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Abstract

This meta-study analyzes the productivity effects of industrial robots. More

than 1800 estimates from 81 primary studies are collected. There is strong evidence

that the empirical literature on the productivity effect of robots suffers from a sub-

stantial positive publication bias. This finding is observed across all measures of

productivity used in the primary literature and is robust to several modern meta-

analytic estimators. Beyond publication bias, there is only limited evidence for a

productivity-increasing effect of robots, which so far have exerted at best a marginal

boost. My analysis of the drivers of heterogeneity among the findings of primary

studies points to adjustment costs at low intensities of robot use as well as dimin-

ishing returns at more advanced levels of robotization. My findings are robust to

addressing model uncertainty through Bayesian model averaging. Finally, several

explanatory factors for the emergence of a productivity paradox in the context of

robotics are discussed.
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1 Introduction

One of the key lessons in economics is that increases in productivity are the prerequisite for

long-term economic growth (Solow, 1956; Swan, 1956; Kaldor, 1961). Nobel laureate Paul

Krugman (1997, p. 11) famously wrote: ”Productivity isn’t everything, but in the long run it

is almost everything.” He further elaborates: ”A country’s ability to improve its standard of

living over time depends almost entirely on its ability to raise its output per worker.” In line

with this, continuous growth of labor productivity is the key for sustained economic growth,

and a large body of the economic literature deals with productivity and its determinants (Kim

and Loayza, 2019). Within this body of literature, a strong focus has been placed on the role

of innovation, R&D, and new technologies for economic growth (e.g., Romer, 1990; Grossman

and Helpman, 1991; Aghion and Howitt, 1992; Bresnahan and Trajtenberg, 1995; McGuckin

et al., 1998; Jones, 2002; Edquist and Henrekson, 2006; Jones and Liu, 2024). The influence of

investments in information and communication technologies (ICT) on productivity has attracted

particular interest (Stiroh, 2005; Cardona et al., 2013; Polák, 2017; Stanley et al., 2018; Inklaar

et al., 2020; Nordhaus, 2021; Growiec, 2023). Within the last decade, the pioneering studies

of Jäger et al. (2015), Jäger et al. (2016), Graetz and Michaels (2018) extended the scope of

examined technologies by fueling a new strand of literature that focuses on the productivity

effects of industrial robots. Industrial robots are fully autonomous machines that do not re-

quire a human operator and can be re-programmed to perform several tasks such as handling

or processing operations (e.g. assembling, painting, welding, cutting, or grinding) (Jurkat et al.,

2022). Graetz and Michaels (2018) showed a clear positive impact of robot use on the growth

in labor productivity, caused by an increase in value added not accompanied by a reduction

in hours worked. Since then, many further articles have scrutinized the relationship between

robot adoption and productivity, using various methods and levels of analysis, covering different

countries, and reporting varying effect sizes. My quantitative meta-study on the average effect

and the drivers of heterogeneity within this field of research contributes to several strands of the

literature dealing with the determinants of productivity and economic growth.

First, this meta-study contributes to the longstanding academic debate on the so-called “pro-

ductivity paradox” ICT (Brynjolfsson, 1993). Solow (1987) foundationally expressed in his well-

known quote: “You can see the computer age everywhere but in the productivity statistics.”

Despite the enormous innovation, investments, and usage of ICT, little productivity growth was

observed. The wealth of studies examining the growth and productivity effects of ICT has paved

the way for several meta-studies in this field: Stanley et al. (2018, p. 716) analyze the effect of

different types of ICT on economic growth at the country-level and conclude that ICT has made

a positive contribution on average, while this effect is “unexpectedly weak”. Similarly, Polák

(2017) finds only a small productivity effect of ICT at the firm-level, which is more than ten

times lower than the result of Stiroh (2005)’s meta-analysis after updating the literature and

additionally correcting for publication bias. The link between ICT and robots consists in the

fact, that the installation of robots typically involves designing a completely revised production
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system with a significant amount of complementary investment in ICT equipment (IFR, 2020,

p. 49). Thus, my meta-analysis addresses the question whether robots can help overcome the

productivity paradox of ICT.

The second strand deals with the clear slowdown in productivity growth in recent decades that

many advanced economies have suffered (Cette et al., 2021a; Cette et al., 2021b; Eder et al.,

2023). This pattern is illustrated in Figure 1. The sluggish productivity development will likely

be exacerbated by the projected reduction in the workforce due to the demographic decline in

these countries (Park et al., 2021). For instance, Leitner and Stehrer (2019) estimate that the

growth of labor productivity must be more than doubled to keep real GDP growth constant in

face of the shrinking workforce. At the same time, robot usage has significantly increased (see

Figure 1). My meta-analysis helps answer the question if robot deployment can sufficiently raise

productivity to cushion the declining growth potential of economies challenged by a demographic

decline.

Third, technological progress, typically measured by total factor productivity (TFP), is essen-

tial for the successful climate-neutral transformation of economies without cutting prosperity.

Robotized production systems may increase efficiency enabling a reduction in material and en-

ergy inputs for the same output, thereby reducing the emission of pollutants (Chen et al., 2022;

Huang et al., 2022; Li et al., 2022; Liu et al., 2022a; Liu et al., 2022b; Wu, 2023). However,

efficiency gains may also be associated with reduced productions costs, increasing demand, and

a upscaling of production, leading to a rebound effect that adversely affects environmental out-

comes (Luan et al., 2022). Including articles in my study that focus on the “green productivity”

effects of robotization contributes to the empirical question whether robots enable sustainable

economic growth not only by increasing TFP and labor productivity but also through improved

environmental efficiency.

Fourth, by examining whether there are different magnitudes of productivity increases through

robotization between advanced and developing or emerging economies, I contribute to explain-

ing economic convergence. For instance, the findings of Eder et al. (2023) suggest that the

contribution of robots to labor productivity growth is higher for emerging countries than for

developed economies, supporting the idea of varying productivity impacts across different eco-

nomic contexts.

Fifth, the multi-faceted literature on the labor market effects of automation distinguishes three

main transmission channels (Acemoglu and Restrepo, 2019; Acemoglu and Restrepo, 2020; Hötte

et al., 2024): 1) a displacement effect that reduces labor demand and thus wages as robots per-

form tasks previously done by workers; 2) a reinstatement effect comprising the creation of new

tasks and occupations, as well as the reallocation of labor within and across industries or firms;

3) a productivity effect as the replacement of less cost-effective labor and technological progress

increases productivity in automated tasks as well as the value-added by workers performing

tasks complementary to robots. My meta-analysis enables an evaluation of the strength of this

productivity effect.

In light of the rapid technological progress in artificial intelligence (AI), synthesizing the empir-
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(a) Labor productivity growth (GDP per hour worked), 5-year moving average.

Source: OECD (2024c), own calculations.

(b) Robot density (stock per million hours worked). Source: IFR (2023), OECD

(2024a), OECD (2024b), own calculations.

Figure 1: Evolution of labor productivity growth and robot density
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ical literature on the productivity effects of robots to provide answers to these five fundamental

aspects of recent economic research is particularly pressing. This progress has the potential to

enormously expand the scope of technological feasibility of automating tasks through AI-based

robots (IFR, 2023, pp. 5). Some authors view robotization as part of a ”fourth industrial revo-

lution” (e.g., Schwab, 2016; Philbeck and Davis, 2018). Others, in turn, emphasize that robot

adoption is a normal pattern of industrial development (Fernández-Maćıas et al., 2021) or a

continued structural change towards a service and information society that was initiated by dig-

ital technologies (”third industrial revolution”) (Vermeulen et al., 2018; Cetrulo and Nuvolari,

2019; Matthess and Kunkel, 2020). Assessing the strength of the productivity boost robots have

exerted so far, contributes to the discussion on how revolutionary this technology may be.

My meta-study closely follows the guidelines as suggested by Havránek et al. (2020) and Irsova

et al. (2023). By means of a systematic literature research in Google Scholar, JSTOR and

IDEAS/RePEc using the keywords “industrial + robot + productivity”, I identified 81 studies

with 1813 estimates for the impact of robots on productivity. Most of these papers are exam-

ining the impact of robot use on labor productivity and TFP. Computing partial correlation

coefficients (PCCs) as comparable effect size and employing several meta-regression models,

I attempt to correct the original econometric research for publication, misspecification, and

omitted-variable biases. Additionally, I scrutinize the drivers of heterogeneity in the estimated

productivity effects by coding a set of moderator variables. I obtain strong evidence that the

empirical literature on the productivity effect of robots suffers from a substantial to severe pos-

itive publication bias. This finding is observed across all measures of productivity used in the

primary literature and robust to several modern, meta-analytic estimators. Beyond publication

bias, I find only limited evidence for a productivity-increasing effect of robots. My analysis of

the drivers of heterogeneity in the findings of primary studies points to adjustment costs at low

intensities of robot use as well as diminishing returns at more advanced levels of robot adoption.

On the one hand, this suggests that in the initial phase of robot adoption, adjustment processes

like complementary investments in organizational or human capital impede the realization of

productivity effects (Brynjolfsson et al., 2021). On the other hand, it implies that after passing

the threshold of adjustment costs, any productivity effects of additional automation become

smaller over time, i.e., result in smaller output gains or less efficiency-enhancing (or even in-

efficient) processes. These two aspects can be harmonized with the notion of a productivity

J-curve as suggested by Brynjolfsson et al. (2021) as well as an increasing level of difficulty in

automating further tasks (Acemoglu, 2024) and the deployment of ”so-so technologies” with

advancing automation, or inefficiencies from excessive automation as mentioned by Acemoglu

and Restrepo (2019).

The remainder of my paper is structured as follows: Section 2 provides an overview of the

existing empirical literature on the productivity effects of robotization and some related meta-

studies in economics. Section 3 presents the process of data collection and Section 4 describes

the methodology. Section 5 studies the overall effect of robot adoption on productivity and

tests for publication bias. Section 6 analyzes the heterogeneity of empirical results by means
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of a multivariate meta-regression framework including a matrix of moderator variables. In Sec-

tion 7, a number of robustness checks are implemented. Section 8 discusses several explanatory

factors for the productivity paradox of robots. Finally, Section 9 concludes and provides some

recommendations for future research.

2 Literature review

The strand of literature on the productivity effects of robotization was pioneered by Graetz

and Michaels, 2018. Using data from the International Federation of Robotics (IFR) for 17 in-

dustrialized countries in 14 sectors from 1993-2007, they identified a clear, positive relationship

between robot use and growth in labor productivity, which is caused by an increase in value

added and not by a reduction in hours worked. According to Graetz and Michaels (2018), the

increase in value added by the robotization of production results in price reductions on the goods

markets that benefit consumers. They also show a positive link between robotization and the

development of total factor productivity (TFP). Using a counterfactual analysis, the authors

calculate that labor productivity would have been 5.1 percent lower on average without robo-

tization, which implies an annual productivity growth of 0.36 percentage points for the period

under investigation.

Building upon the pioneer study of Graetz and Michaels (2018), many further studies examined

the productivity effects of robot adoption. The results are predominantly positive but reveal a

more nuanced picture. Jungmittag and Pesole (2019) and Kromann et al. (2020) model robot

usage as capital-augmenting technological progress that increases the quality of the non-ICT

capital input and find a positive effect on productivity growth at the country-industry level.

Acemoglu et al. (2020a), Alguacil et al. (2022), Bettiol et al. (2024), Bonfiglioli et al. (2024),

Duan et al. (2023), and Koch et al. (2021) provide evidence for positive productivity effects of

robot adoption at the firm level. By dividing their samples into SMEs and large enterprises,

Jäger et al. (2016), Ballestar et al. (2020), and Starovatova (2023) do not find any productivity-

increasing effect from robot usage among large enterprises. Bekhtiar et al. (2024) criticize the

identification strategy of Graetz and Michaels (2018) and replicate their study by focusing on

those industries with a significant use of industrial robots (manufacturing + mining). In the

reduced sample, the effect on labor productivity is only half as large as the results published

by Graetz and Michaels (2018) and the price effects lose their statistical significance. Almeida

and Sequeira (2023) fail even to find any significant productivity-enhancing effect in the man-

ufacturing sector. Almeida and Sequeira (2024) extend Graetz and Michaels (2018)’s empirical

analysis by covering more countries and a longer timer period from 1997 to 2017. They find that

the productivity effects from robotization have markedly decreased in the more recent period

from 2008 to 2017.

According to Fu et al. (2021), the positive effect of robots on labor productivity is limited to

industrialized countries and cannot be proven in developing countries. In contrast, Eder et al.
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(2023) find that the contribution of robots to labor productivity growth is higher for emerg-

ing countries than developed economies, thereby fostering economic convergence. Also, quite a

number of studies report positive productivity effect for developing or emerging countries, e.g.,

Rodrigo (2021) for Brazil, Cal̀ı and Presidente (2022) for Indonesia, Starovatova (2023) for the

Russian Federation, as well as Wu (2023), Zhang et al. (2023b), Zhao et al. (2024), and Wang

et al. (2024) for China. Moreover, Capello et al. (2022) do not detect any influence of the use

of robots on labor productivity in 260 regions of 24 European countries in the period from 2013

to 2017. Following the ”Solow paradox” (Solow, 1987) in the ICT context, they therefore speak

of a ”modern Solow paradox”. As the main reason behind this paradox, Capello et al. (2022)

identify a negative reinstatement effect: labor is reallocated from the manufacturing sector to

less productive sectors. Similarly, Park et al. (2021) do not find evidence that robot adoption

directly raises productivity in the Republic of Korea.

As Stiebale et al. (2024) show at the industry level, robotization increases the productivity,

profit margins, and total profits of firms with the highest initial productivity, profit margins,

or profitability, but has insignificant or negative effects on the other firms in the respective

industry. They conclude that the use of robots primarily drives market concentration through

the emergence of ”superstar firms” and thus prevents possible price reductions. Almeida and

Sequeira (2024), however, employ a quantile regression approach and find a stronger, positive

effect of robotization on labor productivity in country-industry pairs with lower productivity.

Almeida and Sequeira (2023) additionally estimate the productivity effects for different inten-

sities of robot use and document significantly negative effects for the lowest intensity and null

effects for the highest intensity, while the strongest link between robotization and productivity

gains is found in the middle of the distribution.

From a theoretical point of view, several mechanisms linking robot usage and productivity can

be distinguished. In a standard Cobb-Douglas production function with constant returns to

scale, changes in output are determined by variations in the production factors, labor and cap-

ital, or a change in TFP. Dividing output by the labor volume (hours worked) results in labor

productivity, which can be increased through three main mechanisms (GCEE, 2016, pp. 284–

85). Firstly, it can result from raising capital per hour worked, i.e., capital deepening. This

illustrates the direct link between investments in equipment such as ICT or robots and labor

productivity. If robots displace workers from tasks previously performed by human labor, the

capital deepening effect will be particularly pronounced and may allow firms to benefit from

cost-savings by substituting relatively more expensive labor (Acemoglu and Restrepo, 2019). In

a task-based model, one can additionally capture a productivity-enhancing reinstatement effect

as automation creates new tasks that exploit the comparative advantage of labor (Acemoglu

and Restrepo, 2019; Acemoglu and Restrepo, 2018c; Acemoglu and Restrepo, 2018b). Secondly,

an increase in TFP can boost labor productivity. TFP is supposed to measure technological

progress as a result of process and product innovation that enables producing more with the

same amount of input factors. Robotic manufacturing systems may be used to increase the effi-

ciency of production processes (e.g., by increasing accuracy, avoiding human errors, or improving
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management efficiency), to realize product innovations, or to spend more on R&D by saving la-

bor costs (Deng et al., 2024; Duan et al., 2023; Liu et al., 2020; Zhang et al., 2023b; Zhao and

Yang, 2022; Dixon et al., 2021). Thirdly, improving the skills of the workforce can contribute

to a rise in labor productivity. If robots primarily replace less-skilled workers, create incentives

for investment in training, or facilitate knowledge spillovers, this can raise labor productivity by

improving the human capital structure as suggested by Graetz and Michaels (2018), Duan et al.

(2023), Zhang et al. (2023b), Zhang et al. (2024), and Zhao and Yang (2022)). Moreover, these

three mechanisms are closely related to each other. For example, a higher skill-level of employees

may increase innovation activity and incentivize further investment in advanced equipment, i.e.,

further capital deepening (mechanism 1), thereby possibly improving TFP (mechanism 2). A

mismatch between required skills and the needs of automation technologies may hamper technol-

ogy adoption or reduce the productivity gains after adoption (Acemoglu and Restrepo, 2018a).

Applying the empirical estimates of the productivity increase through robot usage from Graetz

and Michaels (2018) to a growth accounting framework, Cette et al. (2021a) and Cette et al.

(2021b) find empirical evidence for the first and second theoretical mechanism, i.e., a contribu-

tion of robot usage to productivity growth via capital deepening and TFP. However, they also

show that robots are not a main driver of labor productivity growth in the period from 1960 to

2019 (Cette et al., 2021a) and conclude that ”robotization does not appear to be the source of

a significant revival in productivity” (Cette et al., 2021b).

Upchurch (2018) and Nordhaus (2021) discuss whether we are approaching an ”economic sin-

gularity”, i.e., a situation in which super-intelligent machines are able to innovate production

processes, thereby enabling rapid technological progress and unbounded economic growth, while

leaving the relative performance of humans negligible. In a related approach, Growiec (2023)

develops a growth model with hardware (”brawn input”, comprising physical capital and human

physical labor) and software (”brain input”, comprising pre-programmed software and human

cognitive work) as input factors instead of traditional labor and capital. In this framework,

a fraction of physical capital is programmable hardware like industrial robots. He outlines a

scenario of full automation where the pace of accumulation of programmable hardware will deter-

mine the pace of economic growth, i.e., digital performance indicators (e.g., computing power,

storage capacity, bandwidth) and the abilities of robotic hardware would become the engine

of economic growth. If additionally technological progress is assumed to be partly ”hardware-

augmenting”, for example by increasing the energy efficiency of computers and robots, this would

lead to an ever-increasing long-run growth rate of GDP, i.e., an ”economic singularity”. Based

on theoretical and empirical arguments, Nordhaus (2021) concludes that such a singularity will,

if at all, only be seen in the distant future. Similarly, Acemoglu (2024) predicts only modest

TFP gains from AI over the next 10 years of less than 0.53% in total.

In general, leveraging the full potential from adopting new technologies requires complementary

investments and innovations in the realm of business organization, workplace practices, intan-

gible capital, and human capital (Bresnahan et al., 2002; Brynjolfsson and Hitt, 2000; Dixon

et al., 2021; Vrontis et al., 2021; Brynjolfsson et al., 2021). This argument also suggests that
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it takes time until the productivity effects of robotization can fully materialize. In the short-

run, adjustment costs associated with complementary measures may even explain a decline in

productivity (Basu et al., 2001; Brynjolfsson et al., 2021). This view is supported by Du and

Lin (2022) who find evidence in favor of a U-shaped relationship between robot use and TFP in

China. An ”economic singularity” as discussed by Nordhaus (2021) and Growiec (2023) would

require an exponential relationship between robots and productivity after crossing a U-shaped

turning point, leading to ever-increasing economic growth. Cal̀ı and Presidente (2022), how-

ever, find evidence for diminishing productivity returns to robot adoption at the plant-level in

Indonesia. A concave relationship between automation and productivity gains is also in line

with Nordhaus (2021) who concludes that ”the Singularity is not near”. Capello et al. (2022),

however, do not find evidence that robot adoption is characterized by decreasing or increasing

productivity returns.

A significant number of studies included in my meta-study view a positive productivity effect

of robot use as a mechanism for other relationships examined, especially when the focus is on

the impact of robot adoption on indicators of environmental sustainability. In a sample of 17

manufacturing sectors in 38 countries Wang et al. (2022) find that industrial robots improved

energy intensity between 2000 and 2014, while an increase in TFP is shown to be one of the

mechanisms. Similarly, Liu et al. (2021), Huang et al. (2022), and Li et al. (2023) document that

productivity gains are a mechanism for improving energy performance through robot adoption.

Zhang and Shen (2023), Li et al. (2022), Zhu et al. (2023), and Song et al. (2022) show that

robot use can reduce the intensity of industrial emissions by raising productivity. Moreover,

there are studies that use ”green TFP” (GTFP) as dependent variable, i.e., a special concept of

TFP additionally accounting for undesired output in the form of emissions, pollutants, or waste.

For instance, Zhang et al. (2022), Zhao et al. (2022), Wu (2023), and Chen et al. (2024) find

that robotization can contribute to sustainable or ”green” growth. Yang and Liu (2024) restrict

that robot use only improves GTFP if strong environmental regulation is in place.

My paper is further related to the growing literature of meta-studies in economics. Several of

these meta-studies deal with the determinants of economic growth: Doucouliagos and Ulubaşoğlu

(2008) analyze the relationship between democracy and economic growth, Klomp and Valckx

(2014) examine the influence of natural disasters, Valickova et al. (2015), Bijlsma et al. (2018),

and Iwasaki and Kočenda (2024) study the significance of financial development, Havranek et al.

(2016) the effect of natural resources, Baskaran et al. (2016) the impact of government decen-

tralization, Cazachevici et al. (2020) scrutinize the role of remittances, Afonso et al. (2020) the

effect of the shadow economy, Ridhwan et al. (2022) the role of health, and Ridhwan et al. (2024)

meta-analyze the real exchange rate-growth nexus. Further, Doucouliagos and Laroche (2003)

examine the effect of unions on productivity, Ugur et al. (2020) meta-analyze the productivity

effects from R&D spillovers, and several meta-studies consider productivity spillovers from FDI

(Gorg and Strobl, 2001; Meyer and Sinani, 2009; Wooster and Diebel, 2010; Havranek and

Irsova, 2010; Iršová and Havránek, 2013; Mebratie and Bergeijk, 2013; Iwasaki and Tokunaga,

2016; Demena and Bergeijk, 2017; Bruno and Cipollina, 2018).
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A strand of literature closely related to the productivity effects of robots is the long-standing

debate on the productivity effects of ICT as well as technology adoption in general. Cardona

et al. (2013), Schweikl and Obermaier (2020), and Vu et al. (2020) provide a review of the

empirical literature on the relationship between ICT, productivity, and growth. Foster and

Rosenzweig (2010), Mondolo (2021), Filippi et al. (2023), Montobbio et al. (2023), Hötte et al.

(2023), and Restrepo (2023) take a broader perspective by reviewing the economic effects of

technology adoption. A comprehensive review of the economic and social effects of robot adop-

tion can be found in Klump et al. (2021); a review of the economic effects of AI is available in Lu

and Zhou (2021). Going beyond descriptive evidence, Kohli and Devaraj (2003), Stiroh (2005),

Polák (2017) and Stanley et al. (2018) meta-analyze the effect of ICT on economic performance.

Although these meta-studies reject the Solow-paradox in its strongest form, i.e., a null effect of

ICT on productivity, they support it in its less strict form, i.e., an economically weak effect,

especially after correcting the primary literature for publication bias. There are already a few

meta-studies on the economic effects of robots and automation: Pinheiro et al. (2023) find evi-

dence for a positive link between automation and reshoring; Jurkat et al. (2023) and Guarascio

et al. (2024) meta-analyze the labor-market effects of robots and both find only negligible total

effects. Jurkat et al. (2023) show that the impact of robotization on wages is more negative in

the manufacturing sector and more positive in the non-manufacturing sector.

3 Data collection

3.1 Literature research and selection criteria

My systematic literature research was conducted at the end of December 2023. I employed

Google Scholar, JSTOR, and IDEAS/RePEc as search engines using the keywords ”industrial

+ robot + productivity” and 2018 as start year. This research resulted in more than 2,000 hits

in total.1 I chose 2018 as the start year because it marks the year in which the first article on

the productivity effects of robots by Graetz and Michaels (2018) was published in a scientific

journal. To identify relevant studies, I used machine learning by means of the software ASRe-

view. This AI tool sorts the literature records by relevance after specifying prior knowledge on

relevant and irrelevant records. After labeling 25 relevant and 30 irrelevant records, I used the

default settings for the active learning model based on Näıve Bayes and reviewed the suggested

records until an uninterrupted sequence of 50 irrelevant records was observed. Furthermore, I

checked the references of all eligible studies to find additional relevant studies. The collection of

primary studies was updated for meanwhile published studies until the end of June 2024.

I selected all primary studies which meet the following criteria: The paper must deal with in-

dustrial robots according to ISO standard 8373:2012 (§ 2.9) and their effect on an appropriate

measure of productivity by applying econometric methods. The IFR (2020) defines an indus-

1From Google Scholar, the first 1,000 hits (sorted by relevance) were retrieved.
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trial robot according to the ISO standard 8373:2012 (§ 2.9) as an “automatically controlled,

reprogrammable, multipurpose manipulator programmable in three or more axes, which may be

either fixed in place or mobile for use in industrial automation applications”. I adhere to this

definition and exclude papers with a broader measure of automation comprising, for instance,

service robots, numerically controlled machines, digital technologies, or AI (e.g., Xia et al.,

2024; Zhu et al., 2024; Lyu and Liu, 2021). Likewise, estimates based on a purely theoretical

measure of automation (e.g., based on the intensity of routine tasks) are excluded (Bonfiglioli

et al., 2024). Industrial robots differ significantly from other types of automated capital in the

sense that they can truly substitute for human labor. The precise definition of industrial robots

in the ISO standard avoids confusing the productivity effects of robots with other automation

technologies as well as a significantly varying scope of technologies across studies. Nevertheless,

data on the usage of industrial robots can be understood as a proxy for automation in general

(Jurkat et al., 2022).

Measures of productivity considered suitable are continuous measures of labor productivity,

TFP, or GTFP.2 Within these three categories, different measures and computational methods

were used in the primary literature. Labor productivity encompasses varying measures that di-

vide output (value added, revenue, or GDP) by labor input (workers, employees, hours worked,

or labor expenses). The simplest method to compute TFP is using the ”Solow-residual” from

an OLS regression of output on the capital stock, labor input, and intermediate inputs (e.g.,

Hötte et al., 2024; Deng et al., 2024; Acemoglu et al., 2020a). OLS estimates of production

functions, however, are suspected of producing biased parameters and thus biased estimates

of productivity, owing to a potential correlation between unobserved productivity shocks and

input levels (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). As a result, several methods

have been developed to overcome this endogeneity issue. The most frequently employed method

for estimating TFP are the Olley-Pakes (OP) and Levinsohn-Petrin (LP) method. Olley and

Pakes (1996) develop a semi-parametric two-step estimation procedure that uses investment as

a proxy for unobservable productivity shocks (for a practical implementation see Yasar et al.

(2008)). Levinsohn and Petrin (2003) extend the OP estimation framework and suggest using

intermediate inputs instead of investment as a proxy for unobservable shocks (for a practical

implementation see Petrin et al., 2004). A further refinement of the two-step estimation proce-

dure was introduced by the control function approach of Ackerberg et al. (2015) (for a practical

implementation see Manjón and Manez (2016)). Wooldridge (2009) instead proposed a one-step

estimation based on generalized method of moments.

2A very low number of estimates is reported for a single-factor productivity other than labor productivity:

Hötte et al. (2024) report estimates for capital productivity; three studies use varying measures of energy

productivity: Chen et al. (2024) report three estimations with energy productivity (ratio of GDP to

energy consumption) as dependent variable; the study of Li et al. (2023) contains one estimation with

the ratio of output to fuel coal consumption as outcome variable; Zhou et al. (2024) uses the ratio of

GDP to electricity consumption as dependent variable. For the sake of comparability, these estimates

are excluded from my meta-study.

11



Furthermore, quite a number of authors use a distance function approach that evaluates the dis-

tance of decision-making units from the production efficiency frontier and results in a Malmquist

productivity index as a measure of TFP (Malmquist, 1953; Carlaw and Lipsey, 2003). In this

approach, the production frontier is typically constructed non-parametrically by means of Data

Envelopment Analysis (DEA) (Du and Lin, 2022; Li and Zhou, 2024; Liu et al., 2022b); for a

practical implementation of DEA see Ji and Lee (2010). GTFP is always measured by variants

of the Malmquist index, while output is decomposed into desirable output (GDP or value of

industrial output) and undesirable output (emissions or waste) (Oh, 2010; Zhao et al., 2022;

Zhang et al., 2022; Yang and Liu, 2024). All these methods for measuring TFP and GTFP were

deemed eligible for inclusion in my meta-analysis. A more detailed discussion of the different

methods for TFP estimation can be found in Carlaw and Lipsey (2003), Rovigatti and Mollisi

(2018), and Fragkandreas (2021).

Moreover, primary studies must be published in English with public access (via a paid journal

or open access). I did not restrict my search to peer-reviewed papers as the economic research

on the productivity effects of robots is still a young and rapidly evolving field, resulting in a

significant number of working papers. Within a few studies, I omitted some estimates that

were based on an event study design, providing several estimates for different points in time

and typically presented as a figure without exact numbers (Bonfiglioli et al., 2024; Wang, 2022;

Huang et al., 2023). The studies by Cette et al. (2021b) and Eder et al. (2023) were not eligible

for inclusion as they measured the percentage contribution of robots to productivity growth

in a growth accounting/ decomposition framework, without directly regressing the respective

measure of productivity on robot usage.3 My sample of primary estimates also focuses on the

direct effect of robots on productivity, while estimates of spillover effects (e.g., the impact of

robot adoption in other firms on firms without robot use) are excluded (Lin et al., 2022; Li

et al., 2024; Venturini, 2022). The study by Zhou and Zhang (2024) was dropped due to a very

specific study sample focusing on firms with financial difficulties (”zombie firms”), making it

non-comparable to other firm-level studies.

As will be described in Section 4, I need coefficients and their respective standard errors (or t-

values) as well as the degrees of freedom in order to calculate a comparable effect size. Sometimes,

the reported statistical information was incomplete or required methodological information re-

mained unclear. I contacted the authors whenever I faced lacking information or uncertainty on

how to interpret the information provided in the respective study. In rare cases, when no suit-

able information was provided by the authors, I had to exclude the concerned primary estimates

from my meta-analysis. In total, I was able to code 81 primary studies with 1813 estimates. A

comprehensive list of all primary studies included is available in the appendix (see Table A2).

The number of estimates per study ranges from 1 to 549, with a mean of 22 and a median of 6

estimates per study. The systematic literature research is illustrated in a PRISMA flow diagram

3Stanley et al. (2018) also exclude growth accounting studies from their meta-analysis of the effect of

ICT on economic growth.
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in the appendix (see Figure A1).

3.2 Moderator variables

To examine the drivers of heterogeneity in the primary literature’s findings, a matrix of mod-

erator variables is coded. This matrix captures study-dependent or estimation-specific charac-

teristics and targets potential biases from omitted variables and misspecification in the primary

literature. The analysis of the determinants of heterogeneity in the primary studies comprises

five main groups of moderator variables: (1) data and estimation characteristics, (2) measure

of productivity, (3) omitted control variables, (4) subpopulations, and (5) publication quality/

status (s. Tables A1). Most of the moderator variables are constructed as binary indicators

taking on a value of 1 if the estimate fits the category and 0 otherwise.

(1) Data and estimation characteristics include the number of countries (c num) and years (sam-

ple years) included in the estimation, the level of analysis, the period of analysis, the econometric

specification as well as characteristics of the independent and dependent variable. If the number

of sample years is equal to 1, the respective estimation is cross-sectional, which holds true for

29% of the primary estimates. 60 studies, roughly accounting for 31% of the estimates, focus on

a single country. Among these single-country estimates, the largest share comes from developing

and emerging countries, with 71% derived from 41 different studies, while China clearly domi-

nates this group of estimates. The second largest group of single-country estimates is made up of

European countries with 17% from 16 studies. Four articles (representing 2% of the estimates)

focus on the USA. With regard to the level of analysis, a moderator variable called firm lev sig-

nals that the estimate is of micro-economic nature at the firm-level, observing the productivity

effect of robots at the level where they are actually deployed. 41 studies, accounting for 21%

of the estimates, are at the firm-level. The remainder of estimates comes from more aggregated

levels at regional (18 studies, 11% of the estimates), industry (11 studies, 60%), or country (11

studies, 8%) level.

Estimation characteristics are captured by moderator variables related to econometric techniques

and functional forms. The moderator variable log log accounts for a specification in which both

productivity and robots are in logarithmic terms such that the estimate can be interpreted as

elasticity. Quantile regressions are indicated by quant reg. Moderator variable marginal comp

indicates that a marginal effect was computed to include the respective estimate in my meta-

analysis because the robot variable entered multiple times in the same regression through an

interaction term or quadratic term. Moreover, I code whether the primary estimate was based

on cluster-robust standard errors (secl).

The moderator variable msms captures estimates that move closer to estabishing causality by

employing econometric methods meeting the criteria of the ”Maryland Scientific Method Scale”

(WWCLEG, 2016) and reach a score of 3 or 4. These methods include instrumental variable

(IV) estimations, difference-in-difference (DID) estimations, as well as panel estimations with
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year effects, fixed effects at the unit of observation, and appropriate control variables)4. Treat-

ing endogeneity by such methods may be important for several reasons: (i) unobserved shocks

can affect both robot adoption and productivity, e.g., a local recession or industry-specific in-

stitutional changes (Acemoglu and Restrepo, 2020); (ii) certain industries, regions, or firms

may select into robot adoption and fundamentally differ from non-adopting industries/ regions/

firms, thereby following different trends in productivity evolution even absent automation; (iii)

simultaneity or reverse causality can be at work, if only more productive firms are able to afford

the costs of robot adoption or if higher labor productivity is associated with higher labor costs

that incentivize robot adoption (Koch et al., 2021; Almeida and Sequeira, 2023). The most

frequently applied IV approach in the primary literature is to instrument robot adoption in the

country/region under research by robot adoption in other, comparable countries/regions (Ace-

moglu and Restrepo, 2020; Stiebale et al., 2024) or by a measure of task replaceability (Graetz

and Michaels, 2018;Wang et al., 2024).

To measure the degree of robotization, most studies use data from the IFR (86% of the estimates

are based on IFR data), which collects data on the annual installations and stock of industrial

robots at country-industry level. However, there are also some studies relying on other data

sources for the usage of industrial robots. Alternative data sources include trade and customs

data as well as firm-level surveys (e.g., Acemoglu et al. (2020a), who compile firm-level data

compiled from several sources in France). These alternative datasets partially entail information

on robot adoption at a finer level of aggregation than country-industry level, e.g., at firm-level

or regional level. To check for potential data dependence in the primary literature, a moderator

variable non ifr signals estimates based on alternative data sources for robot use. Additionally,

lag rob indicates that the robot variable was lagged in the estimation by at least one period.

Data coverage on industrial robots mainly begins in the 1990s (Jurkat et al., 2024). However, in

the initial years, robot adoption rates were rather low. To check if the returns to robotization

change with an increasing intensity of robot adoption, I collect the sample period for each esti-

mation and calculate its mid-year. I use 2007 as the cutoff to separate estimates with a mid-year

after 2007 from those with a mid-year before or equal to 2007. The year 2007 is chosen because

it is the year before the Financial Crisis and is frequently used as the final year in primary

estimations (e.g., Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Kromann et al.,

2020; Bekhtiar et al., 2024).

(2) I distinguish three types of productivity measures in the primary studies: labor productiv-

ity, TFP, and GTFP. 65% of the primary estimations (39 studies) use labor productivity as

dependent variable, 27% TFP (42 studies), and 7% use GTFP (12 studies). Additionally, the

moderator variable growth indicates whether an estimation uses growth rates of productivity or

productivity changes over time instead of levels.

(3) Omitted control variables: Many primary studies control for general capital input and specif-

4The maximum score of 5 is reserved for randomized control trials (RCT), which are not available in the

primary literature under research.
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ically ICT capital, for labor input and labor costs, for initial or lagged productivity (or output),

for demographic shifts in the working age population, for the economic structure (e.g., the man-

ufacturing employment share), for human capital, for research and development, as well as for

measures of economic openness and trade. These control variables are considered as relevant

explanatory variables in the estimation of production functions and productivity. To examine

potential sources of omitted variables bias, I code binary indicators for the omission of these

control variables in primary estimations.

(4) Subpopulations in the primary literature are specific samples in terms of the development

status of countries, the economic sector, firm size, parts of the productivity distribution, or the

intensity of robot usage. The moderator variable dev country indicates estimates for developing

or emerging countries.5 Estimates that are solely based on the secondary sector, i.e., mainly

manufacturing, are captured by the variable secondary sec. Estimates that decompose the units

of analysis along the distribution of productivity are assigned to four indicator variables for the

quartiles of productivity. Analogously, estimates for samples with specific intensities of robot use

are represented by means of four binary variables corresponding to the quartiles of the distribu-

tion of robot use. The moderator variable excl high exposure refers to estimations that exclude

the entities with the highest intensity of robot adoption from the sample. The variables sme

and large indicate estimates for only small and medium sized or large enterprises, respectively.

(5) Publication quality/status: To assess the quality of the publications, I follow Picchio and

Ubaldi (2024) and use the SCImago Journal Ranking (SJR) index for the respective publication

year.6 Unpublished studies are assigned a SJR value of zero. 91% of the primary estimates come

from 65 articles published in academic journals with a mean SJR index of 1.9. 16 studies are

unpublished, i.e., mainly working papers and some dissertations. Another approach to measure

quality could be the number of citations of the primary study (e.g., used in Ugur et al. (2020)

and Pinheiro et al. (2023)). This is, however, not feasible for my meta-analysis since many

papers have been published very recently (21 studies in 2023 and 19 studies in 2024). Using

the number of citations as a quality measure would simply give more weight to older studies

regardless of their actual quality. The most recent primary studies are from June 2024 and, in

consequence, cannot have been cited by many other studies.

5The classification follows the World Bank (2024) and labels high-income economies as developed

economies and the remainder as developing/ emerging economies.
6Three journals are not indexed in SCImago: Starovatova (2023) and Zhao et al. (2024) are assigned a

SJR index of zero; for Acemoglu et al. (2020a), the impact factor according to CitEc was used as SJR

index. Articles published in 2024 are assigned the SJR index for year 2023 since the SJR index for 2024

was not yet available.
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4 Methodology

4.1 Partial correlation coefficients

A meta-regression analysis (MRA) requires comparable effect sizes to assess the strength and

direction of empirical estimates (Stanley and Doucouliagos, 2012, pp. 22). The aim is to

summarize the primary literature in terms of a potential true overall effect and to identify the

drivers of heterogeneity among primary studies. Usually, the empirical literature in economics

is characterized by varying definitions of dependent or independent variables as well as different

econometric specifications and techniques. This is also valid for the primary literature analyzed

in this meta-study. Thus, to make the relationship between robots and productivity comparable

across diverse specifications and alternate measures of productivity, I follow the recent literature

on economic meta-analyses (Stanley et al., 2018; Duan et al., 2020; Cazachevici et al., 2020;

Pinheiro et al., 2023; Picchio and Ubaldi, 2024) and convert each estimated coefficient to a PCC

as common effect size. PCCs are a unitless measure ranging from −1 to +1 for the strength

and direction of the association between two variables, while holding other variables constant

(Stanley and Doucouliagos, 2012, pp. 24-25; Gustafson, 1961).

The PCCis is defined by the following equation:

PCCis =
tis√

t2is + dfis

(1)

where t denotes the t-statistic and df the degrees of freedom from estimate i in study s. Following

Stanley et al. (2024), the degrees of freedom of primary estimations are calculated by df =

N − k − 1, where N is the number of observations and k is the number of regressors and/or

fixed effects included in the estimation. The PCCs are quite robust to imprecise measures of

df (Stanley and Doucouliagos, 2012, p.156).7 Table 1 presents summary statistics for the effect

size variables. Doucouliagos (2011) gives guidelines for the relative strength of PCCs based on

22,000 PCCs drawn from various meta-studies. A partial correlation coefficient above ±0.33

can be considered large, while a PCC between ±0.17 and ±0.33 constitutes a moderate effect,

and a PCC between ±0.07 and ±0.17 is considered as a small effect. PCCs close to ±1 are

very strong effects that rarely occur in MRA in economics.

My meta-study also includes primary estimations that employ an interaction or quadratic term

for the robot variable and thus report more than one coefficient for the relation of interest.8 To

make interaction terms fit into my meta-analysis, I follow Cazachevici et al. (2020) by computing

7In a few cases, the degrees of freedom had to be approximated by making assumptions on the number

of fixed effects included because the exact number was neither provided within the primary study nor

obtained upon request.
8Estimations with more than one interaction term are excluded from the meta-analysis, e.g., in Du and

Lin (2022), Koch et al. (2021), or Li et al. (2024). Likewise, Tobit estimates are excluded since the

corresponding marginal effect would depend on the value of ALL explanatory variables and the variance

of the error term (relevant for Liu et al. (2022b), Zhang et al. (2022), and Qian and Wang (2022))
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Table 1: Descriptive statistics for effect size variables

Measure Obs. Mean Median SD Min Max

t-value 1813 3.28 2.29 5.28 -12.42 48.96

df 1813 33479.28 936 227124.11 9 6227990

PCC 1813 0.10 0.06 0.16 -0.69 0.98

SEPCC 1813 0.05 0.03 0.06 0.00 0.33

the marginal effect at the mean and using the delta method to approximate the associated

standard error9:

β = β̂1 + β̂2x̄; SE(β) =

√
SE(β̂1)2 + SE(β̂2)2x̄2 (2)

where β1 denotes the estimate of the robot coefficient for the linear term, β2 is the estimate of

the coefficient for the interaction term, x̄ is the sample mean of the variable interacted10 with

the robot measure , SE(β1) is the standard error of the reported coefficient for the linear term,

and SE(β2) is the standard error of the reported coefficient for the interaction term.11

In case of a quadratic term, the effect of robots on productivity is linearized using the following

formula for the marginal effect (Zigraiova and Havranek, 2016):

β = β̂1 + 2β̂2x̄; SE(β) =

√
SE(β̂1)2 + 4SE(β̂2)2x̄2 (3)

where β1 denotes the estimate of the robot coefficient for the linear term, β2 is the estimate of

the robot coefficient for the quadratic term, x̄ is the sample mean of the robot measure, SE(β1)

is the standard error of the reported coefficient for the linear term, and SE(β2) is the standard

error of the reported coefficient for the quadratic term. The marginal effects and their standard

errors computed by Equation (2) or Equation (3) are subsequently transformed into the PCC

in line with Equation (1).

4.2 Meta-analytic estimators

Using the PCCs derived from the primary studies, I can now aggregate the information to an

overall mean effect of robots on productivity. This is traditionally done by computing simple

weighted averages using either fixed effects (FE) or random effects (RE) weights.12 The weight

9Since the original datasets used in the respective primary studies are not available, I omit the co-

movement between the estimated coefficients from the formula for SE(β) by assuming the covariances

to be zero.
10If the interacted variable is a binary variable, x̄ is set equal to 1 to compute the marginal effect for the

respective subpopulation indicated.
11As the original datasets used in the respective primary studies were not available, I omit the co-

movement between the estimated coefficients from the formula for SE(β) by assuming the covariances

to be zero.
12The traditional FE and RE estimator are estimated by the STATA command ”meta reg”.
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should reflect the quality of the estimate. More precise estimates with smaller standard errors

are likely better estimates of the true effect. Following the meta-analytic literature, I primarily

use precision as quality measure of the reported coefficients. For each PCCis, the associated

standard error of the effect size is calculated according to (Stanley and Doucouliagos, 2012, p.

25):

SEPCCis =

√
1− PCC2

is

dfis
=

PCCis

tis
(4)

where tis is the t-value of estimate i in study s and thus identical to the t-value of the respective

PCC. The precision weight is then equal to the inverse of the estimator’s standard error:

FE1 =
1

SEPCCis

(5)

Assigning these precision weights to primary estimates to summarize an overall effect is known

as the fixed effect estimator (FE) in MRA (Stanley and Doucouliagos, 2012, p. 46).13 The

assumption underlying the FE estimator is that all primary estimates are drawn from a single

population and as a result measure one true effect of robots on productivity. The primary

estimates (PCCis) sampled from studies i = 1, ..., N are assumed to deviate from the true effect

only due to sampling error. However, primary studies use different populations and diverse

econometric methods. Thus, assuming a uniform effect may be incorrect. The random effects

estimator (RE), in contrast, explicitly allows for heterogeneity of primary estimates beyond

sampling error; i.e., each study can have a different underlying true effect, randomly drawn

from a common distribution with a constant heterogeneity variance of τ2. The RE assumes

additive error variances and the weights additionally account for between-study heterogeneity

(Duan et al., 2020; Stanley and Doucouliagos, 2012, pp. 46-47):

RE1 =
1√

SE2
PCCis

+ τ2
(6)

While information on SEPCC is available in primary studies, τ2 must be estimated from the

meta-dataset (Feld and Heckemeyer, 2011).14 A larger τ2 indicates a stronger degree of het-

erogeneity between primary studies. Including τ2 in the weighting scheme, reduces the relative

impact of the precision weight and creates a more uniform weighting scheme.

While the traditional FE estimator imposes a heterogeneity variance of zero, the traditional

RE estimator forces the heterogeneity variance to be constant and independent of the sampling

errors (Stanley et al., 2023). Stanley and Doucouliagos (2015) and Stanley and Doucouliagos

(2017) argue that the most appropriate meta-analytic estimator is neither fixed nor random.

13This FE estimator should not be mistaken for a panel-fixed effect estimator in econometric terms. The

intuition behind it is that a more precise estimate (as measured by a small standard error) allows a

smaller estimated effect to retain a statistically significant coefficient (Jurkat et al., 2023). Therefore,

more weight is attributed to PCCs with a higher precision and a lower standard error.
14This is done by means of the restricted maximum-likelihood (REML) estimator (Raudenbush, 2009).
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Instead, they recommend an unrestricted WLS (UWLS) estimator by using precision weights in

the following basic regression:

PCCis = µ+ ϵis (7)

where, in the absence of any bias, µ represents the overall true effect, and the error term

ϵis ∼ N(0, σ2
ϵis) describes the primary sampling error.15 This leads to identical point estimates,

as obtained from the traditional FE estimator. However, the UWLS standard errors and confi-

dence intervals differ from FE because the UWLS heterogeneity variance is proportional to the

sampling error variance and thereby, like RE, adjusts for heterogeneity (Stanley et al., 2023).

Analogously, Equation 7 can be estimated by WLS using RE1 weights to obtain the UWLS

version of RE1, as done by Hong and Reed (2024). In the next section, I will present estimates

for both the traditional FE1 and RE1 estimators and their UWLS counterparts to make the

potential impact on statistical inference transparent.

As typically done in economic meta-studies, I include all estimates provided by a primary study

if they fit the selection criteria.16 As mentioned in Section 3, the distribution of the number of

estimates per study is highly right-skewed. To avoid an overinflated influence of a few studies

with a large number of estimates, I employ FE and RE weights, additionally adjusting for the

number of estimates per study:

FE2 =
1

SEPCCis ·
√
ni∈s

(8)

RE2 =
1√

SE2
PCCis

+ τ2 · √ni∈s
(9)

where n is the number of estimates of study s. In doing so, I assign equal weight to stud-

ies rather than to estimates for a given precision (Duan et al., 2020). Multiple estimates per

study further raise the concern of study and author dependence. Estimates from one primary

study usually rely on the same data and similar econometric techniques. This could undermine

the basic assumption of regression analysis that the error terms are independently and identi-

cally distributed. Therefore, I always use robust standard errors clustered at the study-level to

address within-study dependence (Stanley and Doucouliagos, 2012, p. 71). Moreover, in the

15Measuring (7) by OLS is not appropriate since the error term in Equation (7) is a function of the

sampling error and therefore heteroskedastic, i.e., not independently and identically distributed (Stanley

and Doucouliagos, 2012, p. 61). Thus, Equation (7) must be estimated by weighted least squares (WLS)

to receive unbiased, consistent and efficient estimates.
16In other disciplines, it is often argued that only one estimate per study should enter the meta-analysis to

avoid study dependence. This could be achieved by selecting the ”best estimate” per study as preferred

by the authors of the primary study or by the meta-analyst; alternatively, one could use an average

effect size per study. In both cases, this would prevent leveraging within-study variation, leading to a

loss of information that impedes detecting the drivers of heterogeneity. Moreover, results could suffer

from an arbitrary selection of estimates with the most favorable sign or effect size. Choosing only one

estimate per study is especially misleading if studies provide estimates for several subpopulations. See

Stanley and Doucouliagos (2012, pp. 32-33) for a discussion of this issue.
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multivariate MRA my moderator matrix will capture varying estimation characteristics used

and subpopulations examined within a given primary study. Like before, FE2 and RE2 will be

used as analytical weights in a WLS regression of Equation (7) to obtain their corresponding

UWLS versions.

Applying alternate weighting schemes requires some judgment of what I deem preferable. In

view of the highly right-skewed distribution of the number of estimates per study, it is necessary

to adjust the weighting scheme for the number of estimates per study to avoid an inflated impact

of a few studies with a high number of estimates. Thus, FE2 and RE2 are preferred over FE1

and RE1. There are particular concerns that RE is biased in the presence of publication selec-

tion, as the random effects might be correlated with the standard error, as shown in simulation

studies (Stanley and Doucouliagos, 2012, p. 82-84; Stanley and Doucouliagos, 2015; Stanley

and Doucouliagos, 2017; Stanley et al., 2023; Henmi and Copas, 2010; Poole and Greenland,

1999). As I obtain strong evidence for publication bias, I prefer using FE2 weights in a WLS

regression. This also avoids the additional uncertainty involved in estimating τ2.

5 Overall mean effect and publication bias

A simple vote counting based on the conventional 5% significance level reveals that 57% of

the estimates show a positive and statistically significant effect, while 3% report a significantly

negative effect. Forty percent are statistically insignificant, with 29% showing a positive sign

and 11% with a negative sign. However, as described by Stanley and Doucouliagos (2012, pp.

43-45), the loss of information involved in the categorical approach of vote counting can be

misleading. Therefore, I calculate further summary measures of the effect size and formally test

for publication selection bias in the literature on the productivity effects of robots.

Table 2 presents summary measures for the PCCs computed for all primary estimates collected,

while Figure 2 demonstrates the frequency distribution of PCCs by means of a histogram and a

Kernel density estimator.17 All estimators for the overall mean effect of robots on productivity

are statistically significant. In terms of economic significance, only the unweighted mean and the

RE estimators indicate a small positive effect slightly above the threshold of 0.07 (Doucouliagos,

2011). Comparing the traditional FE and RE estimates with their UWLS counterparts (UWLS

FE1 and UWLS RE2, respectively), shows a substantial increase in the standard errors of

UWLS due to their adjustment for heterogeneity as well as clustering at study level. Statistical

inference based on UWLS is thus significantly more conservative. With an overall effect size of

0.01, both FE1 and FE2 suggest an effect that is close to zero. This is in line with the highest

frequencies of PCCs being centered around small positive values as shown in Figure 2. The

17When aggregating the effect sizes from all primary studies, 12 primary estimates are dropped to avoid

double counting. These estimates come from Almeida and Sequeira (2024), who report 12 estimates

with cluster-robust standard errors in addition to only robust standard errors. These estimates will be

included in the multivariate MRA of Section 6 as the moderator variable secl captures whether primary

estimates are based on clustered standard errors.
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Table 2: Summary measures of PCCs for the effect of robots on productivity

Obs. Estimate SE 95% CI

Mean 1801 0.0946 0.0149 [0.0650, 0.1242]

FE 1801 0.0114 0.0001 [0.0111, 0.0116]

UWLS FE1 1801 0.0114 0.0036 [0.0042, 0.0186]

UWLS FE2 1801 0.0108 0.0019 [0.0071, 0.0145]

RE 1801 0.0901 0.0032 [0.0839, 0.0962]

UWLS RE1 1801 0.0901 0.0114 [0.0675, 0.1126]

UWLS RE2 1801 0.0736 0.0121 [0.0494, 0.0977]

Note: Standard errors are clustered at study level, except for

FE and RE.

substantial decline in the mean effect caused by assigning larger weights to more precise studies,

may point to a publication selection bias. Thus, no reliable inference can be drawn from such

summary measures. In case of publication selection, all averages, weighted or not, can be biased.

Furthermore, under systematic heterogeneity, any measure of average effect size may blur the

picture of the economic phenomenon under research. To capture systematic heterogeneity, I will

include my moderator matrix in Section 6.

Publication selection describes a process of choosing research results according to statistical

significance or compliance with conventional theories (Stanley and Doucouliagos, 2012, pp. 51).

Many existing meta-analyses in economics show evidence for a publication bias (Doucouliagos

and Stanley, 2013, Ioannidis et al., 2017), including meta-studies related to the determinants of

economic growth (e.g., Havranek and Irsova, 2011; Gunby et al., 2017) and, in particular, on the

impact of ICT on productivity (Polák, 2017; Stanley et al., 2018). Thus, it is essential to for-

mally test for and correct publication selection bias in the literature on the productivity effects

of industrial robots. Usually, economists assume that the adoption of advanced technologies

boosts productivity and economic growth, and this belief is supported by many well-published

theoretical and empirical articles (e.g., Romer, 1990; Parente and Prescott, 1994; Carlaw and

Lipsey, 2003; Acemoglu and Restrepo, 2020; DeCanio, 2016). As a result, researchers might

selectively report positive effects of robots on productivity because they expect such findings to

align with the prevailing view and, therefore, be more likely to be published.

The presence of a publication bias can be visually inspected by a so-called funnel plot in Figure

3: a scatterplot of the effect sizes (PCCs, x-axis) against their precision (inverse of the stan-

dard error of PCCs, y-axis). Without publication bias (and between-study heterogeneity), the

primary estimates should be distributed symmetrically around the overall effect size (using FE2

and RE2 in Figure 3) as the sampling error is random. The typical funnel shape emerges from

the measure of precision on the y-axis. Imprecise estimates at the bottom of the graph are widely

dispersed because they have larger standard errors. More precise estimates with lower standard

errors, shown in the upper part of the illustration, by contrast, are more compactly distributed.

21



(a) Histogram of PCCs

(b) Kernel density of PCCs

Figure 2: Distribution of PCCs

The funnel plot shown in Figure 3 is quite asymmetric with more imprecisely estimated PCCs

to the right of the overall effects as measured by FE2 and RE2. The most precise estimates show

an effect size close to zero, in line with the estimators FE1 and FE2 in Table 2. This points to a

positive publication selection bias. Furthermore, I plot a Kernel density estimate of the t-values

reported in the primary literature. As shown in Figure 4, the density peaks just above the cutoff

value for the 5% significance level (t-value = 1.96, dashed line). This pattern strongly suggests

p-hacking, i.e., selecting estimates for their statistical significance (Andrews and Kasy, 2019).

In case of publication selection bias, the reported effect size is correlated with its standard error.

To formally test for publication bias, I perform the so-called funnel-asymmetry test (FAT) by

estimating the following regression (also called Egger’s regression (Egger et al., 1997):

PCCis = β0 + β1SEPCCis + ϵis (10)
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Figure 3: Funnel plot of PCCs (N = 1801, from 81 studies).

where PCC and SEPCC are the effect size and its associated standard error of estimate i in

study s as previously defined, and ϵis is the regression error term. The coefficient β0 measures

the true empirical effect corrected for potential publication bias, and testing for its statistical

significance is referred to as precision-effect test (PET). Coefficient β1 estimates the direction and

magnitude of publication bias (FAT). Equation (10) exhibits heteroskedasticity by construction

because the independent variable is the standard deviation of the dependent variable. Therefore,

it must be estimated by WLS using the weights given in Equations (5), (6),(8), and (9).

Table 3 presents the FAT-PET results. I find strong evidence for publication selection. The

FE estimators point to a ”severe” magnitude of selectivity (β1 > 2) according to the practi-

cal guidance of Doucouliagos and Stanley (2013). This finding is robust to the ”Meta-Analysis

Instrumental Variable Estimator” (MAIVE) as suggested by Irsova et al. (2024). MAIVE instru-

ments the reported variance (SE2
pcc) by the inverse of sample size to treat potential endogeneity

coming from spurious precision due to p-hacking in primary estimations. This reflects that

the authors of primary studies may not only exaggerate effect sizes (e.g., by changing control

variables) to achieve statistical significance but also select for smaller standard errors, for in-

stance, by choosing different clustering or bootstrapping approaches (Irsova et al., 2024). Only

the traditional RE estimator and its UWLS counterpart show weaker evidence for publication

selection; however, these estimators do not adjust for the number of estimates per study and,

thus, appear less reliable. When adjusting for the number of estimates per study, UWLS RE2

indicates a substantial magnitude of selectivity (1 < β1 < 2) according to the practical guid-

ance provided by Doucouliagos and Stanley (2013). The “true” effect corrected for publication

bias shows statistical significance in 5 out of 7 specifications. However, the effect beyond bias

always lacks economic significance (PET), with estimates well below the threshold of 0.07. This
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Figure 4: Kernel density estimate of t-values (N = 1801, from 81 studies).

Table 3: FAT-PET

(1) (2) (3) (4) (5) (6) (7)

FE1 UWLS FE1 UWLS FE2 RE1 UWLS RE1 UWLS RE2 MAIVE

Publication bias (β1) 2.9353*** 2.9353*** 2.1973*** .9145*** .9145 1.8707*** 2.321***

(.0263) (.679) (.3864) (.0857) (.5825) (.4641) (.5277)

True effect (β0) .0043*** .0043 .0078*** .0577*** .0577*** .0216* .0061

(.0001) (.0027) (.0026) (.0043) (.0195) (.0118) (.0175)

Observations 1801 1801 1801 1801 1801 1801 1801

No. of studies 81 81 81 81 81 81 81

Notes: Standard errors are in parentheses. They are clustered at study level, except for columns (1) and (4). The

weights used in the WLS estimation are indicated in the column header. ∗∗∗p < .01,∗∗p < .05, ∗p < .1

suggests that industrial robotization has, so far, had only a marginal effect on productivity.

These findings are confirmed by non-linear techniques correcting for publication bias in Table

4.18 Using the squared standard error of PCC in Equation (10) is called ”precision effect

estimate with standard error” (PEESE). MAIVE-PEESE refers to the PEESE version where

SE2
pcc is instrumented by the inverse of the sample size (Irsova et al., 2024). Both estimators

suggest a statistically significant ”true” effect that, however, lacks economic significance. WAAP

means ”weighted average of the adequately powered”. This estimator employs a UWLS weighted

average using FE1 weights that is calculated only on the adequately powered estimates (Ioannidis

et al., 2017). Adequate power in social science research has been conventionally set at 80% or

larger. This corresponds to a probability of a Type II error which is not larger than four times the

18I also employed the ”endogenous kink” model of Bom and Rachinger (2019). This model, however,

reduces to UWLS FE1, i.e., column (2) of Table 3.
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probability of the Type I error. As explained by Ioannidis et al. (2017), this implies the following

relationship between the estimate of the ”true” effect (β0) and its standard error (SEPCC):

SEPCCis <= |β0|/2.8 (11)

”Top 10%” is the unweighted average among the estimates in the top decile of precision. Both

WAAP and ”Top 10%” point to a marginal impact of robotization on productivity. The evi-

dence for publication bias and a negligible effect beyond publication bias is also robust across

several subsets of primary estimates. As shown in Table 5, it holds among estimates that treat

endogeneity, i.e., estimates that achieve a score of at least 3 or 4 on the MSMS, as well as only

among IV estimates (MSMS score of 4).19 The pattern of publication bias is also evident for all

productivity measures employed in the primary literature (see Table 6). It remains consistent

when focusing solely on estimates in published articles that fall in the top quartile of the SJR

index in my meta-dataset (i.e., SJR >= 2.063; columns (1) and (2) of Table 7) as well as for

estimates at the firm level (columns (3) and (4) of Table 7).

Focusing on the subset of primary estimates with a log-log specification allows the use of elastic-

ities instead of PCCs as effect size. This means that the reported coefficient and its associated

standard error can be directly used in the MRA (Stanley and Doucouliagos, 2012, pp. 26). The

results are shown in columns (5) and (6) of Table 7. Using elasticities as an alternative effect

size measure still provides evidence of a positive publication selection bias and only a marginally

positive effect of robots on productivity beyond publication bias.

Examining publication bias and the ”true” effect beyond that bias across several subsets of

primary estimates leads into the heterogeneity analysis. The very homogeneous findings with

respect to the treatment of endogeneity, different productivity measures, journal quality, level

of analysis, and elasticity specifications, suggests that the moderator variables capturing these

research dimensions (msms, tfp, gtfp, sjr, firm lev, log log) are not important drivers of hetero-

geneity in the primary literature. This assumption will be checked in the following section by

means of a multivariate MRA framework.

19IV estimates that suffer from a weak instrument are excluded. Moreover, IV estimates using the

”reaching & handling” instrument proposed by Graetz and Michaels (2018) are excluded due to a

violation of the monotonicity assumption as shown by Bekhtiar et al. (2024).
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Table 4: Non-linear techniques correcting for publication bias

(1) (2) (3) (4)

PEESE MAIVE-PEESE WAAP Top 10%

SE2
pcc 14.9539* 9.3801

(8.6355) (5.6512)

True effect (β0) .011*** .0421** .0069*** .0078**

(.0034) (.0176) (.0019) (.0031)

Observations 1801 1801 149 181

No. of studies 81 81 14 19

Notes: Standard errors clustered at study level are in parentheses.
∗∗∗p < .01,∗∗p < .05, ∗p < .1

Table 5: FAT-PET in the subset of estimates that treat endogeneity

MSMS IV estimates

(1) (2) (3) (4)

UWLS FE2 UWLS RE2 UWLS FE2 UWLS RE2

Publication bias (β1) 2.7541*** 2.991*** 2.5228*** 1.5309**

(.4265) (.6953) (.5661) (.7516)

True effect (β0) .0048** .0045 .0069** .0245*

(.0023) (.0105) (.0027) (.0134)

Observations 659 659 254 254

No. of studies 58 58 34 34

Notes: Standard errors clustered at study level are in parentheses. ∗∗∗p < .01,∗∗p <

.05, ∗p < .1

Table 6: FAT-PET by productivity measures

Labor productivity TFP GTFP

(1) (2) (3) (4) (5) (6)

UWLS FE2 UWLS RE2 UWLS FE2 UWLS RE2 UWLS FE2 UWLS RE2

Publication bias (β1) 2.243*** 1.7742*** 2.3376*** 2.3652** 3.2825** 2.1886

(.6172) (.4789) (.5004) (1.0244) (1.2979) (1.3431)

True effect (β0) .0031** .0167 .0088*** .0172 -.0167 .017

(.0014) (.0225) (.0026) (.0105) (.0328) (.0361)

Observations 1170 1170 496 496 135 135

No. of studies 39 39 42 42 12 12

Notes: Standard errors clustered at study level are in parentheses. ∗∗∗p < .01,∗∗p < .05, ∗p < .1
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Table 7: FAT-PET for subsets

Top 25% SJR Firm-level estimates Elasticities

(1) (2) (3) (4) (5) (6)

UWLS FE2 UWLS RE2 UWLS FE2 UWLS RE2 UWLS FE2 UWLS RE2

Publication bias (β1) 2.648*** 2.0822*** 1.7819*** 1.6013*** 3.2269*** 1.334*

(.3871) (.2445) (.4705) (.4397) (1.1629) (.7157)

True effect (β0) .0031* .0122* .0083*** .0103*** .0031*** .0291*

(.0016) (.0063) (.0026) (.0023) (.0006) (.0159)

Observations 330 330 389 389 975 975

No. of studies 17 17 41 41 30 30

Notes: Standard errors clustered at study level are in parentheses. ∗∗∗p < .01,∗∗p < .05, ∗p < .1

6 Drivers of heterogeneity in the primary literature

6.1 Multivariate MRA-model

A univariate regression, as applied in Eq. 10, may result in biased estimates since potential

drivers of systematic heterogeneity are ignored. For example, a specific method chosen by the

authors of primary studies may affect both the standard error and the effect size. In such cases,

the standard error as explanatory variable will be correlated with the error term, resulting in

a biased estimate of β1 (Havránek, 2015). Hence, I add a matrix of moderator variables, as

described in Section 3.2, to Eq. (10) and estimate the following multivariate MRA model to

identify the drivers of heterogeneity in the primary literature:

PCCis = β0 + β1SEPCCis +
∑

βkZkis + ϵis (12)

for estimate i in study s, where k represents the number of moderator variables, βk is the coef-

ficient of the corresponding moderator variable, and ϵis denotes the error term. My moderator

matrix Z is composed of 38 variables to account for as many research characteristics as possible

and alleviate omitted variable bias concerns. In MRA, the number of moderator variables is

usually reduced by means of a variable selection procedure to mitigate potential multicollinearity

(Stanley and Doucouliagos, 2012, p. 91). I therefore follow Stanley et al. (2018)’s approach in

their meta-analysis on the growth effects of ICT and employ a general-to-specific (GTS) proce-

dure that sequentially removes the variables with the largest p-value from the moderator matrix

until all p-values are below or equal to 0.05.20 The next subsection will present the drivers of

heterogeneity identified by this procedure.

6.2 Estimated effects for the drivers of heterogeneity

Table 8 shows the results of my multivariate MRA. Employing the GTS approach for the WLS

regression with FE2 weights results in a selection of 12 moderator variables that are drivers

20The STATA command stepwise is used with standard errors clustered at study level.
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Table 8: Multivariate MRA

UWLS FE2 UWLS RE2

(1) (2) (3) (4) (5) (6)

Full model GTS No GTFP No marginal effects Full model GTS

SEPCC 2.9981*** 2.8722*** 2.8572*** 2.9792*** 1.6** 1.8465***

(.3779) (.4042) (.4286) (.4246) (.6311) (.4585)

c num -.0006 -.0011*** -.0011*** -.0011*** -.001

(.0005) (.0003) (.0003) (.0003) (.0007)

dev country .0103* .0067*** .0067*** .0066*** .0285

(.0057) (.0023) (.0023) (.0022) (.0278)

period 2007 .0177*** .0156*** .0156*** .0156*** .0236

(.0036) (.0047) (.0047) (.0047) (.0229)

lc omit .0171 .0083*** .0083*** .0082*** .0686*

(.0107) (.0025) (.0025) (.0025) (.035)

large -.1569*** -.1392*** -.1384*** -.1456*** -.1067** -.1108**

(.0303) (.0335) (.0346) (.0346) (.0424) (.0435)

r quartile 1 -.2177*** -.2231*** -.2035*** -.2419*** -.1901*** -.1839***

(.0251) (.025) (.0232) (.0266) (.0318) (.0229)

secondary sec -.0295 -.0203** -.0187** -.0194** -.0435 -.0529**

(.0188) (.0078) (.0074) (.0077) (.0313) (.0235)

non ifr -.0168*** -.0142*** -.0141*** -.0142*** -.0138

(.0046) (.0042) (.0042) (.0042) (.0238)

green tfp -.0363 -.0367** -.0345** -.0419

(.0228) (.0142) (.0153) (.0411)

growth .0108 .0079** .0085** .0069* -.0039

(.0075) (.0039) (.004) (.0039) (.0308)

quant reg .0845** .0577** .0363 .0771** -.0133

(.0352) (.0253) (.0223) (.0296) (.0412)

marginal comp -.0233** -.0195*** -.0166** -.0549*** -.062**

(.0113) (.0068) (.0063) (.0186) (.0274)

cons .005 .0126 .0112 .012 .0675 .0637***

(.0249) (.0081) (.0075) (.0079) (.0862) (.0237)

Observations 1813 1813 1678 1602 1813 1813

No. of studies 81 81 70 78 81 81

R-squared .4814 .4334 .4452 .4583 .3363 .2368

Notes: Standard errors clustered at study level are in parentheses. Columns (1)-(4) employ the UWLS

FE2 estimator, columns (5) and (6) UWLS RE2. GTS refers to the moderator variables selected in

the general-to-specific procedure. Only the moderators selected in UWLS FE2 are shown. Column (3)

excludes primary estimates with GTFP as dependent variable. Column (4) excludes primary estimates

where marginal effects had to be computed. ∗∗∗p < .01,∗∗p < .05, ∗p < .1
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of heterogeneity at least at the 5% significance level. Several estimated coefficients of these

moderators point to diminishing productivity returns to robotization. First, the coefficient of

period 2007 suggests that primary estimates with a data midpoint before year 2008 are some-

what higher than estimates for more recent periods. Robot adoption and the technological

progress involved in robotic systems, however, have continued or even accelerated since 2008

(IFR, 2023, pp. 54). The growing number of industrial robots, therefore, had a decreasing

impact on productivity over time. Second, estimates focusing on the secondary sector exhibit

smaller productivity effects from robotization, although industrial robots are primarily used in

manufacturing industries (IFR, 2023, pp. 74; Fernández-Maćıas et al., 2021). Third, and in the

same vein as the second point, large companies show significantly smaller effects, even though

robot adoption is concentrated in larger companies, as shown by Deng et al. (2024), Zolas et

al. (2021), and Acemoglu et al. (2022). Moreover, developing and emerging countries tend to

benefit more from robot adoption relative to advanced economies. This may be attributed to

a higher scope for productivity improvements inherent to their catch-up process compared to

advanced economies. It could also be interpreted as a further indicator of diminishing returns

to robot adoption, as advanced economies are the front-runners in robotization (IFR, 2023, pp.

74).

In addition to diminishing returns, there is also evidence for adjustment costs at low levels

of robot adoption. The coefficient of the moderator variable r quartile 1 suggests significantly

smaller productivity effects from robot adoption for users in the bottom quartile of robotization

intensity. In this context, it must also be considered that estimates based on a quantile regres-

sion (quant reg) are associated with somewhat more positive findings on average.

The negative coefficient for green tfp suggests that the impact of robot use on GTFP is lower

compared to labor productivity and TFP. This means that additionally accounting for environ-

mental outcomes, such as emissions and waste, can reduce the productivity effect. That is in

line with a rebound effect associated with robot adoption: despite potentially reduced scrap

rates and improved energy efficiency through high precision robots, an expansion of production

might weaken or even outweigh any beneficial sustainability effects (Luan et al., 2022; Zhang

et al., 2022). As robustness check, all primary estimates with GTFP as dependent variables are

dropped in column (3) of Table 8. This leaves my findings largely unchanged.

With regard to control variables, I find some evidence that primary estimations omitting a con-

trol variable for labor costs (lc omit) tend to slightly overestimate the productivity effects from

robotization. This omitted variable bias is in line with a positive relationship between labor

costs and robot adoption (Jung and Lim, 2020; Fan et al., 2021). If labor costs and productivity

are also positively correlated, this results in a positive omitted variable bias.

Furthermore, I find some evidence for data dependence: estimates that are not based on the

most frequently used IFR dataset tend to result in somewhat smaller productivity effects. This

may be attributed to less clear-cut definitions of industrial robots in firm-level surveys and trade

data. Moreover, authors applying data on robot adoption from firm-level surveys are typically

reliant on a binary indicator for robot usage in surveyed firms.
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Lastly, the coefficient for c num implies a slightly dampening influence of including more coun-

tries in the sample of the primary estimation, while the coefficient of growth suggests that

specifications in terms of growth rates or changes in productivity may result in slightly higher

estimates. The coefficient of marginal comp indicates lower effect sizes among estimates where

a marginal effect had to be computed due to an interaction or quadratic term for the robot

variable in the primary estimation following Equations (2) and (3). To rule out a distorting

influence of these marginal effects, I exclude them from my estimation in column (4) of Table 8.

This leaves my findings unchanged.

Apart from the drivers of heterogeneity, it is important to mention, that the evidence for a

”severe” (or at least ”substantial”) positive publication selection bias remains strong in the mul-

tivariate MRA, as visible in the coefficient of SEPCC (Doucouliagos and Stanley, 2013). The

constant ( cons) of my multivariate MRA reflects the mean effect when all moderator variables

and SEPCC are equal to zero and thus corresponds to the mean effect for the reference categories

beyond publication bias. As an estimation with zero countries does not exist, I need to adjust

the constant for the average number of countries (= 6.97) used among the primary estimates.21

Using the coefficient estimates from the selected and preferred specification in column (2) of

Table 8, results in an estimated mean effect of 0.005 that is statistically insignificant. Other

moderator variables that may be deemed important for quantifying a ”best practice estimate”,

i.e., a treatment of endogeneity (msms), using clustered standard errors (secl), or estimations

at the firm level (firm lev), are neither statistically significant in the full model of column (1)

nor selected by the GTS procedure in column (2) of Table 8. Thus, they are assumed to have no

relevant influence on the estimated mean effect. Primary estimations that address endogeneity

do not obtain results that are different to estimates without any adjustment for endogeneity.

This suggests either that endogeneity issues are of minor relevance in the primary literature or

that the econometric methods used to treat endogeneity are insufficient. To further illustrate

the influence of the drivers of heterogeneity, Figure 5 shows the estimated mean effects and the

associated 95% confidence intervals for several subgroups of primary estimates. These effects

are computed from the following formula:

Meta effect = β0 + β1 · 0 + βc num · 6.97 + βk (13)

where βk is the coefficient of the relevant moderator variable(s) in column (2) of Table 8 for

the respective subgroup. The subgroup ”Low robot intensity” uses the coefficients of both

r quartile 1 and quant reg as the effects for different quartiles of robot adoption are mainly

estimated by quantile regressions. Figure 5 shows that only the meta-effect for primary estimates

with a data midpoint before year 2008 show a statistically significant effect with a positive sign

whose magnitude is, however, well below the threshold of economic significance. The meta-

effects for the specification in growth rates or productivity changes, for developing or emerging

21In line with the WLS weighting scheme adjusted for the number of estimates per study, I use a weighted

average for the number of countries, with the inverse of the number of estimates per study as weights.
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Figure 5: Heterogeneous meta effects

countries, and for estimations based on non-IFR data are not statistically significant at the 5%

level. Very small negative effects are found for estimates that focus solely on the secondary sector,

as well as for estimates that use GTFP as the dependent variable. Somewhat stronger negative

effects are found for estimates of large enterprises and for the bottom quartile of robotization

intensity.22 Nevertheless, the strength of these effects is still low (Doucouliagos, 2011, Stanley

et al., 2018).

22All the heterogeneous meta-effects, except for ”Data midpoint before year 2008”, are valid for data

midpoints after 2007. For earlier time periods, i.e., if period 2007 is additionally assumed to be equal

to 1, they would be slightly higher.
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7 Robustness checks

7.1 Alternative estimators

For the sake of robustness, I implement further meta-analytic estimators. First, Stanley et al.

(2024) discuss that meta-analyses of PCCs may be biased, especially if primary studies rely

on small samples (n < 200). To reduce this potential bias, they propose an adjustment to the

degrees of freedom in the calculation of PCCs by adding 3 and employing UWLS, i.e.:

PCCadjis =
tis√

t2is + dfis + 3
(14)

This meta-analytic estimator is called UWLS+3. Stanley et al. (2024) admit that this ad-

justment may be not a ”notable factor” in economic meta-analyses where primary studies are

econometric studies which typically involve at least hundreds of observations. Thus, I expect

that the results from UWLS+3 will be in line with the previously presented findings.

Second, Hong and Reed (2024) suggest a ”smooth estimator” which may perform better than

the previously used UWLS estimators based on Equations (1) and (4). Their adjustment affects

the weighting scheme by using the meta-analytic sample mean of PCCs in the formula for the

standard error of PCC:

SEPCCis =

√
1− PCCis

2

dfis
(15)

Third, a drawback of the PCC is that its distribution is not normal when its value is close to

−1 and +1 (Stanley and Doucouliagos, 2012, p. 25). To address this issue, I follow van Aert

(2023) and apply a Fisher’s z transformation to PCCs:

z =
1

2
× ln

(
1 + PCCis

1− PCCis

)
(16)

The sampling variance of the Fisher’s z-transformed PCC is equal to:

s2 =
1

N − 3− (k − 1)
=

1

dfis − 1
(17)

This Fisher’s z-transformation also addresses the issue that the sampling variance (and standard

error) of the PCC is a function of the PCC itself (van Aert, 2023).

Fourth, I follow Picchio and Ubaldi (2024) and apply a winsorization of the effect size variables

at the 5th and 95th percentiles of their distributions; i.e., t-statistics and degrees of freedom

below the 5th percentile and above the 95th percentile are replaced with the values of the 5th

and 95th percentiles, respectively. I then compute the PCCs using the winsorized t-statistics

and degrees of freedom. This robustness check controls for an undue influence of extreme values

in the effect size variables.
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Table 9: FAT-PET with alternative estimators

UWLS+3 Smooth estimator Fisher’s z Winsorization

(1) (2) (3) (4) (5) (6) (7) (8)

FE2 RE2 FE2 RE2 FE2 RE2 FE2 RE2

Publication bias (β1) 2.1967*** 1.8852*** 2.0297*** 1.8199*** 2.1037*** 2.1246*** 2.4109*** 2.2048***

(.3865) (.4632) (.3662) (.42) (.3749) (.4565) (.3204) (.4163)

True effect (β0) .0078*** .021* .008*** .0171* .0079*** .0121 .0074*** .0143**

(.0026) (.0116) (.0025) (.0097) (.0025) (.0106) (.0024) (.0071)

Observations 1801 1801 1801 1801 1801 1801 1801 1801

Notes: Standard errors clustered at study level are in parentheses. The respective estimator and weights used in the

unrestricted WLS estimation are indicated in the column header. ∗∗∗p < .01,∗∗p < .05, ∗p < .1

7.1.1 Publication bias

Table 9 shows that my FAT-PET findings reported in Section 5 are robust to the alternative

meta-analytic estimators presented in Section 7.1. There is still clear evidence for a substantial

to severe publication selection bias in favor of positive results and little evidence for a meaningful

effect of robots on productivity beyond publication bias.

7.1.2 Drivers of heterogeneity

For the sake of robustness, I also implement the alternative meta-analytic estimators for the

multivariate MRA with the 12 selected moderator variables from Section 6.2. Additionally, I

employ WLS with precision weights only (i.e., not adjusted for the number of estimates per

study) and MAIVE with an instrumented SEPCC . Table 10 shows the results of these robust-

ness checks. A positive publication selection bias with a substantial to severe magnitude is still

evident. Likewise, the main drivers of heterogeneity identified in Section 6.2 are robust to the

alternative meta-analytic estimators: evidence is still found for diminishing returns to roboti-

zation, as well as adjustment costs at low levels of robot adoption. As before, the magnitude

of the estimated regression coefficients and the constant term is rather small in terms of PCCs

(Doucouliagos, 2011).

7.2 Bayesian Model Averaging

To address model uncertainty and multicollinearity in light of the 38 moderator variables as

potential drivers of heterogeneity, I follow several recent meta-analyses, as well as the guidelines

from Irsova et al. (2023), and employ Bayesian model averaging (BMA) (Havranek et al., 2017;

Havranek et al., 2018b; Havranek et al., 2018a; Cazachevici et al., 2020; Duan et al., 2020;

Zigraiova et al., 2021; Iwasaki and Kočenda, 2024; Malovaná et al., 2024). The sequential t-

testing involved in the stepwise GTS procedure implemented in Section 6.2 risks excluding an

important variable at some step because it does not take into account the conditionality of the

results on the previous t-tests (Zigraiova et al., 2021). BMA, instead, does not select a specific
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Table 10: Multivariate MRA with alternative estimators

Smooth Fisher’s z Winsorized

(1) (2) (3) (4) (5) (6)

UWLS FE1 MAIVE UWLS+3 FE2 UWLS FE2 UWLS FE2 UWLS FE2

SEPCC 2.1131*** 1.8008*** 2.8719*** 2.7047*** 2.793*** 2.8664***

(.4465) (.4465) (.4045) (.3863) (.394) (.3376)

dev country .0016 .0044 .0067*** .0066*** .0067*** .0083***

(.0028) (.0061) (.0023) (.0023) (.0023) (.003)

period 2007 .0159*** .0116 .0156*** .0154*** .0155*** .0093**

(.004) (.0092) (.0047) (.0048) (.0048) (.0038)

large -.1107** -.0925** -.1385*** -.1285*** -.1353*** -.1467***

(.0429) (.0386) (.0334) (.0324) (.033) (.0299)

secondary sec -.0228*** -.0291*** -.0202** -.0191*** -.019*** -.0128*

(.0086) (.0101) (.0078) (.0072) (.0072) (.0071)

r quartile 1 -.2171*** -.2003*** -.2225*** -.2057*** -.2132*** -.1611***

(.006) (.0054) (.0251) (.0215) (.0226) (.0123)

lc omit .0049*** .0103** .0083*** .008*** .0081*** .0073***

(.0014) (.0046) (.0025) (.0024) (.0024) (.0026)

non ifr -.018*** -.0241*** -.0142*** -.014*** -.0141*** -.0072

(.0028) (.0083) (.0042) (.0042) (.0042) (.0046)

green tfp -.0131 -.0088 -.0367** -.0355** -.0364** -.0341**

(.0125) (.0121) (.0142) (.0136) (.0138) (.0137)

growth .0032 -.0136* .0078** .0078* .0078* .0055

(.004) (.0075) (.0039) (.004) (.004) (.0042)

quant reg .0724*** .0483*** .0577** .0447** .0493** .0237**

(.0137) (.0158) (.0253) (.0188) (.021) (.0102)

c num -.002*** -.0014* -.0011*** -.001*** -.0011*** -.0007**

(.0008) (.0008) (.0003) (.0003) (.0003) (.0003)

marginal comp -.0308* -.0451** -.0195*** -.0186*** -.0193*** -.0199***

(.0176) (.0184) (.0069) (.0064) (.0066) (.0066)

cons .0269*** .0341** .0126 .012 .0117 .0058

(.0092) (.0153) (.0081) (.0074) (.0075) (.0076)

Observations 1813 1813 1813 1813 1813 1813

R-squared .4078 .3109 .4333 .4575 .4454 .4045

Notes: Standard errors clustered at study level are in parentheses. The respective estimator and weights

used in the unrestricted WLS estimation are indicated in the column header. ∗∗∗p < .01,∗∗p < .05,
∗p < .1
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model but estimates many regressions using different subsets from the list of moderator variables.

Then, a weighted average of all the estimated regression coefficients and the associated standard

errors is computed, with weights equal to the posterior model probability (PMP) according

to Bayes’ theorem. The PMP indicates how well the respective model fits the data. As I

consider 38 moderator variables in addition to SEPCC , the model space is represented by 239

possible models. Since it is not feasible to estimate all possible models, BMA samples model

specifications from the model space through Monte Carlo Markov Chain (MCMC) sampling,

which only considers models with a relatively high PMP (Zeugner and Feldkircher, 2015).23

BMA further computes a posterior inclusion probability (PIP) for each moderator variable,

which is equal to the sum of the PMPs of all the models that include the respective moderator

variable. Thus, the PIP measures the probability that a moderator variable belongs to the ”true”

model (Cazachevici et al., 2020). I implement the BMA approach using the BMS package in R

(Zeugner and Feldkircher, 2015). BMA requires specifying priors regarding model size (model

prior) and regression coefficients (Zellner’s g-prior). In the baseline setting, I opt for a uniform

model prior and the unit information prior (UIP) on Zellner’s g to represent my lack of prior

knowledge, thereby complying with the recommendation of Eicher et al. (2011). The UIP sets

g = N for all possible models, i.e., it attributes the same information to the prior as is contained

in one primary estimate. The uniform model prior implies a prior expected model size of k/2.

For a detailed review of model averaging and its applications in economics, the reader is referred

to Steel (2020).

Since BMA is based on the OLS estimator and does not offer a weighting option, one cannot

precisely recreate the UWLS-FE2 estimator of Section 6.2 in the BMA framework. This is

only possible for the UWLS-FE1 estimator of Eq. 12 because an OLS regression with weighted

variables (i.e., multiplied by precision) and an intercept is equivalent to the UWLS counterpart

with FE1 weights:24

tis = β0/SEPCCis + β1 +
∑

βkZkis/SEPCCis + ϵis (18)

Therefore, the BMA approach does not use weights that adjust for the number of estimates

per study. As such, this robustness check does not only address model uncertainty but also

the sensitivity to mere precision weighting. BMA automatically includes a constant, and this

23I use 2 million iterations with 1 million burn-ins to achieve convergence.
24This does not hold true for FE2 weights as multiplying SEPCC by the FE2 weight does not recreate

the intercept. An OLS regression with FE2-weighted variables, therefore, requires to suppress the

constant term and, instead, to include a FE2-weighted constant among the independent variables. The

BMA framework, however, automatically estimates a constant. Nevertheless, applying FE2-weighted

variables in the BMA framework with an unweighted constant would support the evidence of the 12

selected moderator variables presented in Section 6.2. Each of the 12 moderator variables would be

assigned a PIP above 0.5, and mostly above 0.75. Due to the computational inconsistency, these BMA

results are not shown here but are available upon request.
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constant corresponds to the coefficient of SEPCC in UWLS-FE1, while the estimated coefficient

of precision corresponds to the constant in UWLS-FE1. Moreover, BMA does not allow a

clustering of standard errors and, thus, entails a less conservative statistical inference, since it

does not address the potential dependence of primary estimates from the same study. Figure 6

illustrates the inclusion of moderator variables in the BMA framework. The moderator variables

are listed on the vertical axis, sorted by their PIPs in descending order. Blue color indicates a

positive coefficient, red signals a negative coefficient, and white corresponds to non-inclusion.

On the x-axis the 5,000 best models are shown, scaled by their PMPs. I will focus only the

moderator variables with a PIP of above 0.5, following the classification described in Malovaná

et al. (2024), based on Jeffreys (1961) and Kass and Raftery (1995): the evidence of an effect is

deemed weak if the PIP is between 0.5 and 0.75, substantial if the PIP is between 0.75 and 0.95,

strong if the PIP is between 0.95 and 0.99, and decisive for a PIP above 0.99. 14 moderator

variables are found to pass the threshold of a PIP of at least 0.5. Eight of these variables align

with the drivers of heterogeneity identified by the GTS approach in Section 6.2. The variables

dev country, lc omit, large, and growth, however, seem to be sensitive to the weighting scheme,

as they are not found to be important variables in the BMA approach with mere precision

weighting. Instead, the precision-weighted BMA indicates that labor omit, ict omit, rd omit,

capital omit, msms, and p quartile 1 are relevant variables, which were not included in the GTS

selection in Section 6.2.

Table 11 shows the BMA results in more detail. In addition to the PIP, the posterior mean

(Post Mean) displays the variable’s estimated coefficients averaged over all models, including the

models wherein the respective variable was not contained. Analogously, the posterior standard

deviation (Post SD) reports the weighted average of that variable’s estimated standard errors.

Additionally, ”Cond. Pos. Sign” indicates the ”sign certainty” of the variable’s coefficient

by displaying the “posterior probability of a positive coefficient expected value conditional on

inclusion” (Zeugner and Feldkircher, 2015, p. 5). A value of 1 suggests that the variable’s

coefficient always has a positive sign. The BMA findings corroborate the evidence of diminishing

returns to robot adoption: period 2007 has a PIP of 1 and always exhibits a positive coefficient;

secondary sec has a PIP close to 0.95 and always shows a negative coefficient. Likewise, the

evidence of adjustment costs at low intensities of robot use is confirmed: r quartile 1 has a PIP

of 1 and is always assigned a negative coefficient. The relevance and sign of the variables c num,

non ifr, quant reg, marginal comp, and green tfp are also reinforced. Beyond that, the BMA

results suggest that a treatment of endogeneity (msms) in primary estimations may slightly

increase the estimated effects. Moreover, not controlling for labor input and R&D may cause

a small negative omitted variables bias, while not controlling for general capital input and ICT

capital may overestimate the effects. The result for p quartile 1 suggests that it can be somewhat

more difficult to realize productivity gains for entities at the lower end of the productivity

distribution. As before, the magnitude of the moderator variables’ estimated coefficients is

quite small, with posterior means that are mostly close to zero.

As a frequentist check, I run a UWLS-FE2 regression with all moderator variables that are
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Figure 6: Inclusion of moderator variables in BMA

Notes: This figure presents the BMA results, based on Eq. 18. Columns represent individual models, and the moderator

variables are listed on the y-axis, sorted by their PIPs in descending order. The x-axis shows cumulative PMPs for the

5,000 best models.

assigned a PIP above 0.5 by BMA. This reveals that only those moderator variables attain

statistical significance, which have already been identified as drivers of heterogeneity by the

GTS approach in Section 6.2. Last but not least, the BMA approach reinforces the evidence of

a severe positive publication bias.

To rule out a sensitivity of the BMA results to the choice of priors, Figure 7 shows the moderator

variables’ PIPs, based on alternative model and g-priors. The PIPs of the variables with the

highest PIPs in the baseline setting is very robust to alternative priors. The hyper g-prior

generally results in larger PIPs with lower PIPs in the baseline setting.

8 Discussion

The central finding of a negligible meta-analytic effect of industrial robot deployment on pro-

ductivity, beyond publication selection bias, points to a potential continuation of the Solow

paradox and may be referred to as a ”modern productivity paradox” (Brynjolfsson et al., 2019).

This raises the question of what are the reasons for the absence of a productivity boost. In

the existing literature on the productivity paradox and technology adoption, several arguments
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Table 11: BMA results

BMA Frequentist check, UWLS FE2

PIP Post Mean Post SD Cond.Pos.Sign Coef SE

period 2007 1 0.0170 0.0022 1 0.0159*** 0.0044

labor omit 1 -0.0186 0.0038 0 -0.0025 0.0052

ict omit 1 0.0497 0.0046 1 0.007 0.0047

rd omit 1 -0.0522 0.0051 0 -0.0023 0.0067

r quartile 1 1 -0.2121 0.0187 0 -0.2157*** 0.0287

non ifr 1 -0.0241 0.0024 0 -0.0191*** 0.0036

quant reg 1 0.1276 0.0119 1 0.0629** 0.028

marginal comp 1 -0.0307 0.0055 0 -0.0153* 0.0086

capital omit 1 0.0121 0.0034 1 -0.0035 0.0054

c num 0.9999 -0.0022 0.0005 0 -0.0012*** 0.0003

secondary sec 0.9432 -0.0219 0.0084 0 -0.0238** 0.01

msms 0.9068 0.0051 0.0023 1 0.0025 0.0032

precision 0.7623 0.0349 0.0228 1 0.0326*** 0.0106

p quartile 1 0.7409 -0.0066 0.0046 0 -0.0122 0.0073

green tfp 0.5555 -0.0189 0.0188 0 -0.0285* 0.0147

lc omit 0.3744 -0.0029 0.0042 0

firm lev 0.3548 0.0128 0.0187 0.9997

openness omit 0.3207 -0.0023 0.0037 0

structure omit 0.1234 0.0011 0.0034 1

hc omit 0.0919 -0.0011 0.0040 0

r quartile 2 0.0574 -0.0016 0.0078 0

log log 0.0565 0.0001 0.0007 1

p quartile 3 0.0483 0.0002 0.0011 1

excl high exposure 0.0440 0.0007 0.0039 1

large 0.0404 -0.0056 0.0351 0

dev country 0.0398 -0.0002 0.0011 0.0014

p quartile 4 0.0376 0.0001 0.0010 1

tfp 0.0341 0.0001 0.0010 0.9990

lag rob 0.0292 -0.0001 0.0006 0.0045

demograph omit 0.0278 -0.0001 0.0008 0.2089

sample years 0.0272 0.0000 0.0000 0.0055

p quartile 2 0.0250 0.0001 0.0006 1

sjr 0.0199 0.0000 0.0002 0.1535

secl 0.0188 0.0000 0.0004 0.1724

growth 0.0182 0.0000 0.0004 0.7926

r quartile 3 0.0178 -0.0001 0.0024 0

prod omit 0.0174 0.0000 0.0005 0.2828

r quartile 4 0.0172 0.0001 0.0018 0.9736

sme 0.0161 0.0001 0.0035 0.9829

Publication bias 1 2.3215 NA NA 2.5480*** 0.4425

Observations 1813 1813

Notes: BMA is based on FE1 weights. The frequentist check is a UWLS estimation with FE2 weights and

includes variables that have a PIP greater than 0.5, according to BMA. PIPs above 0.5 are highlighted in bold.

Standard errors (SE) in the frequentist check are clustered at the study level. ∗∗∗p < .01,∗∗p < .05, ∗p < .1
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Figure 7: Sensitivity of PIPs to alternative priors

Notes: UIP and Uniform = baseline setting, recommended by Eicher et al. (2011). UIP and Dilution = priors proposed by

George (2010). The dilution model prior penalizes models with highly collinear regressors (Zeugner and Feldkircher, 2015).

BRIC and Random = ”BRIC” sets g = max(N, k2) according to Fernández et al. (2001) and ”random” implements the

binomial-beta model prior according to Ley and Steel (2009). Hyper sets a hyper g-prior (Liang et al., 2008; Feldkircher

and Zeugner, 2009), with a prior expected shrinkage factor either equal to the UIP prior or to the BRIC prior (Feldkircher

and Zeugner, 2012).
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and mechanisms have been put forward that can also be applied in the context of robotization.

These aspects can be grouped into eight overarching categories:

(1) Compensation mechanisms: If robot adoption increases (or decreases) value added and em-

ployment in the same proportion, this will leave labor productivity unchanged (Capello et al.,

2022). The compensating effects originate from two channels through which robot adoption

can influence labor productivity. On the one hand, it is frequently assumed that robots dis-

place workers, thereby reducing the quantity of labor input (Acemoglu and Restrepo, 2018c;

Acemoglu and Restrepo, 2020). On the other hand, it is typically expected that robotization

enables the expansion of output and higher market shares by increasing competitiveness com-

pared to competitors without robot deployment, i. e., a market size effect (Koch et al., 2021;

Graetz and Michaels, 2018). Taken together, these two effects would reinforce each other and

boost labor productivity, which is why Capello et al. (2022) dismiss compensation mechanisms

as an explanation for a productivity paradox of automation. However, the economic literature is

far from reaching consensus on the labor market effects of robots. The meta-analyses of Jurkat

et al. (2023) and Guarascio et al. (2024) find negligible effects of robot adoption on wages and

employment. Moreover, the labor market effects are likely very heterogeneous across different

occupational and demographic groups of workers as well as economic sectors (Albinowski and

Lewandowski, 2024; Dauth et al., 2021; Adachi, 2024). If the productivity or scale effect of

robots were strong enough to dominate the displacement effect, employment could rise as a con-

sequence of robot adoption (Acemoglu and Restrepo, 2018c; Acemoglu and Restrepo, 2018b).

This align with Koch et al. (2021), who report a net job creation for robot-adopting firms. Thus,

it cannot be ruled out a priori that growing labor demand may counteract output gains, thereby

dampening measured productivity.

Another compensatory mechanism may be that robotic capital is merely a continuation of for-

mer mechanization and automation technologies (Fernández-Maćıas et al., 2021). In the context

of information technology (IT), Dewan and Min (1997) found that IT capital is a net substitute

for other forms of capital, such that an increase in IT capital per employee is accompanied a re-

duction in non-IT capital per employee, leading to an offsetting effect (Schweikl and Obermaier,

2020). Analogously, one could argue that, while robotic capital has been more frequently used,

other forms of capital may have been withdrawn.

(2) Reallocation effect : Automation may be accompanied by significant reallocation effects across

sectors. Dauth et al. (2021) show that negative employment effects of robot adoption in the man-

ufacturing sector is compensated by positive employment effects in the service sector. Similarly,

Dottori (2021) finds that labor is reallocated toward less robot-intensive industries. More nega-

tive wage effects in manufacturing, mirrored by more positive wage effects in non-manufacturing,

are also evident in the meta-analysis by Jurkat et al. (2023). In the ICT context, Autor and

Dorn (2013) observe a reallocation of low-skill labor into service occupations. Capello et al.

(2022) argue that a reallocation of workers from more productive, robot-adopting manufactur-

ing industries towards less productive industries is the main reason for a productivity paradox

of robotization.
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(3) Concentrated robot adoption and productivity gains: If productivity gains are concentrated

in a few highly innovative and productive firms or sectors with a limited share of the overall

economy, they will have little influence on the aggregate productivity dynamics (Capello et al.,

2022). Recent research points to increasing productivity differences between firms at the frontier

and average firms in the same industry (Andrews et al., 2016; Furman and Orszag, 2018), while

a small number of superstar firms are expanding their market share (Autor et al., 2017; Autor et

al., 2020). Stiebale et al. (2024) provide evidence of the superstar phenomenon in the context of

robot adoption. It is, however, not reflected in my meta-analysis, since the moderator variables

for the productivity quartile of analyzed entities in the primary literature are not identified as

important drivers of heterogeneity. A significantly higher productivity effect of robot adoption

in the the top quartile of the productivity distribution (p quartile 4 ) would have pointed to

concentrated productivity gains among the most productive entities.

Apart from a potentially concentrated distribution of productivity gains, the distribution of

robot adoption must also be taken into account. Fernández-Maćıas et al. (2021) and Deng et al.

(2024) show that robot adoption is highly concentrated in certain industries (especially automo-

tive) and applications (particularly handling operations and machine tending), as well as among

a small share of firms that are typically larger and more productive. Based on Hulten’s theo-

rem, one can argue that the effect of robots on TFP growth hinges on the GDP share of tasks

impacted by robots (Acemoglu, 2024; Hulten, 1978). However, this share is limited due to the

concentrated distribution of robot usage across industries, applications, and firms. Moreover, a

concentrated adoption of robots limits the disruptiveness of robotization what concerns network

and spillover effects. Deng et al. (2024) report that only 1.55% of plants in Germany used robots

in 2018 (even the manufacturing sector had a share of only 8.22%), despite Germany being one

of the countries with the highest robot density in the world (IFR, 2023, p. 74). Such a small

share of robot users is naturally far from unleashing the full potential of network effects through

harmonized production systems along or across value chains (Katz and Shapiro, 1994; Birke,

2009). It further clarifies that potential knowledge spillovers in implementing robotized produc-

tions systems cannot have yet materialized to a great extant (Agarwal et al., 2010; Schweikl and

Obermaier, 2020). This leads over to another important explanatory factor for the productivity

paradox, namely implementation lags and adjustment costs.

(4) Adjustment delays: The economic history has already brought forth several industrial rev-

olutions enabled by general purpose technologies such as the steam engine, electrification, or
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ICT (Bresnahan and Trajtenberg, 1995).25 It is well-documented that it took many decades for

these technologies to diffuse and for their benefits to fully unfold. For instance, Crafts (2004)

shows that it took roughly 100 years after the invention of the steam engine for its contribution

to economic growth to peak. This can be attributed to comprehensive adjustment processes,

co-inventions, and the complementary investments required to fully leverage the productivity-

boosting potential of a new breakthrough technology (Capello et al., 2022; Brynjolfsson et al.,

2019). The adjustment delay may be illustrated as a ”productivity J-curve” (Brynjolfsson et al.,

2021). This pattern emerges from investments in intangible assets such as organizational capital

(e.g., business strategies, corporate culture, decision processes, branding), R&D and intellectual

property, as well as human capital (e.g., training, learning processes, experience), all of which are

required to make productive use of the new technology. As these intangible assets remain largely

unmeasured in economic statistics, the adaptation phase of introducing a new technology can be

described as a situation where measurable capital and labor input produce a significant share of

unmeasured or poorly measured intangibles (Brynjolfsson et al., 2020; Brynjolfsson et al., 2021).

Since input factors are employed without producing anything of measurable value, this will result

in a drop in productivity growth. Later, when the intangible investments begin to pay off, the

situation is reversed: unmeasured intangible assets generate measured output, and productivity

growth may be overestimated (Brynjolfsson et al., 2021). The small negative productivity effect

found for the bottom quartile of robot intensity (r quartile 1 ) in my multivariate MRA may be

attributed to these adjustment processes and summarized as adjustment costs associated with

robot adoption. Such adjustment costs can also take the form of consultancy services from robot

integrators to redesign the production system (Leigh and Kraft, 2018).

Moreover, the reinstatement effect of automation technologies is assumed to create new tasks or

completely new occupations in which workers have a comparative advantage over robots (Ace-

moglu and Restrepo, 2018c; Hötte et al., 2023). Workers who are reinstated in new tasks and

jobs enter learning processes, need to gain experience, and may possibly acquire entirely new

skills. Here, also institutional aspects like the efficiency of labor markets and educational systems

come to play. A mismatch between the skills of labor force and the requirements associated with

robotic production systems will hamper productivity growth (Schweikl and Obermaier, 2020).

Furthermore, Acemoglu (2024) argues that AI may also create new ”bad tasks” like cyber at-

25According to Schwab (2016) and Skilton and Hovsepian (2018, pp. 3-24), four industrial revolutions

can be distinguished. The ‘first industrial revolution’ spans the period from the 1780s century to the

1870s and is characterized by mechanization through steam engines. The ‘second industrial revolution’

extends from the 1880s to the 1930s and is marked by electrification on an industrial scale and the

development and use of internal combustion engines. The ‘third industrial revolution’ describes the

period from the 1950s to the 1990s, characterized by the emergence of ICT through the development of

microelectronics and semiconductors, as well as the beginnings of the internet. The ‘fourth industrial

revolution’ began at the start of the 21st century and refers to the development of new technologies

that merge the physical, digital, and biological spheres (e.g., robotics, super and quantum computing,

genetic engineering, micro- and nanotechnology). Industrial production production is increasingly based

on cyber-physical systems, in which robots play a decisive role.
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tacks. In the context of AI-based robotics (or cyber-physical production systems in general),

adopting firms may be compelled to invest more in cyber-security to avoid malicious attacks

or industrial espionage. Such protective measures will likely not improve the efficiency of the

production process but limit any cost savings achievable from automation.

(5) Diminishing returns to robot adoption: As described in Section 6.2, my multivariate MRA

points to decreasing productivity returns from robotization.26 Following up on the task-based

modeling of automation, diminishing returns to robot adoption can be attributed to an increasing

level of difficulty and effort required to automate further tasks. Acemoglu (2024) differentiates

between ”easy-to-learn tasks” and ”hard tasks” for AI applications. Likewise, one can argue

that repetitive manual, routine tasks can easily be taken over by robots, whereas more com-

plex tasks are much more challenging to implement in robotic production systems and do not

provide significant productivity gains compared to human labor (Vries et al., 2020). Similarly,

Acemoglu and Restrepo (2018b) and Acemoglu and Restrepo (2019) worry about ”so-so tech-

nologies” that are just good enough to replace human workers without significantly boosting

productivity. Fully unleashing the potential network externalities and spillover effects of intelli-

gent automation may help to overcome the diminishing returns to robot adoption in the future

(Wu et al., 2024).

(6) Measurement issues: In the context of the Solow paradox, many researchers viewed measure-

ment problems as one explanatory factor (Baily et al., 1988; Brynjolfsson, 1993; Triplett, 1999).

An exact measurement of productivity requires that both the output quantity and quality are

adequately measured. Concerning the output measurement, there is a well-known challenge of

adjusting prices for inflation and quality changes in order to obtain comparable real values that

enter the numerator of labor productivity (growth) at constant prices (Schweikl and Obermaier,

2020; Capello et al., 2022). On the one hand, robot adoption may lead to product differentiation

or improved product quality, allowing for price increases (e.g., customized products) (Capello

et al., 2022; DeStefano and Timmis, 2024). On the other hand, robots may be used as a cost-

cutting technology that allows for price decreases (Acemoglu and Restrepo, 2018c; Graetz and

Michaels, 2018; Hötte et al., 2024). Even more challenging may be estimating the value of

completely new goods and services that emerge from the deployment of modern technologies

like robots, if they have no comparable predecessors (Brynjolfsson, 1993). If the mismeasure-

ment of the ”new economy” becomes worse over time, this would contribute to a slowdown in

measured productivity growth (Brynjolfsson et al., 2020). Recent articles, however, suggest that

this source of mismeasurement is likely insufficient to explain a modern productivity paradox

because mismeasurement has always been an issue that also affected past innovations (Brynjolf-

sson et al., 2020; Byrne et al., 2016; Syverson, 2017). Another measurement issue has already

26As explained in Section 6.2, diminishing returns are suggested by the coefficients of period 2007, sec-

ondary sec, large, and dev country. Another obvious indicator of diminishing returns would have been a

negative and significant coefficient for the top quartile of robot intensity (r quartile 4 ). This moderator

variable, however, seems to be dominated by the other moderator variables that already capture the

heterogeneity between primary estimates with regard to diminishing productivity returns.
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been described above in the context of intangible investments.

In addition to difficulties in properly measuring productivity, there might also be measurement

problems involved in robot capital. Jurkat et al. (2022) discuss the limitations of the IFR

dataset, the most frequently used source for robot data. In particular, the IFR’s construction of

the operational stock of robots is not adjusted for quality changes due to technological progress.

Thus, a robot installed today is assumed to have the same quality as a robot installed in 1993, as

both are simply counted as one unit installed in the respective year. Assuming that technolog-

ical progress improves the quality of robots over time, a quality-adjusted measure of the robot

stock would, ceteris paribus, grow faster than the number of units reported by the IFR. This

would imply that the true value of robots as an input factor is underestimated in more recent

time periods and overestimated in earlier periods (Kromann et al., 2020), thereby potentially

contributing to an overestimation of TFP in recent years. Thus, the diminishing returns to

robotization found in my multivariate MRA cannot be attributed to ill-measured robot capital

but would have been even stronger with a quality-adjusted measure of robots.

(7) Exaggerated expectations: It could be the case that industrial robots are simply not as

productivity enhancing as expected. One could argue that earlier breakthrough innovations,

such as steam power, internal combustion engines, electricity, or computers, have had a much

more far-reaching impact than industrial robots such that after previous industrial revolutions,

productivity growth is simply returning to its more modest long-term trend (Brynjolfsson et

al., 2019, pp. 40-41; Brynjolfsson et al., 2020; Schweikl and Obermaier, 2020). In this vein,

Fernández-Maćıas et al. (2021) soberly view industrial robots as the ”latest iteration of the

long-term process of industrial mechanisation and automation rather than a radical departure.”

(8) Mismanagement : A last argument put forward by Schweikl and Obermaier (2020) is that

managers have not succeeded in effectively implementing and utilizing modern technologies such

as robots. If managers primarily focus on cost-cutting and neglect required investments in intan-

gible assets, robots will likely not be used efficiently, and the company may even lose innovative

power (Antonioli et al., 2024). Moreover, exaggerated expectations (a ”robot hype”), overconfi-

dence, pressure from shareholders (Lim et al., 2013), or tax incentives (Acemoglu et al., 2020b)

may tempt managers to excessively invest in automation. A famous example is the production

of Tesla Model 3, which was characterized by too many robots in the assembly line (Büchel

and Floreano, 2018, Acemoglu and Restrepo, 2019). This caused Elon Musk (2018) to admit:

”Yes, excessive automation at Tesla was a mistake. To be precise, my mistake. Humans are

underrated.” This is especially true in complex environments that require flexible adaptability

to unforeseen situations (Büchel and Floreano, 2018). Mismanagement, and especially exces-

sive automation, might also explain the small negative productivity effect found among large

enterprises in my multivariate MRA.
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9 Conclusion

In this study, I meta-analyze for the first time the relationship between the adoption of industrial

robots and productivity. Through a systematic literature review, supported by machine learn-

ing, I identify 81 relevant primary studies with more than 1800 estimates of the productivity

effect of robots. I find strong evidence that this empirical literature suffers from a substantial

to severe positive publication bias. This finding is observed across all measures of productivity

used in the primary literature and is robust to several modern, meta-analytic estimators, as

well as subsets of the primary literature (firm-level estimates, estimates with a treatment of

endogeneity, elasticity estimates, and estimates from higher-quality journals). Beyond publica-

tion bias, there is only limited evidence for a positive effect of robots on productivity. At best,

robotization has so far exerted only a marginal boost to productivity.

My multivariate MRA of the drivers of heterogeneity in the primary literature points to adjust-

ment costs at low intensities of robot use, as well as diminishing returns at more advanced levels

of robotization. Diminishing returns are indicated by (i) smaller, more recent estimates despite

accelerated robot adoption, (ii) smaller productivity effects in the secondary sector, although in-

dustrial robots are primarily used in manufacturing, and (iii) significantly smaller effects among

large enterprises, even though robot adoption is concentrated in larger companies. Somewhat

less robust is the evidence that developing and emerging countries tend to benefit more from

robot adoption relative to advanced economies. Likewise, I find some evidence that estimates

with green TFP (i.e., adjusted for the emission of pollutants) as the dependent variable are

slightly negative, possibly pointing to a rebound effect. Further, I obtain some evidence for data

dependence, as estimates relying on data sources other than the IFR are somewhat smaller.

However, all the heterogeneous meta-effects that can be computed from my multivariate MRA

framework are rather small in magnitude. My findings are quite robust to addressing model

uncertainty through a BMA framework.

Eight explanatory factors for the emergence of a productivity paradox in the context of robotics

are discussed, namely: (1) compensation mechanisms from an increase in labor input or the

crowding out of other forms of capital, (2) an adverse reallocation effect of labor to less pro-

ductive industries, (3) a concentrated distribution of robot adoption and productivity gains, (4)

adjustment delays and costs from complementary investments, (5) diminishing returns to robot

adoption, (6) measurement issues related to productivity and robot capital, (7) exaggerated

expectations, and (8) mismanagement.

My meta-study provides some directions for future avenues of research. More research is required

on the potential reasons for the reoccurrence of the Solow paradox in the context of modern

automation technologies, such as industrial robots. Especially, empirical research on adjustment

costs associated with robot adoption and intangible investments required for the efficient use

of robots is a largely untouched field. Ploughing this field of research might provide answers

regarding what kinds of adjustment costs exist, how large they are, and how long they persist.

In addition to more empirical evidence on intangible investments that complement robot adop-
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tion, this would also contribute to the question of whether robotics can meet the criteria for

a general-purpose technology. Another focus could be placed on the causes for the occurrence

of diminishing productivity returns to robot installation. Likewise, more empirical research on

the productivity effect of robots in developing and emerging countries other than China would

enrich the evidence on whether robotization can contribute to economic convergence. Ideally,

all research on the productivity effects of robots would complement the IFR data with other

data sources. And optimally, the data on robot adoption would include some quality-adjustment

to differentiate the current trend to AI-based robotics from earlier waves of industrial robots.

Referring to Hulten’s theorem, one could argue that AI may significantly increase the share of

tasks that can be taken over by robots, thereby potentially scaling up the impact of robots on

productivity in the future (Acemoglu, 2024; Hulten, 1978).
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äg
er

et
al
.,
20
16

16
0.
02
4

0
.0
4
1

E
u
ro
p
e

2
0
1
1

E
u
ro
p
ea
n

M
a
n
u
fa
ct
u
ri
n
g

S
u
rv
ey

F
ir
m

J
u
n
gm

it
ta
g
an

d

P
es
ol
e,

20
19

48
0.
07
6

0
.0
3
3

E
U

1
9
9
5-
2
0
1
5

IF
R

In
d
u
st
ry

K
o
ch

et
al
.,
20
21

2
0.
02
2

0
.0
0
7

S
p
a
in

1
9
9
0-
2
0
1
6

E
S
E
E

F
ir
m

K
ro
m
an

n
et

al
.,
20
20

17
0.
16
0

0
.0
4
6

E
u
ro
p
e
+

J
a
p
a
n

2
0
0
4-
2
0
0
7

IF
R

In
d
u
st
ry

L
ei
tn
er

an
d
S
te
h
re
r,

20
19

32
0.
50
9

0
.3
1
7

E
U

2
0
1
2-
2
0
1
7

IF
R

C
o
u
n
tr
y

L
eo
n
e,

20
22

2
0.
10
3

0
.0
0
7

S
p
a
in

1
9
9
3-
2
0
1
4

E
S
E
E

F
ir
m

L
i
an

d
Z
h
ou

,
20
24

9
0.
10
7

0
.0
2
4

C
h
in
a

2
0
0
3-
2
0
1
7

IF
R

R
eg
io
n
a
l

L
i
et

al
.,
20
22

2
0.
22
0

0
.0
0
1

W
o
rl
d
-

w
id
e

1
9
9
3-
2
0
1
7

IF
R

C
o
u
n
tr
y

L
i
et

al
.,
20
23

1
0.
00
8

.
C
h
in
a

2
0
0
5-
2
0
1
4

IF
R

F
ir
m

L
i
et

al
.,
20
24

40
0.
01
9

0
.0
1
6

C
h
in
a

2
0
0
0-
2
0
1
3

C
h
in
a
C
u
st
o
m
s

D
a
ta
b
a
se

F
ir
m

52



T
ab

le
A
2:

O
ve
rv
ie
w

of
st
u
d
ie
s
in
cl
u
d
ed

in
th
e
m
et
a-
an

al
y
si
s

S
tu
d
y

N
o.

of
es
ti
m
at
es

M
ea
n
of

P
C
C

S
D

o
f
P
C
C

C
o
u
n
tr
ie
s

T
im

e
sp
a
n

R
o
b
o
t
d
a
ta

L
ev
el

o
f
a
n
a
ly
si
s

L
in

et
al
.,
20
22

1
0.
04
1

.
C
h
in
a

2
0
0
0-
2
0
1
3

C
h
in
a
C
u
st
o
m
s

D
a
ta
b
a
se

F
ir
m

L
iu

et
al
.,
20
21

3
0.
42
9

0
.2
9
1

C
h
in
a

2
0
0
6-
2
0
1
6

IF
R

In
d
u
st
ry

L
iu

et
al
.,
20
22
b

9
0.
03
3

0
.0
1
2

C
h
in
a

2
0
1
4-
2
0
1
5

IF
R

F
ir
m

P
ar
k
et

al
.,
20
21

60
-0
.0
8
9

0
.3
2
8

R
ep
u
b
li
c

o
f
K
o
re
a

2
0
0
6-
2
0
1
5

IF
R

In
d
u
st
ry

P
is
ko
v
á
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Camiña, E., Dı́az-Chao, Á., and Torrent-Sellens, J. (2020). “Automation technologies: Long-term effects for Spanish indus-

trial firms”. In: Technological Forecasting and Social Change, vol. 151. 119828.

Cao, Y., CHEN, s., and Tang, H. (2021). “Robots, Productivity, and Firm Exports”. In: SSRN Electronic Journal.

Capello, R., Lenzi, C., and Perucca, G. (2022). “The modern Solow paradox. In search for explanations”. In: Structural

Change and Economic Dynamics, vol. 63, pp. 166–180.

Cardona, M., Kretschmer, T., and Strobel, T. (2013). “ICT and productivity: conclusions from the empirical literature”.

In: Information Economics and Policy, vol. 25, no. 3, pp. 109–125.

Carlaw, K. I. and Lipsey, R. G. (2003). “Productivity, technology and economic growth: what is the relationship?” In:

Journal of Economic Surveys, vol. 17, no. 3, pp. 457–495.

Cazachevici, A., Havranek, T., and Horvath, R. (2020). “Remittances and economic growth: A meta-analysis”. In: World

Development, vol. 134. 105021.

Cetrulo, A. and Nuvolari, A. (2019). “Industry 4.0: revolution or hype? Reassessing recent technological trends and their

impact on labour”. In: Journal of Industrial and Business Economics, vol. 46, no. 3, pp. 391–402.

Cette, G., Devillard, A., and Spiezia, V. (2021a). “Growth Factors in Developed Countries: A 1960-2019 Growth Accounting

Decomposition”. In: Comparative Economic Studies, pp. 1–27.

Cette, G., Devillard, A., and Spiezia, V. (2021b). “The contribution of robots to productivity growth in 30 OECD countries

over 1975–2019”. In: Economics Letters, vol. 200. 109762.

Chang, L., Taghizadeh-Hesary, F., and Mohsin, M. (2023). “Role of artificial intelligence on green economic development:

Joint determinates of natural resources and green total factor productivity”. In: Resources Policy, vol. 82. 103508.

Chen, P., Gao, J., Ji, Z., Liang, H., and Peng, Y. (2022). “Do Artificial Intelligence Applications Affect Carbon Emission

Performance?—Evidence from Panel Data Analysis of Chinese Cities”. In: Energies, vol. 15, no. 15. 5730.

Chen, S., Mu, S., He, X., Han, J., and Tan, Z. (2024). “Does industrial robot adoption affect green total factor productivity?

– Evidence from China”. In: Ecological Indicators, vol. 161. 111958.

Crafts, N. (2004). “Steam as a General Purpose Technology: A Growth Accounting Perspective”. In: The Economic Journal,

vol. 114, no. 495, pp. 338–351.

Cui, H., Liang, S., Xu, C., and Junli, Y. (2024). “Robots and analyst forecast precision: Evidence from Chinese manufac-

turing”. In: International Review of Financial Analysis, vol. 94. 103197.

Dauth, W., Findeisen, S., Suedekum, J., and Woessner, N. (2018). “Adjusting to Robots: Worker-Level Evidence”. In:

Opportunity and Inclusive Growth Institute Working Paper, no. 13.

Dauth, W., Findeisen, S., Suedekum, J., and Woessner, N. (2021). “The Adjustment of Labor Markets to Robots”. In:

Journal of the European Economic Association, vol. 19, no. 6, pp. 3104–3153.

DeCanio, S. J. (2016). “Robots and humans – complements or substitutes?” In: Journal of Macroeconomics, vol. 49, pp. 280–

291.

58



Demena, B. A. and Bergeijk, P. A. van (2017). “A meta-analysis of FDI and productivity spillovers in developing countries”.

In: Journal of Economic Surveys, vol. 31, no. 2, pp. 546–571.
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