

that will fund every Pareto optimal level of public goods without knowledge of

types in the draw, and commits to not using information it receives from voting

over this set in later stages of the game. Moreover, it commits to implementing

the tax system chosen by the observed median voter. The players in the draw

vote over income taxes, choosing a majority rule winner.18 Then the income

tax is implemented, workers choose their labor supplies, and the public good

level is selected as the one that is Pareto optimal or renegotiation proof for the

draw. For example, the government could run a VCG (Vickrey-Clarke-Groves)

mechanism that determines rebates to the consumers.

Of course, in cases where R is a primitive and there is no public good in

the model, the game is simpler.

3.2 The Main Result

To simplify notation, we shall abbreviate derivatives of functions of only one

variable using primes, e.g. H ′(x) ≡ dH(x)/dx. Beyond uniqueness of the effi -

cient public goods level for each draw, further properties of aggregate revenue

requirements R, and the implied minimal individual revenue requirements g,

are needed for our main result. To be specific, we make assumptions implying

that R is a strictly concave function of the sum of the types in a draw. Since

R is derived from effi cient levels of public good production, assumptions on

both the consumer and producer side of the model are required:19

Definition: A utility function - production function pair (u,H) is called

manageable if the following conditions hold:

u(c, l, x, w) = c + b(l, w) + w · s(r̂(x)), H(x) = m · r̂(x), where r̂′(x) > 0,

r̂′′(x) ≥ 0, s′(r) > 0, s′′(r) < 0, 2s′′(r)2 > s′′′(r) · s′(r), m > 0.

Theorem 1: Let k ≥ 2 and let (u,H) be manageable. Then there exists

a majority rule equilibrium that is the favorite tax system of a median of the

18Here, they can submit pairwise votes over all possible pairs of feasible tax systems,

without learning anything.
19These conditions are suffi cient but not necessary for our main result.
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draw.

Proof: See the Appendix.

Examples covered by this theorem include the following:

A. u(c, l, x, w) = c + b(l, w) + w · s(x), H(x) = m · x, where r̂(x) = x,

s′(x) > 0, s′′(x) < 0, s′′′(x) ≤ 0, and m > 0.

B. u(c, l, x, w) = c+ b(l, w) +φ w
1−αx

1−α, H(x) = m
β
·xβ, with α > 1, β ≥ 1,

φ > 0. In this case, r̂(x) = 1
β
xβ, s(r) = φβ

1−α
β

1−α r
1−α
β .

Example 1 below is covered by B, with α = 3, β = 2.

A complicating factor in proving such theorems is that aggregate revenue

requirements derived here depend not only on the first derivative of the cost

function, but on its level as well.

An important assumption used in the theorem is that utility from the

public good is multiplicative in type w. Although this is a strong assumption,

it is often used in empirical work; see for example Bishop and Timmins (2019,

equation (5)).

3.3 A Reiteration of the Key Assumptions

• Functional form and regularity assumptions are imposed on utility and

production. These are common in both the optimal income tax and

political economy literatures.

• Robustness of the tax system to the draw.

• The government doesn’t remember revelations from previous stages of

the game.

• Assume that the Pareto effi cient level of public goods provision is imple-
mented. This can be produced using a renegotiation proof outcome or

implementing a VCG mechanism for rebates at the end of the game.

3.4 Outline of the Proof of the Main Result

Before proceeding into details of the proof, we outline its structure:

• All feasible g ∈ G∗ take a very specific form, and any two elements of G∗

cross at most once (Lemma 2).
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• The implementations of any given g ∈ G∗ are Pareto ordered, and the
best of these, called τ ∈ T ∗, is well-defined (Lemma 3).

• Any two elements of T ∗ satisfy a single crossing property inherited from
G∗ (Lemma 4).

• For any k-tuple (w1, ..., wk), define τ ∗ to be the optimal tax schedule

from the point of view of the median type(s).

• Now suppose there is another τ strictly preferred by a majority. By

Lemma 4, τ and τ ∗ satisfy single-crossing.

• The net income functions induced by τ and τ ∗ also satisfy single crossing,
whereas the indifference curves induced over gross and after tax income

satisfy single crossing in type, so τ ∗ is not majority defeated by τ (Lemma

5); see Gans and Smart (1996, Figure 1).

3.5 Single Crossing Individual Revenue Requirements

With a view toward future extensions of Theorem 1, we state some natural

assumptions on R that will be satisfied by the revenue requirements derived in

the course of proving Theorem 1. For instance, we might wish simply to take

revenue requirements R as a primitive rather than derived from a model of a

pure public good. That generalization is covered in this section.

The first of these assumptions means that position in the draw (first, sec-

ond, etc.) does not matter. All that matters in determining the revenue to be

extracted from a draw is which types are drawn from the distribution.

Definition: A revenue requirement function R is said to be symmetric

if for each k and for each (w1, w2, ..., wk) ∈ A, for any permutation σ of

{1, 2, ..., k}, R(w1, w2, ..., wk) = R(wσ(1), wσ(2)..., wσ(k)).

We will use the assumption that R is C2. This is not a strong assumption,

because the assumption that R is C2 is generic in the appropriate topology;

that is, C2 R’s will uniformly approximate any continuous R (Hirsch (1976,

Theorem 2.2)).20 We will also assume that R is smoothly monotonic:

Definition: A revenue requirement function R is said to be smoothly

monotonic if for any (w1, w2, ..., wk) ∈ A, ∂R(w1, w2, ..., wk)/∂wi > 0 for

i = 1, 2, ..., k.

20This idea is also used to justify differentiability in the smooth economies literature.
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This assumption requires that increasing the ability or wage of any in-

dividual in a draw increases the total tax liability of the draw. One could

successfully use weaker assumptions with this framework, but at a cost of

greatly complicating the proofs.21

Amajor step in our analysis that we have relegated to other papers that are

cited in the bibliography, Berliant and Gouveia (2001) and Berliant and Page

(1996), is to implement the individual revenue requirement g using an income

tax, an indirect mechanism. A suffi cient (and virtually necessary) condition

is that g be increasing in type, w.22 If g is anywhere decreasing in type, the

net income function can cut the indifference curve of an agent, creating a gap

in the assignment of types to tax liability and ruining the implementation of g

by an income tax. To use the first order approach to incentive compatibility,

for example, we must make further assumptions, namely the second order

conditions.23 These second order conditions are equivalent to the property

that g is increasing.

Turning next to aggregate revenue requirements R, we relate the property

of increasing R (∂R(w1, w2, ..., wk)/∂wi > 0 for i = 1, 2, ..., k) to increasing g ∈
G∗. Suppose that there are w,w′ ∈ [w,w] with w′ > w. Then, by definition

of G∗, there is a draw (w1, w2, ..., wk) with w = wi for some i and
∑k

j=1 g(wj) =

R(w1, w2, ..., wk). Now replace w with w′, namely set wi = w′, leaving

all other elements of the draw the same. Then R(w1, w2, ..., w
′, ..., wk) >

R(w1, w2, ..., wk). Since g is feasible, g(w1)+g(w2)+ · · ·+g(w′)+ · · ·+g(wk) ≥
R(w1, w2, ..., w

′, ..., wk) > R(w1, w2, ..., wk) =
∑k

j=1 g(wj), so g(w′) > g(w).

The next step is to introduce a set of assumptions where the elements of

the set of feasible and minimal individual revenue requirements G∗ are single

crossing,24 i.e. each pair of g’s will cross only once.25 They will be implied by

21One particular case ruled out is the one of constant per capita revenues. In our model

this situation implies constant individual revenue requirements, i.e. a head tax, clearly an

uninteresting situation even though it is first-best. It also includes the particular situation

where the government wants to raise zero fiscal revenue. Constant per capita revenues can

be handled as a limit of the cases considered here.
22The case g′(w) = 0 for some types w could be handled, but it creates some technical

problems because g is not necessarily invertible.
23We note that much of the recent literature on optimal taxation verifies the second order

conditions ex post, not ex ante; see Kapička (2013) for example.
24In fact, under stronger assumptions, it is possible to show that the set of feasible and

minimal individual revenue requirements is a singleton, rendering voting trivial. In that

analysis, it’s useful to have the size of the draw, k, unknown to the planner as well. We

omit this analysis for the sake of brevity.
25A G∗ with single crossing g’s generates a trade-off where raising more taxes from one
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the postulates of Theorem 1. Thus, future generalizations of our main results

will likely use the lemmas below. The assumptions have collective revenue

requirements decreasing as a draw becomes more polarized.

Definition: A revenue requirement function R(w1, ...wk) is argument-

additive if R(w1, w2, ..., wk) ≡ Q(

k∑
i=1

wi). Let Q′ denote
dQ

d

∑k

i=1
wi

.

The goal of the next lemma is to characterize minimal individual revenue

requirements, in other words elements of G∗, and show that they are single

crossing.

Lemma 2: Let k ≥ 2 and let the revenue requirement functionR(w1, w2, ..., wk)

be argument-additive with Q′ > 0 and Q′′ < 0.

(a) There exists g : [w,w]2 → R such that for all g ∈ G∗, there exists

w̃ ∈ [w,w] such that g(w) = g(w, w̃) for all w ∈ [w,w] where g is defined

pointwise as follows:

—For w̃ ≥ (w + w)/2:

A) g(w, w̃) = Q(kw̃)/k+Q′(kw̃) · (w− w̃) if w ≤ w̃+(k−1) · (w̃−w).

B) g(w, w̃) = Q((k−1)w+w)− ((k−1)/k) ·Q(kw̃) + (k−1) ·Q′(kw̃) ·
(w̃ − w) if w > w̃ + (k − 1) · (w̃ − w).

—For w̃ < (w + w)/2:

C) g(w, w̃) = Q(kw̃)/k+Q′(kw̃) · (w− w̃) if w ≥ w̃− (k−1) · (w− w̃)

D) g(w, w̃) = Q((k−1)w+w)− ((k−1)/k) ·Q(kw̃) + (k−1) ·Q′(kw̃) ·
(w̃ − w) if w < w̃ − (k − 1) · (w − w̃)

(b) ∂g(w, w̃)/∂w > 0 for each fixed w̃ ∈ [w,w] except at a finite number of

points w ∈ [w,w].

(c) ∀w ∈ [w,w], g(w, w̃) is single caved26 in w̃ and attains a minimum at

w̃ = w.

(d) Any pair of functions inG∗ will cross once: for any w̃, w̃′ ∈ [w,w], there

exist ŵ, ŵ′ ∈ [w,w] such that g(w, w̃) > g(w, w̃′) implies g(w, w̃) > g(w, w̃′) for

type of voter allows less revenue to be raised from another type, as in the conventional

income tax model.
26A function g is single-caved if −g is single peaked.
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all w ∈ [w, ŵ), g(w, w̃) = g(w, w̃′) for all w ∈ [ŵ, ŵ′] and g(w, w̃) < g(w, w̃′)

for all w ∈ (ŵ′, w].

Proof: See the Appendix.

The implication of our feasibility approach in this case is that feasible tax

functions turn out to be parameterized by w̃. The intuition for this result is

quite simple. Consider (for the moment) the case where the distribution of

endowments is not bounded above or below. Since the revenue requirement Q

is concave, so is the per capita revenue requirement Q/k. But then, only the

tangents to Q/k can be tax functions, since any linear combination of taxes has

to be greater than or equal to the per capita requirement. The w̃’s correspond

to the arguments of the per capita revenue functions at the tangency points.

The statement of the theorem is slightly more complex because this intuition

may not work near the bounds w and w.

Note that the marginal rates in branch B are lower than the rates in

branches A and C (the tangent branches), that in turn are lower than those in

branch D. In the argument-additivity case, concavity implies that per-capita

revenue requirements decrease with the polarization of the draw.

Notice that the shape of the distribution of endowments f does not have

in itself any relevant information to predict the shape of the income tax sched-

ules chosen by majority rule, since we have not used it anywhere. Revenue

requirements function R is all that is needed.27

4 Single Crossing Optimal Tax Functions

Next, some results from the literature on optimal income taxation and im-

plementation theory are used to construct the best income tax function that

implements a given individual revenue requirement. The discussion will be

informal, but made formal in the lemmas and their proofs.

The problem confronting a worker/consumer of type w given net income

schedule γ is maxl u(γ(w · l), l, x, w). Using the particular form of utility that

we have specified, the first order condition from this problem is dγ
dy
·w+∂b/∂l =

27With these preliminary results in hand, it would be possible to prove that a majority

rule equilibrium exists for the endowment economy where there is no choice of labor supply;

voting occurs over feasible taxes, then types are truthfully revealed to the planner for tax

purposes. Since this not our main aim, for the sake of brevity it is omitted.
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0. Rearranging,
dγ

dy
= −∂b(l, w)

∂l
· 1

w
. (3)

For this tax schedule, we want the consumer of type w to pay exactly the

taxes due, which are g(w) for some g ∈ G∗. If g is strictly increasing, g is

invertible. If we assume (for the moment) that g(w) is continuously differen-

tiable, then g−1, which maps tax liability to ability (or wage), is well-defined

and continuously differentiable. Substituting into the last expression,

dγ

dy
= −

∂b( y
g−1(y−γ) , g

−1(y − γ))

∂l
· 1

g−1(y − γ)
≡ Φ(γ, y). (4)

As in Berliant (1992), a standard result from the theory of differential

equations yields a family of solutions to this differential equation.28 Berliant

and Gouveia (2001) show that (4) has global solutions if g′ > 0, g(w) ≥ 0.29

Of course, as L’Ollivier and Rochet (1983) point out, the second order

conditions must be checked to ensure that solutions to (4) do not involve

bunching, which means that consumers do optimize in (4) at the tax liability

28The method used above originates with the signaling model in Spence (1974), further

developed by Riley (1979) and Mailath (1987). Equation (4) is best seen as defining an indi-

rect mechanism where gross income is the signal sent by each agent to the planner, much as

in Spence’s model education is the signal sent to the firm. However, finding the equilibria of

this game is only part of the problem. The remaining part of the problem relates to imple-

mentation. By this we mean that the social planner’s problem is to define reward/penalty

functions that induce each type of agent to choose, in equilibrium, the behavior the planner

desires of that type of agent. A reference closer to our work is Guesnerie and Laffont (1984).

However, there is a difference between our results and the other literature on implementa-

tion using the differentiable approach to the revelation principle. The difference is that in

the other literature the principal cares only about implementing the action profiles of the

agents (labor supply schedules in our model). In contrast, we consider the implementation

of explicit maps from types to tax liability. That is, the principal cares about agents’types,

which are hidden knowledge. These maps from types to tax liability are not action profiles,

and are motivated by the ability to pay approach in classical public finance. They play the

same role here as reduced form auctions play in the auction literature.
29The relationship between individual and aggregate revenue constraints, if R is the fixed

aggregate revenue requirement, is given in the continuum of agents model by:∫ w

w

g(w)f(w)dw ≥ R

The point of Berliant and Gouveia (2001) is exactly to study implementation of individual

revenue requirements in terms of an income tax, show that they are Pareto ranked, and to

examine the properties of individual revenue requirements functions or their implementations

that correspond to optimal income taxes when there is an aggregate revenue constraint.
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given by g.30 This was done in Berliant and Gouveia (2001), where the Rev-

elation Principle31 was used to construct strictly increasing post tax income

functions θ(w) = y(w) − g(w) that implement g(w), where g′(w) > 0. Since

we then have that y(w) is invertible, we immediately obtain γ(y) = θ(w(y))

and τ(y) = g(w(y)).

It is almost immediate from this development that the set of solutions to

(4) for a given g is Pareto ranked. We focus on the best of these for each given

g. Define

T ∗ ≡ {τ ∈ T | γ is a solution to (4) for some g ∈ G∗, τ(y) = y − γ(y),

and τ Pareto dominates all other solutions to (4) for the given g} .

Any element of T ∗ has the property that the marginal tax rate for the top

ability w consumer type is zero.

From a practical viewpoint, for instance in solving examples such as those

presented here, the use of these techniques and in particular equation (4)

makes sense. However, for the general theory, in our application we do not

have the conditions required by Berliant and Gouveia (2001); for example, the

standard boundary condition is not satisfied due to the quasi-linear form of

utility. Thus, we use Berliant and Page (1996), which is more general than

Berliant and Gouveia (2001).

Lemma 3: If each minimal, feasible individual revenue requirement func-
tion is non-decreasing, then any such function is implementable by an income

tax. Without loss of generality, for all w ∈ [w,w], 1
w
· ∂b(

y(w)
w

,w)

∂l
≥ −1. More-

over, the implementations are Pareto ranked, and there is a best one under

the Pareto ranking with the property that the marginal tax rate for the top

ability consumer type, if it exists, is zero.

Proof: See the Appendix.
30That is, we have a separating equilibrium.
31In (4) the planner first chooses a net income function γ(y), the agents then take the

chosen net income function as given and maximize utility by selecting a gross income level y

(or the corresponding level of labor supply). This is the implementation approach described

in Laffont (1988). The Revelation Principle allows us to write an equivalent mechanism

where agents are simply asked to report their type w. It is easier to check second order

conditions of the problem for this direct mechanism. They essentially say that both pre and

post tax incomes should be increasing functions of w. In our case they are strictly increasing

functions and there is no bunching.
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Remarks: The theorem says that any non-decreasing and feasible revenue
requirement function can be implemented by a continuum of tax schedules.

These tax schedules are Pareto ranked and furthermore a maximal tax schedule

under the Pareto ranking exists. The result on the top marginal tax rate is

extended to non-differentiable functions in Berliant and Page (1996), but is a

little complicated and, in fact, irrelevant to our purpose here.

The next step is to characterize a class of individual revenue requirements

for which we will be able to obtain results. This class contains the cases

discussed in Theorem 1 and may possibly include other sets of assumptions.

Definition: A collection E of functions mapping [w,w] into R is called

strongly single crossing if each g ∈ E is:

1. Continuous.

2. Twice continuously differentiable except possibly at a finite number of

points.

3. dg/dw > 0 except possibly at a finite number of points.

4. Individual revenue requirements cross each other only once, i.e. for any

pair g, g′ ∈ E, there exist ŵ, ŵ′ ∈ [w,w], ŵ < ŵ′ such that g(w) > g′(w)

implies g(w) > g′(w) for all w ∈ [w, ŵ), g(w) = g′(w) for all w ∈ [ŵ, ŵ′]

and g(w) < g′(w) for all w ∈ (ŵ′, w].

Definition: A collection T ′ of functions mapping non-negative incomes to
tax liabilities is called single crossing if for all τ , τ ′ ∈ T ∗, letting y(·), y′(·) be
the gross income functions associated with τ and τ ′, respectively, for incomes

y1, y2, y3 ∈ y([w,w])∩y′([w,w]), y1 < y2 < y3, τ(y3) < τ ′(y3) and τ(y2) > τ ′(y2)

implies τ(y1) ≥ τ ′(y1).

Lemma 4 proves that when individual revenue requirements are strongly

single crossing, the income tax systems in T ∗ cross at most once.

Lemma 4: Suppose that minimal individual revenue requirements, G∗,

are strongly single crossing. Then their best implementations T ∗ are single

crossing.

Proof: See the Appendix.
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Remarks: The notion of strongly single crossing is the analog of condition
(SC) of Gans and Smart (1996) in this specific context. Outside of y([w,w]),

τ can be extended in an arbitrary fashion subject to incentive compatibility,

for example in a linear way.

Lemmas 3 and 4 are used to prove Lemma 5:

Lemma 5: Suppose that R implies strongly single crossing minimal indi-
vidual revenue requirements, G∗. Then a majority rule equilibrium exists.

Proof: See the Appendix.

Strongly single crossing is used intensively to prove this. It has the im-

plication that induced preferences over tax systems have properties shared by

single peaked preferences over a one dimensional domain. The winners will be

the tax systems most preferred by the median voter (in the draw) out of tax

systems in T ∗.

The proof consists of two parts. The first part shows that there is a tax

schedule that is weakly preferred to all others by the median voter. The second

part shows that this tax schedule is a majority rule winner. This second part

could be replaced by Gans and Smart (1996, Theorem 1). But it would take

as much space to verify the assumptions of that Theorem as it does to prove

our more specialized result directly.

Can majority rule equilibrium tax functions and optimal tax functions be

the same? There are two answers, depending on whether the interpretation of

optimal is Pareto optimal or utilitarian optimal.

Consider first the interpretation as Pareto optimal. In the terminology of

the introduction, income taxes are third best, so our restricted set of feasible

income taxes is actually fourth best. Evidently any majority rule equilibrium

will be fourth best effi cient, since an objection of the grand coalition is neces-

sarily an objection of a majority. The hard part here is proving existence of

a majority rule winner, not showing that the majority rule winner is Pareto

optimal.32

Consider next the interpretation of effi ciency as (possibly weighted) util-

itarian optima, as is common in the optimal tax literature. The answer is

32It is common in the optimal income tax literature to use a Pareto weighted utilitarian op-

timization problem to find Pareto optima. We do not use this technique because Guesnerie

(1995) showed that the utility possibilities set might be nonconvex in such settings.
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related to Bowen’s (1943) theorem and the extension by Bergstrom (1979).

We focus on the quasi-linear and additively separable (in public goods and

labor supply) case. First consider the expenditure or public good side of the

problem, which is closer to this literature. Without getting into the techni-

calities, the main intuition for the primary result, namely Bergstrom (1979,

Theorem 3), is that if the marginal willingness to pay for the public good of the

median voter is equal to the mean marginal willingness to pay for the draw,

then an effi cient allocation can be achieved by a majority rule equilibrium.

As Bergstrom remarks, this would be rare, and in our view is likely in the

complement of a generic set of utility functions. But clearly it is possible.

Inspired by this literature, we can use a similar argument here, in the

context of labor supply. We must modify it because we address utility levels

rather than first order conditions for optima, and because labor supply is a

private good. Assume that33

b(l, w) = b̂(l · w) = b̂(y)

Then the (indirect) utility function of every agent (neglecting public good level,

that is irrelevant at this stage of the game) is:

y − τ(y) + b̂(y)

The first order condition for incentive compatibility is:

1− dτ(y)

dy
+
db̂(y)

dy
= 0

The interpretation is that for each income tax τ , each type of agent earns the

same income and enjoys the same level of utility, though they work different

hours.34 That is because the optimized gross income y = w · l is the same
for each type w, but since w varies, so does l. Hence, what the median voter

selects as a best tax out of a feasible set will also be unanimously best and

thus (weighted) utilitarian best. Again, this seems to be a possible but rare

occurrence.

5 Examples

Next we provide a pair of simple examples that can be solved.

33Notice that b̂ implicitly is a function of w.
34We neglect second order conditions here for brevity and simplicity.
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Example 1: Take

u(c, l, x, w) = c− l2 − φw · x
−2

2

H(x) =
x2

2

The marginal cost of the public good is x. The marginal willingness to pay

of type w for the public good is φw · x−3, so the total marginal willingness to

pay for the draw (w1, w2, ..., wk) is φx−3
k∑
i=1

wi. Setting this equal to marginal

cost to solve for the Pareto effi cient level of public good provision (that will

be unique), we obtain:

x∗(w1, w2, ..., wk) =

(
φ

k∑
i=1

wi

) 1
4

A reason why the isoelastic case might be interesting comes from the fact that

it is a suitable case for the purpose of carrying out empirical tests of the model,

given that the correct way to aggregate abilities (or tastes) in this particular

case is simply to sum them.

The aggregate revenue requirement function is:

R(w1, w2, ..., wk) = H (x∗(w1, w2, ..., wk)) =
1

2

√√√√φ
k∑
i=1

wi

Next, take w = 1, w = 2, and let w̃ be the median type of a draw. Then

as in Lemma 2, if k ≥ 2 and 1.5 ≤ w̃ ≤ 2, the minimal individual revenue

requirements are indexed by w̃ and given by35

g(w, w̃) =
√
φ

[
1

2
(kw̃)

1
2 /k +

1

4
(kw̃)−

1
2 · (w − w̃)

]
=

√
φ

4

[√
w̃

k
+

√
1

kw̃
· w
]

In an endowment economy, this is the tax on endowments most preferred by

type w̃ among those satisfying the aggregate revenue constraints. In this

particular case, it is a linear tax. The next step is to implement it in an

optimal income tax economy.

35To keep calculations simple, we focus on draws where the median is at least 1.5.
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Applying the first order approach to incentive compatibility36 given in the

differential equation (4) above, dτ
dy

= 1 − dγ
dy
, and g−1(y − γ) = w, the income

tax function is given by the solution to:37

dτ

dy
= 1− 2y

w2

Inverting g(·, w̃) and solving for w in terms of τ ,

w = 4

√
kw̃

φ
τ − w̃

so
dτ

dy
= 1− 2y[

4
√

kw̃
φ
τ − w̃

]2
This ordinary differential equation has a solution through every point. To

choose the best of these, take the one that has the marginal tax rate zero for

the top type w = 2. For the top type, it is the solution that goes through

(τ , y) =
( √

φ

4
√
kw̃

[2 + w̃] , 2
)
. This will be the majority rule equilibrium for any

draw with median w̃ ≥ 1.5. Several comparative statics can be derived in

this example: The total tax paid by the top type is decreasing in the size

of the economy (k), but increasing in the marginal utility of public good (φ).

The income of the top type is independent of both the size of the economy (k)

and the marginal utility of the public good (φ). This is a consequence of the

separability assumption.

Example 2: One point of this example is that although we will restrict to

quasi-linear utility functions for the general theory, that might not be neces-

sary. Take

u(c, l, x, w) = min (c, w · [1− l])− w · x
−2

2

H(x) =
x2

2

The aggregate revenue requirements function, and thus g(·, w̃), is unchanged

from Example 1. Setting c = w · [1− l],

y − τ = w − y
36The second order condition for incentive compatibility will be satsified because ∂g(w;w̃)∂w >

0.
37Although we know that a solution exists and through any point it is unique, actually

solving the ODE explicitly is another matter entirely.
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Therefore,

τ(y) = 2y − w

= 2y − 4

√
kw̃

φ
· τ(y) + w̃

and thus

τ(y) =
2y + w̃

1 + 4
√

kw̃
φ

Comparative statics are apparent.

Remarks: The single crossing of individual revenue requirements results
from the combination of: the assumptions on utility and cost of the public good,

and the idea that the aggregate revenue requirements must be satisfied for any

draw. We prove in Lemma 4 that when we implement the individual revenue

requirements and impose second best effi ciency, the single crossing property is

inherited by the income tax implementations. One common feature of our in-

dividual revenue requirement functions is that there is a switch point, indexed

by w̃ in our examples here, that represents the individual revenue requirement

that minimizes that type’s tax liability among all individual revenue require-

ments satisfying the aggregate revenue requirements for all draws. This is not

actually necessary for our general results, and is not used in the proofs once

we obtain single crossing of individual revenue requirements. However, as

seen from Example 1, provided that g is strictly increasing, the optimization

point for type w under the (optimal) income tax framework will correspond

to tax liability g(w, w̃). Therefore, using the standard diagrams from opti-

mal tax theory,38 the majority rule equilibrium will correspond to the best

implementation (solution to the ordinary differential equation) of the revenue

requirement function that minimizes the tax liability of the median type of

the draw, g(w, w̃). Thus, the switch point is inherited by the optimal income

tax implementation of the individual revenue requirements. The fact that we

do not use the switch point once we have single crossing of individual revenue

requirements allows room for expansion of our results.

6 Conclusions

Two different but related issues deserve some discussion at the outset. The first

is whether information on the likelihood of each draw can be used. The second
38See Seade (1977).
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is how to deal with possible excess revenues. As for the opposite situation of

insuffi cient revenues, the reader should note that imposing a penalty for not

meeting the requirement simply results in a new revenue requirement function.

We first discuss the information issue. One obvious possibility would be

to define as feasible all individual revenue requirement functions that generate

an expected revenue equal to or larger than the expected collective revenue

requirement. In contrast with what we use, this would be a single constraint

rather than a constraint for each draw. The problem with this notion is that

single crossing conditions for individual revenue requirements would likely fail

to be satisfied for most cases, including the ones studied in this paper. But

one could consider weakening our feasibility restriction and still have enough

“bite”to generate single crossing g’s. Here is a suggestion:

One option is to use a class of probability measures over draws and constrain

the expectation of revenues for each probability measure. Expected revenue

according to f would be one particular member of this class. The class could

be chosen to generate a continuum of constraints, binding enough for the single

crossing result to survive, and we would be back to our initial setup although

with different feasibility conditions. This is similar to a model of government

behavior using ambiguity aversion or Knightian uncertainty. Perhaps this

could be justified as a way to aggregate risk averse voter preferences over

budget deficits.

Another suggestion is to use continuum economies and require that the

budget be met for a large class of distributions of types. That approach

could eliminate branches B and D in Lemma 2. This might not be as natural

as using finite draws from a fixed distribution of types, and runs into issues

discussed in Berliant and Rothstein (2000).

We now address the issue of excess revenue. Consider first the case of utility

quasi-linear in consumption good that we have used throughout this paper. It

is possible to return the ex post excess revenue in a lump-sum fashion, as there

are no income effects. Or the government could use them for another purpose,

such as production of yet another public good.

When we consider general preferences and technologies the problem be-

comes more diffi cult. Clearly, the excess revenue cannot be returned to tax-

payers in a lump sum fashion, as it will affect their behavior in optimizing

against the income tax. However, once we deviate from quasi-linear utility,

other issues would arise before we get to this point, most importantly the

presence of multiple Pareto optimal levels of public good provision. From the
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point of view of applications, analysis of these more general models will be

much more diffi cult.

The bottom line is whether the alternative models have more to offer. Is

it better to restrict ourselves to fixed revenue and voting over a parameter of

a prespecified functional form for taxes (as in the previous literature), which

are also generally Pareto dominated, or is the model proposed here a useful

complement? Differences of opinion are clearly possible.

We note here that unlike much of the earlier literature on voting over linear

taxes, the majority equilibria are not likely to be linear taxes without strong

assumptions on utility functions and on the structure of incentives. The reason

is simple: in the optimal income tax model, Pareto optimality requires that the

top ability individuals face a marginal tax rate of zero.39 Therefore, poll taxes

are the only linear taxes that could possibly be equilibria. In our model, such

taxes are not generally majority rule equilibria, since consumers at the lower

ability end of the spectrum will object. All majority rule equilibria derived

in this paper are second best Pareto optimal (for a given individual revenue

requirement), and hence satisfy the property that the top marginal tax rate is

zero.

In that sense, the results obtained here are a step forward relative to Romer

(1975) and Roberts (1977). In another sense, they also improve on Snyder and

Kramer (1988) by using a standard optimal income tax model as the framework

to obtain the results.

Although majority rule equilibrium taxes in our model have the property

that the top marginal tax rate is zero, a property in common with second best

Pareto effi cient taxes, in our model the majority rule equilibrium taxes satisfy

a revenue requirement for each draw (or equivalently, an individual revenue

requirement), stronger than a single aggregate revenue requirement. Thus, our

majority rule equilibrium taxes are not necessarily second best Pareto effi cient.

Notice also that our majority rule equilibrium differs by draw, whereas the

second best Pareto effi cient tax systems for the aggregate distribution from

which the population is drawn does not. However, if we restrict to tax systems

and public good levels that are feasible in our sense, majority rule equilibria

39We know of only one case where an optimal tax is linear: Snyder and Kramer (1988).

But this and other results derived in that paper are due to the use of a peculiar model that

departs significantly from the other models used in the study of income taxation. There

are no income nor substitution effects on effort induced by taxation up to the point where

workers switch to the underground sector, and from that point on the same holds since, by

definition, income realized in the underground sector is not taxed.
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will be Pareto effi cient for the draw among the feasible tax systems in our

restricted sense; the latter are third best.

Looking forward, there are many items on the research agenda. It is

natural to inquire about dynamics in our context; for a discussion of dynamics

in both the general literature and in a model closely related to this one, see

Berliant and Boyer (2024). That work also provides a more extensive review

of the literature than ours.

Strictly and technically speaking, our majority rule equilibrium concept is

essentially that of a Condorcet winner in the context of asymmetric information

about agent types, a feature shared by the literature employing endogenous

income surveyed in Berliant and Boyer (2024). It would be desirable to put

the model in an explicit game-theoretic context. Moulin (1980) provides

a direction forward. He shows that in a game with perfect and complete

information as well as single peaked preferences, majority rule is strategy proof.

To apply that result to our framework, it would have to be extended to games

with the particular type of asymmetric information used here. An obvious

path forward is to require consumers to vote over tax systems after learning

only their own type.

There are a few strategies that may be productive in pursuing research on

voting over taxes.40 One strategy is to use probabilistic voting models such

as in Ledyard (1984). Another is to take advantage of the structure built in

this paper and, with our results in hand, look at multi-stage games in which

players’actions at the earlier stages might transmit information about types.

Of course, it might be necessary to look at refinements of the Nash equilibrium

concept to narrow down the set of equilibria to those that are reasonable (at

least imposing subgame perfection as a criterion).

A two-stage game of interest is one in which k is fixed and each player in

a draw proposes a tax system in T ∗ (simultaneously). The second stage of the

game proceeds as in the single stage game above, with voting restricted to only

those tax systems in T ∗ that were proposed in the first stage.

A three stage game of interest is one in which k is again fixed and the

players in a draw elect representatives and who then propose tax systems and

proceed as in the two stage game (see Baron and Ferejohn (1989)).

Work remains to be done in obtaining comparative statics results, as in

the examples. Finally, the predictive power of the model will be the subject

40For a discussion of dynamics in both the general literature and a model closely related

to this one, see Berliant and Boyer (2024).
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of empirical research. That will certainly be the focus of future work.

7 Appendix

7.1 Proof of Lemma 2

For part (b), it is straightforward to prove by direct calculation that ∀w̃ ∈
[w,w], g(w, w̃) is continuous everywhere, continuously differentiable in w (ex-

cept where the transition is made between branches), and has positive deriv-

ative in w. Below, we will also use the fact that for ∀w ∈ [w,w], g(w, w̃) is

continuously differentiable in w̃ (except where the transition is made between

branches).

To provide some intuition for the next part of the proof, it is important

to inquire: Where does the relation w Q w̃ + (k − 1) · (w̃ − w) (for branches

A and B) come from? It simply describes when it is possible or impossible

to construct a draw containing w so that the average ability is equal to w̃.

Beyond that, the function Q(kw)/k will be crucial in the proof below.

Now we proceed to prove part (a). First we shall show that g(·, w̃) is

feasible and minimal for each w̃, in other words it is in G∗, and then show

that there are no other functions that are feasible and minimal. Fix a draw

(w1, w2, ..., wk). To consider branches A and B separately to begin, define:

IL ≡ {i | wi ≤ w̃ + (k − 1) · (w̃ − w)}
IH ≡ {i | wi > w̃ + (k − 1) · (w̃ − w)}

Let kL be the number of elements of IL. Further, let

wL ≡
1

kL

∑
i∈IL

wi

Since Q is concave, if wi ≤ w̃ + (k − 1) · (w̃ − w), branch A yields that

g(w, w̃) is the tangent line to Q(kw)/k at w = w̃:

g(wi, w̃) = Q(k · w̃)/k +Q′(k · w̃)(wi − w̃) ≥ Q(kwi)/k.

Therefore, since g(w, w̃) is linear in w on branch A,∑
i∈IL

g(wi, w̃) = kL · g(wL, w̃)

So if for all i = 1, ..., k, i ∈ IL, then
k∑
i=1

g(wi, w̃) = k · g(wL, w̃) ≥ Q(kwL) = Q(
k∑
i=1

wi) = R(w1, ..., wk)
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In particular, if we set the draw to be w′i ≡ min {wi, w̃ + (k − 1) · (w̃ − w)},
then

k∑
i=1

g(w′i, w̃) ≥ R(w′1, ..., w
′
k) (5)

For branch B, let ŵj ∈ [w̃ + (k − 1) · (w̃ − w), w] for j ∈ IH and ŵj = wj for

j ∈ IL. Using concavity of Q and setting i ∈ IH ,

∂

∂wi

∑
j∈IH

g(wj, w̃) |wj=ŵj= Q′((k−1)w+ŵj) ≥ Q′(

k∑
j=1

ŵj) =
∂

∂wi
Q(

k∑
j=1

wj) |wj=ŵj∀j

Integrating via a line integral and applying Stokes’theorem,∑
j∈IH

[g(wj, w̃)− g(w̃ + (k − 1) · (w̃ − w), w̃)]

=
∑
j∈IH

∫ wj

w̃+(k−1)·(w̃−w)

∂

∂ŵj
g(ŵj, w̃)dŵj

≥
∑
j∈IH

∫ wj

w̃+(k−1)·(w̃−w)
Q′(

k∑
j=1

ŵj)dŵj

= Q(
k∑
j=1

wj)−Q(
k∑
j=1

w′j)

= R(w1, ..., wk)−R(w′1, ..., w
′
k)

Adding this inequality to (5) yields feasibility of g(·, w̃). Feasibility of

branches C and D is proved similarly.

We now prove that the g(·, w̃) are minimal among those feasible. Consider

branch A. Clearly, if a draw consists of k individuals of type w̃, g(w̃, w̃) is

minimal by definition. To show that g(w, w̃) is minimal, suppose the opposite.

Take h(w) with h(w) ≤ g(w, w̃) and with strict inequality for some w1 ∈
[w, w̃+(k−1)·(w̃−w)] (the case w1 ∈ (w̃+(k−1)(w̃−w), w] will be considered

in the next paragraph). It is possible to construct a draw (w1, w2, ...wk) with

mean w̃ and wi ∈ [w, w̃+(k−1)·(w̃−w)] for i = 2, ...k. Then, R(w1, w2, ...wk) =

Q(k · w̃) =
k∑
i=1

g(wi, w̃). But
k∑
i=1

h(wi) <
k∑
i=1

g(wi, w̃), so h(w) is not feasible.

Similar reasoning holds for branch C.

Now consider branch B. Take h(w) with h(w) ≤ g(w, w̃) and with strict

inequality for some w1 ∈ (w̃+ (k− 1)(w̃−w), w]. The logic used for branches

A and C does not hold in this case: it is not possible to find k − 1 ability

levels in this interval to construct a draw with mean w̃. Consider a draw with
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wj = w for j = 2, 3, ...k. For this draw,

k∑
i=1

g(wi, w̃)

= Q((k − 1) · w + w1)− ((k − 1)/k) ·Q(k · w̃) + (k − 1) ·Q′(k · w̃) · (w̃ − w)

+
k∑
i=2

Q(k · w̃)/k +Q′(k · w̃) · (w − w̃)

= Q((k − 1) · w + w1)− ((k − 1)/k) ·Q(k · w̃) + (k − 1) ·Q′(k · w̃) · (w̃ − w)

+
k − 1

k
Q(k · w̃)− (k − 1)Q′(k · w̃)(w̃ − w)

= Q((k − 1) · w + w1)

Hence, for the draw (w1, w, ..., w),
∑k

i=1 h(wi) <

k∑
i=1

g(wi, w̃) = Q((k− 1) ·

w + w1) = R(w1, w, ..., w), so h is not feasible. Similar reasoning holds for

Branch D.

Next, suppose there is h ∈ G∗ that is not of the form given in the statement
of the Lemma. Then for each w̃ ∈ [(w + w)/2, w] there is some w ∈ [w,w]

with h(w) < g(w, w̃). Fix any such w̃. Repeating the arguments just above

showing that g(w, w̃) is minimal in the cases of Branch A (w ≤ w̃ + (k − 1) ·
(w̃ − w)) and Branch B (w > w̃ + (k − 1) · (w̃ − w)), it follows that h is not

feasible, a contradiction. Similar reasoning hold for Branches C and D.

Next we prove part (c). To prove single cavedness in w̃, one need only

differentiate g(w, w̃) with respect to the parameter w̃, fixing w. For branches

A and C we obtain:

∂g(w, w̃)

∂w̃
= Q′′(k · w̃) · k · (w − w̃).

The derivative above is positive if w < w̃ and negative for w > w̃.

For branch B we have:

∂g(w, w̃)

∂w̃
= k · (k − 1) ·Q′′(k · w̃) · (w̃ − w) < 0.

which applies only for w > w̃+ (k−1) · (w̃−w). Otherwise Branch A applies.

Finally, for branch D we get:

∂g(w, w̃)

∂w̃
= k · (k − 1) ·Q′′(k · w̃) · (w̃ − w) > 0.

which applies only for w < w̃+ (k−1) · (w̃−w). Otherwise Branch C applies.

The results above imply that arg minw̃ g(w, w̃) = w.
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Finally, consider part (d). We claim that these g’s are single crossing. To

see this, first note that from the definition of g(w, w̃) in the statement of the

Lemma, direct calculation yields that ∂g(w,w̃)
∂w

is weakly decreasing in w̃ for each

w. Therefore, if g(w, w̃) and g(w, w̃′) cross twice, there exist w,w′, w′′ ∈ [w,w],

w < w′ < w′′ such that g(w, w̃) = g(w, w̃′), g(w′, w̃) 6= g(w′, w̃′), g(w′′, w̃) =

g(w′′, w̃′). But this cannot happen in each case: w̃′ = w̃, w̃′ < w̃, w̃′ > w̃.

The first case is obvious, and the other cases use the fundamental theorem of

calculus applied to integrals of ∂g(w,w̃)
∂w

and ∂g(w,w̃′)
∂w

.

7.2 Proof of Lemma 3

We employ Berliant and Page (1996) Theorems 1 and 2 to prove Lemma 3.

Notice first that since H(x) ≥ 0, if we focus on draws of identical individuals,

R ≥ 0 and g ≥ 0. So we restrict to taxes that are non-negative. The key

assumptions to be verified are the boundary conditions and a single crossing

property. We will be precise. For the quasi-linear utility we use, we must

verify the following boundary conditions on the utility function, numbered (3)

and (4) in that paper:

For all w ∈ [w,w], for all 0 ≤ t′ ≤ t ≤ y, there exists y′, t′ ≤ y′ ≤ y with (6)

y′ − t′ + b(
y′

w
,w) ≤ y − t+ b(

y

w
,w)

For all w ∈ [w,w], for all 0 ≤ y ≤ w and 0 ≤ t ≤ y, for all 0 ≤ y′ < y, (7)

there exists 0 ≤ t′ ≤ y′ with y′ − t′ + b(
y′

w
,w) ≤ y − t+ b(

y

w
,w)

Fix w ∈ [w,w]. For condition (6), we must show that there is y′ ≤ y

such that y′ − t′ + b(y
′

w
, w) ≤ y − t + b( y

w
, w). We will show, in addition,

that without loss of generality, 1
w

∂b( y
′
w
,w)

∂l
≥ −1. This will imply that for the

implementation, 1
w

∂b(
y(w)
w

,w)

∂l
≥ −1.

Next we show that if 1
w

∂b( y
w
,w)

∂l
< −1, there exists ŷ, t ≤ ŷ < y with

y − t+ b( y
w
, w) = ŷ − t+ b( ŷ

w
, w) and 1

w

∂b( ŷ
w
,w)

∂l
≥ −1.

First, we know from the boundary condition that b(1, w) − b(0, w) ≥ −w.
Using the fundamental theorem of calculus,

∫ 1
0
∂b(l,w)
∂l

dl = b(1, w) − b(0, w).

Since ∂b(l,w)
∂l

< 0 is weakly increasing in w, b(1, w)−b(0, w) is weakly increasing

in w, so b(1, w)− b(0, w) ≥ −w ≥ −w.
Rearranging, w + b(1, w) ≥ b(0, w). Let y∗ solve ∂b( y

∗
w
,w)

∂l
= −w if the

solution is positive, set y∗ = 0 otherwise. Note that 1
w

∂b( y
′′
w
,w)

∂l
< −1 for
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y′′ > y∗, so y′′+ b(y
′′

w
, w) is decreasing in y′′. The worst utility level is given by

y′′ = w, or w + b(1, w) ≥ b(0, w) using the start of this paragraph. So by the

intermediate value theorem, there is a ŷ with y + b( y
w
, w) = ŷ + b( ŷ

w
, w) and

ŷ ≤ y∗, so 1
w

∂b( ŷ
w
,w)

∂l
≥ −1, and without loss of generality we can take y = ŷ.

Next we prove (6). For t′ = t, this is trivial (take y′ = y), so take

0 ≤ t′ < t ≤ y.

First we show that (6) holds for t′ in a neighborhood of t, and then expand

to any t′.

Using ∂2b(l,w)
∂l2

< 0 and 1
w
∂b(l,w)
∂l
≥ 1

w
∂b(l,w)
∂l

∣∣∣
l=1
≥ −1, 1

w
∂b(l,w)
∂l
≥ −1, so for

ỹ′ < ỹ,

b(
ỹ

w
, w)− b( ỹ

′

w
,w) =

∫ ỹ

ỹ′

1

w

∂b( ŷ
w
, w)

∂l
dŷ >

∫ ỹ

ỹ′
−1dŷ = ỹ′ − ỹ (8)

Now take y′ with 0 ≤ t′ ≤ y′ < y ≤ w. Using (8),

y − t+ b(
y

w
,w) > y′ − t+ b(

y′

w
,w)

So for a size ε neighborhood of t, for all t′ with t− ε ≤ t′ < t in that neighbor-

hood, the conclusion of (6) holds. In fact, given the assumption ∂2b(l,w)
∂l2

< 0,

the size of the neighborhood expands as y decreases, so that we can use the

same ε size as applies to y and t. Therefore, given any t′ < t and y, we can

construct a finite chain y1 = y, y2 = y′ = t, t′1 = t− ε = t2 with t′k = t′ so that

the conclusion of (6) holds for each element of the chain and by transitivity

holds for the original data, namely y, t, and t′.

The proof of (7) proceeds in the same manner. As shown above, for y′ < y,

y − t+ b(
y

w
,w) > y′ − t+ b(

y′

w
,w)

Thus, for all (t′, y′) where t′ ≤ t and t′ ≤ y′ ≤ y in a neighborhood of (t, y),

the conclusion of (7) holds. Then construct a finite chain as before.

The single crossing condition in Berliant and Page (1996) has two parts:

w′ > w, y > y′ and y′ − t′ + b(
y′

w′
, w′) > y − t+ b(

y

w′
, w′) (9)

implies y′ − t′ + b(
y′

w
,w) > y − t+ b(

y

w
,w)

w′ > w, y′ > y and y′ − t′ + b(
y′

w
,w) > y − t+ b(

y

w
,w) (10)

implies y′ − t′ + b(
y′

w′
, w′) > y − t+ b(

y

w′
, w′)
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A suffi cient condition for (9) to hold is:

b(
y′

w
,w)− b( y

′

w′
, w′) ≥ b(

y

w
,w)− b( y

w′
, w′)

or

b(
y

w′
, w′)− b( y

′

w′
, w′) ≥ b(

y

w
,w)− b(y

′

w
,w)

We now proceed to prove that.

b(
y

w′
, w′)− b( y

′

w′
, w′) =

∫ y/w′

y′/w′

∂b(l, w′)

∂l
dl ≥

∫ y/w′

y′/w′

∂b(l, w)

∂l
dl = b(

y

w′
, w)− b( y

′

w′
, w)

=

∫ y

y′

∂b( ŷ
w′ , w)

∂l
· 1

w′
dŷ ≥

∫ y

y′

∂b( ŷ
w
, w)

∂l
· 1

w
dŷ = b(

y

w
,w)− b(y

′

w
,w)

A suffi cient condition for (10) to hold is:

b(
y′

w′
, w′)− b(y

′

w
,w) ≥ b(

y

w′
, w′)− b( y

w
,w)

or

b(
y′

w′
, w′)− b( y

w′
, w′) ≥ b(

y′

w
,w)− b( y

w
,w)

This follows from the argument just above, replacing y with y′ and y′ with y.

7.3 Proof of Lemma 441

Let g′ and g′′ be the elements of G∗, and let (τ ′, y′, γ′) and (τ ′′, y′′, γ′′) be

the tax, gross income, and net income functions associated with g′ and g′′,

respectively. We ignore x and r(x,w) in this proof, due to additive separability

and the structure of the game. The proof is by contradiction. Suppose that

there exist incomes y1 < y2 < y3 with τ ′(y1) < τ ′′(y1), τ ′(y2) > τ ′′(y2) and

τ ′(y3) < τ ′′(y3). Then by the intermediate value theorem applied to utility

differences as a function of w, there exists wa such that y′(wa)− τ ′(y′(wa)) +

b(y′(wa)/wa, wa) = y′′(wa)− τ ′′(y′′(wa)) + b(y′′(wa)/wa, wa), y′′(wa) > y′(wa),

and τ ′(y′(wa)) < τ ′′(y′(wa)). Moreover, g′(wa) = τ ′(y′(wa)) < τ ′′(y′(wa)).

Now by (3) and Lemma 3, 1
w

∂b(
y′′(w)
w

,w)

∂l
≥ −1 and dτ ′′

dy
= 1− dγ′′

dy
≥ 0 and since

y′′(wa) > y′(wa), g′′(wa) = τ ′′(y′′(wa)) ≥ τ ′′(y′(wa)) > τ ′(y′(wa)) = g′(wa).

There also exists wb > wa with y′(wb)−τ ′(y′(wb))+b(y′(wb)/wb, wb) = y′′(wb)−
τ ′′(y′′(wb)) + b(y′′(wb)/wb, wb), y′(wb) > y′′(wb), τ ′(y′′(wb)) > τ ′′(y′′(wb)), and

τ ′′(y′(wb)) > τ ′(y′(wb)). Hence τ ′(y′′(wb)) > τ ′′(y′′(wb)) = g′′(wb) and since

y′(wb) > y′′(wb), g′(wb) = τ ′(y′(wb)) ≥ τ ′(y′′(wb)) > τ ′′(y′′(wb)) = g′′(wb).

41To see how this critical proof works, it is useful to draw the graphs from optimal taxation,

net income as a function of gross income, that are standard in the literature; see Seade (1977).
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Using strongly single crossing, g′(w) > g′′(w).

By construction of T ∗, τ ′(y′(w)) > τ ′′(y′′(w)). Note that since the mar-

ginal tax rate at y′(w) and y′′(w) is zero, what we have are essentially lump

sum taxes at the top ability level. Hence, y′′(w)−τ ′′(y′′(w))+b(y′′(w)/w,w) >

y′(w)− τ ′(y′(w)) + b(y′(w)/w,w). Zero income effects implies y′(w) = y′′(w).

Moreover, τ ′(y′′(w)) > τ ′′(y′(w)). Since τ ′′(y′(wb)) > τ ′(y′(wb)), there ex-

ists y∗, y′′(w) > y∗ > y′(wb) with τ ′(y∗) = τ ′′(y∗), so there exists wc with

y′(wc)−τ ′(y′(wc))+b(y′(wc)/wc, wc) = y′′(wc)−τ ′′(y′′(wc))+b(y′′(wc)/wc, wc),

y′′(wc) > y′(wc), and τ ′(y′(wc)) < τ ′′(y′(wc)). As above, g′(wc) = τ ′(y′(wc)) <

τ ′′(y′(wc)) and since y′′(wc) > y′(wc), g′′(wc) > g′(wc).

This contradicts strongly single crossing. So the hypothesis is false, and

the lemma is established.

7.4 Proof of Lemma 5

Definition: Let C1 be the space of continuously differentiable functions (with
domain [w,w] and range R) endowed with the uniform topology. We consider

T ∗ to be a subset of this space by extending any τ ∈ T ∗ to the whole domain,
if necessary, in a C1 and linear fashion.

Fix τ ∈ T ∗. First we claim that 0 ≤ dτ
dy
≤ 1. From ∂b/∂l ≤ 0 a.s., (3), and

Lemma 3, we obtain that 0 ≤ dγ
dy

= − 1
w
∂b
∂l
≤ 1. Since dτ

dy
= 1− dγ

dy
, the claim is

proved. So every τ ∈ T ∗ is Lipschitz in income with constant 1, and thus T ∗ is
equicontinuous. Since k · g(w) ≥ R(w,w, ..., w) ≥ 0, T ∗ is also norm bounded

by w. Using Ascoli’s theorem (see Munkres (1975, p. 290)), T
∗
(the closure of

T ∗ in C1) is compact.42

Fix k and let (w1, w2, ..., wk) ∈ A. For any τ ∈ T , let v(τ , w) = maxy u(y−
τ(y), y/w), the utility induced by the tax system τ for type w. It is easy to

verify that for each w, v(τ , w) is continuous in its first argument.

Let τ ∗ be a maximal element of T
∗
using v(·, wM) as the objective, where

wM is the median ability level in (w1, w2, ..., wk) if k is odd, and wM ∈
[wk/2, wk/2+1] (where the wage rates are ordered in an increasing fashion) if

k is even. Using Lemmas 2 and 3, τ ∗ ∈ T ∗.
Now suppose there exists τ ∈ T such that there is a subsetD of {w1, w2, ..., wk}

with v(τ , w) > v(τ ∗, w) for all w ∈ D and where the cardinality of D is greater

than k/2. Then using Lemma 3, we can take τ to be in T ∗ without loss of

42An alternative proof, pointed out by a referee, would show that the best implementations

of g(w, w̃) are continuous in w̃.
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generality. Using Lemma 4, τ ∗and τ are single crossing, or alternatively, their

after tax income functions y − τ ∗(y) and y − τ(y) are single crossing. Notice

also that, due to non-inferiority of consumption good, indifference curves (as

a function of gross and after tax income) are single crossing in w; see Seade

(1977, footnote 8). Thus, there exist intervals W,W ′ ⊆ [w,w] such that W

and W ′ partition [w,w] and D ⊆ W . Let Ŵ be the smallest interval (in the

sense of set inclusion) such that Ŵ and its complement Ŵ ′ are both intervals,

Ŵ and Ŵ ′ partition [w,w], and D ⊆ Ŵ .

Then by definition of τ ∗, wM /∈ Ŵ . Hence D cannot contain a majority

of the draw, a contradiction. Hence the hypothesis is false and τ ∗ cannot be

defeated by any other feasible tax system.

7.5 Proof of Theorem 1

For a draw (w1, w2, ..., wk) ∈ A, the Lindahl-Samuelson condition for this
model is:

k∑
i=1

wi · s′(r̂(x)) · r̂′(x) = m · r̂′(x)

Hence,

x = r̂−1

s′−1


m
k∑
i=1

wi




and thus

R(w1, w2, ..., wk) = m · s′−1


m
k∑
i=1

wi


Hence, R is argument additive. Computing the first derivative,

dR

d

k∑
i=1

wi

= −m2 · 1

s′′

s′−1
 m

k∑
i=1

wi


 ·

(
k∑
i=1

wi

)2 > 0
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Computing the second derivative,

d2R

d

(
k∑
i=1

wi

)2

= m2 ·

2s′′

s′−1
 m

k∑
i=1

wi


 ·

(
k∑
i=1

wi

)
+ s′′′

s′−1
 m

k∑
i=1

wi


 · −m

s′′


s′−1


m
k∑
i=1

wi



s′′
s′−1

 m
k∑
i=1

wi


 ·

(
k∑
i=1

wi

)2
2

= m2 ·
2s′′ (r) ·

(
k∑
i=1

wi

)
+ s′′′ (r) · −m

s′′(r)s′′ (r) ·( k∑
i=1

wi

)22

where

r = s′−1


m
k∑
i=1

wi


Thus,

d2R

d

(
k∑
i=1

wi

)2 < 0 if and only if

2s′′ (r) ·
(

k∑
i=1

wi

)
< s′′′ (r) · m

s′′ (r)
or

2s′′ (r)2 > s′′′ (r) · s′(r)

The last expression holds by assumption. Therefore, R is argument additive

with negative second derivative. The result then follows from Lemmas 2 and

5.
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