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Abstract

In a market economy, the aggregate production level depends not only on the
aggregate variables but also on the distribution of individual characteristics (e.g.,
productivity, credit limit, ...). We point out that, due to financial frictions, the
equilibrium aggregate production may be non-monotonic in both individual pro-
ductivity and credit limit. We provide conditions under which this phenomenon
happens. By consequence, improving productivity or relaxing credit limit of
firms may not necessarily be beneficial to economic development.

JEL Classifications: D2, D5, E44, G10, O4.
Keywords: Productivity shock, financial shock, credit constraint, heterogeneity,
productivity dispersion, distributional effects, efficiency, general equilibrium.

1 Introduction

We investigate two basic questions in economics: what are the impacts of (individual
and aggregate) productivity and financial changes on the aggregate output?

Looking back to the literature, on the one hand, the productivity is widely viewed as
one of the most important determinants of economic growth. In economics textbooks
and classical papers (Solow, 1957; Romer, 1986, 1990), an increase of productivity
generates a positive effect on the aggregate output and economic growth. On the
other hand, one can expect that relaxing credit limits would have positive impact
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also to participants at ISER Seminar (Osaka University), EWET 2024, PET 2023, SAET 2023 for
insightful discussions and suggestions.

†Emails: pns.pham@gmail.com, npham@em-normandie.fr. Phone: +33 2 50 32 04 08. Address:
EM Normandie (campus Caen), 9 Rue Claude Bloch, 14000 Caen, France.
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on the aggregate output as argued by several papers (for example, Khan and Thomas
(2013) (section VI. C), Midrigan and Xu (2014) (section II.B), Moll (2014) (Proposition
1), and Catherine, Chaney, Huang, Sraer, and Thesmar (2022)).

We provide a novel view: whether a rise of productivity or credit limit generates
a positive (or negative) effect on the aggregate output depends on the distribution of
productivity, the size of these rises and the level of financial imperfection. In order
to explore our insights, we build general equilibrium models with credit constraints
and heterogeneous producers (having their own productivity) and provide conditions
under which the equilibrium aggregate production is decreasing (or increasing) in the
producers’ productivity and credit limit.

Let us first explain the role of productivity in a static framework. We prove that
when the productivity of all agents increases, this change improves the aggregate pro-
duction if either (1) the productivity growth rates are the same or (2) there is no
financial friction. However, the more interesting and realistic case is when the produc-
tivity of producers increases at different rates and there is a credit constraint (these
two styled facts are documented by several studies).1 In this case, we argue that the
aggregate production may decrease. This may happen if the TFP of less productive
agents increases faster than that of more productive agents. Indeed, in such a case,
less productive agents absorb more capital and produces more. Since the aggregate
capital is limited, other producers (who are more productive) get less capital (because
of market imperfections) and so they produce less. By consequence, the net effect
may be negative. This happens if (1) the TFP of less productive agents is far from
that of more productive producers, i.e., the productivity dispersion is high,2 (2) the
productivity rise is quite small, (3) the credit constraint is tight.

Regarding the role of financial shock, we argue that, while a homogeneous rise of
credit limit improves the aggregate output, an asymmetric rise of credit limits can
reduce the output. The intuition behind this result is similar to that in the case of
productivity effects we have mentioned above: If credit limits of less productive agents
increase faster that those of more productive ones, less productive agents get more
capital and more productive agents get less capital, hence the aggregate output may
decrease. It should be noticed that although the aggregate output is not necessarily
monotonic in credit limits of producers, it does not exceed that in the frictionless
economy which is in line with the existing literature.

In the second part of our paper, we investigate our above questions in infinite-
horizon models à la Ramsey. Before doing this, we prove the existence of intertemporal

1See, for instance, Syverson (2011), Andrews, Criscuolo and Gal (2015), Kehrig (2015), Barth,
Bryson, Davis and Freeman (2016), Decker, Haltiwanger, Jarmin, and Miranda (2018), Berlingieri,
Blanchenay, and Chiara (2017), Bouche, Cette, and Lecat (2021), Levine andWarusawitharana (2021),
Gouin-Bonenfant (2022).

2Andrews, Criscuolo and Gal (2015) use a harmonised cross-country dataset, based on underlying
data from the OECD-ORBIS database (Gal, 2013), to analyze the characteristics of firms that operate
at the global productivity frontier and their relationship with other firms in the economy. Andrews,
Criscuolo and Gal (2015) document growing productivity dispersion for several developed countries
over the 2000s. Bouche, Cette, and Lecat (2021) present empirical evidence showing an increase in
productivity dispersion between French firms during the period 1991-2016, with a growing productivity
gap between frontier and laggard firms. See Goldin, Koutroumpis, Lafond, and Winkler (2024) for
an excellent review on the slowdown in productivity growth.
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equilibrium. To do so, we adopt the following approach:3 (1) we prove the existence
of equilibrium for each T− truncated economy ET ; (2) we show that this sequence of
equilibria converges for the product topology to an equilibrium of our original economy.

We show that the non-monotonic effect of productivity and credit limit on the
aggregate output cannot appear at the steady state. The reason is that the steady
state interest rate only depends on the rate of time preferences of agents. Therefore,
we focus on the global dynamics of intertemporal equilibrium. Technically, this task
is far from trivial and very few papers do this.4 However, we manage to obtain several
insights. First, our findings suggest that a permanent increase of productivity of less
productive agents improves the aggregate output in the long run. However, when this
productivity rise is quite small and credit constraints are tight, the aggregate output
may decrease in the short-run and then increase from some period on.

Second, we look at the effects of credit limits. Recall that in the static model,
an increase in the most productive agent’s credit limit is always beneficial for the
aggregate output. However, along intertemporal equilibrium, we show that an increase
of the credit limit of the most productive producer may reduce the output at every
period. The intuition behind is that when her(his) credit limit goes up, the equilibrium
interest rate increases, and hence, her(his) repayment also increases. This in turn
reduces her(his) net worth in the next period. By consequence, her(his) saving and
hence the production decrease. The economic mechanism can be summarized by the
following schema:

Credit limit ↑ ⇒ Interest rate ↑ ⇒ Agent’s net worth ↓ ⇒
⇒ Saving ↓ ⇒ Production ↓ ⇒ · · · (1.1)

As in the static model, this mechanism can happen because the credit limit of the most
productive agent remains low and the productivity dispersion is high.

Third, we show how the equilibrium interest rate and the outcomes of intertem-
poral equilibrium (in particular in the long run) depend on the distribution of initial
endowments, credit limit and productivity as well as of the discount factors. Recall
that in a standard Ramsey model with one representative producer, the most patient
household owns the entire capital of the economy after some finite time - this is the
so-called Ramsey conjecture - and the equilibrium interest rate in the long run depends
only on the rate of preference time of the most patient agent (Becker and Mitra, 2012;
Becker, Dubey and Mitra, 2014; Becker, Borissov and Dubey, 2015). In our models
with many potential producers, along the intertemporal equilibrium, in particular in
the long run, there may be several producers sharing the aggregate capital. We point
out that whether an agent holds the capital depends on the distribution of discount
factor, credit limit, productivity and initial capital. Precisely, the capital holding of a
producer is increasing in each of these parameters.

3See Becker, Bosi, Le Van and Seegmuller (2015) and Le Van and Pham (2016) among others.
4The existing literature focuses on the balanced-growth path, recursive equilibrium or provides

analyses around the steady-state equilibrium. See Le Van and Pham (2016) for intertemporal equi-
librium in a model with heterogeneous households and a representative producer.
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Link to the literature

Our article is related to a growing literature on general equilibrium models with het-
erogeneous producers and financial frictions.5 Let us mention some of them.6 Midrigan
and Xu (2014) consider a two-sector model with a collateral constraint that requires
the debt of producer does not exceed a fraction of its capital stock. They focus on
balanced growth equilibrium to study the role of collateral constraint in determining
TFP. Their parameterizations consistent with the data imply fairly small losses from
misallocation, but potentially sizable losses from inefficiently low levels of entry and
technology adoption. Khan and Thomas (2013) develop a dynamic stochastic general
equilibrium with a representative household and heterogeneous firms facing a borrow-
ing constraint (slightly different from ours) and focus on recursive equilibrium. They
find that a negative shock to borrowing conditions can generate a large and persistent
recession through disruptions to the distribution of capital. Buera and Shin (2013)
develop a model with individual-specific technologies and collateral constraints to in-
vestigate the role of the misallocation and reallocation of resources in macroeconomic
transitions. Buera and Shin (2013) find that collateral constraints have a large impact
along the transition to the steady state. Moll (2014) studies the effect of collateral
constraints on capital misallocation and aggregate productivity in a general equilib-
rium with a continuum of heterogeneous firms and financial frictions (modeled by a
collateral constraint). Proposition 1 in Moll (2014) shows that the aggregate TFP is
increasing in the leverage ratio which is the common across firms.7

Our paper differs from this literature in two points. First, the credit limit is indi-
vidualized in our model while all credit parameters in the above studies are common
across producers. Second, we argue that this credit heterogeneity plays an important
role in the distribution of capital and of income as well as in the aggregate output.
Indeed, we prove that the aggregate output and the aggregate TFP in our model may
not be monotonic functions of the credit limits which are different across agents; they
may display an inverted-U form.8 However, we show that, if agents have the same
credit limit, the aggregate output and the aggregate TFP are increasing functions of
this common credit limit; this finding is consistent with the above literature.

Our paper is related to Baqaee and Farhi (2020) who build a general equilibrium
model where productivity and wedge are exogenous parameters to study how the im-
pact of (productivity and wedge) shocks can be decomposed into a pure technology

5The reader is referred to Matsuyama (2007), Quadrini (2011), Brunnermeier, Eisenbach, and
Sannikov (2013) for more complete reviews on the macroeconomic effects of financial frictions and to
Buera, Kaboski, and Shin (2015) for the relationship between entrepreneurship and financial frictions.

6While we focus on producer heterogeneity, there is a growing literature studying the roles of
household heterogeneity in macroeconomics (the reader is refereed to Kaplan and Violante (2018) for
an excellent review on this topic).

7In both Buera and Shin (2013), Moll (2014), the collateral constraint, which is slightly different
from ours, states that the capital of a firm does not exceed a leverage ratio of its financial wealth.

8Our finding is related to Aghion, Bergeaud, and Maghin (2019). They consider a model of firm
dynamics and innovation with entry, exit, and credit constraints, based on Klette and Kortum (2004),
Aghion, Akcigit, and Howitt (2015). They assume that intermediate firms (monopolist) cannot invest
more than µ times their current market value in innovation. They argue that the credit access may
harm productivity growth because it allows less efficient incumbent firms to remain longer on the
market, which discourages entry of new and potentially more efficient innovators.
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effect and an allocative efficiency effect. There are some differences between Baqaee
and Farhi (2020) and the present paper. First, Baqaee and Farhi (2020) model fric-
tions by wedge while we model frictions by a credit constraint and the credit limit
is our exogenous parameter. Second, Baqaee and Farhi (2020) provide a quantitative
analysis by applying their approach to the firm-level markups in the U.S. but they do
not provide conditions (based on exogenous parameters) under which the aggregate
output is increasing or decreasing in productivity and friction level (wedge in their
framework). Although we do not provide quantitative applications of our results, we
show several conditions (based on exogenous parameters) under which the aggregate
output is increasing or decreasing in productivity and friction level (credit limit in our
framework). We also run some simulations and extend our analyses in infinite-horizon
models while Baqaee and Farhi (2020) do not do this.

Our paper also concerns the literature on the welfare effects of financial constraints.
Jappelli and Pagano (1994, 1999) consider overlapping generations models with liquid-
ity constraints and households living for three periods and argue that liquidity con-
straints may increase or decrease welfares. The central point in Jappelli and Pagano
(1994, 1999) is that liquidity constraints have two opposite effects on welfare: ”they
force the consumption of young below the unconstrained level but raise their per-
manent income by fostering capital accumulation”. Obiols-Homs (2011) considers a
general equilibrium with heterogeneous households (whose borrowings are bounded by
an exogenous limit) and a representative firm. He argues that the borrowing limit has
a negative on the welfare of borrower if its quantity effect dominates its price effect.
As in Jappelli and Pagano (1994, 1999), the mechanism of Obiols-Homs (2011) relies
on the role of supply of credit to households who need to smooth their consumption.
By contrast, our mechanism focuses on credit to firms who need credit to finance their
productive investment. Moreover, Obiols-Homs (2011) considers exogenous borrowing
limits while we focus on credit constraints and our model has endogenous borrowing
limits.

Catherine, Chaney, Huang, Sraer, and Thesmar (2022) build a dynamic general
equilibrium model with heterogeneous firms and collateral constraints. They focus on
the steady state and provide estimates suggesting that lifting financial frictions (mod-
eled by collateral constraints) would increase aggregate welfare by 9.4% and aggregate
output by 11%. Our paper differs from Catherine, Chaney, Huang, Sraer, and Thesmar
(2022) in two aspects. First, although we also find that the aggregate output in the
frictionless economy is higher than that in the economy with financial frictions, it is not
a monotonic function of the degree of financial friction. Second, both individual and
social welfares may not be monotonic in the degree of financial friction. Interestingly,
lifting credit constraint may decrease the welfare of some agents.

Last but not least, our paper contributes to the debate concerning the slowdown
in aggregate productivity growth that has been documented by several studies such
as Andrews, Criscuolo and Gal (2015), Bouche, Cette, and Lecat (2021), Goldin,
Koutroumpis, Lafond, and Winkler (2024); see Footnote 2. Our above analyses sug-
gest that the interplay between credit constraints, high heterogeneity of productivity,
asymmetry of productivity and financial shocks may generate a slowdown in aggregate
productivity growth. We argue that the aggregate productivity growth rate may be far
from that of most productive firms. It may be even lower than the smallest productiv-
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ity growth rate of firms. Our approach, which is different from those in the literature,
is based on the general equilibrium theory with financial frictions and heterogeneous
producers.

The rest of our article is organized as follows. Section 3 presents a motivating
example with two agents while Section 3 present a two-period general equilibrium
framework with many producers to study the effects of productivity and credit limits.
Section 4 explores our analyses in infinite-horizon general equilibrium models à la
Ramsey. Section 5 concludes. Formal proofs are gathered in the appendices.

2 A motivating example

In this section, we consider a deterministic two-period economy with a two agents
i = 1, 2. There is a single good (numéraire) which can be consumed or used to produce.
Each agent i has exogenous initial wealth (Si units of good) at the initial date. To
keep the model as simple as possible, we assume that agents just maximize their
consumption in the second period and we focus on the output in this period.

Agents have two ways for investing. On the one hand, agent i can buy ki units
of physical capital at the initial date to produce Fi(ki) units of good at the second
date, where Fi is the production function. Assume that Fi(k) = Aik, ∀k ≥ 0, with
0 < A1 < A2.

On the other hand, she can invest in a financial asset with real return R which is
endogenous. Denote bi the asset holding of agent i. She can also borrow and then
pay back Rbi in the next period. However, there is a borrowing constraint. The
maximization problem of agent i can be described as follows:

(Pi) : πi = max
ki,bi

[Fi(ki)−Rbi] (2.1a)

subject to: 0 ≤ ki ≤ Si + bi (budget constraint) (2.1b)

Rbi ≤ γiFi(ki) (borrowing constraint) (2.1c)

where γi ∈ (0, 1) is an exogenous parameter. Borrowing constraint (2.1c) means that
the repayment does not exceed the market value of the borrower’s project.910 This is
similar to the collateral constraint (4) in Kiyotaki (1998) or the so-called earnings-based
constraint in Lian and Ma (2021).11 The better the commitment, the higher value of
γi, the larger the set of feasible allocations of the agent i. Kiyotaki (1998) interprets γi

9Here, we follow Kiyotaki (1998) by assuming that the debtor is required to put her project as
collateral in order to borrow: If she does not repay, the creditor can seize the collateral. Due to the
lack of commitment (or just because the debtor is not willing to help the creditor take the whole
value of the debtor’s project), the creditor can only obtain a fraction γi of the total value of the
project. Anticipating the possibility of default, the creditor limits the amount of credit so that the
debt repayment will not exceed a fraction γi of the debtor’s project value.

10Matsuyama (2007) (Section 2) considers a model with heterogeneous agents, which corresponds
to our model with ki = 1, Si = w, bi = 1−w. However, different from our setup, investment projects
in Matsuyama (2007) are non-divisible.

11Some authors (Buera and Shin, 2013; Moll, 2014) set ki ≤ θwi, where wi ≥ 0 is the agent i’s wealth
and interpret that θ measures the degree of credit frictions (credit markets are perfect if θ = ∞ while
θ = 1 corresponds to financial autarky, where all capital must be self-financed by entrepreneurs). In
our framework, Si plays a similar role of wealth wi in Buera and Shin (2013), Moll (2014). Another way
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as the collateral value of investment. In our paper, we call γi the credit limit of agent
i.

The following table from the Enterprise Surveys (2018)’s panel datasets suggests
that borrowing and collateral constraints matter for the development of firms.

An economy E with credit constraints is characterized by a list of fundamentals

E ≡ (Ai, fi, γi, Si)i=1,2.

Definition 1. A list (R, (ki, bi)i) is an equilibrium if (1) for each i, given R, the
allocation (bi, ki) is a solution of the problem (Pi), and (2) financial market clears∑

i bi = 0.

In our example with linear production function, we can explicitly compute the
equilibrium interest rate and aggregate output (see Theorem 2 in Appendix D):

Lemma 1. In the above economy with 2 agents and linear production function, the
equilibrium interest rate and aggregate output are determined by

Y =

A2(S1 + S2) if A1 < γ2A2
S1+S2

S1

A1S1 + A2S2
A1(1− γ2)

A1 − γ2A2

if A1 ≥ γ2A2
S1+S2

S1

(2.2)

R =


A2 if S1 ≤ γ2

1−γ2
S2

γ2A2(S1+S2)
St

if γ2
1−γ2

S2 < S1 <
γ2A2

A1−γ2A2
S2

A1 if S1 ≥ γ2A2

A1−γ2A2
S2, or, equivalently, A1 ≥ γ2A2

S1+S2

S1

(2.3)

This allows us to fully investigate the effects of productivity changes. First, we
look at the individual level.

Proposition 1 (effects of individual productivity changes). 1. The aggregate out-
put is always increasing in A2 - the productivity of the most productive agent.

to introduce credit constraint is to set that bi ≤ θki. This corresponds to constraint (3) in Midrigan
and Xu (2014). Other authors (Kocherlakota, 1992; Obiols-Homs, 2011) consider exogenous borrowing
limits by imposing a short sales constraint: bi ≤ B for any i. Under these three settings, the asset
holding bi is bounded from above by an upper bound which does not depend on the interest rate R.
Carosi, Gori, and Villanacci (2009) present a two-period general equilibrium model with uncertainty,
numéraie assets, and participation constraints described by functions of agent’s choices and prices.
Carosi, Gori, and Villanacci (2009) prove the existence of equilibrium and study indeterminacy but
do not provide comparative statics.
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2. When A1 < γ2A2
S1+S2

S1
, the aggregate output does not depend on A1. When

γ2A2
S1+S2

S1
< A1, we have ∂Y

∂A1
= S1 − (1−γ2)γ2A2

2S2

(A1−γ2A2)2
, and, by consequence,

∂Y

∂A1

≥ 0 ⇔ S1

S2

(A1

A2

− γ2
)2 ≥ (1− γ2)γ2 (2.4)

So, the aggregate output displays an U-shape as a function of the least productive
agent’s credit limit. It is increasing in A1 if the productivity ratio A1/A2 is higher than
a threshold (or, equivalently, the productivity gap A2/A1 is lower than a threshold).
Figure 1 illustrates an example. In this numerical simulation, we set S1 = 1, S2 = 0.7,
A2 = 1, γ2 = 0.2, and let A1 vary from γ2A2

S1+S2

S1
= 0.34 to A2 = 2. Then the output,

as a function of A1, is decreasing on the interval (0.34, 0.54] and then increasing in the
interval (0.54, 1).

Figure 1: Non-monotonic effect of the agent 1’s productivity.

We now let both productivities A1 and A2 vary.

Proposition 2 (effects of productivity changes). Consider a two-agent economy having
linear technologies Fi(k) = Aik ∀i = 1, 2 with γ2 < A1 < A2, and borrowing constraints:
Rbi ≤ γiAiki.

Assume that there is a productivity shock that changes the productivity of agents
from (A1, A2) to (A′

1, A
′
2). Assume that A′

2 > A′
1. Assume that the credit constraint of

agent 2 is low so that γ2 <
A1

A2

S1

S1+S2
and γ2 <

A′
1

A′
2

S1

S1+S2
. Then, the output change is

Y (A′
1, A

′
2)− Y (A1, A2) = (A′

1 − A1)S1 + A2S2(1− γ2)
A1A

′
2 − A′

1A2

(A1 − γ2A2)(A′
1 − γ2A′

2)
(2.5)

(1) We have that:

If
A′

2

A2

≥ A′
1

A1

≥ 1, then Y (A′
1, A

′
2) ≥ Y (A1, A2) (2.6)

(2) Assume that

S2A2(1− γ2)
γ2A2

(A1 − γ2A2)2
− S1 > 0, i.e.,

S1

S2

(A1

A2

− γ2
)2

< (1− γ2)γ2 (2.7)
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Then, there is a neighborhood B of (A1, A2) such that

Y (A′
1, A

′
2)− Y (A1, A2)

A′
1 − A1

< 0 (2.8a)

∀(A′
1, A

′
2) ∈ B satisfying

A′
2

A2
− 1

A′
1

A1
− 1

<
γ2A2

A1

− S1(A1 − γ2A2)
2

S2A1A2(1− γ2)
and A′

1 ̸= A1. (2.8b)

Proof. See Appendix A.

Condition (2.6) says that the aggregate output increases if the productivity of both
producers increases and the productivity of the most productive agent increases faster
than that of the less productive one.

Let us now focus on point 2 of Proposition 2. Here, condition (2.7) plays a very
important role. It is satisfied if the ratio A1

A2
is low in the sense that A1

A2
< γ2 +(γ2(1−γ2)S2

S1

)0.5
. This can be interpreted as a high productivity dispersion. Under this

condition, we see that γ2A2

A1
− S1(A1−γ2A2)2

S2A1A2(1−γ2)
∈ (0, 1). According to conditions (2.7) and

(2.8a), under a positive shock that improves the TFP of all agents, the aggregate
output may decrease:

Y (A′
1, A

′
2) < Y (A1, A2),∀A′

1 > A1, A
′
2 > A2, (A

′
1, A

′
2) ∈ B satisfying (2.8b).

Let us explain the economic intuition behind this result. Assume that the produc-
tivity dispersion is high and let us consider a small positive shock (both the TFP of
both agents increases). If the productivity of the less productive agent increases faster

than that of the most productive agent (i.e.,
A′

2

A2
is low with respect to

A′
1

A1
, see condition

(2.8b)), the first agent absorbs more physical capital and the most productive agent
gets less capital (i.e., k2(A

′
1, A

′
2) < k2(A1, A2)). By consequence, the aggregate output

may decrease.

3 A two-period model with many agents

We now extend the two-period model in Section 2 by allowing for a finite number (m)
of heterogeneous agents and general production functions Fi : R+ → R+.

12

We require standard assumptions on the production function.

Assumption 1. The production function Fi is concave, strictly increasing, Fi(0) = 0.
The credit limit γi belongs the interval (0, 1) for any i.

We define the notion of equilibrium as in Definition 1. Under the above assumption,
we can prove the equilibrium existence.

12We can interpret the one-factor production function Fi as a reduced form for a setting with other
factors of production. Indeed, suppose that the producer has a two-factor production function, say
capital and labor, Gi(k,N). For a given level of capital ki, the firm chooses labor quantity Ni to
maximize its profit maxNi≥0 [Gi(ki, Ni)− wNi]. The first order condition writes ∂Gi

∂N (ki, Ni) = w.
This implies that Ni = Ni(ki, w). So, Gi(ki, Ni) = Gi(ki, Ni(ki, w)). We now define Fi(ki) ≡
Gi(ki, Ni(ki, w)).
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Proposition 3. Under Assumption 1, there exists an equilibrium.

Proof. See Appendix.

Given an equilibrium (R, (ki, bi)i), the aggregate output is Y =
∑

i Fi(ki). This
depends on the forms of functions (Fi), the initial wealths (Si), and the credit limits
(γi).

Note that in an economy with perfect financial market, the aggregate production
is simply determined by

Y perfect ≡ max
(ki)≥0

∑
i

Fi(ki) subject to :
∑
i

ki ≤ S ≡
∑
i

Si. (3.1)

Y perfect is increasing in Ai, ∀i, and in S.
In equilibrium, we have

∑
i k = S. So, we have that Y ≤ Y perfect. This is consistent

with a number of studies on the macroeconomic effects of financial constraints (Buera
and Shin, 2013; Karaivanov and Townsend, 2014; Midrigan and Xu, 2014; Moll, 2014;
Catherine, Chaney, Huang, Sraer, and Thesmar, 2022).

However, an interesting open issue is whether the aggregate output is increasing or
decreasing in agents’ productivity Ai and credit limit γi. In the following sections, we
will investigate how the aggregate output changes when productivities (Ai) and credit
limits (γi) vary.

3.1 Effects of productivity changes

We study conditions the aggregate production is increasing or decreasing when produc-
tivity changes take place. Since we are interested in the effect of productivity changes,
we assume that the production functions take the following form:

Fi(k) = Aifi(k), (3.2)

where the parameter Ai > 0 represents the productivity of agent i while fi is the
original production function.

Assume that the TFP of agents depends on an exogenous variable x ∈ R in the
sense that Ai = Ai(x) where Ai is a differentiable function of x. Since we focus on
positive changes, we assume that A′

i(x) > 0, ∀i.
We wonder how the aggregate output changes when x varies. Note that the equilib-

rium physical capital, denoted by ki(x), depends on Ai(x) and the equilibrium interest
rate R which in turn depend on all productivities A1(x), . . . , Am(x). Assume that we
have the differentiability. So, we can compute

k′
i(x) =

∂ki
∂R︸︷︷︸
< 0

∂R

∂x︸︷︷︸
> 0

+
∂ki
∂Ai︸︷︷︸
> 0

∂Ai

∂x︸︷︷︸
> 0

,
∂R

∂x
=

∑
j

∂R

∂Aj

∂Aj

∂x
(3.3)

Notice that ∂ki
∂Ai

≥ 0, ∂ki
∂R

≤ 0, ∂Ai

∂x
≥ 0, ∂R

∂x
≥ 0. By consequence, we can expect

that k′
i(x) may have any sign. However, we have

∑
i k

′
i(x) = 0 because

∑
i ki = S in

equilibrium.

10



We now look at the aggregate output:

Y (x) =
∑
i

Ai(x)fi
(
ki(x)

)
=

∑
i

Ai(x)fi

(
ki
(
Ai(x), R(A1(x), . . . , Am(x))

))
∂Y

∂x
=
∑
i

A′
i(x)fi

(
ki(x)

)
+
∑
i

Ai(x)f
′
i(ki(x))k

′
i(x). (3.4)

By using (3.3) and the fact that
∑

i k
′
i(x) = 0, we obtain two decompositions.

Proposition 4 (effects of productivity changes - general decompositions). Consider
an equilibrium and assume that the equilibrium outcomes are differentiable functions.
We have

∂Y

∂x
=
∑
i

A′
i(x)fi

(
ki(x)

)
+

∑
i:k′i(x)≥0

Ai(x)f
′
i(ki(x))k

′
i(x)︸ ︷︷ ︸

Added production of some agents

+
∑

i:k′i(x)<0

Ai(x)f
′
i(ki(x))k

′
i(x)︸ ︷︷ ︸

Production losses of other agents

(3.5a)

∂Y

∂x
=
∑
i

A′
i(x)fi

(
ki(x)

)
+
∑
i

Ai(x)f
′
i(ki(x))

∂ki
∂Ai︸︷︷︸
> 0

∂Ai

∂x︸︷︷︸
> 0︸ ︷︷ ︸

Quantity effect

+
∑
i

Ai(x)f
′
i(ki(x))

∂ki
∂R︸︷︷︸
< 0

∂R

∂x︸︷︷︸
> 0︸ ︷︷ ︸

Price effect

.

(3.5b)

Proposition 4 provides different interpretations of the effects of productivity changes
and helps us understand how the aggregate output may be increasing or decreasing
in the exogenous change x. Look at (3.5a). When x increases, it generates a direct
and positive effect on the productivity of agents, which is represented by the terms∑

iA
′
i(x)fi

(
ki(x)

)
> 0. However, since the capital supply is fixed, we have

∑
i k

′
i(x) =

0. So, some agents get more input (i.e., k′
i(x) ≥ 0) and produce more. However, others

get less (i.e., k′
i(x) < 0) and produce less. Therefore, the aggregate production can

increase or decrease. The second decomposition (3.5b) shows us the quantity and price
effects. Indeed, the equilibrium physical capital ki is increasing in the productivity
Ai(x) which contribute to the quantity effect. However, it is decreasing in the interest
rate R; see (3.3). Since the interest rate is increasing in x, agents pay higher cost when
borrowing, which generates the price effect.

Proposition 4 leads to the following result showing the effect of individual produc-
tivity change.

Corollary 1 (effect of individual productivity changes). Consider an equilibrium with
kj > 0. Let only Aj vary and assume that the equilibrium outcomes are differentiable
functions. We have

∂Y

∂Aj

= fj(kj)︸ ︷︷ ︸
Productivity effect

+
∑
i ̸=j

(
Ajf

′
j(kj)− Aif

′
i(ki)

) −∂ki
∂R︸ ︷︷ ︸
≥ 0

∂R

∂Aj︸︷︷︸
≥ 0︸ ︷︷ ︸

Allocation effect

. (3.6)

11



By consequence, ∂Y /∂Aj ≥ 0, ∀j ∈ I, where I = argmaxi>n{Aif
′
i(ki)}. The

aggregate output increases in Ai if the producer i has the highest total marginal factor
productivity.

Conditions in Proposition 4 and Corollary 1 are based on endogenous variables.
We can go further by providing conditions based on exogenous parameters, shows the
role of credit limit on the effect of productivity change.

Firstly, we consider linear production functions. The following result is a general-
ization of Proposition 1.

Proposition 5 (effects of productivity changes - linear technology). Assume linear
production functions Fi(k) = Aik ∀i,∀k, where A1 < · · · < Am.

1. We have Y ≤ Y perfect ≡ Am

∑
i Si. Moreover, Y = Y ∗ if and only if fmAm ≥

Am−1(1− Sm

S
).

2. Assume that An > maxi(γiAi) and
∑m

i=n+1
AnSi

An−γiAi
≤ S ≤

∑m
i=n

AnSi

An−γiAi
. Then,

the equilibrium interest rate equals An
13 and the aggregate output equals = An

∑n
i=1 Si+∑m

i=n+1

An(1− γi)

An − γiAi

AiSi.

We also have that ∂Y
∂Aj

> 0, ∀j > n, and

∂Y

∂An

=
n∑

i=1

Si −
m∑

i=n+1

(1− γi)γiSi

(An

Ai
− γi)2

(3.7)

We can see clearly that ∂Y
∂An

may have any sign. Since ∂Y
∂An

is increasing in An, it
can be negative when An is low and positive when An is high. This is consistent with
our insights mentioned in Section 2.

Secondly, we investigate the case of strictly concave production function. We require
standard assumptions.

Assumption 2. For any i, the function fi is strictly increasing, strictly concave, twice
continuously differentiable, fi(0) = 0, fi(∞) = ∞, f ′

i(0) = ∞, f ′
i(∞) = 0.

Assumption 3. For any i, the function
kf ′

i(k)

fi(k)
is increasing in k.

Definition 2. Given R, γi, Ai, Si, denote kn
i = kn

i (R/Ai) the unique solution to the
equation Aif

′
i(k) = R and kb

i = kb
i (

R
γiAi

, Si) the unique solution to R(k−Si) = γiAifi(k).

Under Assumption 2, kn
i and kb

i are uniquely defined. Observe that kn
i (resp., kb

i )
represents the optimal physical capital of agent i when her borrowing constraint is not
binding (resp., binding).

The following result explores conditions under which the equilibrium aggregate
output increases or decreases in agents’ productivity.

13In Appendix A, we present also the case where R ∈ (An−1, An) for some n ∈ {1, . . . ,m}. In such
a case, the output is increasing in the productivity of any producer.
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Proposition 6 (effects of productivity changes - strictly concave technology). Con-
sider the case of strictly concave technology and let Assumptions 2 and 3 be satisfied.

1. The equilibrium outcomes coincide to those in the economy without frictions,
(and hence, the equilibrium aggregate output is increasing in each individual pro-
ductivity Ai) if one of the two following conditions

(a) The credit limit of any agent is high, in the sense that γi > limx→∞
xf ′

i(x)

fi(x)
, ∀i.

(b) γi < limx→∞
xf ′

i(x)

fi(x)
,∀i, R1 < R2 < · · · < Rm, and S <

∑m
i=1 k

n
i (Rm/Ai),

where Ri is the unique value satisfying

Ri
kn
i (Ri/Ai)− Si

Aifi(kn
i (Ri/Ai))

= γi. (3.8)

2. Assume now that γi < limk→∞
kf ′

i(k)

fi(k)
, ∀i, and R2 < R3 < · · · < Rm. We look at

the role of A1.

(a) There exists Ā1 > 0 such that the equilibrium output Y is increasing in A1

on the interval (Ā1,∞).

(b) Consider the case when A1 is small. Denote

D2 = kn
2 (
R2

A2

) +
m∑
i=3

kb
i (

R2

γiAi

, Si), D3 =
3∑

i=2

kn
i (
R3

Ai

) +
m∑
i=3

kb
i (

R3

γiAi

, Si), . . .

Dm =
m∑
i=2

kn
i (
Rm

Ai

)

Since R2 < R3 < · · · < Rm, we have D2 > D3 > · · · > Dm > 0.

i. If S < Dm, then the output is increasing in A1 when A1 is small enough.

ii. Assume that

Dn > S > Dn+1 (3.9a)

γi
fi(k)

kf ′
i(k)

<
S1

S1 +
∑

t≥n+1 St

,∀i = n+ 1, . . . ,m, ∀k ∈ (0, S) (3.9b)

lim
x→+∞

x

f ′′
1 (x)

< 0 (3.9c)

Then, for any A1 small enough, we have that ∂Y
∂A1

< 0.

Proof. See Appendix A.

Proposition 6 explores the role of two important factors: credit limits (γi) and
productivity A1.

14

Look at firstly on part 1 of Proposition 6. Condition γi > limx→∞
xf ′

i(x)

fi(x)
ensures

that agent i’s borrowing constraint is not binding (see Lemma 14 in Appendix D).

14In Appendix C.2.1, we provide more detailed analyses for the case of two agents with strictly
concave technologies.
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By consequence, the equilibrium coincides to that in the economy without frictions.
Therefore, the output is increasing in each productivity.

Under condition 1.(b) of Proposition 6, Theorem 3 in Appendix A implies that the
equilibrium coincides to that in the economy without frictions (this is similar to part 1
of Proposition 5). Our proof is based on the key result: Agent i’s borrowing constraint
is binding if and only if R ≤ Ri (see Lemma 13 in Online Appendix 1).

Observe that
∑m

i=1 k
n
i (Rm/Ai) is increasing in γm because Ri/Ai does not depend

on Ai and kn
i (R/Ai) is decreasing in R/Ai. So, condition S <

∑m
i=1 k

n
i (Rm/Ai) is more

likely to be satisfied if the credit limit γm of the agent m who needs the credit the most
(in the sense that Rm > Ri, ∀i) is quite high, then the credit constraints of this agent
and of all other ones are not binding.

To better understand point 1.b, we look at the case where Fi(k) = Aik
α, ∀i,∀k,

with α > γi ∀i. We can compute that Rm = αAmS
α−1
m (1− γm

α
)1−α,15and hence

m∑
i=1

kn
i (
Rm

Ai

) =
m∑
i=2

(
αAi

Rm

)
1

1−α =
m∑
i=1

(
Ai

AmSα−1
m (1− γm

α
)1−α

)
1

1−α =
m∑
i=1

(
Ai

Am

)
1

1−α
Sm

1− γm
α

.

So, we get that:

S <
m∑
i=1

kn
i (Rm/Ai) ⇔

m∑
i=1

Si <
m∑
i=1

(
Ai

Am

)
1

1−α
Sm

1− γm
α

.

This can be satisfied if γm is high in the sense that it is closed to α.16

We now explain part 2 of Proposition 6. According to point 2.a, when the produc-
tivity A1 is high, a positive productivity change is good for the aggregate output. The
intuition behind is that when A1 is high enough, the marginal productivity A1f

′
1(k1) of

this agent is the highest total marginal factor productivity, and hence, decomposition
(3.6) ensures that ∂Y

∂A1
> 0.

Regarding point 2.b.i of Proposition 6, condition S < Dm is non-empty and it
can be satisfied with a large class of parameter.17 Observe that Dm is increasing in
A2, . . . , Am−1 but decreasing in Am because Ri/Ai does not depend on Ai and kn

i (R/Ai)
is decreasing in R/Ai. Moreover, Dm is increasing in agent m′s credit limit γm. In
other words, condition S < Dm is likely to be satisfied if γm is quite high. In such
a case, point 2.a ensures that, when A1 is small enough, the credit constraints of all
agents are not binding and hence the aggregate output is increasing in Ai, ∀i ≥ 1.

Let us now look at point 2.b.ii. Condition Dn > S > Dn+1 ensures that when A1

is low enough, the credit constraint of any agent i ≥ n + 1 is binding while that of
any agent i ≤ n is not. Condition (3.9b) means that agents whose credit constraints

15See Remark 4 in Online Appendix 1.
16For instance, we can take γi = γ < α, Si = s, ∀i, and A1 < · · · < Am. Then R1 < · · · < Rm.

Moreover, S <
∑m

i=1 k
n
i (Rm/Ai) becomes m(1− γm

α ) <
∑m

i=1(
Ai

Am
)

1
1−α , which is satisfied if γ is closed

to α.
17Indeed, let Fi(k) = Aik

α, ∀i,∀k, with α > γi. We have Rm = αAmSα−1
m (1 − γm

α )1−α, and

hence Dm =
∑m

i=2(
Ai

Am
)

1
1−α Sm

1− γm
α
. When Si = s, γi = γ, ∀i, and A2 < · · · < Am, then we have

R2 < · · · < Rm. Condition S < Dm is equivalent to m(1 − γ
α ) <

∑m
i=2(

Ai

Am
)

1
1−α which can be

satisfied.
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are binding have a very low credit limit. In such a case, the aggregate output may be
decreasing in productivity A1 when A1 is small enough. The fact that A1 is very small
ensures that the productivity dispersion is high. This is consistent with condition (2.4)
in our motivating example.

3.1.1 Homogeneous versus heterogeneous productivity changes

When the TFP of all producers changes at the same rate, we have the following result.

Proposition 7 (homogeneous productivity changes). Consider an equilibrium. As-
sume that an exogenous change makes the individual TFP vary from Ai to Ai(x) = xAi,
∀i, where x > 0. Then, for this new economy, there is an equilibrium where Y (x) = xY ,
i.e., the aggregate output changes at the same rate.

Proof. Denote (R, (ki, bi)) an equilibrium for the economy E ≡ (Ai, fi, γi, Si)i=1,...,m

with borrowing constraints: Rbi ≤ γiAifi(ki). We can check that (R(x), (ki, bi)), where
R(x) ≡ xR, is an equilibrium for the new economy E(x) ≡ (Ai(x), fi, γi, Si)i=1,...,m. In
equilibrium, the new aggregate output is Y (x) =

∑
i Ai(x)fi(ki) = xY.

Next, we consider the case where productivity changes are not proportional. In
such a case, we argue that positive productivity changes may reduce the aggregate
output. Indeed, by using Taylor’s theorem and Proposition 6, we obtain the following
result.

Proposition 8 (asymmetric productivity changes). Consider an economy which sat-
isfies conditions in case 2.(b) in Proposition 6, and A1 > 0 small enough. Then, there
exist g ∈ (0, 1) and a neighborhood G of (A1, . . . , Am) such that

Y (A′
1, . . . , A

′
m)− Y (A1, . . . , Am)

A′
1 − A1

< 0, (3.10)

∀(A′
1, . . . , A

′
m) ∈ G satisfying |A

′
i − Ai

A′
1 − A1

| < g,∀j.

Proof. Denote A ≡ (A1, . . . , Am) and A′ ≡ (A′
1, . . . , A

′
m). By Taylor’s theorem, we

have

Y (A′)− Y (A) =
∂Y (A)

∂A1

(A′
1 − A1) +

∑
i≥2

∂Y (A)

∂Ai

(A′
i − Ai) +

∑
i

hi(A,A
′)(A′

i − Ai)

where limA′→A hi(A,A
′) = 0.

We can choose ϵ < 0, g < 1 and (A′
i) such that

A′
i−Ai

A′
1−A1

| < g and ∂Y (A)
∂A1

+
∑

i≥2
∂Y (A)
∂Ai

A′
i−Ai

A′
1−A1

<

ϵ < 0. In this case, we get (3.10).

There are two key points that ensure (3.10). The first condition is ∂Y (A)
∂A1

< 0, i.e.,
the output is decreasing in A1 in a neighborhood of (A1, . . . , Am); notice that this may

happen only if A1 is small enough. Of course, we have
Y (A′

1,...,A
′
m)−Y (A1,...,Am)

A′
1−A1

> 0 if
∂Y (A)
∂Ai

> 0, ∀i. The second condition is | A
′
i−Ai

A′
1−A1

| < g, i.e., the productivity does not

change at the same rate and that the productivity of the less productive agent (agent
1) increases faster than that of the most productive agents. This implies that agent 1
absorbs more capital than other ones.
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3.2 Effects of credit limits

In this section, we investigate the effects of credit limits (γt) on the aggregate produc-
tion, which help us to understand better the relationship between finance and economic
growth. A meaningful question is whether financial development has positive effects
on the economic growth. In our model, relaxing credit limit (i.e., increasing γi) can be
interpreted as reduction of financial friction or improvement of the financial sector.

Assume that the credit limit of all agents depends on an exogenous variable x ∈ R
in the sense that γi = γi(x) where γi is a differentiable function of x and γ′

i(x) > 0.
We wonder how the aggregate output changes when x varies. The equilibrium

physical capital of agent i, which depends on x, is denoted by ki(x). We write
ki(x) = ki

(
γi(x), R(γ1(x), . . . , γm(x))

)
, where R = R(γ1(x), . . . , γm(x)) is the equi-

librium interest rate which depends on the credit limit (γi(x))i. We can write the
aggregate output as follows:

Y (x) =
∑
i

Fi

(
ki(x)

)
=

∑
i

Fi

(
ki
(
γi(x), R(γ1(x), . . . , γm(x))

))
. (3.11)

Assume the differentiability, we have

k′
i(x) =

∂ki
∂γi

∂γi
∂x

+
∂ki
∂R

∂R

∂x
,

∂R

∂x
=

∑
j

∂R

∂γj

∂γj
∂x

(3.12)

Recall that ∂ki
∂γi

≥ 0, ∂ki
∂R

≤ 0, ∂γi
∂x

≥ 0, ∂R
∂x

≥ 0 because ∂R
∂x

=
∑

j
∂R
∂γj

∂γj
∂x

and ∂R
∂γj

≥ 0,

∀j. So, we see that k′
i(x) may have any sign. However, we know

∑
i k

′
i(x) = 0 because∑

i ki = S in equilibrium. By consequence, we obtain two decompositions which help
us to understand why the aggregate output may be increasing or decreasing in the
exogenous change x.

Proposition 9 (effects of credit changes). Consider an equilibrium.

1. The equilibrium outcomes do not depend on credit limits γi(x) of agents whose
borrowing constraints are not binding.

2. For any agent j whose borrowing constraint is binding, let x vary and assume
that the equilibrium outcomes are differentiable functions. Then, we have decom-
positions:

∂Y

∂x
=

∑
i:k′i(x)≥0

F ′
i (ki(x))k

′
i(x)︸ ︷︷ ︸

Added production of agent j

+
∑

i:k′i(x)<0

F ′
i (ki(x))k

′
i(x)︸ ︷︷ ︸

Production losses of other agents

(3.13)

=
∑
i

F ′
i (ki(x))

∂ki
∂γi︸︷︷︸
> 0

∂γi
∂x︸︷︷︸
> 0︸ ︷︷ ︸

Quantity effect

+
∑
i

F ′
i (ki(x))

∂ki
∂R︸︷︷︸
< 0

∂R

∂x︸︷︷︸
> 0︸ ︷︷ ︸

Price effect

(3.14)
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3. Consider a particular case where only Aj varies (other being fixed). We have that

∂Y

∂γj
=

∂R

∂γj︸︷︷︸
≥ 0

∑
i ̸=j

(
F ′
i (kj)− F ′

i (ki)
) −∂ki

∂R︸ ︷︷ ︸
≥ 0

(3.15)

While we directly get (3.13) and (3.14) by taking the derivative of x with respect
to γj, condition (3.15) is a consequence of (3.13) and the fact that

∑
i ki = S.18

Proposition 9 has a similar insight as in Proposition 4 and Corollary 1. This directly
leads to the following result.

Corollary 2. Denote In = argmaxi{F ′
i (ki)}. Thus, we have that ∂Y /∂γj ≥ 0 ∀j ∈ In,

i.e., the aggregate output is increasing in the credit limit of agents having the highest
marginal productivity.

We now provide conditions under which the aggregate output may be decreasing
in credit limits.

Proposition 10 (effects of individual credit limit). Assume that Fi(k) = Aik ∀i, k.
Assume that maxi(γiAi) < A1 < · · · < Am. Consider the case where the equilibrium
interest rate is belong to the interval (An−1, An). Then, we have that:

1. ∂Y
∂γn

< 0 < ∂Y
∂γm

if n < m.19

2. Consider an entrepreneur i with n < i < m, we have that:

∂Y

∂γi
> 0 if Ai is high enough, i.e.,

Ai − Ai−1

Am − Ai

>

∑m
t=i+1

γtAtSt

(An−1−γtAt)2∑i−1
t=n

γtAtSt

(An−γtAt)2

(3.16a)

∂Y

∂γi
< 0 if Ai is low enough, i.e.,

Ai − An

Ai+1 − Ai

<

∑m
t=i+1

γtAtSt

(An−γtAt)2∑i−1
t=n

γtAtSt

(An−1−γtAt)2

. (3.16b)

Proof. See Appendix B.

Condition ∂Y
∂γn+1

< 0 indicates that an increasing of the credit limit of the least

productive producer harms the aggregate output while condition ∂Y
∂γm

> 0) has a similar
interpretation as in Corollary 2.

According to (4.29a) and (4.29b), the aggregate output is more likely to be increas-
ing (resp., decreasing) in the credit limit of an agent if the TFP of this producer is
quite close to those of more productive entrepreneurs (resp., that of the least produc-
tive entrepreneur) or/and credit limits and initial wealths of more productive agents
(γt)t>i are low.

We complement our above points by a numerical example.

18Indeed, notice that ki depends on R and γi, taking the derivative of both sides of
∑

i ki = S with

respect to γj , we have
(∑m

i=1
∂ki

∂R

)
∂R
∂γj

+
∂kj

∂γj
= 0, which imply that

∂kj

∂R
∂R
∂γj

+
∂kj

∂γj
= −

∑
i ̸=j

∂ki

∂R
∂R
∂γj

≥ 0.

Combining this with the equation Y =
∑

i Fi(ki), we get (3.15).
19Moreover, if n = m (i.e., only agent m produces), we have ∂Y

∂γm
= 0.
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Numerical simulation 1. Consider a three-agent economy with linear production
functions Fi(k) = Aik, ∀i, ∀k, and borrowing constraints are Rbi ≤ γiAiki. In Ap-
pendix B, we completely compute the equilibrium. Assume now that fundamentals
are given by S1 = 4, S2 = 4, S3 = 3, A1 = 1, A2 = 1.2, A3 = 1.5, γ1 = 0.2.

First, we set γ3 = 0.3 and we let γ2 vary. Figure 2 shows the effects of the agent
2’s credit limit γ2 on the equilibrium interest rate and the aggregate output. When
γ2 varies from 0.15 to 0.45, the interest rate varies from A1 = 1 to A2 = 1.2. The
aggregate output is not monotonic functions of γ2. Indeed, it is increasing in γ2 in
the regime A1 where the interest rate R = A1, but decreasing in γ2 in the regime R1

where the interest rate R = R1 (consistent with Proposition 10), and then constant in
the regime A1 where R = A2.

Figure 2: Non-monotonic effects of credit limit γ2.

Second, we set γ2 = 0.3 and let γ3 vary. Figure 3 shows the effects of the most
productive agent’s credit limit γ3 on the equilibrium interest rate and the aggregate
output. The output is increasing in γ3 (this is consistent with point 1 of Proposition
10).

Figure 3: Monotonic effects of credit limit γ3.
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3.2.1 Homogeneous versus heterogeneous credit changes

We firstly consider the case of homogeneous credit change.

Proposition 11 (homogeneous credit change). Assume either Fi(k) = Aik, ∀i,∀k or
Assumption 2 is satisfied. Assume also that γi = γ ∈ (0, 1), ∀i. Then the equilibrium
aggregate output is an increasing function of the credit limit γ.

Proof. See Appendix B.

The intuition of the result is simple: all credit-constrained producers, who have
higher marginal productivity, can borrow more from other agents who have lower
marginal productivity, and hence produce more. This point is consistent with those
in in Khan and Thomas (2013) (section VI. C), Midrigan and Xu (2014) (section
II.B), Moll (2014) (Proposition 1), and Catherine, Chaney, Huang, Sraer, and Thesmar
(2022).

We now assume that there is an aggregate change on credit limits under which the
new credit limits are (γ′

i)i. Our novel point is that, even γ′
i > γi ∀i, the new aggregate

output Y ′ = Y (γ′
1, . . . , γ

′
m) may be lower than Y = Y (γ1, . . . , γm). Formally, we have

the following result.

Proposition 12 (general credit changes). Assume that Fi(k) = Aik ∀i, k, and maxi(γiAi) <
A1 < · · · < Am. Consider the case where the equilibrium interest rate is in the interval
[An, An+1). Consider an agent i such that n + 1 < i < m and assume that condition
(4.29b) holds. Then there exist g ∈ (0, 1) and a neighborhood G of (γ1, . . . , γm) such
that

Y (γ′
1, . . . , γ

′
m)− Y (γ1, . . . , γm)

γ′
i − γi

< 0, (3.17)

∀(γ′
1, . . . , γ

′
m) ∈ G satisfying |

γ′
j − γj

γ′
i − γi

| < g,∀j ̸= i.

We can apply the same argument used in Proposition 8 to prove Proposition 12.
Proposition 12 shows that the aggregate output may be reduced even the credit

limits of all agents increase (i.e., γ′
i > γi,∀i). It complements Proposition 11, Proposi-

tion 10, and those in Buera and Shin (2013), Khan and Thomas (2013), Midrigan and
Xu (2014), Moll (2014), Catherine, Chaney, Huang, Sraer, and Thesmar (2022). Recall
that these studies provide conditions under which relaxing credit limits has positive
impact on the aggregate output.

3.3 Productivity growth, productivity dispersion and credit
constraint

Definition 3 (aggregate production function and aggregate TFP). If we assume that
Fi(k) = Aif(k) where Ai represents the individual productivity of agent i and f is a
production function, then we can define the aggregate production function G and the
aggregate TFP A by

the aggregate TFP: A ≡ Y

f(S)
(3.18a)

the aggregate production function: G(S) ≡ Y = Af(S). (3.18b)

19



Consider the case Fi(k) = Aif(k), ∀i,∀k. The aggregate productivity TFP is
defined by TFP = Y/f(S). Assume that there is a shock (technical progress, for
instance) that changes productivity from Ai to A′

i and credit limit from γi to γ′
i. The

new TFP of the economy is TFP ′ = Y ′/f(S). We have

TFP ′

TFP
=

Y (A′
1,...,A

′
m)

f(S)

Y (A1,...,A2)
f(S)

=
Y (A′

1, . . . , A
′
m)

Y (A1, . . . , A2)

We aim to understand the relationship between the aggregate productivity growth
TFP ′

TFP
and individual ones

A′
1

A1
, . . . , A

′
m

Am
.

In the economy without frictions, by using the definition (3.1) we have that

TFP ′

TFP
=

max{
∑

i A
′
if(ki) : ki ≥ 0,

∑
i ki ≤ S}

max{
∑

i Aif(ki) : ki ≥ 0,
∑

i ki ≤ S}

Observe thatmini{A′
i

Ai
}Aif(ki) ≤ A′

if(ki) ≤ maxi{A′
i

Ai
}Aif(ki). So, obtain thatmini{A′

i

Ai
} ≤

TFP ′

TFP
≤ maxi{A′

i

Ai
}.

However, when we consider economies with credit constraints, our above analyses
(see Propositions 2, 6, 8, 12) show that the aggregate productivity growth TFP ′

TFP
may

be less than mini{A′
i

Ai
}. Indeed, for instance, we can choose (Ai) and (A′

i) so that all

conditions in Proposition 8 are satisfied and mini{A′
i

Ai
} > 1. In this case, we have

Y (A′
1, . . . , A

′
m) − Y (A1, . . . , Am) < 0, or, equivalently, TFP ′

TFP
< 1. We summarize our

points in the following result.

Proposition 13 (productivity growth, productivity dispersion and credit constraint).
Consider the case Fi(k) = Aif(k), ∀i, ∀k. Assume that there is a shock that changes
productivity from Ai to A′

i and credit limit from γi to γ′
i.

1. In the economy without frictions, we always have

mini{
A′

i

Ai

} ≤ TFP ′

TFP
≤ maxi{

A′
i

Ai

} (3.19)

2. Consider economies with credit constraints E ≡ (Ai, fi, γi, Si)i=1,...,m.

(a) If
A′

i

Ai
= g > 0, ∀i, then Proposition 7 implies that TFP ′

TFP
= g.

(b) However, under some situations as in Propositions 2, 6, 8, 12, we may have
that

TFP ′

TFP
< mini{

A′
i

Ai

}. (3.20)

By consequence, the aggregate productivity growth rate may be far from that of
most productive firms. It may be even lower than the smallest productivity growth
rate of firms.

Our points contribute to the debate concerning the slowdown in aggregate pro-
ductivity growth. For instance, by using data in 23 OECD countries over the 2000s,
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Andrews, Criscuolo and Gal (2015) document a slowdown in aggregate productivity
growth, a rising productivity gap between the global frontier and other firms, and that
productivity growth at the global frontier remained robust.

The following graphic from Bouche, Cette, and Lecat (2021)shows the median
productivity level of frontier firms and laggard firms, over the period 1991-2016 in
France, productivity being measured by TFP. We see that the productivity dispersion
tends to increase over time.

Figure 4: TFP growth. Source: Bouche, Cette, and Lecat (2021)

As recognized by Goldin, Koutroumpis, Lafond, and Winkler (2024), there is no
single reason for the slowdown in aggregate productivity growth. We provide a supply-
side point of view by using a general equilibrium model with credit constraint. Our
above analyses suggest that the interplay between credit constraints, high heterogene-
ity of productivity, asymmetry of productivity and financial shocks may generate a
slowdown in the aggregate productivity growth, and eventually a decrease in the ag-
gregate productivity.

4 Extension: Infinite-horizon models à la Ramsey

We now extend our previous models by considering infinite-horizon models à la Ramsey.
Each agent i maximizes her intertemporal utility subject to budget and borrowing
constraints:

max
(ci,ki,bi)

∞∑
t=0

βt
iui(ci,t) (4.1a)

subject to: ci,t + ki,t − (1− δ)ki,t−1 +Rtbi,t−1 ≤ fi,t(ki,t−1) + bi,t (4.1b)

Rt+1bi,t ≤ γi

(
fi,t(ki,t) + (1− δ)ki,t

)
, (4.1c)

ci,t ≥ 0, ki,t ≥ 0, (4.1d)
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where δ ∈ [0, 1] is the depreciation rate. We assume that bi,−1 = 0, ∀i, and denote the
exogenous initial wealth wi,0 = Fi,0(ki,−1).

Note that we allow for non-stationary production functions. Let us define the
function Fi,t : R+ → R+ by

Fi,t(k) = fi,t(k) + (1− δ)k.

Definition 4. An intertemporal equilibrium is a list ((ci,t, ki,t, bi,t)i, Rt)t≥0 satisfy-
ing two conditions: (1) given (Rt), the allocation (ci,t, ki,t, bi,t) is a solution of the
above maximization problem, and (2) markets clear:

∑
i bi,t = 0,

∑
i(ci,t + ki,t) =∑

i Fi,t(kt−1), ∀t.

In this section, we require standard assumptions.

Assumption 4 (endowments). ki,−1 > 0 and bi,−1 = 0 for any i.

Assumption 5 (borrowing limits). γ ∈ (0, 1) for any i.

Assumption 6 (production functions). For each i, the function Fi,t is concave, con-
tinuously differentiable, f ′

i,t > 0, fi,t(0) = 0.

Assumption 7 (utility functions). For each i and for each t ≥ 0, the function ui :
R+ → R+ is continuously differentiable, concave, strictly increasing.

Assumption 8 (finite utility). For each i ∈ {1, · · · ,m},

max
ci,t,ki,t≥0

{ ∞∑
t=0

βt
iui(ci,t) : ci,t + ki,t ≤ Fi,t(ki,t−1)

}
> −∞ (4.2)∑

t≥0

βt
iui(BK,t) < ∞. (4.3)

where we define the exogenous sequence (BK,t) as follows:

BK,−1 = max
(ki):

∑
i ki≤

∑
i ki,−1;ki≥0,∀i

∑
i

Fi,0(ki) (4.4)

BK,t = max
(ki):

∑
i ki≤BK,t−1;;ki≥0,∀i

∑
i

Fi,t(ki). (4.5)

Theorem 1. Under the above assumptions, there exists an intertemporal equilibrium.

The detailed proof is presented in Online Appendix E. Let us explain the main
idea. First, we prove the existence of equilibrium for each T− truncated economy ET

where there is no activity from date T + 1. Second, we show that this sequence of
equilibria converges for the product topology to an equilibrium of our economy. The
main difficulty is to bound the volume of financial asset holding of agents. Thanks to
borrowing constraint (4.1c), we can do this.
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4.1 Effects of productivity changes

We firstly look at the steady state.

Proposition 14 (steady state analysis). Consider the above infinite-horizon model.
Assume that Fi,t = Fi, i.e., does not depend on time. Consider a steady state equilib-
rium with ki > 0, ∀i.

1. The steady state interest rate is R = 1/maxi{βi}.

2. Assume, in addition, that β1 > βi, ∀i ≥ 2. Then A1F
′
1(k1) = R = 1/β1, agent

1’s borrowing constraint is not binding, and for any i ≥ 2,

R− γiF
′
i (ki)

R
= F ′

i (ki)(1− γi)

Hence, ki is increasing in Ai. Since Rβi ≤ 1, the value ki is increasing in credit
limit γi. By consequence, the steady state output Y =

∑
i Fi(ki) is increasing in

TFP Ai and credit limit γi for any i.

Proof. See Appendix C.

In the long run, the interest rate is determined by the time preference rate of the
most patient agent.

According to Proposition 14, the non-monotonic effect of productivity and credit
limit on the aggregate output can only be appeared along the global dynamics of the
economy. Therefore, we will focus on global dynamics, i.e., the dynamic properties of
the intertemporal equilibrium.

In general, it is very difficult to provide comparative statics of intertemporal equi-
librium in infinite-horizon models. For the sake of tractability, we assume that ui(c) =
ln(c) and Fi,t(k) = Ai,tk. Thanks to this specification, we can, in some cases, explicitly
compute the equilibrium.

Firstly, we look at the economy without financial frictions. It is easy to prove the
following result.

Lemma 2 (economy without credit constraint). Assume that ui(c) = ln(c) and Fi,t(k) =
Ai,tk where A1,t < A2,t · · · < Am,t, ∀t. Consider an economy without credit constraints.
Then, in equilibrium, we must have Rt = Am,t and the output equals denoted by Y ∗

t

and growth rate (G∗
t ) of this economy are determined by

Y ∗
t =Am,t · · ·Am,1

m∑
i=1

βt−1
i si,0, (4.6a)

G∗
t+1 =Am,t+1

∑m
i=1 β

t
i∑m

i=1 β
t−1
i

. (4.6b)

where we denote si,0 ≡ βiwi,0, ∀i.

For the economy with credit constraints, the following result provides conditions
under which the equilibrium interest rate equals the TFP of some agent. Other cases
will be presented latter.

23



Lemma 3 (economy with credit constraint). Consider an infinite-horizon model with
utility function ui(c) = ln(c) ∀c, ∀t, ∀i and production functions Fi,t(k) = Ai,tk, ∀k,
∀t, ∀i. Assume that maxi γiAi,t < A1,t < · · · < Am,t ∀t.

1. Assume that there is an agent h so that

βt
hsh,0

1− γh
≥
∑
i≤h

βt
isi,0 −

∑
j>h

βt
j

γjAj,t+1

Ah,t+1 − γjAj,t+1

(1− γj)Aj,t

Ah,t − γjAj,t

· · · (1− γj)Aj,1

Ah,1 − γjAj,1

sj,0 > 0.

(4.7)

where si,0 = βiwi,0.

Then there exists an equilibrium with Rt = Ah,t, ∀t. In such an equilibrium, the
aggregate output at date t, (t ≥ 1), is

Yt = Ah,t · · ·Ah,1

∑
i≤h

βt−1
i si,0 (4.8)

+ Ah,t · · ·Ah,1

∑
j>h

βt−1
j (1− γj)

t Aj,t

Ah,t − γjAj,t

Aj,t−1

Ah,t−1 − γjAj,t−1

· · · Aj,1

Ah,1 − γjAj,1

sj,0.

2. In particular, when

βt
msm,0

1− γm
≥
∑
i≤m

βt
isi,0,∀t, (4.9)

then there exists an equilibrium which coincides with the equilibrium in the econ-
omy without credit constraints: the interest rate equals Rt = Am,t, ∀t and the
aggregate output is Yt = Ah,t · · ·Ah,1

∑
i≤h β

t−1
i si,0.

Proof. See Appendix C.

The right hand side of condition (4.7) ensures that agent h produces, i.e., kh,t > 0
while the left hand side ensures agent h’s borrowing constraint. Under these conditions,
we can compute the equilibrium outcome.

4.1.1 Effect of permanent productivity changes

Lemma 3 allows us to investigate the effects of productivity changes. First, assume
that for some reasons like technical progress, the productivity of producers increase
(or decrease) at any date. We explore how this change affect the aggregate output and
the growth rate along the intertemporal equilibrium.

Proposition 15. Assume that Fi,t(k) = Aik, ∀i,∀k ≥ 0 with maxi γiAi < A1 < A2 <
. . . < Am, and utility function ui(c) = ln(c) ∀i. Assume that

βt
hsh,0

1− γh
≥

∑
i≤h

βt
isi,0 −

∑
j>h

γjAj

Ah − γjAj

(βj(1− γj)Aj

Ah − γjAj

)t
sj,0 > 0,∀t ≥ 0 (4.10)

βh = max
i≤h

βi > max
j>h

βj(1− γj)Aj

Ah − γjAj

. (4.11)
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for some agent h.
Then, there is an equilibrium with the interest rate Rt = Ah, ∀t. In this equilibrium,

we have that:

1. The aggregate output equals

Yt = At
h

∑
i≤h

βt−1
i si,0 +

∑
j>h

βt−1
j (1− γj)

tAt
j

( Ah

Ah − γjAj

)t

sj,0. (4.12)

This is increasing in Aj for any j > h. However, for agent h, we have that:

∂Yt

∂Ah

> 0 ⇔
∑
i≤h

βt−1
i si,0 −

∑
j>h

(1− γj)γjA
2
j

(Aj − γjAj)2

(βj(1− γj)Aj

Ah − γjAj

)t−1

sj,0 > 0 (4.13)

and this condition is non empty.20

(a) If
∑

i:βi=βh
si,0 >

∑
j>h

(1−γj)γjA
2
j

(Aj−γjAj)2
sj,0, then

∂Yt

∂Ah
> 0 for any t.

(b) If
∑

i≤h si,0 <
∑

j>h

(1−γj)γjA
2
j

(Aj−γjAj)2
sj,0, then

∂Y1

∂Ah
< 0 at date 1 but there exists a

date t0 such that ∂Yt

∂Ah
≥ 0, ∀t > t0.

2. The growth rate Gt+1 ≡ Yt+1

Yt
equals

Gt+1 ≡
Yt+1

Yt

= Ah

∑
i≤h β

t
isi,0 +

∑
j>h

(
βj(1−γj)Aj

Ah−γjAj

)t+1
sj,0
βj∑

i≤h β
t−1
i si,0 +

∑
j>h

(
βjAj(1−γj)

Ah−γjAj

)t
sj,0
βj

. (4.14)

and it converges to Ahβh. Moreover, for agent j, with j > h, there exists a date
t1 such that the growth rate Gt+1 is decreasing in the productivity Aj for any date
t ≥ t1.

Proof. See Appendix C.

Observe that the right hand side of (4.13) is increasing in Ah. So, the aggregate
output Yt is more likely to be increasing in the TFP Ah (i.e., ∂Yt

∂Ah
> 0) if (1) the

productivity gap
Aj

Ah
(for j > h) is low or (2) the initial income gap

sj,0
si,0

(for j > h,

i ≤ h) is low or (3) the time preference gap
βj

βi
(for j > h, i ≤ h) is low.

Condition (4.10) ensures that agent h still produces, i.e., kh,t > 0, ∀t.21 This
happens if its TFP Ah is not too low and the rate of time preference βh is high enough.
Notice that Condition (4.11) ensures imply that βhAh > βjAj, ∀j > h. This ensures
that agent 1 still produces and the growth rate Yt+1

Yt
converges to βhAh.

Proposition 15 allows us to understand the impact of a shock on the TFP of the
less productive agent. Observe that, if Ah increases, then the output will increase in
the long run. However, point 1.b of Proposition 15 indicates that, if Ah increases but
it is still low, the output may decrease in the short run and then increase in the long
run.

20In the sense that there exists (si,0, γi, Ai)i satisfying this condition.
21Notice that condition (4.10) requires that maxi≥h βi ≥ maxj>h

βj(1−γj)Aj

Ah−γjAj
and

max
(
βh,maxj>h

βj(1−γj)Aj

Ah−γjAj

)
≥ maxi<h βi.
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Numerical simulation 2. To complement our theoretical findings presented above,
we run a simulation in a two-agent model with linear production function Fi(k) = Aik,
and s1,0 = 200, s2,0 = 100, β1 = 0.99, β2 = 0.4, A1 = 1.5, A2 = 2.25. The credit limit
of agent 2 is γ2 = 0.4. Let us denote Yt(A1) the equilibrium aggregate output of the
economy when the productivity of agent 1 is A1. The following graphics show how the
difference between Yt(A1 + h) − Yt(A1) changes over time, where h is a productivity
change.

First, when the productivity of agent 1 increases from 1.5 to 1.53 (a small productiv-
ity change), the output goes down and then goes up. Precisely, Yt(1.5+0.03)−Yt(1.5) <
0 for t = 1, 2, 3, 4 and then Yt(1.5 + 0.03)− Yt(1.5) > 0, ∀t ≥ 5.

Second, when there is a high productivity change so that the productivity of agent 1
increases from 1.5 to 1.95, the output goes up at any period: Yt(1.5+0.45)−Yt(1.5) > 0,
∀t ≥ 1. This is consistent with the insights in Proposition 2.

4.1.2 Effect of temporary productivity changes

Let us look at the effects of temporary productivity changes. Assume that there is a
productivity change only at date 1, which affects the TFP of agent h. We would like
to understand how the aggregate output changes when Ah,1 varies.

According to Lemma 3, we have

∂Yt

∂Ah,1

=Ah,t · · ·Ah,2

∑
i≤h

βt−1
i si,0

+ Ah,t · · ·Ah,2

∑
j>h

βt−1
j (1− γj)

t Aj,t

Ah,t − γjAj,t

· · · Aj,2

Ah,2 − γjAj,2

∂
( Ah,1

Ah,1−γjAj,1

)
∂Ah,1

Aj,1sj,0

=Ah,t · · ·Ah,2

∑
i≤h

βt−1
i si,0

− Ah,t · · ·Ah,2

∑
j>h

βt−1
j (1− γj)

t Aj,t

Ah,t − γjAj,t

· · · Aj,2

Ah,2 − γjAj,2

γjA
2
j,1

(Ah,1 − γjAj,1)2
sj,0

For the sake of simplicity, we focus on the case where Ai,t = Ai, ∀t, ∀i ̸= h and
Ah,t = Ah, ∀t ̸= 1. We only let Ah,1 - the productivity of agent h at date 1 vary. In
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this case, we have that:

Yt = At−1
h Ah,1

(∑
i≤h

βt−1
i si,0 +

∑
j>h

βt−1
j (1− γj)

t
( Aj

Ah − γjAj

)t−1 Aj,1

Ah,1 − γjAj,1

sj,0

(4.15)

∂Yt

∂Ah,1

=At−1
h

(∑
i≤h

βt−1
i si,0 −

∑
j>h

βt−1
j (1− γj)

t
( Aj

Ah − γjAj

)t−1 γjA
2
j,1

(Ah,1 − γjAj,1)2
sj,0

)
.

(4.16)

The growth rate Yt+1

Yt
again converges to βhAh. However, the output can decrease when

Ah,1 increases. According to (4.16), the output is more likely to be increasing in Ah,1

is decrease when the productivity dispersion
Aj

Ah
is low. The insights is consistent with

the effects of permanent productivity shocks.

4.2 Effects of credit limits

In this section, we explore the effects of credit limits on the aggregate output in in-
tertemporal equilibrium. To simplify our exposition, we focus on the case of stationary
linear technology Fi(k) = Aik. Since A1 < A2 < · · · < Am, the equilibrium interest
rate is between A1 and Am. We distinguish two cases: (t) the interest rate equals the
TFP of some producer and (2) the interest rate is between the TFPs of two producers.
The following result considers an equilibrium in the first case.

Proposition 16. Assume that the technology is stationary: Ai,t = Ai,∀i,∀t. Let
assumptions in Lemma 3 be satisfied. Then, there exists an equilibrium with Rt = Ah,
∀t. In equilibrium, we have that:

1. The aggregate output Yt is increasing in the credit limit γj of agent j for any
j > h. Moreover, the output in (4.12) in the economy with credit constraints is
lower that the output in the economy without credit constraints.

2. However, the growth rate determined by (4.14) is not necessarily increasing in
the credit limit γj. It converges to Ahβh which is higher than Amβm - the growth
rate of the economy without credit constraint.

Proof. Observe that
1−γj

Ah,t−γjAj,t
is increasing in γj.

22 So, according to (4.8), the aggre-

gate output Yt is increasing in each γj,∀j > h.

Point 1 is consistent with the insights in the literature concerning the macroeco-
nomic effects of credit constraint (Khan and Thomas (2013) (section VI. C), Midrigan
and Xu (2014) (section II.B), Moll (2014) (Proposition 1), and Catherine, Chaney,
Huang, Sraer, and Thesmar (2022)).

22Indeed, we have

∂
( 1−γj

Ah,t−γjAj,t

)
∂γj

=
−1(Ah,t − γjAj,t) + (1− γj)Aj,t

(Ah,t − γjAj,t)2
=

Aj,t −Ah,t

(Ah,t − γjAj,t)2
> 0.
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However, the insight of point 2 of Proposition 16 is new. It indicates when pro-
ducers’ credit limits are low, a rise in credit limit may decrease the growth rate of the
economy. This is consistent with the empirical fact: the rate of growth of developing
countries (with more severe credit constraints of firms) is in general higher than the
grow rate of developed countries).

We now investigate a question: Along an intertemporal equilibrium, does relaxing
credit limit always improve or, in some cases, reduce the aggregate output? The full
answer is complicated. The following result provides the first part of our answer:
conditions (based on exogenous parameters) under which the aggregate output is a
decreasing function of the credit limit.

Proposition 17 (intertemporal equilibrium with R1 ∈ (Am−1, Am), Rt = Am,∀t ≥ 2).
Assume that ui(c) = ln(c), ∀i, ∀c > 0, Fi,t(k) = Aik, ∀i,∀k ≥ 0 with maxi γiAi < A1 <
A2 < . . . < Am, and ∑

i<m βt
isi,0∑

i<m si,0
≤ βt

m,∀t, (4.17a)

γm <

∑
i ̸=m si,0

S0

(4.17b)

Am−1

Am

< γm
S0∑

i ̸=m si,0
. (4.17c)

Then, there exists an equilibrium where the interest rates are determined by

R1 = γmAm
S0∑

i ̸=m si,0
∈ (Am−1, Am), Rt = Am,∀t ≥ 2, (4.18)

where S0 ≡
∑m

i=1 si,0.
The aggregate capital is

K0 ≡ S
∑
i

si,0 =
∑
i

βiwi,0 (4.19a)

Kt = km,t = S0A
t
m

(
γm

∑
i ̸=m βt

isi,0∑
j ̸=m sj,0

+ βt
m(1− γm)

)
, ∀t ≥ 1 (4.19b)

and the aggregate output

Y1 = Amkm,0 = AmS0 (4.20a)

Yt = Amkm,t−1 = S0A
t
m

(
γm

∑
i ̸=m βt−1

i si,0∑
j ̸=m sj,0

+ βt−1
m (1− γm)

)
. (4.20b)

Proof. See Appendix C.

In such an equilibrium, only the most productive agent produces. Notice that her
borrowing constraint at date 1 is binding but her borrowing constraints from date 2 on
are not necessarily binding.23 From date 2 on, the equilibrium interest rate equals the

23In this equilibrium, borrowing constraint Rt+1bm,t ≤ γmAmkm,t is equivalent to∑
i ̸=m βt

i
si,0∑

j ̸=m sj,0
≤ βt

m.

28



productivity of the most productive agent: Rt = Am, ∀t ≥ 2. However, the interest
rate between the initial date and date 1 equals R1 which is lower than Am because the

credit limit γm of agent m is not so high (in the sense that γm <
∑

i̸=m si,0

S0
) and the

productivity gap is high (in the sense that Am−1

Am
< γm

S0∑
i̸=m si,0

). Notice that Kiyotaki

(1998)’s Section 2 only focuses on the case where the equilibrium interest rate equals
the rate of return on investment of unproductive agents, i.e., Rt = A1, ∀t.

We now look at the equilibrium aggregate output.

1. First, according to Lemma 2, the output in the economy without credit con-
straints is Y ∗

t = At
m

∑m
i=1 β

t−1
i si,0. So, the output at date 1 in our economy coin-

cides to Y ∗
1 . However, we can verify, by using γm <

∑
i̸=m si,0

S0
and

∑
i<m βt

isi,0∑
i<m si,0

≤ βt
m,

that Yt < Y ∗
t for any t ≥ 2.24 It means that, the output in the economy with

credit constraints is lower than the output in the economy without credit con-
straints. This is consistent with the existing literature.

2. Second, according to (4.20b) and our assumption (4.17a), we have that:

∂Yt

∂γm
< 0,∀t ≥ 2. (4.21)

It means that, from date 2 on, the aggregate output decreases when the most
productive agent’s credit limit increases.25 This interesting result is new with
respect to the standard view on the effects of financial constraints as shown in
Buera and Shin (2013), Khan and Thomas (2013), Midrigan and Xu (2014), Moll
(2014), Catherine, Chaney, Huang, Sraer, and Thesmar (2022).

Let us explain the intuition of our finding (4.21). Denote Wi,t ≡ Fi(ki,t−1)−Rtbi,t−1

the net worth of agent i at date t. In equilibrium in Proposition 17, the net worth of
the most productive agent is given by

Wm,1 = Amkm,0 −R1bm,0 = (1− γm)
∑
i

si,0

t ≥ 2: Wm,t = Amkm,t−1 −Rtbm,t−1 = Amsm,t−1 = Am(βmAm)
t−1s1

= (βmAm)
t(1− γm)AmS0.

where we denote the individual saving: si,t ≡ ki,t − bi,t.
We see that the net worth is decreasing in the credit limit γm. The reason behind

is that when γm increases, the interest rate R1 goes up which makes the repayment
R1bm,0 increase. However, the capital km,0 of agent m is already equal to the aggregate
savings

∑
i si,0 which can no longer increase. By consequence, the net worth Wm,1 =

24Indeed, we have Yt = S0A
t
m

(∑
i̸=m si,0

S0

∑
i̸=m βt−1

i si,0∑
i̸=m si,0

+βt−1
m (1−

∑
i̸=m si,0

S0
)
)
= At

m

∑m
i=1 β

t−1
i si,0 =

Y ∗
t .
25Notice that the aggregate output at date 1 does not depend on the credit limit γm of the most

productive agent. The equilibrium in Proposition 17 does not depend on the credit limits (γi)i<m of
less productive agents because these agents neither borrow nor produce.
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Amkm,0 − R1bm,0 decreases. This makes the saving of agent m go down, and, hence,
the output decreases. The mechanism can be summarized by the following schema:

Credit limit γm ↑ ⇒ Interest rate ↑ ⇒ Agent m’s net worth ↓ ⇒
⇒ Saving ↓ ⇒ Production ↓ ⇒ · · · (4.22)

However, this mechanism does not happen when the credit limit γm of agent m is
high enough (if this happens, we recover the equilibrium in part 2 of Lemma 3 where
the output of our economy coincides to the output of the economy without credit
constraints).

In Proposition 17, the most productive agent is the unique producer at date 1 and,
thanks to this, the output at date 1 equals the output in the economy without credit
constraints. When there are more than 2 producers, the effects of credit limits (γi)
of different agents become more interesting. We attempt to understand what would
happen in this case. Let us start with an intermediate step.

Lemma 4 (intertemporal equilibrium with R1 ∈ (An−1, An), Rt = Ah, ∀t ≥ 2, h ≥ n).
Assume that ui(c) = ln(c), ∀i, ∀c > 0, Fi,t(k) = Aik, ∀i,∀k ≥ 0 with maxi γiAi < A1 <
A2 < . . . < Am, and∑

j≥n

γjAj

An − γjAj

sj,0 <
∑
i<n

si,0 <
∑
j≥n

γjAj

An−1 − γjAj

sj,0 (4.23)

βt
h

Ah

R1 − γhAh

sj,0 ≥
∑
i<n

βt
isi,0 +

∑
n≤i≤h

βt
j(1− γj)

Aj

R1 − γjAj

sj,0

−
∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t γjAj

R1 − γjAj

sj,0 ≥ 0, ∀t ≥ 1. (4.24)

for some agent h with n ≤ h ≤ m. Then, there exists an equilibrium with the interest
rates

R1 ∈ (An−1, An) is determined by
∑
i<n

si,0 =
∑
j≥n

γjAj

R1 − γjAj

sj,0 (4.25a)

Rt = Ah, ∀t ≥ 2. (4.25b)

Proof. See Appendix C.

Condition (4.23) ensures that the equilibrium interest rate R1 is determined by
(4.25a) while (4.24) ensures (4.25b). The first inequality in (4.24) means that the
borrowing constraint of agents h are satisfied while the second inequality is equivalent
to kh,t ≥ 0. Note that condition (4.24) requires that26

βh ≥ max
(
max
i<h

βi,max
j>h

βj
(1− γj)Aj

Ah − γjAj

)
> max

j>h
βi. (4.26)

So, agent h has the highest discount factor.

26Because max
(
βh,maxj>h βj

(1−γj)Aj

Ah−γjAj

)
≥ maxi<h βi and maxi≤h βi ≥ maxj>h βj

(1−γj)Aj

Ah−γjAj
.
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In such an equilibrium in Lemma 4, the capital of producers and the aggregate
output are determined by

kj,0 =

{
0, ∀j < n

R1

R1−γjAj
sj,0, ∀j ≥ n

(4.27)

kj,t =



0, ∀j < h∑
i<n β

t
iA

t−1
h R1si,0 +

∑
n≤j≤h β

t
jA

t−1
h (1− γj)

AjR1

R1−γjAj
sj,0

−
∑

j>hA
t−1
h

(
βj

(1−γj)Aj

Ah−γjAj

)t
γjAjR1

R1−γjAj
sj,0, for j = h,

Ah

Ah−γjAj

(
βj

(1−γj)AjAh

Ah−γjAj

)t−1(
βj

(1−γj)AjR1

R1−γjAj

)
sj,0, ∀j > h.

(4.28)

We are now ready to state our result showing the effects of credit limits.

Proposition 18. Let assumptions in Lemma 4 be satisfied.
1. For date t = 1, the aggregate output equals Y1 =

∑
j≥nAjkj,0.

1.1.
∂Yj

∂γn
< 0 <

∂Yj

∂γm
if n < m.27

1.2. Consider any producer i with n < i < m, we have that:

∂Y1

∂γi
> 0 if Ai is high enough, i.e.,

Ai − Ai−1

Am − Ai

>

∑m
j=i+1

γjAjsj,0
(An−1−γjAj)2∑i−1

j=n
γjAjsj,0

(An−γjAj)2

(4.29a)

∂Y1

∂γi
< 0 if Ai is low enough, i.e.,

Ai − An

Ai+1 − Ai

<

∑m
j=i+1

γjAjsj,0
(An−γjAj)2∑i−1

j=n
γjAjsj,0

(An−1−γjAj)2

. (4.29b)

2. From second date.
2.1. For v ∈ {n, . . . , h}, this agent produces only at date 1. We have that

1

At
h

∂Yt+1

∂γv

1
∂R1

∂γv

=
∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+ βt

v(Av −R1)
∑
j≥n

γjAj

(R1 − γjAj)2
sj,0,∀t ≥ 1.

By consequence, if βj > maxi ̸=j βi, then there exists t0 such that
∂Yt+1

∂γv
< 0,∀t ≥ t0.

2.2. For agent v > h, this agent produces at any date. We have, for any t ≥ 1,
that

1

At
h

∂Yt+1

∂γv

1
∂R1

∂γv

=
∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+
(βv(1− γv)Av

Ah − γvAv

)t(t(R1 − γvAv)(Av − Ah)

(Ah − γvAv)
+ Av −R1

)(∑
j≥n

γjAj

(R1 − γjAj)2
sj,0

)
27Moreover, if n = m (i.e., only agent m produces), we have ∂Y

∂γm
= 0.
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By consequence, if βh > max{βv(1−γv)Av

Ah−γvAv
,maxi<n βi}, then there exists t0 such that

∂Yt+1

∂γv
< 0,∀t ≥ t0.

Proposition 10 allows us to understand why the aggregate output is decreasing or
increasing in the credit limits of producers. It depends not only on the distribution of
productivity and of credit limits but also on the distribution of initial capital of agents.

Since the insight of part 1 is similar to Proposition 10 in the two-period model, let
us explain the intuition of part 2. Note that the aggregate output does not depend on
the credit limits of non-producers. So, we only look at the producers in equilibrium.
At date 1, producers are any agent v ≥ n. From date 2 on, producers are any agent
v ≥ h. In both cases of part 2, from some date on, the output will be decreasing in the
credit limit of any producer if the discount factor βh is high. This finding is consistent
with (4.21). The basic intuition behind is the input is used by less productive agents.
Indeed, at the date 1, because low credit limits and high productivity dispersion (see
condition (4.23)), we have R1 < An < Ah, so we have a capital misallocation. When
agent h has the highest discount factor βh, this agent absorbs capital in the long run
which makes the misallocation persistent over time and the output decrease.

Remark 1 (additional analyses). In Appendix C.2.1, we present two additional results.
Proposition 20 shows that the aggregate output is increasing in the credit limits of
producers for the case R1 ∈ (Am−1, Am), Rt = Ah,∀t ≥ 2, with h < m.

Proposition 21 provides conditions under which there exists an equilibrium with
R1 ∈ (Am−1, Am),∀t ≥ 1. In this case, there is only one producer in equilibrium and
the output is increasing in the credit limit of this agent.

The intuition behind these two results is that the equilibrium interest rate is not so
high low (it is lower that Am). Hence, the borrowing cost of producers is not so high.
This helps producers borrow more and produce more.

Numerical simulation 3. We complement our theoretical result by a numerical sim-
ulation (Figure 5). Consider a model with 3 agents. In this simulation, we set that
β1 = 0.2, β2 = 0.2, β3 = 0.95, s1,0 = 4 = β1w1,0, s2,0 = 4 = β2w2,0, s3,0 = 3 = β3w3,0,
γ1 = 0.2, γ3 = 0.3. Productivity: A1 = 1, A2 = 1.2, A3 = 1.5. We draw the output path
for two cases: γ2 = 0.3 and γ2 = 0.35. We observe that

Yt(γ2 = 0.35) < Yt(γ2 = 0.30),∀t ≥ 1.

It means that when the credit limit γ2 of agent 2 increases from 0.30 to 0.35, the
aggregate output will be lower at any period of time.
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Figure 5: Effects of credit limits γ2 on the aggregate output.

5 Conclusion

We have build general equilibrium models with borrowing constraints to explain why
the aggregate output may be decreasing (increasing, respectively) when the productiv-
ity or credit limit of producers increases (decreases, respectively). A positive homoge-
neous (productivity or financial) shock has a positive impact on the aggregate output.
This is consistent with the insights in economic textbooks and several articles. Our
new insight is that positive asymmetric (productivity or financial) shocks may reduce
the aggregate production. Overall, not only productivity but also financial frictions
and the productivity gap (or dispersion of productivity distribution) matter for the
economic development.

The contribution of the present paper is primarily theoretical. A promising avenue
for future research would be to develop a quantitative model calibrated with empirical
data to reassess the effects of asymmetric (productivity and financial) shocks and the
persistence of shocks on equilibrium dynamics.
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Appendices

A Proofs for Section 3.1

A.1 Characterization of general equilibrium

A.1.1 Linear technology

When the production functions are linear, it is easy to compute the optimal allocation of
agents as a function of the interest rate (see Lemma 7 in Appendix D). Therefore, the
key point is to determine the equilibrium interest rate. To state our characterization of
equilibrium, we introduce some notations.

Dn ≡
m∑
i=n

AnSi

An − γiAi
∀n ≥ 1, Bn ≡

m∑
i=n+1

AnSi

An − γiAi
∀n ≥ 1. (A.1)

where by convention,
∑m

i=n xi = 0 if n > m.
Denote RL

n the greatest solution of the following equation:28

m∑
i=n+1

γiAi

R− γiAi
Si︸ ︷︷ ︸

Asset demand

=
n∑

i=1

Si︸ ︷︷ ︸
Asset supply

or equivalently
m∑

i=n+1

RSi

R− γiAi︸ ︷︷ ︸
Capital demand

= S︸︷︷︸
Capital supply

(A.2)

Definition 5. 1. the regime An (with n ∈ {1, . . . ,m}) is the set of all economies satisfy-
ing An > maxi(γiAi) and Bn ≤ S ≤ Dn

2. the regime Rn (with n ∈ {1, . . . ,m− 1}) is the set of all economies satisfying

(a) either maxi(γiAi) < An < RL
n < An+1 (or equivalently maxi(γiAi) < An and

Dn+1 < S < Bn)

(b) or An ≤ maxi(γiAi) < RL
n < An+1 (or equivalently An ≤ maxi(γiAi) < RL

n and
Dn+1 < S).

We now provide a characterization of general equilibrium.

Theorem 2 (characterization of general equilibrium with linear technologies). Assume that
Fi(K) = AiK ∀i and A1 < · · · < Am. Then, there exists a unique equilibrium. The equilib-
rium interest rate is determined by the following:

R =

{
Ai in the regime Ai.

RL
i in the regime Ri.

(A.3)

Proof. See Appendix D.

28It should be noticed that the function f(x) ≡
∑m

i=n+1
xSi

x−γiAi
is not continuous at point γiAi with

i ≥ n + 1. However, it is continuous and decreasing in the interval (maxi≥n+1(γiAi),∞). Then, the
equation f(x) = S has a unique solution in such interval.
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A.1.2 Strictly concave technology

Before providing the characterization of equilibrium, we state an assumption about the credit
limit.

Assumption 9. γi < limk→∞
kf ′

i(k)
fi(k)

, ∀i.

As proved in Lemma 14 in Appendix D, under Assumptions 2 and 3, if agent i’s borrowing

constraint is binding, we must have γi ≤ limx→∞
xF ′

i (x)
Fi(x)

.
We are now ready to state the characterization of equilibrium.

Theorem 3 (characterization of general equilibrium: strictly concave technologies). Under
Assumption 2, there exists a unique equilibrium. Assume, in addition, that Assumption 3
and 9 hold and R1 < R2 < . . . < Rm, where Ri is the unique value satisfying

Hi(Ri) ≡ Ri
kni (Ri/Ai)− Si

Aifi(kni (Ri/Ai))
= γi. (A.4)

Then the unique equilibrium is determined as follows:

1. In the regime Rm, i.e., when S <
∑m

i=1 k
n
i (Rm/Ai), credit constraint of any agent

is not binding. In this case, the equilibrium coincides to that of the economy without
credit constraints, and the interest rate is R = R∗ > Rm. Agent i borrows (ki ≥ Si) if
and only if F ′

i (Si) ≥ R∗.

2. In the regime Rn (with 1 ≤ n ≤ m− 1), i.e., when

n∑
i=1

kni (
Rn

Ai
) +

m∑
i=n+1

kbi (
Rn

γiAi
, Si) > S ≥

n+1∑
i=1

kni (
Rn+1

Ai
) +

m∑
i=n+2

kbi (
Rn+1

γiAi
, Si), ∗

then the equilibrium interest rate is determined by the following equation

n∑
i=1

kni (
R

Ai
) +

m∑
i=n+1

kbi (
R

γiAi
, Si) = S ≡

∑
i

Si (A.5)

while agents’ capital is

ki =

{
kni (

R
Ai
) if i ≤ n

kbi (
R

γiAi
, Si) if i ≥ n+ 1.

Notice that Rn < R ≤ Rn+1 in this case. Any agent i (i ≥ n + 1) borrows and her
credit constraint is binding. The credit constraint of any agent i ≤ n is not binding.
Moreover, agent i (i ≤ n) borrows if and only if F ′

i (Si) ≥ R.

Proof. See Appendix D.

Proof of Proposition 2. In the case γ2 < A1
λA2

S1
S1+S2

=
A′

1
A′

2

S1
S1+S2

and γ2 < A1
A2

S1
S1+S2

, we

have that

Y (A′
1, A

′
2)− Y (A1, A2) = A′

1S1 +A′
2S2

A′
1(1− γ2)

A′
1 − γ2A′

2

−A1S1 −A2S2
A1(1− γ2)

A1 − γ2A2

= (A′
1 −A1)S1 +A2S2(1− γ2)

A1A
′
2 −A′

1A2

(A1 − γ2A2)(A′
1 − γ2A′

2)
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Point 1. When
A′

2
A2

≥ A′
1

A1
≥ 1, we have (A′

1 − A1)S1 > 0 and A1A
′
2 − A′

1A2 ≥ 0. By
consequence, we get that Y (A′

1, A
′
2)− Y (A1, A2) > 0.

Point 2. We can compute that

∂Y

∂A1
= S1 −A2S2(1− γ2)

γ2A2

(A1 − γ2A2)2

∂Y

∂A2
=

S2A
2
1(1− γ2)

(A1 − γ2A2)2

So, we have that

∂Y

∂A1
(A1, A2)(A

′
1 −A1) +

∂Y

∂A1
(A1, A2)(A

′
2 −A2)

=
(
S1 −A2S2(1− γ2)

γ2A2

(A1 − γ2A2)2

)
(A′

1 −A1) +
(S2A

2
1(1− γ2)

(A1 − γ2A2)2

)
(A′

2 −A2)

=(A′
1 −A1)

(
S1 −A2S2(1− γ2)

γ2A2

(A1 − γ2A2)2
+

S2A
2
1(1− γ2)

(A1 − γ2A2)2
A′

2 −A2

A′
1 −A1

)
=(A′

1 −A1)
(S2A1A2(1− γ2)

(A1 − γ2A2)2

A′
2

A2
− 1

A′
1

A1
− 1

−
(
S2(1− γ2)

γ2A
2
2

(A1 − γ2A2)2
− S1

))
.

Therefore, we have

∂Y
∂A1

(A1, A2)(A
′
1 −A1) +

∂Y
∂A1

(A1, A2)(A
′
2 −A2)

A′
1 −A1

< 0

if A′
1 ̸= A1, S2(1− γ2)

γ2A2
2

(A1−γ2A2)2
− S1 > 0 and

A′
2

A2
− 1

A′
1

A1
− 1

<
γ2A2

A1
− S1(A1 − γ2A2)

2

S2A1A2(1− γ2)
.

By Taylor’s theorem, we get point 2.

Proof of Proposition 6. Part 1. Point (a) is a direct consequence of Lemma 14 in Ap-
pendix D. Point (b) is a direct consequence of Theorem 3.

Part 2. Since the production functions satisfy Inada’s condition, all agents produce in
equilibrium. According to (3.6), we have

∂Y

∂A1
= f1(k1)︸ ︷︷ ︸

Productivity effect

+
∑
i ̸=1

(
A1f

′
1(k1)−Aif

′
i(ki)

) −∂ki
∂R︸ ︷︷ ︸
≥ 0

∂R

∂A1︸︷︷︸
≥ 0︸ ︷︷ ︸

Allocation effect

. (A.6)

According to FOCs, we have

[k] : (1 + µiγi)F
′
i (k) = λi

[a] : (1 + µi)R = λi, µi ≥ 0, and µi(γiFi(ki)−Ribi) = 0.

These equations imply that:

γiAif
′
i(ki) ≤ R = Aif

′
i(ki)

1 + γiµi

1 + µi
≤ Aif

′
i(ki), ∀i. (A.7)

This implies that R ≥ maxj γjF
′
j(kj) ≥ maxj γjF

′
j(S)). Thus, R ≥ maxj γjF

′
j(S)) > 0, ∀A1.
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1. When A1 is high enough. Note that limA1→∞R1 = ∞. Hence, for A1 high enough,
we have that R1 > S. We prove that the equilibrium interest rate goes to infinity
when A1 goes to infinity. Indeed, if agent 1’s borrowing constraint is not binding, we
have R = A1f

′
1(k1) > A1f

′
1(S). If agent 1’s borrowing constraint is binding, we have

R(k1 − S1) = γ1A1f1(k1) which implies that

R =
γ1A1f1(k1)

k1 − S1
≥ γ1A1f1(S1)

S − S1

Hence, R ≥ min
(
A1f

′
1(S),

γ1A1f1(S1)
S−S1

)
. From this, we obtain that limA1→∞R = ∞.

Now, condition limA1→∞R = ∞ implies that borrowing constraint of any agent i ≥ 2
is not binding for A1 high enough. So, A1f

′
1(k1) ≥ R = Aif

′
i(ki), ∀i ≥ 1. By combining

this and condition (A.6), we get that ∂Y
∂A1

> 0 for A1 high enough.

2. We will prove that when A1 is small enough, the productivity effect is smaller than the
allocation effect. To show ∂Y

∂A1
< 0 for A1 small enough, we will prove that limA1→0 k1 =

0, limA1→0A1f
′
1(k1)−A2f

′
2(k2) < 0, limA1→0

−∂k2
∂R > 0, and limA1→0

∂R
∂A1

> 0.

Since A1f
′
1(k1) ≥ R ≥ maxj γjF

′
j(S)) > 0, we have limA1→0 f

′
1(k1) = ∞. Therefore,

we have

lim
A1→0

k1 = 0, and lim
A1→0

∑
i ̸=1

ki = S. (A.8)

Since limA1→0 k1 = 0, we get that γ1A1f1(k1) − Rb1 = γ1A1f1(k1) − Rk1 + RS1 > 0
for A1 small enough. It means that the borrowing constraint of agent 1 is not binding.
To sum up, we have

R = A1f
′
1(k1) ≥ max

j
γjF

′
j(S)) > 0, for A1 small enough.

Denote

B1 = B1(R1) ≡ kn1 (R1) +

m∑
i=2

kbi (R1), B2 = B2(R2) =

2∑
i=1

kni (R2) +

m∑
i=3

kbi (R2)

Bm = Bm(Rm) =

m∑
i=1

kni (Rm)

where, to simplify notations, we write kni (R) and kbi (R) instead of kni (
R
Ai
) and kbi (

R
γiAi

, Si)
(see Definition 6). We see that Di ≡ Bi − kni (Ri), ∀i. Notice also that B1, . . . , Bm

depend on A1 but D2, D3, . . . , Dm do not. Moreover, limA1→0(Bi − Di) = 0, ∀i ≥ 2
because limA1→0 k

n
1 (Ri) = 0, ∀i ≥ 2.

Condition R2 < R3 < · · · < Rm implies that D2 > · · · > Dm. Since limA1→0B1 = +∞
and limA1→0(Bi −Di) = 0, ∀i ≥ 2, we have B1 > B2 > · · · > Bm for A1 small enough.

(a) S < Dm. Then we have S < Bm. According to Theorem 3, the equilibrium
coincides to that of the economy without frictions. Therefore, the output is
increasing in A1.
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(b) Let Dn > S > Dn+1. In this case, we have Bn > S > Bn+1 for any A1 small
enough. According to Theorem 3, the equilibrium interest rate R is in the interval
(Rn, Rn+1] and determined by

n∑
i=1

kni (R) +
m∑

i=n+1

kbi (R) = S ≡
∑
i

Si (A.9)

Denote Z2(R) =
∑n

i=2 k
n
i (R) +

∑m
i=n+1 k

b
i (R). When A1 tends to zero, we have

limA1→0 k
n
1 (R) = 0 and limA1→0R = R(0) where R(0) > 0 is uniquely determined

by Z2(R(0)) = S.

For i ≥ n+ 1, agent i’s borrowing constraint is binding: R(ki − Si) = γiAifi(ki)
for any A1 small enough. Let A1 tend to zero, we have ki tends to ki(0), R tends
to R(0), and

γiAifi(ki(0)) = R(0)(ki(0)− Si).

Let σ be such that

γi
fi(k)

kf ′
i(k)

< σ <
S1

S1 + Sn+1 + · · ·+ Sm
,∀i ≥ n+ 1, ∀k ∈ (0, S). (A.10)

According to condition (3.9b), we have

R(0)−Aif
′
i(ki(0)) =

γiAifi(ki(0))

ki(0)− Si
−Aif

′
i(ki(0)) (A.11)

≤ Aif
′
i(ki(0))

ki(0)− Si
(σki(0)− (ki(0)− Si)

)
(A.12)

By market clearing condition, we have

m∑
i=n+1

ki =
m∑
i=2

(Si − ki) + S1 − k1 +
m∑

i=n+1

Si ≥ S1 − k1 +
m∑

i=n+1

Si

Let A1 tend to zero, we get that
∑m

i=n+1 ki(0) ≥ S1 +
∑m

i=n+1 Si. Thus,

m∑
i=n+1

(
σki(0)− (ki(0)− Si)

)
=

m∑
i=n+1

(
Si − (1− σ)ki(0)

)
≤

m∑
i=n+1

Si − (1− σ)
(
S1 +

m∑
i=n+1

Si

)
< 0

Therefore, there exists j ∈ {n + 1, . . . ,m} such that σkj(0) − (kj(0) − Sj) < 0,
and hence

R(0)−Ajf
′
j(kj(0)) ≤

Ajf
′
j(kj(0))

kj(0)− Sj
(σkj(0)− (kj(0)− Sj)

)
< 0. (A.13)

Now, by noting that A1f
′(k1) = R, we have

∂Y

∂A1
≤f1(k1) +

(
R−Ajf

′
j(kj)

)−∂kj
∂R

∂R

∂A1
(A.14)
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Again, by the market clearing condition

kn1 (
R

A1
) +

∑
i ̸=2

ki(R) = S (A.15)

we have that

(kn1 )
′( R

A1

)R′(A1)A1 −R

A2
1

+
∑
i ̸=2

∂ki
∂R

R′(A1) = 0 (A.16)

⇔ R′(A1)
( 1

A1
(kn1 )

′( R

A1

)
+
∑
i ̸=2

∂ki
∂R

)
= (kn1 )

′( R

A1

) R

A2
1

⇔ R′(A1)A1

( 1

R
+

A1

R

∑
i ̸=2

∂ki
∂R

(kn1 )
′
(

R
A1

)) = 1 (A.17)

Since ∂ki
∂R < 0, ∀i ̸= 1, and (kn1 )

′( R
A1

)
< 0, we have R′(A1) > 0.

By definition of kn1 , we have f
′
1(k

n
1 (x)) = x. So, (kn1 )

′(x)f ′′
1 (k

n
1 (x)) = 1, and hence,

lim
A1→0

R

A1
(kn1 )

′(
R

A1
) = lim

A1→0

R
A1

f ′′
1 (

R
A1

)
= lim

x→∞

x

f ′′
1 (x)

< 0.

By combining this with (A.17), limR→R(0)
∂ki
∂R < 0, ∀i, and limA1→0R = R(0) > 0,

we get that

lim
A1→0

R′(A1) = +∞. (A.18)

By combining (A.14), (A.13), (A.18), and limR→R(0)
∂kj
∂R < 0, we get that ∂Y

∂A1
< 0

for any A1 > 0 small enough.

A.2 Additional results

In the case of a two-agent model, we have the following result with more details and intuitive
conditions.

Proposition 19. Consider a two-agent model.

1. Let Assumptions 2, 3 and 9 be satisfied. Assume also that

kn2 (
R2

A2
) < S, γ2 <

S1

S1 + S2

Sf ′
2(S)

f2(S)
, lim

x→+∞

x

f ′′
1 (x)

< 0

Then, for any A1 small enough, we have that ∂Y
∂A1

< 0.

2. By consequence, in a two-agent economy with Cobb-Douglas production functions (Fi(k) =
Aik

α) and γ2 < α S1
S1+S2

, we have that: ∂Y
∂A1

< 0 for A1 small enough.

Proof of Proposition 19. First, we state a corollary of Theorem 3.

Corollary 3. Let Assumptions 2, 3 and 9 be satisfied. Consider a two-agent model and
assume that R1 < R2.
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1. In the regime R2, i.e., when S < kn1 (
R2
A1

) + kn2 (
R2
A2

), credit constraint of any agent is
not binding.

2. In the regime R1, i.e., when S ≥ kn1 (
R2
A1

) + kn2 (
R2
A2

),29 the equilibrium interest rate R is
determined by

kn1 (
R

A1
) + kb2(

R

γ2A2
, S2) = S ≡

∑
i

Si. (A.19)

In this regime, R1 < R ≤ R2, agent 2 borrows and her credit constraint is binding
while agent 1 is lender.

Now, we prove part 1 of Proof of Proposition 19. Since Inada condition holds, all agents
produce in equilibrium. According to (3.6), we have

∂Y

∂A1
=f1(k1) +

(
A1f

′
1(k1)−A2f

′
2(k2)

) −∂k2
∂R︸ ︷︷ ︸
> 0

∂R

∂A1︸︷︷︸
> 0

. (A.20)

To show ∂Y
∂A1

< 0 for A1 small enough, we will prove that limA1→0 k1 = 0, limA1→0A1f
′
1(k1)−

A2f
′
2(k2) < 0, limA1→0

−∂k2
∂R > 0, and limA1→0

∂R
∂A1

> 0.
According to FOCs, we have

[k] : (1 + µiγi)F
′
i (k) = λi

[a] : (1 + µi)R = λi, µi ≥ 0, and µi(γiFi(ki)−Ribi) = 0.

These equations imply that:

γiAif
′
i(ki) ≤ R = Aif

′
i(ki)

1 + γiµi

1 + µi
≤ Aif

′
i(ki), ∀i. (A.21)

This implies that R ≥ γ2F
′
2(k2) ≥ γ2F

′
2(S). Thus, R ≥ γ2F

′
2(S), ∀A1. Since R ≤ A1f

′
1(k1).

So, we have limA1→0 f
′
1(k1) = ∞. Therefore, we have

lim
A1→0

k1 = 0, and lim
A1→0

k2 = S. (A.22)

By consequence, we get that γ1A1f1(k1)−Rb1 = γ1A1f1(k1)−Rk1 +RS1 > 0 for A1 small
enough. It means that the borrowing constraint of agent 1 is not binding. To sum up, we
have R = A1f

′
1(k1) ≥ γ2F

′
2(S) for A1 small enough.

Since R2 does not depend on A1, we observe that limA1→0 k
n
1 (R2/A1) = 0. So, by

combining with the assumption kn2 (
R2
A2

) < S, we have kn1 (
R
A1

) + kn2 (
R
A2

) < S for A1 small
enough. According to point 3 of Lemma 15, we have R1 < R2 for A1 small enough. Hence,
we can apply Corollary 3 to obtain that the borrowing constraint of agent 2 is binding in
equilibrium. It means that γ2A2f2(k2)−Rk2 +RS2 = 0.

Look at the market clearing condition: kn1 (
R
A1

) + kb2(
R

γ2A2
, S2) = S ≡

∑
i Si. When

A1 converges to 0, we have kn1 (
R
A1

) converges to 0. So, R converges to R(0) satisfying

kb2(
R(0)
γ2A2

, S2) = S. So, we have

lim
A1→∞

(
A1f

′
1(k1)−A2f

′
2(k2)

)
= lim

A1→∞

(
R−A2f

′
2(k2)

)
= R(0)−A2f

′
2(S). (A.23)

29Notice that we always have that kn1 (R1) = kb1(R1), k
n
2 (R2) = kb2(R2), and kn1 (R1) + kb2(R1) =

kb1(R1) + kb2(R1) > S.
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Since agent 2’s borrowing constraint is binding: R(k2 − S2) = γ2A2f2(k2) for any A1

small enough. Let A1 tend to zero, we have γ2A2f2(S) = R(0)(S − S2) = R(0)S1. So, we
have

R(0)−A2f
′
2(S) =

γ2A2f2(S)

S1
−A2f

′
2(S) < 0 (A.24)

because we assume that γ2 <
S1

S1+S2

Sf ′
2(S)

f2(S)
.

Again, by the market clearing condition kn1 (
R
A1

) + kb2(
R

γ2A2
, S2) = S, we have

(kn1 )
′( R

A1

)R′(A1)A1 −R

A2
1

+
∂kb2
∂x1

( R

γ2A2
, S2

) R′(A1)

(γ2A2)2
= 0

⇔ R′(A1)
( 1

A1
(kn1 )

′( R

A1

)
+

1

(γ2A2)2
∂kb2
∂x1

( R

γ2A2
, S2

))
= (kn1 )

′( R

A1

) R

A2
1

⇔ R′(A1)A1

( 1

R
+

A1

(γ2A2)2R

∂kb2
∂x1

(
R

γ2A2
, S2

)
(kn1 )

′
(

R
A1

) )
= 1 (A.25)

First, since
∂kb2
∂x1

< 0 and (kn1 )
′( R

A1

)
< 0, we have R′(A1) > 0.

Recall that f ′
1(k

n
1 (x)) = x. So, we have (kn1 )

′(x)f ′′
1 (k

n
1 (x)) = 1, and hence,

lim
A1→0

R

A1
(kn1 )

′(
R

A1
) = lim

A1→0

R
A1

f ′′
1 (

R
A1

)
= lim

x→+∞

x

f ′′
1 (x)

< 0.

By combining this with (A.25) and limA1→0R = R(0) > 0, we get that

lim
A1→0

R′(A1) = +∞. (A.26)

It is easy to see that, when A1 is small enough, the ∂k2
∂R =

∂kb2
∂R

(
R

γ2A2
, S2

)
. Thus,

lim
A1→0

∂k2
∂R

= lim
R→R(0)

∂kb2
∂R

( R

γ2A2
, S2

)
< 0. (A.27)

By combining (A.22), (A.24), (A.26), (A.27) and (A.20), we conclude that ∂Y
∂A1

< 0 for any
A1 > 0 small enough.

We now consider the Cobb-Douglas production functions. In such a case, condition
kn2 (

R2
A2

) < S becomes γ2 < α S1
S1+S2

. For the sake of simplicity, we write kn2 instead of kn2 (
R2
A2

).

Recall that R2 = A2f
′
2(k

n
2 ) = A2α(k

n
2 )

α−1. Hence,(
kn2 − S2

)
R2 = γ2A2f2

(
kn2

)
⇔ (kn2 − S2)R2 = γ2A2(k

n
2 )

α

⇔ (kn2 − S2)A2α(k
n
2 )

α−1 = γ2A2(k
n
2 )

α

⇔ (α− γ2)A2(k
n
2 )

α = S2A2α(k
n
2 )

α−1 ⇔ (α− γ2)k
n
2 = αS2.

Therefore, condition S1+S2 > kn2 (R2/A2) becomes (S1+S2)(α−γ2) > αS2, or, equivalently,
α S1

S1+S2
> γ2.

Proof of Proposition 5. We make use of Theorem 2. We firstly consider the regime Rn

with n ≤ m− 1. In this regime, we have

Y = Yn =

m∑
i=n+1

rAiSi

r − fiAi
≤

m∑
i=n+1

Am
rSi

r − fiAi
= AmS. (A.28)
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Notice that Y = AmS if and only if n+ 1 = m.
We now consider the regime An with n ≤ m. In this regime, we have

Y = An

n∑
i=1

Si +

m∑
i=n+1

An(1− fi)AiSi

An − fiAi
= An

m∑
i=1

Si +An

m∑
i=n+1

An(Ai −An)

An − fiAi

≤ AnS + (Am −An)
m∑

i=n+1

An

An − fiAi
≤ AnS + (Am −An)S = AmS.

where the last inequality is from the condition
∑m

i=n+1
AnSi

An−fiAi
in the regime An.

It is easy to see that Y = AmS if and only if either (i) n+ 1 > m or (ii) n+ 1 = m and
Am−1

Am−1−fmAm
Sm = S. Combining these two cases, we obtain point 1 of our result.

B Proofs for Section 3.2

Proof of Proposition 10. Under assumptions in Proposition 10, we can prove that the
equilibrium interest rate is in (An−1, An) if and only if

m∑
i=n

AnSi

An − γiAi
<

∑
i

Si <
m∑
i=n

An−1Si

An−1 − γiAi
(B.1)

Then, when R ∈ (An−1, An), it is determined by

m∑
i=n

γiAi

R− γiAi
Si︸ ︷︷ ︸

Asset demand

=
n−1∑
i=1

Si︸ ︷︷ ︸
Asset supply

or equivalently
m∑
i=n

RSi

R− γiAi︸ ︷︷ ︸
Capital demand

= S︸︷︷︸
Capital supply

(B.2)

Agents 1, . . . , n − 1 are lenders while agents n, . . . ,m are borrowers. It is easy to see that

∂Y
∂γi

= 0, ∀i ≤ n− 1. For i ≥ n, by using condition
∑m

i=n

RSi

R− γiAi
=

∑
i S, we get that

∂R

∂γj
=

RAjSj

(R−γjAj)2(∑m
i=n

γiAiSi

(R−γiAi)2

) > 0, and notice that
∑
j

∂R

∂γj

γj
R

= 1 (B.3)

Then, we can compute that

∂Y

∂γi
=

m∑
j=n

AjSj

∂
( R

R− γjAj

)
∂γi

=
m∑

j=n

AjSj
−γjAj

(R− γjAj)2
∂R

∂γi
+

RSiA
2
i

(R− γiAi)2

=
m∑

j=n

AjSj
−γjAj

(R− γjAj)2

RAiSi
(R−γiAi)2(∑m

j=n
γjAjSj

(R−γjAj)2

) +
RSiA

2
i

(R− γiAi)2

=
∂R

∂γi

(
Ai

m∑
j=n

γjAjSj

(R− γjAj)2
−

m∑
j=n

γjSjA
2
j

(R− γjAj)2

)
.
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The first point is a direct consequence of this expression and the fact that Am > · · · >
An+1. Let us prove the second point. We have, by noticing that R ∈ (An−1, An) and
At+1 > At, ∀t,

Ai

m∑
t=n

γtAtSt

(R− γtAt)2
−

m∑
t=n

γtStA
2
t

(R− γtAt)2
(B.4)

=
i−1∑
t=n

γtAtSt

(R− γtAt)2
(Ai −At)−

m∑
t=i+1

γtAtSt

(R− γtAt)2
(At −Ai) (B.5)

≥
i−1∑
t=n

γtAtSt

(An − γtAt)2
(Ai −Ai−1)−

m∑
t=i+1

γtAtSt

(An−1 − γtAt)2
(Am −Ai). (B.6)

Combining this with the expression of ∂Y
∂γi

, we obtain (4.29a).
We also have

Ai

m∑
t=n

γtAtSt

(R− γtAt)2
−

m∑
t=n

γtStA
2
t

(R− γtAt)2
(B.7)

=

i−1∑
t=n

γtAtSt

(R− γtAt)2
(Ai −At)−

m∑
t=i+1

γtAtSt

(R− γtAt)2
(At −Ai) (B.8)

<

i−1∑
t=n

γtAtSt

(An−1 − γtAt)2
(Ai −An)−

m∑
t=i+1

γtAtSt

(An − γtAt)2
(Ai+1 −Ai). (B.9)

Combining this with the expression of ∂Y
∂γi

, we obtain (4.29b).

Proof of Example 1. We focus here on the case max(γ2A2, γ3A3) < A1 (in this case the
interest rate R may take any value in [A1, Am]). Applying Theorem 2, we can check that the
interest rate is uniquely determined by

R =



A1 if S1 ≥ γ3A3

A1−γ3A3
S3 +

γ2A2

A1−γ2A2
S2

R1 if γ3A3

A2−γ3A3
S3 +

γ2
1−γ2

S2 < S1 <
γ3A3

A1−γ3A3
S3 +

γ2A2

A1−γ2A2
S2

A2 if γ3A3

A2−γ3A3
S3 − S2 ≤ S1 ≤ γ3A3

A2−γ3A3
S3 +

γ2
1−γ2

S2

R2 if γ3
1−γ3

S3 − S2 < S1 <
γ3A3

A2−γ3A3
− S2

A3 if S1 ≤ γ3
1−γ3

S3 − S2

(B.10)

where R2 = γ3A3

(
1 + S3

S1+S2

)
and R1 is the highest solution of the equation:

γ2A2

R− γ2A2
S2 +

γ3A3

R− γ3A3
S3 = S1. (B.11)

This equation implies that R(S2(R − γ3A3) + S3(R − γ2A2)) = S(R − γ2A2)(R − γ3A3), or
equivalently

S1R
2 −R

(
(S1 + S2)γ2A2 + (S1 + S3)γ3A3

)
+ Sγ2A2γ3A3 = 0. (B.12a)

So, the rate R1 is computed by

R =
(S1 + S2)γ2A2 + (S1 + S3)γ3A3 +

√
∆

2S1
(B.12b)

where ∆ ≡
(
(S1 + S2)γ2A2 + (S1 + S3)γ3A3

)2 − 4S1Sγ2A2γ3A3 (B.12c)
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There are 5 different cases. In each case, we can explicitly compute equilibrium outcomes
thanks to Lemma 7.

Proof of Proposition 11 (homogeneous credit limit). Since F ′
i (kt) ≥ R, there are two

cases. (1) If F ′
i (ki) = R, then we have hence ∂ki

∂γ < 0. (2) If F ′
i (ki) > R, then borrowing

constraint of this agent is binding.
The market clearing condition

∑
i ki =

∑
i Si implies that∑

i:F ′
i (ki)=R

∂ki
∂γ

+
∑

i:F ′
i (ki)>R

∂ki
∂γ

= 0.

So, we have
∑

i:F ′
i (ki)>R

∂ki
∂γ > 0.

We now claim that ∂ki
∂γ > 0 for any agent with F ′

i (ki) > R. For such agents we have
γFi(k

n
i )−R(kni − Si). Taking the derivative with respect to γ of both sides of this equation,

we have

Fi(ki) + γF ′
i (ki)

∂ki
∂γ

=
∂R

∂γ
(ki − Si) +R

∂ki
∂γ

(B.13)

i.e.,
∂ki
∂γ

=
(∂R
∂γ

γ

R
− 1

) Fi(ki)

R− γF ′
i (ki)

. (B.14)

By summing with respect to i such that F ′
i (ki) > R and noticing that

∑
i:F ′

i (ki)>R
∂ki
∂γ > 0

and R− γF ′
i (ki) > 0 ∀i, we get that ∂R

∂γ
γ
R − 1 ≥ 0. From this and (B.14), we obtain ∂ki

∂γ > 0

∀i such that F ′
i (ki) > R.

We now observe that

∂Y

∂γ
=

∑
i:F ′

i (ki)=R

F ′
j(ki)

∂ki
∂γ

+
∑

i:F ′
i (ki)>R

F ′
i (ki)

∂ki
∂γ

≥ R
( m∑

i=1

∂ki
∂γ

)
= 0. (B.15)

C Proofs of Section 4

Firstly, we provide a sufficient condition to check whether a sequence of prices and allocations
is an intertemporal equilibrium.

Lemma 5. If the sequences (Rt, (ci,t, ki,t, bi,t)i)t and (λi,t, µi,t, ηi,t)i,t satisfy the following
conditions:

1. ci,t, li,t, λi,t, ηi,t, µi,t+1 are non-negative and Rt > 0 for any t.

2. ci,t + ki,t +Rtbi,t−1 = Fi,t(ki,t−1) + bi,t, and Rt+1bi,t − γiFi,t(ki,t) = 0, ∀i,∀t.

3.
∑

i bi,t = 0, ∀t.

4.
∞∑
t=0

λi,tci,t < ∞,
∞∑
t=0

βt
iui(ci,t) < ∞.

5. TVCs: limT→∞ βt
iu

′
i(ci,t)(ki,t − bi,t) = 0, ∀i.
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6. FOCs: ∀i,∀t,

βt
iu

′
i(ci,t) = λi,t

λi,t = λi,t+1F
′
i,t+1(ki,t) + µi,t+1γiF

′
i,t+1(ki,t) + ηi,t, ηi,tki,t = 0

λi,t = Rt+1λi,t+1 + µi,t+1Rt+1, µi,t+1

(
Rt+1bi,t − γiFi,t(ki,t)

)
= 0,

then the list (Rt, (ci,t, ki,t, bi,t)i) is an intertemporal equilibrium.

Proof of Lemma 5. Before presenting our proof, we should notice that this result requires
neither ui(0) = 0 nor u′i(0) = ∞. Let us now prove our result. It is sufficient to prove the
optimality of (ci, ki, bi) for all i. Let (c′i, k

′
i, b

′
i) be a plan satisfying all budget and borrow-

ing constraints and b′i,−1 − bi,−1 = 0 = k′i,−1 − ki,−1. We have
T∑
t=0

βt
i(ui(ci,t) − ui(c

′
i,t)) ≥

T∑
t=0

βt
iu

′
i(ci,t)(ci,t − c′i,t) =

T∑
t=0

λi,t(ci,t − c′i,t).

Budget constraints imply that ci,t = Fi,t(ki,t−1)+bi,t−ki,t−Rtbi,t−1 and c′i,t ≤ Fi,t(k
′
i,t−1)+

b′i,t − k′i,t −Rtb
′
i,t−1, and hence,

λi,t(ci,t − c′i,t) ≥λi,t(Fi,t(ki,t−1) + bi,t − ki,t −Rtbi,t−1 − Fi,t(k
′
i,t−1)− b′i,t + k′i,t +Rtb

′
i,t−1)

=λi,t

(
Fi,t(ki,t−1)− Fi,t(k

′
i,t−1)

)
− λi,t(ki,t − k′i,t) + λi,t(bi,t − b′i,t)− λi,tRt(bi,t−1 − b′i,t−1).

According to FOCs, we have

λi,tk
′
i,t = λi,t+1F

′
i,t+1(ki,t)k

′
i,t + γiµi,t+1F

′
i,t+1(ki,t)k

′
i,t + ηi,tk

′
i,t

λi,tb
′
i,t = Rt+1λi,t+1b

′
i,t +Rt+1µi,t+1b

′
i,t

This implies that

λi,t(ki,t − k′i,t) = λi,t+1F
′
i,t+1(ki,t)(ki,t − k′i,t) + γiµi,t+1F

′
i,t+1(ki,t)(ki,t − k′i,t) + ηi,t(ki,t − k′i,t)

(B.1)

λi,t(bi,t − b′i,t) = Rt+1λi,t+1(bi,t − b′i,t) +Rt+1µi,t+1(bi,t − b′i,t) (B.2)

Therefore, we have that

T∑
t=0

λi,t(ci,t − c′i,t) ≥
T∑
t=0

(
λi,t

(
Fi,t(ki,t−1)− Fi,t(k

′
i,t−1)

)
− λi,t(ki,t − k′i,t)

)
+

T∑
t=0

(
λi,t(bi,t − b′i,t)− λi,tRt(bi,t−1 − b′i,t−1)

)
≥

T−1∑
t=0

(
λi,t+1F

′
i,t+1(ki,t)− λi,t

)
(ki,t − k′i,t)− λi,T (ki,T − k′i,T )

+
T−1∑
t=0

(
λi,t − λi,t+1Rt+1

)
(bi,t − b′i,t) + λi,T (bi,T − b′i,T )

=λi,T

(
k′i,T − b′i,T − (ki,T − bi,T )

)
+

T−1∑
t=0

ηi,t(k
′
i,t − ki,t)

+
T−1∑
t=0

µi,t+1

(
− γiF

′
i,t+1(ki,t)(ki,t − k′i,t) +Rt+1(bi,t − b′i,t)

)
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We consider µi,t+1

(
− γiF

′
i,t+1(ki,t)(ki,t − k′i,t) +Rt+1(bi,t − b′i,t)

)
.

µi,t+1

(
− γiF

′
i,t+1(ki,t)(ki,t − k′i,t) +Rt+1(bi,t − b′i,t)

)
=µi,t+1(Rt+1bi,t − γiFi,t(ki,t)− (Rt+1b

′
i,t − γiFi,t(k

′
i,t)))

+ µi,t+1

(
− (Rt+1bi,t − γiFi,t(ki,t)) + (Rt+1b

′
i,t − γiFi,t(k

′
i,t)) (B.3)

− γiF
′
i,t+1(ki,t)(ki,t − k′i,t) +Rt+1(bi,t − b′i,t)

)
≥µi,t+1(Rt+1bi,t − γiFi,t(ki,t)− (Rt+1b

′
i,t − γiFi,t(k

′
i,t))) (B.4)

= µi,t+1(γiFi,t(k
′
i,t)−Rt+1b

′
i,t) ≥ 0. (B.5)

It remains to prove that lim infT→∞ λi,T

(
k′i,T − b′i,T − (ki,T − bi,T )

)
≥ 0.

According to (B.1) and (B.2), we have

λi,t

(
k′i,t − b′i,t − (ki,t − bi,t)

)
=Rt+1λi,t+1(bi,t − b′i,t) + µi,t+1Rt+1(bi,t − b′i,t)

−
(
λi,t+1F

′
i,t+1(ki,t)(ki,t − k′i,t) + γiµi,t+1F

′
i,t+1(ki,t)(ki,t − k′i,t) + ηi,t(ki,t − k′i,t)

)
=Rt+1λi,t+1(bi,t − b′i,t)− λi,t+1F

′
i,t+1(ki,t)(ki,t − k′i,t) + ηi,t(ki,t − k′i,t)

+ µi,t+1Rt+1(bi,t − b′i,t) + µi,t+1γiF
′
i,t+1(ki,t)(ki,t − k′i,t)

≥Rt+1λi,t+1(bi,t − b′i,t)− λi,t+1F
′
i,t+1(ki,t)(ki,t − k′i,t).

where we use (B.5) the fact that ηi,t(ki,t − k′i,t) = −ηi,tk
′
i,t ≤ 0 for the last inequality.

Since Fi,t+1 is concave, we have F ′
i,t+1(ki,t)(ki,t − k′i,t) ≤ Fi,t+1(ki,t)− Fi,t+1(k

′
i,t). So, we

get that

λi,t

(
k′i,t − b′i,t − (ki,t − bi,t)

)
≥Rt+1λi,t+1(bi,t − b′i,t)− λi,t+1

(
Fi,t+1(ki,t)− Fi,t+1(k

′
i,t)

)
=λi,t+1

(
Rt+1bi,t − Fi,t+1(ki,t)

)
+ λi,t+1

(
Fi,t+1(k

′
i,t)−Rt+1b

′
i,t

)
We have Fi,t+1(k

′
i,t)−Rt+1b

′
i,t ≥ 0 because γiFi,t+1(k

′
i,t)−Rt+1b

′
i,t ≥ 0.

The budget constraint at date t implies that λi,t(ci,t + ki,t − bi,t) = λi,t

(
Fi,t(ki,t−1) −

Rtbi,t−1

)
. Since limt→∞ λi,tci,t = 0 = limt→∞ λi,t(ki,t−bi,t), we get that limt→∞ λi,t

(
Fi,t(ki,t−1)−

Rtbi,t−1

)
= 0. By consequence, we obtain that lim infT→∞ λi,T

(
k′i,T − b′i,T − (ki,T − bi,T )

)
≥

0.

C.1 Proofs for Section 4.1

Proof of Proposition 14. Steady state analysis. Let us focus on an interior equilib-
rium (i.e., ki,t > 0, ∀i, t), we can write the FOCs

βt
iu

′
i(ci,t) = λi,t

λi,t = F ′
i,t(ki,t)(λi,t+1 + γiµi,t+1)

λi,t = Rt+1(λi,t+1 + µi,t+1)

µi,t+1(Rt+1bi,t − γiFi(ki,t)) = 0

where µi,t ≥ 0 is the multiplier with respect to the constraint Rtbi,t−1 − γiFi,t(ki,t−1) ≤ 0.

According to FOCs, we have that 1 ≥ Rt+1maxi
βiu

′
i(ci,t+1)

u′
i(ci,t)

, ∀i. Since ki,t > 0, ∀i,∀t,
there exists an agent, say agent i, whose borrowing constraint at date t+1 is not binding. It
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means that µi,t+1 = 0. By consequence, we have 1 = Rt+1
βiu

′
i(ci,t+1)

u′
i(ci,t)

= Rt+1maxj
βju

′
j(cj,t+1)

u′
j(cj,t)

.

Therefore, we have R = 1/maxi{βi} at steady state.

The first-order conditions imply that λi,t
Rt+1−γiF

′
i,t(ki,t)

Rt+1
= F ′

i,t(ki,t)λi,t+1(1 − γi). By
consequence, we obtain point 2.

Proof of Lemma 3. The maximization problem of agent i is

max
(ci,ki,bi)

∞∑
t=0

βt
iui(ci,t)

subject to: ci,t + ki,t +Rtbi,t−1 ≤ Ai,tki,t−1 + bi,t

Rtbi,t−1 ≤ γiAi,t(ki,t−1)

Denote si,t = ki,t − bi,t the net saving of agent i at date t.
Let Rt = Ah,t, ∀t, for some agent h.
For agent h, we have ch,t + (kh,t − bh,t) ≤ Ah,t(kh,t−1 − bh,t−1). We can compute that

sh,0 = βhwh,0, sh,t = βhAh,tsh,t−1 ∀t ≥ 1

sh,t = βt
hAh,t · · ·Ah,1si,0

For agent i < h, since Ai,t < Rt = Ah,t, ∀t, we have ki,t = 0 and hence we find that

si,0 = βiwi,0, si,t = βiRtsi,t−1 ∀t ≥ 1

si,t = βt
iRt · · ·R1si,0.

For agent j > h, since Aj,t > Rt = Ah,t, ∀t, her borrowing constraint is always binding:
Rtbj,t−1 = γjAj,tkj,t−1. Therefore, we have

sj,t = kj,t

(
1− γjAj,t+1

Rt+1

)
, Aj,tkj,t−1 −Rtbj,t−1 = (1− γj)Aj,tkj,t−1, ∀t ≥ 1.

From this, we can compute that

sj,t = βj
(1− γj)Aj,tRt

Rt − γjAj,t
sj,t−1 =

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

kj,t =
1

1− γjAj,t+1

Rt+1

sj,t =
Rt+1

Rt+1 − γjAj,t+1
sj,t

bj,t =
γjAj,t+1

Rt+1
kj,t =

γjAj,t+1

Rt+1 − γjAj,t+1
sj,t

Therefore, we can find the capital of the agent h

kh,t =sh,t + bh,t = sh,t −
∑
i<h

bi,t −
∑
j>h

bj,t

=βt
hAh,t · · ·Ah,1sh,0 +

∑
i<h

βt
iAh,t · · ·Ah,1si,0

−
∑
j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0
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In order to keep kh,t > 0, ∀t, we impose that

∑
i≤h

βt
isi,0 −

∑
j>h

βt
j

γjAj,t+1

Ah,t+1 − γjAj,t+1

(1− γj)Aj,t

Ah,t − γjAj,t
· · · (1− γj)Aj,1

Ah,1 − γjAj,1
sj,0 > 0.

which is actually condition (4.7).

The borrowing constraint of agent h at date t becomes kh,t ≤
Rt+1sh,t

Rt+1−γhAh,t
=

sh,t
1−γh

. This

is equivalent to∑
i≤h

βt
iAh,t · · ·Ah,1si,0 −

∑
j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

≤ βt
hAh,t · · ·Ah,1si,0

1

1− γh

⇔
∑
i≤h

βt
isi,0 −

∑
j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,t

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1

R1 − γjAj,1

)
sj,0 ≤ βt

hsh,0
1

1− γh
.

Under these conditions, by applying Lemma 5, we can check that the above list (Rt, (ci,t, ki,t, bi,t)i)
is an equilibrium.

We now compute the aggregate production

Yt = Ah,tkh,t−1 +
∑
j>h

Ah,tkj,t−1

= Ah,t · · ·Ah,1

(
βt−1
h sh,0 +

∑
i<h

βt−1
i si,0 −

∑
j>h

βt−1
j

γjAj,t

Ah,t − γjAj,t

(1− γj)Aj,t−1

Ah,t−1 − γjAj,t−1
· · · (1− γj)Aj,1

Ah,1 − γjAj,1
sj,0

)
+
∑
j>h

Aj,t
Rt

Rt − γjAj,t

(
βj

(1− γj)Aj,t−1Rt−1

Rt−1 − γjAj,t−1

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

= Ah,t · · ·Ah,1

∑
i≤h

βt−1
i si,0

+Ah,t · · ·Ah,1

∑
j>h

βt−1
j (1− γj)

t Aj,t

Ah,t − γjAj,t

Aj,t−1

Ah,t−1 − γjAj,t−1
· · · Aj,1

Ah,1 − γjAj,1
sj,0.

1. When there are 2 agents and h = 2, i.e., only the most productive agent produces, this
condition is obviously satisfied.

2. When there are 2 agents and h = 1. This condition becomes

βt
1s1,0 − βt

2

γ2A2,t+1

A1,t+1 − γ2A2,t+1

(1− γ2)A2,t

A1,t − γ2A2,t
· · · (1− γ2)A2,1

A1,1 − γ2A2,1
s2,0 > 0

or equivalently

s2,0
s1,0

β1
β2

γ2
1− γ2

(β2
β1

(1− γ2)A2,1

A1,1 − γ2A2,1
· · · β2

β1

(1− γ2)A2,t+1

A1,t+1 − γ2A2,t+1

)
< 1∀t.

This happens if supt
β2
β1

1− γ2
A1,t

A2,t
− γ2

< 1 and
s2,0
s1,0

β1

β2

γ2
1−γ2

≤ 1.
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Proof of Proposition 15 (m agents). To investigate the properties of the output and the
growth rate, we need an useful lemma whose proof is left for the reader.

Lemma 6. Let N ≥ 1 be an integer. For each integer t ≥ 1, we denote Xt ≡
∑N

i=1 αia
t
i,

where αi > 0, ai > 0 for any i. We have

lim
t→∞

Xt+1

Xt
= max

1≤i≤N
ai (B.6)

According to Lemma 3, we have that

Yt = Ah,t · · ·Ah,1

∑
i≤h

βt−1
i si,0

+Ah,t · · ·Ah,1

∑
j>h

βt−1
j (1− γj)

t Aj,t

Ah,t − γjAj,t

Aj,t−1

Ah,t−1 − γjAj,t−1
· · · Aj,1

Ah,1 − γjAj,1
sj,0.

When Ai,t = Ai, ∀t,∀i,, we have that

Yt = At
h

∑
i≤h

βt−1
i si,0 +

∑
j>h

βt−1
j (1− γj)

tAt
j

( Ah

Ah − γjAj

)t
sj,0.

1. By consequence, we can compute that

1

tAt−1
h

∂Yt
∂Ah

=
∑
i≤h

βt−1
i si,0 −

∑
j>h

(1− γj)
γjA

2
j

(Aj − γjAj)2

(βj(1− γj)Aj

Ah − γjAj

)t−1
sj,0.

This implies (4.13).

Since maxi≤h βi > maxj>h
βj(1−γj)Aj

Ah−γjAj
, Lemma 6 implies that

lim
t→∞

(∑
i≤h β

t−1
i si,0 −

∑
j>h(1− γj)

γjA
2
j

(Aj−γjAj)2

(
βj(1−γj)Aj

Ah−γjAj

)t−1
sj,0

)
βt
h

=
∑

i≤h:βi=βh

si,0 > 0

By consequence, there exists a date t0 such that ∂Yt
∂A1

≥ 0, ∀t > t0.

2. Since maxi≤h βi > maxj>h
βj(1−γj)Aj

Ah−γjAj
, Lemma 6 directly implies that Gt+1 ≡ Yt+1

Yt

converges to Ahmax1≤i≤m βi.

We now look at the formula of Gt+1 ≡ Yt+1

Yt

Gt+1 ≡
Yt+1

Yt
=

At+1
h

∑
i≤h β

t
isi,0 +

∑
j>h β

t
j(1− γj)

t+1At+1
j

(
Ah

Ah−γjAj

)t+1
sj,0

At
h

∑
i≤h β

t−1
i si,0 +

∑
j>h β

t−1
j (1− γj)tAt

j

(
Ah

Ah−γjAj

)t
sj,0

= Ah

∑
i≤h β

t
isi,0 +

∑
j>h

(
βj(1−γj)Aj

Ah−γjAj

)t+1 sj,0
βj∑

i≤h β
t−1
i si,0 +

∑
j>h

(
βjAj(1−γj)
Ah−γjAj

)t sj,0
βj

.

Let us denote g(xh+1, . . . , xm) ≡
∑

i≤h βt
isi,0+

∑
j>h xt+1

j

sj,0
βj∑

i≤h βt−1
i si,0+

∑
j>h xt

j

sj,0
βj

,
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where xj ≡ βjAj(1−γj)
Ah−γjAj

, for j > h.

Denote Bh ≡ maxj>h xj . Recall that we assume that M < βh < 1.

For d ∈ {h+ 1, . . . ,m}, we compute that

∂g

∂xd
=

(t+ 1)xtd
sd,0
βd

(∑
i≤h β

t−1
i si,0 +

∑
j>h x

t
j
sj,0
βj

)
− txt−1

d
sd,0
βd

(∑
i≤h β

t
isi,0 +

∑
j>h x

t+1
j

sj,0
βj

)
(∑

i≤h β
t−1
i si,0 +

∑
j>h x

t
j
sj,0
βj

)2
= A

(
(t+ 1)xd

(∑
i≤h

βt−1
i si,0 +

∑
j>h

xtj
sj,0
βj

)
− t

(∑
i≤h

βt
isi,0 +

∑
j>h

xt+1
j

sj,0
βj

))
.

where A ≡
xt−1
d

sd,0
βd(∑

i≤h βt−1
i si,0+

∑
j>h xt

j

sj,0
βj

)2 . Applying Lemma 6, we have that

lim
t→∞

(t+ 1)xd
(∑

i≤h β
t−1
i si,0 +

∑
j>h x

t
j
sj,0
βj

)
t
(∑

i≤h β
t
isi,0 +

∑
j>h x

t+1
j

sj,0
βj

)) =
xd
βh

< 1

which implies that there exists a date t1 such that ∂g
∂xd

< 0 for any t ≥ t1. Since

xj ≡ βjAj(1−γj)
Ah−γjAj

is increasing in Aj , we get our result.

C.2 Proofs for Section 4.2

Proof of Proposition 17. Let us focus on an equilibrium where only the most productive
agent produces. The interest rate R1 ∈ (Am−1, Am) and Rt = Am, ∀t ≥ 2.

Denote the individual saving si,t ≡ ki,t − bi,t. For i < m, agent i is lender, ki,t = 0,
si,t = −bi,t, ∀t. We can compute that

si,0 = βiwi,0, si,t = βiRtsi,t−1 ∀t ≥ 1

si,t = βt
iRt · · ·R1si,0.

For agent m, since Am > R1, her borrowing constraints at date 0 is binding: R1bm,0 =
γmAmkm,0. Therefore, we have

Amkm,0 −R1bm,0 = (1− γm)Amkm,0

sm,0 = km,0 − bm,0 = km,0

(
1− γmAm

R1

)
km,0 =

R1

R1 − γmAm
sm,0, bm,0 =

γmAm

R1 − γmAm
sm,0

The budget constraints of agent m write

cm,0 + sm,0 = wm,0

cm,1 + sm,1 = (1− γm)Amkm,0 =
(1− γm)AmR1

R1 − γmAm
sm,0

cm,t + sm,t = Amsm,t,∀t ≥ 2

sm,t = km,t − bm,t, ∀t ≥ 2.
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From this and the FOCs, we can compute the individual saving

si,0 = βiwi,0,∀i

sm,1 = βm
(1− γm)AmR1

R1 − γmAm
sm,0

si,t = βiAmsi,t−1, ∀t ≥ 2,∀i = 1, · · · ,m.

We now look at equilibrium. From the market clearing condition
∑

i bi,t = 0, we have
that

−
∑
i ̸=m

bi,0 = bm,0

⇔
∑
i ̸=m

si,0 =
γmAm

R1 − γmAm
sm,0

⇔ R1 = γmAm(1 +
sm,0∑
i ̸=m si,0

) = γmAm
S0∑

i ̸=m si,0
.

By consequence, we find the saving of all agents: si,0 = βiwi,0,∀i, and

si,1 = βiR1si,0 = βiγmAm(1 +
sm,0∑
i ̸=m si,0

)si,0 = βiγmAmS0
si,0∑

j ̸=m si,0
,∀i ̸= m

sm,1 = βm
(1− γm)AmR1

R1 − γmAm
sm,0 = βm

(1− γm)AmγmAm(1 +
sm,0∑
i̸=m si,0

)

γmAm(1 +
sm,0∑
i̸=m si,0

)− γmAm
sm,0

= βm(1− γm)AmS0

si,t = βiAmsi,t−1 = (βiAm)t−1si,1,∀t ≥ 2, ∀i = 1, 2.

where S0 ≡
∑m

i=1 si,0.
It remains to find the sequence of capital (ki,t). We have, ∀t ≥ 1

km,0 =
m∑
i=1

si,0, km,t = sm,t + bm,t = sm,t −
∑
i ̸=m

bi,t =
m∑
i=1

si,t,∀t ≥ 1

km,1 =
∑
i ̸=m

βiR1si,0 + sm,1

=
∑
i ̸=m

βiγmAmS0
si,0∑

j ̸=m sj,0
+ βm(1− γm)Am

m∑
i=1

si,0

km,t =
∑
i

si,t =
∑
i

(βiAm)t−1si,1,∀t ≥ 1

=
∑
i ̸=m

(βiAm)t−1βiγmAmS0
si,0∑

j ̸=m sj,0
+ (βmAm)t−1βm(1− γm)AmS0, ,∀t ≥ 1

= S0A
t
m

(
γm

∑
i ̸=m

βt
i

si,0∑
j ̸=m sj,0

+ βt
m(1− γm)

)
.

We now check that the above list ((ci,t, ki,t, bi,t)i, Rt)t is an equilibrium. We use Lemma
5. It is easy to verify the market clearing conditions and the FOCs.

Condition R1 ∈ (Am−1, Am) is ensured by the assumption that

Am−1 < γmAm(1 +
sm,0∑
i ̸=m si,0

) < Am.
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• We verify borrowing constraints: Rt+1bm,t ≤ γmAmkm,t. This is satisfied for t = 0.
Let us consider t ≥ 1. Since Rt+1 = Am, we get that km,t − sm,t = bm,t ≤ γmkm,t, or,
equivalently, (1− γm)km,t ≤ sm,t. So, we must prove, for any t ≥ 1,

(1− γm)S0A
t
m

(
γm

∑
i ̸=m

βt
i

si,0∑
j ̸=m sj,0

+ βt
m(1− γm)

)
≤ (βmAm)t(1− γm)S0

⇔
(
γm

∑
i ̸=m

βt
i

si,0∑
j ̸=m sj,0

+ βt
m(1− γm)

)
≤ βt

m

⇔
∑
i ̸=m

βt
i

si,0∑
j ̸=m sj,0

≤ βt
m

which is satisfied under our assumption.

• Tranversality conditions: limT→∞ βT
i u

′
i(ci,T )(ki,T − bi,T ) = 0. It is easy to verify these

conditions because βi ∈ (0, 1) and u′(c) = 1/c.

Proof of Lemma 4. Let us focus on an equilibrium where only the most productive agent
produces. The interest rate R1 ∈ (An−1, An) and Rt = Ah, ∀t ≥ 2, where h ≥ n.

Denote the individual saving si,t ≡ ki,t − bi,t. For i < n, Agent i is lender, ki,t = 0,
si,t = −bi,t, ∀t. We can compute that

si,0 = βiwi,0, si,t = βiRtsi,t−1 ∀t ≥ 1

si,t = βt
iRt · · ·R1si,0.

For agent j ≥ n, since An > R1, her borrowing constraints at date 0 is binding: R1bj,0 =
γjAjkj,0. Therefore, we have

Akj,0 −R1bj,0 = (1− γj)Ajkj,0

sj,0 = kj,0 − bj,0 = kj,0

(
1− γjAj

R1

)
kj,0 =

R1

R1 − γjAj
sj,0, bj,0 =

γjAj

R1 − γjAj
sj,0

The budget constraints of agent j = n write

cj,0 + sj,0 = wj,0,∀j

cj,1 + sj,1 = (1− γj)Ajkj,0 =
(1− γj)AjR1

R1 − γjAj
sj,0, ∀j ≥ n

cn,t + sn,t = Ahsn,t,∀t ≥ 2

sn,t = kn,t − bn,t, ∀t ≥ 2.

From this and the FOCs, we can compute that

si,0 = βiwi,0,∀i

sj,1 = βj
(1− γj)AjR1

R1 − γjAj
sj,0, ∀j ≥ n

sj,t = βjAhsj,t−1, ∀t ≥ 2

= βt−1
j At−1

h sj,1 = βt−1
j At−1

h βj
(1− γj)AjR1

R1 − γjAj
sn,0

for j ≤ h, sj,t = βt
jA

t−1
h

(1− γj)AjR1

R1 − γjAj
sj,0,∀t ≥ 1.
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We now look at the equilibrium R1. From the market clearing condition
∑

i bi,0 = 0, we
have that

−
∑
i<n

bi,0 =
∑
j≥n

bj,0

⇔
∑
i<n

si,0 =
∑
j≥n

γjAj

R1 − γjAj
sj,0 ⇔ S0 =

∑
j≥n

R1

R1 − γjAj
sj,0.

Since R1 ∈ (An−1, An), this condition requires that∑
j≥n

γjAj

An − γjAj
sj,0 <

∑
i<n

si,0 <
∑
j≥n

γjAj

An−1 − γjAj
sj,0.

In a particular case where n = m, we find that R1 = γmAm(1 +
sm,0∑
i̸=m si,0

) = γmAm
S0∑

i̸=m si,0
.

Now, consider agent j > h and date t ≥ 1. For agent j > h, since Aj,t > Rt = Ah,t, ∀t,
her borrowing constraint is always binding: Rtbj,t−1 = γjAj,tkj,t−1. Therefore, we have

sj,t = kj,t

(
1− γjAj,t+1

Rt+1

)
, Aj,tkj,t−1 −Rtbj,t−1 = (1− γj)Aj,tkj,t−1, ∀t ≥ 1.

From this, we can compute that

sj,0 = βjwj,0,

sj,t = βj
(1− γj)Aj,tRt

Rt − γjAj,t
sj,t−1,∀t ≥ 2

=
(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

kj,t =
1

1− γjAj,t+1

Rt+1

sj,t =
Rt+1

Rt+1 − γjAj,t+1
sj,t

=
Rt+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

bj,t =
γjAj,t+1

Rt+1
kj,t =

γjAj,t+1

Rt+1 − γjAj,t+1
sj,t

=
γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0.

From the market clearing condition
∑

i bi,t = 0, we have
∑

i si,t =
∑

i ki,t which implies
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that

kh,t =
∑
i

si,t −
∑
i ̸=h

ki,t =
∑
i

si,t −
∑
i>h

ki,t (since ki,t = 0,∀i < h) (B.7)

=
∑
i<n

si,t +
∑

n≤j≤h

si,t −
∑
j>h

bj,t (B.8)

=
∑
i<n

βt
iRt · · ·R1si,0 +

∑
n≤j≤h

βt−1
j At−1

h βj(1− γj)
AjR1

R1 − γjAj
sj,0 (B.9)

−
∑
j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0 (B.10)

=
∑
i<n

βt
iA

t−1
h R1si,0 +

∑
n≤j≤h

βt
jA

t−1
h (1− γj)

AjR1

R1 − γjAj
sj,0 (B.11)

−
∑
j>h

At−1
h

(
βj

(1− γj)Aj

Ah − γjAj

)t γjAjR1

R1 − γjAj
sj,0, ∀t ≥ 1. (B.12)

We then compute the output as in the statement of our result.
Since kh,t ≥ 0,∀t, we must have

∑
i<n

βt
iR1si,0 +

∑
n≤j≤h

βt
j(1− γj)

AjR1

R1 − γjAj
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t γjAjR1

R1 − γjAj
)sj,0 ≥ 0,∀t ≥ 1.

We now check that the above list ((ci,t, ki,t, bi,t)i, Rt)t is an equilibrium. We use Lemma
5. It is easy to verify the market clearing conditions and the FOCs.

• Condition R1 ∈ (An−1, An) is ensured by (4.23). Condition kh,t ≥ 0 is ensured by
(4.24).

• We verify borrowing constraints: Rt+1bh,t ≤ γhAhkh,t. This is satisfied for t = 0. Let
us consider t ≥ 1. Since Rt+1 = Ah, ∀t ≥ 1, this becomes kh,t − sh,t = bh,t ≤ γhkh,t,
or, equivalently, (1− γh)kh,t ≤ sh,t. So, we must prove, for any t ≥ 1,∑

i<n

βt
iA

t−1
h R1si,0 +

∑
n≤j≤h

βt
jA

t−1
h (1− γj)

AjR1

R1 − γjAj
sj,0

−
∑
j>h

At−1
h

(
βj

(1− γj)Aj

Ah − γjAj

)t γjAjR1

R1 − γjAj
)sj,0, ∀t ≥ 1

<
1

1− γh
βt
hA

t−1
h (1− γh)

AhR1

R1 − γhAh
sj,0 = βt

hA
t−1
h

AhR1

R1 − γhAh
sj,0

which is satisfied under our assumption.

• Tranversality conditions: limT→∞ βT
i u

′
i(ci,T )(ki,T − bi,T ) = 0. It is easy to verify these

conditions because βi ∈ (0, 1) and u′(c) = 1/c.

Proof of Proposition 18. Part 1: The aggregate output at date 1 equals Y1 =
∑

j≥nAjkj,0.
By using the same technique in Proposition 10, we can provide conditions under which the
aggregate output Y1 is increasing or decreasing in the credit limit of producers.
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Part 2: We now look at the output from second date on. For any t ≥ 1, the aggregate
output is computed by

1

At
h

Yt+1 =
∑
i<n

βt
iR1si,0 +

∑
n≤j≤h

βt
j

(1− γj)AjR1

R1 − γjAj
sj,0 +

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)AjR1

R1 − γjAj
sj,0

Note that R1 does not depend on γi with i < n. So, the output does not depend on any
agent i < n, who are not producer in equilibrium.

From (4.25a), we get that(∑
j≥n

γjAj

(R1 − γjAj)2
sj,0

)∂R1

∂γv
=

AvR1

(R1 − γvAv)2
sv,0. (B.13)

Thus, ∂R1
∂γv

> 0.
Part 2.1. For v ∈ {n, . . . , h}, we compute that

1

At
h

∂Yt+1

∂γv
=
∂R1

∂γv

(∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+ βt

v

AvR1(Av −R1)

(R1 − γvAv)2
sv,0

Combining with (B.13), we get that

1

At
h

∂Yt+1

∂γv

1
∂R1
∂γv

=
(∑

i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)

+ βt
v

AvR1(Av −R1)

(R1 − γvAv)2
sv,0

∑
j≥n

γjAj

(R1−γjAj)2
sj,0

AvR1
(R1−γvAv)2

sv,0

=
∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+ βt

v(Av −R1)
∑
j≥n

γjAj

(R1 − γjAj)2
sj,0

=
∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+ βt

v(Av −R1)
∑
j≥n

γjAj

(R1 − γjAj)2
sj,0.

We now assume that βh > maxi ̸=h βi. When v ̸= h, it is easy to see that
∂Yt+1

∂γv
< 0 for t

high enough.
When v = h, observe that

βt
v

(1− γv)γvA
2
v

(R1 − γvAv)2
sv,0 − βt

v(Av −R1)
γvAv

(R1 − γvAv)2
sv,0 (B.14)

=
βt
vsv,0

(R1 − γvAv)2
γvAv

(
(1− γv)Av − (Av −R1)

)
(B.15)

=
βt
vsv,0

(R1 − γvAv)2
γvAv

(
R1 − γvAv

)
=

βt
vsv,0

(R1 − γvAv)
γvAv. (B.16)
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By consequence, if βh > maxi ̸=h βi, then there exists t0 such that
∂Yt+1

∂γh
< 0, ∀t ≥ t0.

Part 2.2. For agent v > h, we compute that

1

At
h

∂Yt+1

∂γv
=
∂R1

∂γv

(∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+
(βv(1− γv)Av

Ah − γvAv

)tAvR1

[
t(R1 − γvAv)(Av −Ah) + (Av −R1)(Ah − γvAv)

]
(Ah − γvAv)(R1 − γvAv)2

sv,0

1

At
h

∂Yt+1

∂γv

1
∂R1
∂γv

=
(∑

i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)

+
(βv(1− γv)Av

Ah − γvAv

)tAvR1

[
t(R1 − γvAv)(Av −Ah) + (Av −R1)(Ah − γvAv)

2
]

(Ah − γvAv)(R1 − γvAv)
sv,0

∑
j≥n

γjAj

(R1−γjAj)2
sj,0

AvR1
(R1−γvAv)2

sv,0

=
(∑

i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+
(βv(1− γv)Av

Ah − γvAv

)tAvR1

[
t(R1 − γvAv)(Av −Ah) + (Av −R1)(Ah − γvAv)

]
(Ah − γvAv)(R1 − γvAv)2

AvR1
(R1−γvAv)2

(∑
j≥n

γjAj

(R1 − γjAj)2
sj,0

)
=

(∑
i<n

βt
isi,0 −

∑
n≤j≤h

βt
j

(1− γj)γjA
2
j

(R1 − γjAj)2
sj,0 −

∑
j>h

(
βj

(1− γj)Aj

Ah − γjAj

)t (1− γj)γjA
2
j

(R1 − γjAj)2
sj,0

)
+
(βv(1− γv)Av

Ah − γvAv

)t( t(R1 − γvAv)(Av −Ah)

(Ah − γvAv)
+Av −R1

)(∑
j≥n

γjAj

(R1 − γjAj)2
sj,0

)

C.2.1 Additional results

Proposition 20 (equilibrium with R1 ∈ (Am−1, Am), Rt = Ah, ∀t ≥ 2, h < m). Assume
that ui(c) = ln(c), ∀i,∀c > 0, Fi,t(k) = Aik, ∀i,∀k ≥ 0 with maxi γiAi < A1 < A2 < . . . <
Am, and

βt
hsh,0

1− γh
≥

∑
i≤h

βt
isi,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjsj,0

−
(
βm

(1− γm)Am

Ah − γmAm

)t
(S0 − sm,0) ≥ 0 (B.17a)

γm <

∑
i ̸=m si,0

S0
(B.17b)

Am−1

Am
< γm

S0∑
i ̸=m si,0

. (B.17c)

where h ≤ m− 1.
Then, there exists an equilibrium where the interest rates are determined by

R1 = γmAm
S0∑

i ̸=m si,0
∈ (Am−1, Am), Rt = Ah, ∀t ≥ 2, (B.18)

where S0 ≡
∑m

i=1 si,0.
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1. In such an equilibrium, only agent m produces at date 1 but (m-h+1) agents produces
from date 2 on. The individual capital is given by

kj,0 =

{
0, ∀j < m

S0, ∀j = m

kj,t =



0, ∀j < h∑
i≤h β

t
iA

t−1
h R1si,0 −

∑m−1
j=h+1

γjAj

Ah−γjAj

(
βj

(1−γj)AjAh

Ah−γjAj

)t−1
βjR1sj,0

− γmAm

Ah−γmAm

(
βm

(1−γm)AmAh

Ah−γmAm

)t−1(
βm

(1−γm)AmR1

R1−γmAm

)
sm,0, for j=h

Ah
Ah−γjAj

(
βj

(1−γj)AjAh

Ah−γjAj

)t−1
βjR1sj,0 ∀h < j < m

Ah
Ah−γmAm

(
βm

(1−γm)AmAh

Ah−γmAm

)t−1(
βm

(1−γm)AmR1

R1−γmAm

)
sm,0 for j = m.

2. The aggregate output is increasing in the credit limit γj of each producer j.

Proof of Proposition 20. Let us focus on an equilibrium where only the most productive
agent produces. The interest rate R1 ∈ (Am−1, Am) and Rt = Ah, ∀t ≥ 2.

Denote the individual saving si,t ≡ ki,t − bi,t.
First, we observe that

si,0 = βiwi,0,∀i. (B.19)

At date 0, since R1 ∈ (Am−1, Am), we have

ki,0 = 0, bi,0 = −si,0, ∀i < m

Amkm,0 −R1bm,0 = (1− γm)Amkm,0

sm,0 = km,0 − bm,0 = km,0

(
1− γmAm

R1

)
km,0 =

R1

R1 − γmAm
sm,0, bm,0 =

γmAm

R1 − γmAm
sm,0

We now look at equilibrium. From the market clearing condition
∑

i bi,0 = 0, we have
that

−
∑
i ̸=m

bi,0 = bm,0 ⇔
∑
i ̸=m

si,0 =
γmAm

R1 − γmAm
sm,0

⇔ R1 = γmAm(1 +
sm,0∑
i ̸=m si,0

) = γmAm
S0∑

i ̸=m si,0
.

Let h ≤ m− 1.
For each agent i < h, we have ki,t = 0, si,t = −bi,t, ∀t.
Since Rt = Ah,∀t ≥ 2, we can compute that, for any i ≤ h,

si,0 = βiwi,0, si,t = βiRtsi,t−1 ∀t ≥ 1

si,t = βt
iA

t−1
h R1si,0, t ≥ 1.

The capital kh,t will be determined by the market clearing condition.
For any m, we have
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For each agent j with h < j < m and , their borrowing constraints bind at any date

t ≥ 1: Rt+1bj,t = γjAjkj,t. Therefore, we have sj,t = kj,t

(
1− γjAj,t+1

Rt+1

)
,∀t ≥ 1. From this, we

can compute that

sj,0 = βjwj,0, kj,0 = 0,

sj,1 = βjR1sj,0,

sj,t = βj
(1− γj)Aj,tRt

Rt − γjAj,t
sj,t−1, ∀t ≥ 2

sj,t =
(
βj

(1− γj)AjAh

Ah − γjAj

)t−1
βjR1sj,0,∀t ≥ 1

kj,t =
Rt+1

Rt+1 − γjAj,t+1
sj,t =

Ah

Ah − γjAj
sj,t =

Ah

Ah − γjAj

(
βj

(1− γj)AjAh

Ah − γjAj

)t−1
βjR1sj,0

bj,t =
γjAj,t+1

Rt+1 − γjAj,t+1
sj,t =

γjAj

Ah − γjAj,t
sj,t, ∀t ≥ 1.

For each agent j = m, we have

sm,0 = βmwm,0, sm,t = βm
(1− γm)Am,tRt

Rt − γmAm,t
sm,t−1,∀t ≥ 1

sm,t =
(
βm

(1− γm)AmAh

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0,∀t ≥ 1

km,t =
Rt+1

Rt+1 − γmAm,t+1
sm,t =

Ah

Ah − γmAm
sj,t

=
Ah

Ah − γmAm

(
βm

(1− γm)AmAh

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0

bm,t =
γmAm,t+1

Rt+1 − γmAm,t+1
sm,t =

γmAm

Ah − γmAm
sm,t, ∀t ≥ 1.

From the market clearing condition
∑

i bi,t = 0, we have
∑

i si,t =
∑

i ki,t which implies
that

kh,t =
∑
i

si,t −
∑
i ̸=h

ki,t =
∑
i

si,t −
∑
i>h

ki,t (since ki,t = 0, ∀i < h) (B.20)

=
∑
i≤h

si,t −
∑
j>h

bj,t (B.21)

=
∑
i≤h

βt
iA

t−1
h R1si,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)AjAh

Ah − γjAj

)t−1
βjR1sj,0 (B.22)

− γmAm

Ah − γmAm

(
βm

(1− γm)AmAh

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0. (B.23)

We will verify that 0 ≤ kh,t and Rt+1bh,t ≤ γhAhkh,t. We now check that the above list
((ci,t, ki,t, bi,t)i, Rt)t is an equilibrium. We use Lemma 5. It is easy to verify the market
clearing conditions and the FOCs.

Condition R1 ∈ (Am−1, Am) is ensured by the assumption that

Am−1 < γmAm(1 +
sm,0∑
i ̸=m si,0

) < Am.

58



• We verify borrowing constraints: Rt+1bi,t ≤ γiAiki,t and ki,t ≥ 0, ∀t ≥ 0. It is clear for
any j > m. Let us consider agent h. This is satisfied for t = 0. Let us consider t ≥ 1.
Since Rt+1 = Ah, ∀t ≥ 1, this becomes kh,t − sh,t = bh,t ≤ γhkh,t, or, equivalently,
(1− γh)kh,t ≤ sh,t. Note that 0 ≤ kh,t ≤

sh,t
1−γh

becomes

βt
hsh,0

1− γh
≥
∑
i≤h

βt
isi,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjsj,0 (B.24)

− γmAm

Ah − γmAm

(
βm

(1− γm)Am

Ah − γmAm

)t−1(
βm

(1− γm)Am

R1 − γmAm

)
sm,0 ≥ 0 (B.25)

⇔
βt
hsh,0

1− γh
≥
∑
i≤h

βt
isi,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjsj,0 (B.26)

−
(
βm

(1− γm)Am

Ah − γmAm

)t( γmAm

R1 − γmAm

)
sm,0 ≥ 0. (B.27)

Since R1 = γmAm(1 +
sm,0∑
i̸=m si,0

), this is equivalent to

βt
hsh,0

1− γh
≥
∑
i≤h

βt
isi,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjsj,0 (B.28)

− γmAm

Ah − γmAm

(
βm

(1− γm)Am

Ah − γmAm

)t−1(
βm

(1− γm)Am

R1 − γmAm

)
sm,0 ≥ 0 (B.29)

⇔
βt
hsh,0

1− γh
≥
∑
i≤h

βt
isi,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjsj,0 (B.30)

−
(
βm

(1− γm)Am

Ah − γmAm

)t
(S0 − sm,0) ≥ 0. (B.31)

• Tranversality conditions: limT→∞ βT
i u

′
i(ci,T )(ki,T − bi,T ) = 0. It is easy to verify these

conditions because βi ∈ (0, 1) and u′(c) = 1/c.

The aggregate output at date 1 is Y1 = AmS0. We now compute

Yt+1 =
∑
i≥h

Aiki,t = Ah

(∑
i≤h

βt
iA

t−1
h R1si,0 −

m−1∑
j=h+1

γjAj

Ah − γjAj

(
βj

(1− γj)AjAh

Ah − γjAj

)t−1
βjR1sj,0

− γmAm

Ah − γmAm

(
βm

(1− γm)AmAh

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0

)
+

m−1∑
j=h+1

Aj
Ah

Ah − γjAj

(
βj

(1− γj)AjAh

Ah − γjAj

)t−1
βjR1sj,0

+Am
Ah

Ah − γmAm

(
βm

(1− γm)AmAh

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0.
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Hence, we get

Yt+1

At
h

=
∑
i≤h

βt
iR1si,0 +

m−1∑
j=h+1

Aj(1− γj)

Ah − γjAj

(
βj

(1− γj)Aj

Ah − γjAj

)t−1
βjR1sj,0

+
Am(1− γm)

Ah − γmAm

(
βm

(1− γm)Am

Ah − γmAm

)t−1(
βm

(1− γm)AmR1

R1 − γmAm

)
sm,0

=
∑
i≤h

βt
iR1si,0 +

m−1∑
j=h+1

(
βj

(1− γj)Aj

Ah − γjAj

)t
R1sj,0 +

(
βm

(1− γm)Am

Ah − γmAm

)t (1− γm)AmR1

R1 − γmAm
sm,0.

Since R1 = γmAm
S0∑

i ̸=m si,0
, we have that

R1

R1 − γmAm
sm,0 =

γmAm
S0∑

i ̸=m si,0

γmAm
S0∑

i ̸=m si,0
− γmAm

sm,0 = S0.

Therefore, we get that

Yt+1

At
hAmS0

=γm

∑
i≤h β

t
isi,0 +

∑m−1
j=h+1

(
βj

(1−γj)Aj

Ah−γjAj

)t
sj,0∑

i<m si,0
+
(
βm

(1− γm)Am

Ah − γmAm

)t
(1− γm).

From this, we can see that Yt+1

∂γj
> 0, ∀h + 1 < j < m − 1 since βj

(1−γj)Aj

Ah−γjAj
is increasing in

γj . The intuition is simple: the credit limits of these agents do not affect the equilibrium
interest rate while it allows these producers to borrow more and produce more.

We now look at the effect of γm. In terms of interest, this credit limit positively affects
the interest rate R1 and hence the savings of any agents.

∂Yt+1

∂γm

At
hAmS0

=
(∑

i≤h β
t
isi,0∑

i<m si,0
+

∑m−1
j=h+1

(
βj

(1−γj)Aj

Ah−γjAj

)t
sj,0∑

i<m si,0

)
+ (βmAm)t

( (1− γm)t+1

(Ah − γmAm)t

)

We compute

∂
(

(1−γm)t+1

(Ah−γmAm)t

)
∂γm

=
−(t+ 1)(1− γm)t(Ah − γmAm)t + tAm(Ah − γmAm)t−1(1− γm)t+1

(Ah − γmAm)2t

=(1− γm)t
−(t+ 1)(Ah − γmAm) + tAm(1− γm)

(Ah − γmAm)t+1

=(1− γm)t
−(t+ 1)Ah − γmAm + tAm

(Ah − γmAm)t+1
= (1− γm)t

t(Am −Ah)− (Ah − γmAm)

(Ah − γmAm)t+1

=(1− γm)t
−(t+ 1)Ah − γmAm + tAm

(Ah − γmAm)t+1
=

t(Am −Ah)(1− γm)t

(Ah − γmAm)t+1
− (1− γm)t

(Ah − γmAm)t
.

Therefore, we get that(∑
i<m si,0

At
hAmS0

)∂Yt+1

∂γm
=
∑
i≤h

βt
isi,0 +

m−1∑
j=h+1

(
βj

(1− γj)Aj

Ah − γjAj

)t
sj,0 −

(
βm

(1− γm)Am

Ah − γmAm

)t ∑
i<m

si,0

+
(βm(1− γm)Am)t

(Ah − γmAm)t+1
(Am −Ah)t

∑
i<m

si,0.
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This is strictly positive thanks to the assumption (B.17a).

Proposition 21 (equilibrium with Rt ∈ (Am−1,t, Am,t), ∀t). Assume that Fi,t(k) = Aik,
∀i,∀k ≥ 0 with maxi γiAi < A1 < A2 < . . . < Am, and utility function ui(c) = ln(c) ∀i.

Assume also that

Am−1,1

Am,1
< γm

S0∑
i<m si,0

< 1 (B.32)

Am−1,t+1

Am,t+1
< γm + (1− γm)βm

∑
i<m βt−1

i si,0∑
i ̸=m βt

isi,0
,∀t ≥ 1 (B.33)

βm

∑
i<m βt−1

i si,0∑
i ̸=m βt

isi,0
< 1,∀t ≥ 1. (B.34)

Then, there exists an equilibrium whose the interest rates are

R1 = γmAm,1
S0∑

i<m si,0
(B.35)

Rt+1 = Am,t+1

(
γm + (1− γm)βm

∑
i<m βt−1

i si,0∑
i<m βt

isi,0

)
, ∀t ≥ 1, (B.36)

Observe that Rt ∈ (Am−1,t, Am,t), ∀t. When Am,t converges to Am, then we have

R = Am

(
γm +

βm
βi0

(1− γm)
)
. (B.37)

In this equilibrium, the aggregate output is increasing in the credit limit γm at any date.

Proof of Proposition 21. Consider an equilibrium with Rt ∈ (Am−1,t, Am,t), ∀t.
For agent i < m, since Ai,t < Rt, ∀t, we have ki,t = 0 and hence we find that

si,0 = βiwi,0, si,t = βiRtsi,t−1 ∀t ≥ 1

−bi,t = si,t = βt
iRt · · ·R1si,0.

For agent j > h, since Aj,t > Rt = Ah,t, ∀t, her borrowing constraint is always binding:
Rtbj,t−1 = γjAj,tkj,t−1. Therefore, we have

sj,t = kj,t

(
1− γjAj,t+1

Rt+1

)
, Aj,tkj,t−1 −Rtbj,t−1 = (1− γj)Aj,tkj,t−1, ∀t ≥ 1.

From this, we can compute that

sj,0 = βjwj,0,

sj,t = βj
(1− γj)Aj,tRt

Rt − γjAj,t
sj,t−1 =

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

kj,t =
1

1− γjAj,t+1

Rt+1

sj,t =
Rt+1

Rt+1 − γjAj,t+1
sj,t

=
Rt+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0

bj,t =
γjAj,t+1

Rt+1
kj,t =

γjAj,t+1

Rt+1 − γjAj,t+1
sj,t

=
γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0.
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The market clearing condition writes
∑

i bi,t = 0, i.e.,
∑

i>h bi,t = −
∑

i<h bi,t = 0. This
becomes∑

j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,tRt

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1R1

R1 − γjAj,1

)
sj,0 =

∑
i<h

βt
iRt · · ·R1si,0

⇔
∑
j>h

γjAj,t+1

Rt+1 − γjAj,t+1

(
βj

(1− γj)Aj,t

Rt − γjAj,t

)
· · ·

(
βj

(1− γj)Aj,1

R1 − γjAj,1

)
sj,0 =

∑
i<h

βt
isi,0

Date 1:
∑
j>h

γjAj,1

R1 − γjAj,1
sj,0 =

∑
i<h

si,0

Date 2:
∑
j>h

γjAj,2

R2 − γjAj,2

(
βj

(1− γj)Aj,1

R1 − γjAj,1

)
sj,0 =

∑
i<h

βisi,0

Date 3:
∑
j>h

γjAj,3

R3 − γjAj,3

(
βj

(1− γj)Aj,2

R2 − γjAj,2

)(
βj

(1− γj)Aj,1

R1 − γjAj,1

)
sj,0 =

∑
i<h

β2
i si,0

Let us focus on the equilibrium with Rt ∈ (Am,t−1, Am,t), i.e., j = m. We have that

γmAm,t+1

Rt+1 − γmAm,t+1

(
βm

(1− γm)Am,t

Rt − γmAm,t

)
· · ·

(
βm

(1− γm)Am,1

R1 − γmAm,1

)
sm,0 =

∑
i<m

βt
isi,0

R1:
γmAm,1

R1 − γmAm,1
sm,0 =

∑
i<m

si,0

R2:
γmAm,2

R2 − γmAm,2

(
βm

(1− γm)Am,1

R1 − γmAm,1

)
sm,0 =

∑
i<m

βisi,0.

Therefore, we can find the interest rate. First, the interest rate R1 = γmAm,1
S0∑

i<m si,0
. For

date t ≥ 1, we have

∑
i ̸=m βt

isi,0∑
i ̸=m βt−1

i si,0
=

γmAm,t+1

Rt+1−γmAm,t+1

(
βm

(1−γm)Am,t

Rt−γmAm,t

)
· · ·

(
βm

(1−γm)Am,1

R1−γmAm,1

)
sm,0

γmAm,t

Rt−γmAm,t

(
βm

(1−γm)Am,t−1

Rt−1−γmAm,t−1

)
· · ·

(
βm

(1−γm)Am,1

R1−γmAm,1

)
sm,0

=

γmAm,t+1

Rt+1−γmAm,t+1

(
βm

(1−γm)Am,t

Rt−γmAm,t

)
γmAm,t

Rt−γmAm,t

=
γmAm,t+1

Rt+1 − γmAm,t+1

βm(1− γm)

γm

=
βm(1− γm)Am,t+1

Rt+1 − γmAm,t+1
.

To sum up, we obtain that:

R1 = γmAm,1
S0∑

i<m si,0
(B.38)

Rt+1 = Am,t+1

(
γm + (1− γm)βm

∑
i ̸=m βt−1

i si,0∑
i ̸=m βt

isi,0

)
, ∀t ≥ 1. (B.39)
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We need to check that Am−1,t < Rt < Am,t, ∀t. It means that

Am−1,1

Am,1
< γm

S0∑
i<m si,0

< 1 (B.40)

Am−1,t+1

Am,t+1
< γm + (1− γm)βm

∑
i ̸=m βt−1

i si,0∑
i ̸=m βt

isi,0
< 1, ∀t ≥ 1 (B.41)

βm

∑
i ̸=m βt−1

i si,0∑
i ̸=m βt

isi,0
< 1,∀t ≥ 1. (B.42)

So, we can see that Rt is increasing in γm for any t.
Let

Am−1,t+1

Am,t+1
converges to Am−1

Am
, ∀t and βi0 = maxi<m βi. We must have

Am−1

Am
≤ γm + (1− γm)

βm
βi0

≤ 1. (B.43)

We now find the capital at date t. We have

km,0 =
∑
i

si,0

km,1 =
∑
i<m

si,1 + sm,1 =
∑
i<m

βiR1si,0 + βm
(1− γm)Am,1R1

R1 − γmAm,1
sm,0

= R1

(∑
i<m

βisi,0 + βm
(1− γm)Am,1

R1 − γmAm,1
sm,0

)
= R1

(∑
i<m

βisi,0 + βm
1− γm
γm

∑
i<m

si,0

)
= γmAm,1

S0∑
i<m si,0

(∑
i<m

βisi,0 + βm
1− γm
γm

∑
i<m

si,0

)
= Am,1S0

(
γm

∑
i<m βisi,0∑
i<m si,0

+ βm(1− γm)
)
.

Since βm

∑
i̸=m βt−1

i si,0∑
i ̸=m βt

isi,0
< 1,∀t ≥ 1, we see that km,1 is increasing in γm.

For any date t ≥ 2, by using
γmAm,t+1

Rt+1−γmAm,t+1

(
βm

(1−γm)Am,t

Rt−γmAm,t

)
· · ·

(
βm

(1−γm)Am,1

R1−γmAm,1

)
sm,0 =∑

i<m βt
isi,0, we get that

km,t =
Rt+1

Rt+1 − γmAm,t+1

(
βm

(1− γm)Am,tRt

Rt − γmAm,t

)
· · ·

(
βm

(1− γm)Am,1R1

R1 − γmAm,1

)
sm,0

= Rt+1 . . . R1
1

γmAm,t+1

γmAm,t+1

Rt+1 − γmAm,t+1

(
βm

(1− γm)Am,tRt

Rt − γmAm,t

)
· · ·

(
βm

(1− γm)Am,1R1

R1 − γmAm,1

)
sm,0

= Rt+1 . . . R1
1

γmAm,t+1

∑
i<m

βt
isi,0

= Rt+1 . . . R2
1

Am,t+1

(∑
i<m

βt
isi,0

)
Am,1

S0∑
i<m si,0

= Rt . . . R2Am,1S0

∑
i<m βt

isi,0∑
i<m si,0

(
γm + (1− γm)βm

∑
i ̸=m βt−1

i si,0∑
i ̸=m βt

isi,0

)
, ∀t ≥ 1,

where the last equality follows Rt+1 = Am,t+1

(
γm + (1− γm)βm

∑
i ̸=m βt−1

i si,0∑
i̸=m βt

isi,0

)
. We see that

this is increasing in the credit limit γm, and so is the aggregate output. This is also increasing
in agents’ productivity.
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D Online appendix 1: Characterization of equilib-

rium in a two-period model

Proof of Theorem 1

We have the following result which characterizes the optimal solution of agents.

Lemma 7 (individual choice - linear production function). Assume that Fi(K) = AiK. Let
R > 0 be given. The solution for agent i’s maximization problem is described as follows.

1. If R ≤ γiAi, then there is no solution (ki = ∞).

2. If Ai > R > γiAi, then agent i borrows from the financial market and the borrowing
constraint is binding. We have ki = R

R−γiAi
Si, ai = γiAi

R−γiAi
Si, πi = Aiki − Rbi =

R(1−γi)
R−γiAi

AiSi.

3. If Ai = R, then the solutions for the agent’s problem include all pairs (ki, bi) such that
−Si ≤ bi ≤ γi

1−γi
Si and ki = bi + Si.

4. If Ai < R, then agent i does not produce goods and invest all her initial wealth in the
financial market: ki = 0, bi = −Si.

According to Definition of Dn,Bn,

Dn ≡
m∑
i=n

AnSi

An − γiAi
, ∀n ≥ 1, Bn ≡

m∑
i=n+1

AnSi

An − γiAi
, ∀n ≥ 1, (A.1)

we observe that

Sm

1− γm
= Dm < · · · < Dn+1 < Bn < Dn < Bn−1 < · · · < B1 =

m∑
i=2

A1Si

A1 − γiAi
. (A.2)

Theorem 2 is a direct consequence of the existence of equilibrium and Lemmas 8-12 below.
First, the following result is a direct consequence of Lemma 7.

Lemma 8. Assume that A1 < A2 < · · · < Am. If maxi(γiAi) ≥ An and there exists an
equilibrium, then R > An.

By comparing Bn,Dn with the aggregate capital supply S ≡
∑m

i=1 Si, we obtain the
following result.

Lemma 9. Assume that A1 < A2 < · · · < Am. Denote S ≡
∑m

i=1 Si the aggregate capital.
Consider an equilibrium.

1. If An > maxi(γiAi) and R > An, then Bn > S. Consequently, if An > maxi(γiAi) and
Bn ≤ S, then R ≤ An.

2. If An > maxi(γiAi) and R < An, then S > Dn. Consequently, if An > maxi(γiAi) and
S ≤ Dn, then R ≥ An.

I



Proof. 1. Since R > Ai for any i = 1, . . . , n, Lemma 7 implies that ki = 0, ai = −Si

∀i = 1, . . . , n. Hence, we have, by using market clearing condition,

n∑
i=1

Si = −
n∑

i=1

ai =

m∑
i=n+1

ai ≤
m∑

i=n+1

γiAi

R− γiAi
Si <

m∑
i=n+1

γiAi

An − γiAi
Si (A.3)

where the first inequality follows bi ≤ γiAiSi

R−γiAi
while the last inequality follows R > An >

maxi(γiAi) and the fact that the function Func(R) ≡
∑m

i=n+1
γiAi

R−γiAi
Si is decreasing

in (maxi(γiAi),+∞). Notice that this function is not decreasing in the interval (0,∞).

2. Since R < An, again Lemma 7 implies that ki =
R

R−γiAi
Si and ai =

γiAi

R−γiAi
Si∀i ≥ n.

We have

m∑
i=n

AnSi

An − γiAi
S <

m∑
i=n

RSi

R− γiAi
=

m∑
i=n

ki ≤
m∑
i=1

Si = S (A.4)

where the first inequality follows An > R > maxi(γiAi).

Lemma 10. R = An if and only if An > maxi(γiAi) and Bn ≤ S ≤ Dn.
30

Proof. If R = An, we have ki = 0 ∀i ≤ n− 1 and ki =
RSi

R−γiAi
∀i ≥ n+ 1. This implies that

An = R > maxi(γiAi). Since 0 ≤ kn ≤ RSi
R−fnAn

, we have

m∑
i=n+1

RSi

R− γiAi
≤

∑
i

ki =

m∑
i=n

ki ≤
m∑
i=n

RSi

R− γiAi
=

∑
i=n

AnSi

An − γiAi
(A.5)

By converse, suppose that An > maxi(γiAi) and
∑m

i=n+1
AnSi

An−γiAi
≤ S ≤

∑m
i=n

AnSi
An−γiAi

.
Applying points 1 and 2 of Lemma 9, we have R ≥ An and R ≤ An. Hence R = An.

By combining Lemma 9 and the fact that R > maxi(γiAi), we obtain the following result.

Lemma 11. Assume that A1 < A2 < · · · < Am. Consider an equilibrium. If R ∈ (An, An+1),
then An+1 > maxi(γiAi) and R = RL

n (hence RL
n ∈ (An, An+1)).

We now identify the necessary and sufficient conditions under which R = RL
n .

Lemma 12. R = RL
n ̸= An if and only if one of the following conditions is satisfied:

1. maxi(γiAi) < An < rLn < An+1, or equivalently maxi(γiAi) < An and Dn+1 < S < Bn

2. An ≤ maxi(γiAi) < RL
n < An+1, or equivalently An ≤ maxi(γiAi) < RL

n and Dn+1 <
S.

In any case, we have that RL
n ∈ [An, An+1).

30We need condition An > M ≡ maxi(γiAi) because that R > maxi(γiAi). Condition∑m
i=n+1

AnSi

An−γiAi
≤ S ensures that R ≤ An while condition S ≤

∑m
i=n

AnSi

An−γiAi
ensures that R ≥ An.
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Proof. Part 1. Assume thatR = RL
n ̸= An. By definition ofR andRL

n , we have
∑m

i=n+1
RSi

R−γiAi
=

S, and RL
n > maxi(γiAi). We will prove that R = RL

n ∈ (An, An+1).
If R ≤ An, then R < An+1, and hence ki =

RSi
R−γiAi

∀i ≥ n + 1. Since
∑m

i=n+1
RSi

R−γiAi
=

S =
∑

i ki. We have ki = 0 ∀i ≤ n, and hence kn = 0. This implies that R ≥ An. Therefore,
we have R = An, a contradiction. Thus, we have R > An.

If R ≥ An+1, we have ki = 0 ∀i ≤ n. Hence S =
∑

i ki ≤
∑m

i=n+1
RSi

R−γiAi
. Since∑m

i=n+1
RSi

R−γiAi
= S, we have ki =

RSi
R−γiAi

∀i ≥ n + 1. Hence An+1 ≥ R. So, R = An+1.
We have just proved that R ≤ An+1. By definition of R, we get that An+1 > maxi(γiAi).
If RL

n = An+1, then applying Lemma 10, we have
∑m

i=n+2
An+1Si

An+1−γiAi
= Bn+1 ≤ S. However,

by definition of RL
n , we have

∑m
i=n+1

An+1Si

An+1−γiAi
= S, contradiction. Therefore, we obtain

RL
n < An+1.
We have just proved that RL

n ∈ (An, An+1). Applying point 2 of Lemma 9, we have
S > Dn+1. There are two cases:

1. maxi(γiAi) ≥ An. In this case, we have An ≤ maxi(γiAi) < RL
n < An+1.

2. maxi(γiAi) < An. We get maxi(γiAi) < An < RL
n < An+1. Notice that, in this case,

RL
n ∈ (An, An+1) is equivalent to Dn+1 < S < Bn.

Part 2. Conversely, assume that (i) An ≤ maxi(γiAi) < RL
n < An+1 or (ii) maxi(γiAi) <

An < RL
n < An+1.

1. If An ≤ maxi(γiAi) < RL
n < An+1. Condition An ≤ maxi(γiAi) implies that R > An.

Then ki = 0 ∀i ≤ n, and hence S =
∑m

i=n+1 ki ≤
∑m

i=n+1
RSi

R−γiAi

By definitionRL
n , we have S =

∑m
i=n+1

RL
nSi

RL
n−γiAi

. Since the function f(X) ≡
∑m

i=n+1
XSi

X−γiAi

is decreasing in the interval (maxi≥n+1(γiAi),∞) and R,RL
n > maxi(γiAi), we have

R ≤ RL
n . This implies that R ∈ (An, An+1). Therefore, Lemma 11 implies that

R = RL
n .

2. If maxi(γiAi) < An and Dn+1 < S < Bn. We have S < Dn because Dn > Bn.
According to point 2 of Lemma 9, we have R ≥ An.

Condition S > Dn+1 implies that S > Bn+1 because Dn+1 > Bn+1. According to point
1 of Lemma 9, we have R ≤ An+1.

If R = An+1, then Lemma 10 implies that S ≤ Dn+1. This is a contradiction because
S > Dd+1.

If R = An, Lemma 10 implies that S ∈ [Bn,Dn]. However, S ≤ Bn. Thus, we have
S = Bn =

∑m
i=n+1

AnSi
An−γiAi

. Since An > maxi(γiAi), then An = RL
n , a contradiction.

Summing up, we have R ∈ (An, An+1). By applying point 3 of Lemma 11, we have
R = RL

n .

Remark 2. We can check that the regimes in Theorem 2 are not overlap, and the union of
these regimes is equal to the set of economies satisfying A1 < · · · < Am, or, formally,

E = ∪m
i=1Ai ∪ ∪m−1

i=1 Ri (A.6a)

X ∩ Y = ∅ ∀X,Y ∈ {A1, . . . ,Am,R1, . . . ,Rm−1} and X ̸= Y. (A.6b)

Denote M ≡ maxi(γiAi). By definition, we see that:
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1. The economy E ≡ (Fi, γi, Si)i=1,...,m ∈ A1 if and only if A1 > maxi(γiAi) and S > B1.

2. E ∈ Am if and only if S ≤ Dm.

3. E ∈ An with n ∈ {2, . . . ,m− 1} if and only if An > maxi(γiAi) and Bn ≤ S ≤ Dn.

4. Rn ≡ Rn,1 ∪Rn,2 with n ∈ {1, . . . ,m− 1} where

(a) Rn,1 is the set of economies such that An > maxi(γiAi) and Dn+1 < S < Bn.

(b) Rn,2 is the set of economies such that An+1 > maxi(γiAi) ≥ An and Dn+1 < S.

We now prove (A.6a) which implies the existence of equilibrium. It suffices to verify
that E ⊂ ∪m

i=1Ai ∪ ∪m−1
i=1 Ri. Let us consider an economy E . There are only two cases.

1. maxi(γiAi) < A1. In this case, we have maxi(γiAi) < An ∀n. Therefore, it is easy to
see that E ∈ ∪m

i=1Ai ∪ ∪m−1
i=1 Ri,1 ⊂ ∪m

i=1Ai ∪ ∪m−1
i=1 Ri.

2. There exists n ∈ {1, . . . ,m − 1} such that An+1 > maxi(γiAi) ≥ An. There are two
sub-cases.

(a) S > Dn+1. In this case, E ∈ Rn+1,2.

(b) S ≤ Dn+1. Recall thatM < An+1. In this case, we will prove that E ∈ ∪m
i=n+1Ai∪

∪m−1
i=n+1Ri. Indeed, since S ≤ Dn+1, there are 2(m− n)− 1 cases.

i. If there exists i ∈ {n + 1,m − 1} such that Bi ≤ S ≤ Di. Then E ∈ Ai

because Ai ≥ An+1 > maxi(γiAi).

ii. If there exists i ∈ {n + 1,m − 1} such that Di+1 ≤ S ≤ Bi. Then E ∈ Ri,1

because Ai ≥ An+1 > maxi(γiAi).

iii. Last, if S ≤ Dm, then E ∈ Rm.

Proof of (A.6b). Observe that the equilibrium interest rate is unique if (A.6b) holds.
We have to prove that:

An ∩ Ah = ∅ ∀n ̸= h (A.7a)

An ∩Rh,1 = ∅ ∀n, h (A.7b)

An ∩Rh,2 = ∅ ∀n, h (A.7c)

Rn ∩Rh = ∅ ∀n ̸= h. (A.7d)

Following (A.2), it is easy to see that the two first equalities hold.
We now prove that An ∩ Rh,2 = ∅ ∀n, h. Suppose that there exists E ∈ An ∩ Rh,2. It

means that (1) An > maxi(γiAi) and Bn ≤ S ≤ Dn, and (ii) Ah+1 > maxi(γiAi) ≥ Ah and
Dh+1 < S. From these conditions we get An > Ah, and hence n ≥ h + 1. Thus, we obtain
S > Dh+1 ≥ Dn ≥ S, a contradiction. Therefore, we have An ∩Rh,2 = ∅ ∀n, h.

Last, we prove Rn ∩ Rh = ∅, or equivalently Rn,i ∩ Rh,j = ∅ ∀i, j ∈ {1, 2}, ∀n ̸= h.
Without loss of generality, we can assume that n < h. It is easy to see that Rn,1 ∩Rh,1 = ∅
and Rn,2 ∩Rh,2 = ∅. We now prove that Rn,1 ∩Rh,2 = ∅ and Rn,2 ∩Rh,1 = ∅.

1. Suppose that there exists E ∈ Rn,1∩Rh,2. It means that An > maxi(γiAi); Dn+1 < S <
Bn; Ah+1 > maxi(γiAi) ≥ Ah; Dh+1 < S. Since h > n, then Ah > An > maxi(γiAi).
This is a contradiction because maxi(γiAi) ≥ Ah. So, we have Rn,1 ∩Rh,2 = ∅.
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2. Suppose that there exists E ∈ Rn,2 ∩ Rh,1. It means that An+1 > maxi(γiAi) ≥ An;
Dn+1 < S;Ah > maxi(γiAi); Dh+1 < S < Bh.

Since h ≥ n+ 1, we have Bh ≤ Bn+1 < Dn+1 < S < Bh, a contradiction.

Remark 3. In Theorem 2, we assume that A1 < · · · < Am. However, we can characterize
the set of equilibria in the general case where some agents have the same productivity. Indeed,
without lost of generality, we can (1) rank that Ai ≤ Ai+1, ∀i, and assume that (2) the set
{Ai : i ∈ {1, . . . ,m}} has the cardinal p, p ≤ m and its distinct values are (Ait)

p
t=1, where

A1 = Ai1 < Ai2 < · · · < Aip = Am. We can decompose that

A1, A2, . . . , Am = A1, . . . , A1︸ ︷︷ ︸
i1 times

, Ai1+1, . . . , Ai1+i2︸ ︷︷ ︸
i2 times

, . . . , Ai1+···+ip−1 , . . . , Am︸ ︷︷ ︸
im times

Let us denote At ≡ Ait , St ≡
∑

i:Ai=Ait
Si. Then, we can use the same argument in

Theorem 2 (but we replace m by p, Ai by Ai, Si by Si) to determine the unique equilibrium
interest rate. However, there may be multiple equilibrium allocations when one of the sets
{i : Ai = Ai1}, . . . , {i : Ai = Aip} has multiple elements.

Proof of Theorem 2 (economy with strictly concave technolo-
gies)

Individual optimal choice

Before present the properties of individual optimal choice, we introduce some notations:

Definition 6. Given R, γi, Ai, Si, denote kni = kni (R/Ai) the unique solution to the equation
Aif

′
i(k) = R and kbi = kbi (

R
γiAi

, Si) the unique solution to R(k − Si) = γiAifi(k).

kbi (k
n
i , respectively) represents the capital level of agent i when her borrowing constraint

is binding (not binding, respectively). Under assumptions in Lemma 2, we can verify that: (1)
kni is strictly decreasing in R/Ai. Moreover, limR/A1→0 k

n
i = +∞, and limR/A1→∞ kni = 0. (2)

kbi is strictly increasing in Si but strictly decreasing in R
γiAi

. Moreover, limR/Ai→0 k
b
i = +∞,

and limR/Ai→∞ kbi = Si.
The following result characterizes the solution of the problem (Pi).

Lemma 13 (individual choice - strictly concave production function). Under Assumption
2, there exists a unique solution to the problem (Pi). The optimal capital ki is increasing in
TFP Ai, credit limit γi but decreasing in the interest rate R.

1. If R
kni (R/Ai)−Si

Aifi(kni (R/Ai))
≥ γi, then credit constraint is binding and the capital level is ki = kbi .

Moreover, ki = kbi ≤ kni .

2. If R
kni (R/Ai)−Si

Aifi(kni (R/Ai))
< γi, then credit constraint is not binding and k = kni . In this case,

we have ki = kni < kbi .

Proof of Lemma 13. Since F ′
i (0) = ∞, we have ki > 0 at optimum. The Lagrange function

is
L = Fi(ki)−Rbi + λi(Si + bi − ki) + µi(γiFi(ki)−Rbi)
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It is easy to see that (ki, bi) is a solution if and only if there exists (λi, µi) such that

[k] : (1 + µiγi)F
′
i (ki) = λi

[a] : (1 + µi)R = λi, µi ≥ 0, and µi(γiFi(ki)−Ribi) = 0.

These equations imply that:

Aifi(ki) = F ′
i (ki) = R

1 + µi

1 + γiµi
≥ R. (A.8)

Since F ′
i is decreasing, we have ki ≤ kni (R/Ai).

We consider two cases.
Case 1: The credit constraint is binding: γFi(ki) = Rbi. In this case, (ki, bi) is the

solutions of the following equations:

bi = ki − Si (A.9)

γFi(ki) = R(ki − Si), i.e.,
γi
R

=
ki

Fi(ki)
− Si

Fi(ki)
. (A.10)

Consider the function k/Fi(k). Its derivative equals
Fi(k)−kF ′

i (k)

(Fi(k))2
which is non-negative be-

cause F is concave. So, the function Gi(k) ≡ k−Si
Fi(k)

is strictly increasing in k. Moreover,

limk→0Gi(k) < γi/R and Gi(∞) > γi/R (because F ′
i (∞) < 1). Therefore, there exists a

unique solution ki of equation (A.10), and this is positive. It is actually kbi .
We now investigate condition ki ≤ kni . Since Gi(ki) = γi/R, condition ki ≤ kni is

equivalent to Gi(k
n
i ) ≥ γi/R (because Gi(ki) = γi/R) or, equivalently, R

kni (R/Ai)−Si

Fi(kni (R/Ai))
≥ γi.

Conversely, assume that R
kni (R/Ai)−Si

Fi(kni (R/Ai))
≥ γi. We choose ki = kbi . Then, by definition of

kbi , we have ki ∈ (Si,∞). Therefore, we have

R > R(1− Si

ki
) = γi

Fi(ki)

ki
≥ γiF

′
i (ki)

where the last inequality follows the fact that Fi is concave. It means that R > γiF
′
i (ki). So,

we can define µi, λi by

1− F ′
i (ki)

R
= µi

(F ′
i (ki)

R
− γi

)
, λi = R(1 + µi).

Therefore, (λi, µi) and (ki, bi) satisfy conditions [k] and [b] above. It means that (ki, bi) is a
solution.

Case 2: γiFi(ki) > Rbi. In this case, we have µi = 0, and hence F ′
i (ki) = R, i.e, ki = kni .

It remains to check that this value of ki satisfies the condition: γiFi(ki) > Rbi = R(Si − ki),
i.e., γi/R > Gi(k

n
i ).

Observe that if RGi(k
n
i ) < (≥)γi, then Gi(k

n
i ) < (≥)γi/R = Gi(k

b
i ), which implies that

kni < (≥)kbi .
The converse is easy. Notice that, in this case, agent borrows (i.e., bi > 0) if and only if

ki > S or equivalently kni > S. This means that her wealth is low and/or interest rate is low
and/or her productivity is high.

Under Assumptions 2 and 3, the function
(k−Si)f

′
i(k)

fi(k)
is strictly increasing in k. There-

fore, the function Gi(x) ≡ (kni (x)−Si)x
fi(kni (x))

is strictly decreasing in x. Moreover, we can check

that limx→+∞Gi(x) = −∞, limx→0Gi(x) = limk→∞
kf ′

i(k)
fi(k)

. By consequence, we obtain the
following result.
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Lemma 14. Let Assumptions 2 and 3 be satisfied. Then, if agent i’s borrowing constraint

is binding, we must have γi ≤ limx→∞
xF ′

i (x)
Fi(x)

. By consequence, when Fi(k) = Aik
αi and

γi > αi, then agent i’s borrowing constraint is not binding.

The following result show the interaction between interest rate, credit limit γi and bor-
rowing constraint.

Lemma 15. Let Assumptions 2, 3 and 9 be satisfied. We can define Ri the unique value
satisfying

Hi(Ri) ≡ Ri
kni (Ri/Ai)− Si

Aifi(kni (Ri/Ai))
= γi. (A.11)

Then, we have that:

1. Agent i’s borrowing constraint is binding if and only if Hi(R) ≥ γi which is equivalent
to R ≤ Ri ≡ H−1

i (γi).

2. Ri/Ai does not depend on Ai, and limAi→∞Ri = ∞, limAi→0Ri = 0. Ri is increasing
in productivity Ai but decreasing in γi and in Si.

3. We also have kni (Ri/Ai) = kbi (Ri/Ai).

The threshold Ri is exogenous. It represents the subjective interest rate of agent below
which agent borrows so that her(his) borrowing constraint is binding. Point 2 of Lemma 15
indicates that the credit constraint of agent i is more likely to bind if the interest rate, her
initial wealth and credit limit are low, and/or her productivity is high.

Remark 4. Under Cobb-Douglas technology, i.e., Fi(k) = Aik
α, we can compute that

Hi(R) = α
(
1 −

(
R

αAiS
α−1
i

) 1
1−α

)
is decreasing in R and Hi(0) = α. So, if αi < γi, then

borrowing constraint is not binding, whatever the level of interest rate R. When Hi(0) > γi,

i.e., α > γi, we have Ri = αAiS
α−1
i

(
1− γi

α

)1−α
.

Proof of Theorem 3

To simplify notations, we write kni (R) and kbi (R) instead of kni (
R
Ai
) and kbi (

R
γiAi

, Si). We also
introduce the so-called aggregate capital demand function:

Bn(R) ≡

{∑n
i=1 k

n
i (R) +

∑m
i=n+1 k

b
i (R) if n ≤ m− 1∑m

i=1 k
n
i (R) if n = m.

Lemma 16. Bn(Rn) > Bn+1(Rn+1) = Bn(Rn+1).

Proof. Indeed, since Rn < Rn+1, we notice that

Bn(Rn) ≡
n∑

i=1

kni (Rn) +
m∑

i=n+1

kbi (Rn)

> Bn(Rn+1) =

n∑
i=1

kni (Rn+1) +

m∑
i=n+1

kbi (Rn+1) =

n+1∑
i=1

kni (Rn+1) +

m∑
i=n+2

kbi (Rn+1)

where the last equality follows kbn+1(Rn+1) = knn+1(Rn+1). Therefore, Bn(Rn) > Bn+1(Rn+1) =
Bn(Rn+1) ∀n.
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We state an intermediate step whose proof is based on Lemma 13 and Lemma 15.

Lemma 17. Let assumptions in Theorem 3 be satisfied. Consider an equilibrium ((ki, bi)i, R)
and an index n ∈ {1, . . . ,m− 1}.

1. If R > Rm, Lemma 13 implies that credit constraint of any agent is not binding. So,
the equilibrium coincides to that of the economy without credit constraints. Therefore,
we have R = R∗ > Rm.

2. If R > Rn, then credit constraint of any agent i ≤ n is not binding. Hence ki =
kni (R) < kni (Rn) ∀i ≤ n. Condition R > Rn also implies that kbi (R) < kbi (Rn).
Therefore, we have

∑
i Si < Bn(Rn).

3. If R ≤ Rn+1, then credit constraint of any agent i ≥ n + 1 is binding, and hence
ki = kbi (R) ≥ kbi (Rn+1) ∀i ≥ n + 1. Moreover, we have ki ≥ kni (R) ≥ kni (Rn+1).
Therefore, we have

∑
i Si ≥ Bn(Rn+1).

We now prove Theorem 3. Let us consider an equilibrium. Since there is at least one
agent whose credit constraint is not binding, we have R > R1.

Step 1. Suppose that R ∈ (Rn, Rn+1]. So, credit constraint of any agent i ≥ n + 1 is
binding and that of any agent i ≤ n is not binding. Hence, the capital demand is∑

i

ki =
n∑

i=1

kni (R) +
m∑

i=n+1

kbi (R). (A.12)

Therefore, the equilibrium interest rate is determined by

n∑
i=1

kni (R) +
m∑

i=n+1

kbi (R) = S ≡
∑
i

Si. (A.13)

The left-hand side is decreasing in r, and hence this equation has a unique solution.
Since R ∈ (Rn, Rn+1], we have

n∑
i=1

kni (Rn) +
m∑

i=n+1

kbi (Rn) >
∑
i

Si ≥
n∑

i=1

kni (Rn+1) +

m∑
i=n+1

kbi (Rn+1).

Conversely, if this condition holds, by using properties of functions kbi , k
n
i , we can easily

prove that R ∈ (Rn, Rn+1]. Indeed, if R > Rn+1, then point 2 of Lemma 17 implies that
S < Bn+1(Rn+1). This contradicts to S ≥ Bn+1(Rn+1). If R ≤ Rn, then point 3 of Lemma
17 implies that S ≥ Bn−1(Rn) = Bn(Rn). This contradicts to S < Bn(Rn). Therefore, we
obtain R ∈ (Rn, Rn+1].

Step 2. We now suppose that R∗ > Rm. We will prove that credit constraint of any
agent is not binding. Suppose that the set

B = {i ∈ {1, . . . ,m} : agent i’s borrowing constraint is binding}

is not empty. Let n : 1 ≤ n ≤ m − 1 be the highest element in B, i.e., credit constraint of
any agent i ≥ n+1 is binding while that of any agent i ≤ n is not. We have R ∈ (Rn, Rn+1].
So, kbi (R) ≥ kbi (Rn + 1) > k(Rm) and kni (R) ≥ kni (Rn+1) ≥ kni (Rm). Hence, we get that

∑
i

Si =
n∑

i=1

kni (R) +
m∑

i=n+1

kbi (R) ≥
m∑
i=1

kni (Rm). (A.14)
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However, by definition of R∗, we have

∑
i

Si =

m∑
i=1

kni (R
∗) <

m∑
i=1

kni (Rm). (A.15)

This is a contradiction.
Step 3. We now prove that Rn ≤ R∗ ∀n ≤ m− 1. Indeed, in the regime Rn, for any i ≥

n+1, agent i’s credit constraint is binding. Hence, Lemma 13 follows that kbi (Rn) ≤ kni (Rn)
∀i ≥ n+ 1. Consequently, we get that

m∑
i=1

kni (R
∗) = S =

n∑
i=1

kni (Rn) +
m∑

i=n+1

kbi (Rn) ≤
m∑
i=1

kni (Rn)

which implies that R∗ ≥ Rn.
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E Online appendix: the existence of intertemporal

equilibrium

The proof is similar to the one in Bosi, Le Van, and Pham (2018). But our added-value is
that we do not need that ui,t(0) = 0, ∀c. Notice that we cannot directly use a method of
Becker, Bosi, Le Van and Seegmuller (2015) or Le Van and Pham (2016) because the financial
asset in our model is a short-lived asset with zero supply.

The idea is that we can bound the individual demand for the financial asset, and so
can prove the existence of equilibrium by adapting the method of Becker, Bosi, Le Van and
Seegmuller (2015) and Le Van and Pham (2016): (1) we prove the existence of equilibrium
for each T− truncated economy ET ; (2) we show that this sequence of equilibria converges
for the product topology to an equilibrium of our economy E .

E.1 Existence of equilibrium for truncated economies

For each T ≥ 1, we define T−truncated economy ET as E but there are no activities from
period T + 1 to the infinity, i.e., ci,t+1 = ki,t = bi,t = 0 for every i = 1, . . . ,m and for any
t ≥ T .

We then define the bounded economy ET
b as ET but consumption level (ci,t)t≤T , physical

capital (ki,t)t≤T , and asset holding (bi,t)t≤T are respectively bounded in the following sets:

C := [−Bc, Bc]
T+1, K := [−Bk, Bk]

T+1, B := [−Bb, Bb]
T+1,

where |S| denotes the cardinal of the set S and the bounds satisfy

Bc, Bk > max
t≤T

BK,t; Bb = mBc. (A.1)

The economy ET
b depends on bounds Bc, Bk, Bb, so we write ET

b (Bc, Bk, Bb).
Let us define

Xb ≡ C × K × B, X ≡ (Xb)
m (A.2)

P ≡ {z0 = (pt, Rt)t≤T : R0 = 0; pt, Rt ≥ 0; pt +Rt = 1, ∀t ≤ T} (A.3)

Φ ≡ P × X . (A.4)

An element z ∈ Φ is in the form z = (zi)
m
i=0 where z0 = (pt, Rt)t≤T , zi = (ci,t, ki,t, bi,t)t≤T

for each i = 1, . . . ,m.
The following remark is to ensure that the asset volume (bi,t) is bounded.

Remark 5. If z ∈ Φ is an equilibrium for the economy ET , then, by using the fact that
pt +Rt = 1, we obtain that bi,t ≤ Bc for any i, t. Indeed, this is true for t = 0 because

−bi,0 ≤ p0Fi,0(ki,−1) ≤ p0Bc = Bc (A.5)

and then, for any t ≥ 0, we have

−bi,t ≤ ptFi,t(ki,t−1)−Rtbi,t−1 ≤ (pt +Rt)Bc = Bc (A.6)

Since
m∑
i=1

bi,t = 0, we get that bi,t ∈ [−Bb, Bb] for any i and any t, where Bb ≡ mBc >

(m− 1)Bc.
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Proposition 22. Under Assumptions (1-4), there exists an equilibrium (p,R, (ci, ki, bi)
m
i=1),

with pt +Rt = 1, ∀t, for the economy ET
b (Bc, Bk, Bb). This is actually an equilibrium for the

economy ET (Bc, Bk, Bb)

Proof. We firstly define

BT
i (p,R) :=

{
(ci,t, ki,t, bi,t)t≤T ∈ Xb : (a) ki,t = bi,t = 0 ∀t ∈ DT ,

(b) p0(ci,0 + ki,0) ≤ p0Fi,0(ki,−1) + bi,0

(c) for each t : 1 ≤ t(t) ≤ T :

Rtbi,t−1 ≤ γiptFi,t(ki,t−1)

pt(ci,t + ki,t) +Rtbi,t−1 ≤ ptFi,t(ki,t−1) + bi,t
}
.

We also define CT
i (p,R) as follows.

CT
i (p,R) :=

{
(ci,t, ki,t, bi,t)t≤T ∈ X : (a) ki,t = bi,t = 0 ∀t ∈ DT ,

(b) p0(ci,0 + ki,0) < p0Fi,0(ki,−1) + bi,0

(c) for each t : 1 ≤ t(t) ≤ T :

Rtbi,t−1 < γiptFi,t(ki,t−1)

pt(ci,t + ki,t) +Rtbi,t−1 < ptFi,t(ki,t−1) + bi,t
}
.

Lemma 18. CT
i (p,R) ̸= ∅ and C̄T

i (p,R) = BT
i (p,R).

Proof. Since ki,−1 > 0 and p0 = 1, we always have p0Fi,0(ki,−1) > 0. Therefore, we can
choose (ci,0, ki,0, bi,0) ∈ R2

+ × R−, and then (ci,t, ki,t, bi,t) ∈ R2
+ × R− such that this plan

belongs to CT
i (p, q, r). Note that ptFi,t(ki,t−1) − Rtbi,t−1 > 0 if ki,t−1 > 0, bi,t−1 < 0 and

(pt, Rt) ̸= (0, 0, 0).

Lemma 19. CT
i (p,R) is lower semi-continuous correspondence on P. BT

i (p,R) is continuous
on P with compact convex values.

Proof. It is clear since CT
i (p,R) is nonempty and has open graph.

We now define correspondences. First, we define φ0 (for additional agent 0) : X → 2P by

φ0((zi)
m
i=1) := argmax

(p,R)∈P

{∑
t≤T

[
pt

m∑
i=1

(
ci,t + ki,t − Fi,t(ki,t−1)

)]
+
∑
t≤T

[
Rt

m∑
i=1

bi,t−1

]}
.

Second, for each i = 1, . . . ,m, we define φi : P → 2X

φi((p,R)) := argmax
(ci,ki,bi)∈CT

i (p,R)

{ T∑
t=0

ui,t(ci,t)
}
.

Lemma 20. The correspondence φi is upper semi-continuous and non-empty, convex, com-
pact valued for each i = 0, 1, . . . ,m+ 1.

Proof. This is a direct consequence of the Maximum Theorem.
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According to the Kakutani Theorem, there exists (p̄, R̄, (c̄i, k̄i, b̄i)
m
i=1) such that

(p̄, R̄) ∈ φ0((c̄i, k̄i, b̄i)
m
i=1) (A.7)

(c̄i, k̄i, b̄i) ∈ φi((p̄, R̄)). (A.8)

Denote, for each t ≥ 0,

X̄t :=

m∑
i=1

(c̄i,t + ki,t − Fi,t(k̄i,t−1)), Z̄t :=

m∑
i=1

b̄i,t.

Therefore, for every (p, q, r) ∈ P, we have∑
t≤T

(pt − p̄t)X̄t +
∑
t≤T

(Rt − R̄t)Z̄t−1 ≤ 0 (A.9)

Consider date t, by summing budget constraints over i, we get that

p̄tX̄t + R̄tZ̄t−1 ≤ Z̄t.

By consequence, we have, for each t ≤ T and for every (pt, Rt) ≥ 0 with pt +Rt = 1,

ptX̄t +RtZ̄t−1 ≤ p̄tX̄t + R̄tZ̄t−1 ≤ Z̄t.

Since at date T, we have Z̄T = 0. So, p̄T X̄T + R̄T Z̄T−1 ≤ 0. Hence, pT X̄T +RT Z̄T−1 ≤ 0
for any (pT , RT ) ≥ 0 with pT + RT = 1. This implies that X̄T , Z̄T−1 ≤ 0. Repeating this
argument, we obtain that X̄t, Z̄t ≤ 0 ∀t ≤ T which means that

m∑
i=1

(c̄i,t + k̄i,t) ≤
m∑
i=1

Fi,t(k̄i,t)

m∑
i=1

b̄i,t ≤ 0.

Lemma 21. p̄t > 0, R̄t > 0 for any t ≤ T .

Proof. By definition of BK,t, we see that
m∑
i=1

c̄i,t ≤ BK,t < Bc, or any t. This allows us to

prove that p̄t > 0 for any t. Indeed, if p̄t = 0 then ci,t = Bc > BK,t, a contradiction.

If R̄t = 0, then b̄i,t−1 = −Ba for any i, which implies that
m∑
i=1

b̄i,t−1 < 0, contradiction.

Therefore, R̄t > 0.

Lemma 22. X̄t = Z̄t = 0.

Proof. Using p̄tX̄t + R̄tZ̄t−1 ≤ 0 and Lemma 21.

Lemma 23. The optimality of (c̄i, k̄i, b̄i).

Proof. It is clear since (c̄i, k̄i, b̄i) ∈ φi((p̄, q̄, r̄)).
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We have just proved that (p̄, R̄, (c̄i, k̄i, b̄i)
m
i=1) is an equilibrium for the economy ET

b .
We now prove that this equilibrium for the economy ET (Bc, Bk, Bb). The market clear-
ing conditions are obviously satisfied. It remains to prove the optimality of the allocation
z̄i = (c̄i, k̄i, b̄i). Suppose the contra

Let zi ≡ (ci, ki, bi) be in the budget set of the T−truncated economy. Since (c̄i, k̄i, b̄i)
belongs the interior of Xb, there exists λ ∈ (0, 1) such that λzi + (1 − λ)z̄i ∈ Xb. Of course,
λzi + (1− λ)z̄i is in the budget set of the economy ET

b . Denote Ui(c) ≡
∑

t≤T ui,t(ct).

We have λU i(ci) + (1 − λ)U i(c̄i) ≤ U i(λci + (1 − λ)c̄i) ≤ U i(c̄i), which implies that
U i(ci) ≤ U i(c̄i).

E.2 Existence of equilibrium for the infinite-horizon economy

For simplicity of notation, in what follows, we write Fi instead of Fi,t.

Proposition 23. Under Assumptions (1-4) and 7, there exists an equilibrium for the econ-
omy Ẽ .

Proof. We present a proof in the spirit Le Van and Pham (2016).
We have shown that there exists an equilibrium, say

(
p̄T , R̄T , (c̄Ti , k̄

T
i , b̄

T
i )i

)
, for each

T−horizon truncated economy ET . Recall that p̄Tt + R̄T
t = 1 for any t ≤ T .

It is clear that the sequence
(
p̄T , R̄T , (c̄Ti , k̄

T
i , b̄

T
i )i

)
T
is bounded for the product topology.

Since the set of time is a countable set, we can assume that, without loss of generality,(
p̄T , R̄T , (c̄Ti , k̄

T
i , b̄

T
i )i

)
)

T→∞−−−−→
(
p̄, R̄, (c̄i, k̄i, b̄i)i

)
for the product topology.

We will prove that
(
p̄, R̄, (c̄i, k̄i, b̄i)i

)
is an equilibrium for the economy E . The market

clearing conditions are trivial. We will prove that all prices are strictly positive and the
allocation (c̄i, k̄i, b̄i) is optimal.

Let (ci, ki, bi) be a feasible allocation of the problem Pi(p̄, R̄). We prove that Ui(ci) ≤
Ui(c̄i). Let define (c′i,t, k

′
i,t, b

′
i,t)t≤T as follows:

(c′i,t, k
′
i,t, b

′
i,t) = (ci,t, ki,t, bi,t) if t ≤ T − 1

(c′i,t, k
′
i,t, b

′
i,t) = (Fi,t(ki,t−1), 0, 0) if t = T.

We see that (c′i,t, k
′
i,t, b

′
i,t)t≤T belongs to BT

i (p̄, R̄).

Since ki,−1 > 0 and p̄0 = 1, we have p̄0Fi,0(ki,−1) > 0, and hence CT
i (p̄, R̄) ̸= ∅. Therefore

there exists a sequence
(
(cni,t, k

n
i,t, b

n
i,t)t≤T

)∞

n=0
∈ CT

i (p̄, R̄), with kni,T = 0, bni,T = 0, and this

sequence converges to (c′i,t, k
′
i,t, b

′
i,t)t≤T when n tends to infinity. We have, for each t ≤ T ,

p̄t(c
n
i,t + kni,t) + bni,t < p̄tFi,t(k

n
i,t−1) +Rtb

n
i,t−1

fip̄tFi,t(k
n
i,t−1) + R̄tb

n
i,t−1 > 0.

Since (p̄T , R̄T ) converges to (p̄, R̄), we can chose s0 high enough such that (i) s0 > T and (ii)
for every s ≥ s0, we have

p̄st (c
n
i,t + kni,t) + bni,t < p̄stFi,t(k

n
i,t−1) +Rs

t b
n
i,t−1

fip̄
s
tFi,t(k

n
i,t−1) + R̄s

t b
n
i,t−1 > 0.

XIII



Condition (ii) implies that (cni,t, k
n
i,t, b

n
i,t)t≤T ∈ CT

i (p̄
s, R̄s). Therefore, by the definition of

equilibrium in the T-truncated economy, we get that∑
t≤T

βt
iui(c

n
i,t) ≤

∑
t≤T

βt
iui(c̄

s
i,t).

Let s tend to infinity, we obtain
∑
t≤T

βt
iui(c

n
i,t) ≤

∑
t≤T

βt
iui(c̄i,t) for any n and for any T high

enough .
Let n tend to infinity, we have

∑
t≤T

βt
iui(c

′
i,t) ≤

∑
t≤T

βt
iui(c̄i,t) for any T . We write clearly

this as follows: ∑
t≤T−1

βt
iui(ci,t) + βT

i ui(Fi,T (kT,t−1)) ≤
∑
t≤T

βt
iui(c̄i,t).

Let T tend to infinity and note that limT→∞ βT
i ui(Fi,T (ki,T−1)) = 0, we get that31∑

t≥0

βt
iui(ci,t) ≤

∑
t≥0

βt
iui(c̄i,t).

So, we have proved the optimality of (c̄i, k̄i, b̄i).
Now, we prove that p̄t > 0. Indeed, if p̄t = 0, the agent i can freely improve her con-

sumption to obtain a level of utility, which is higher than
∑

t≥0 ui,t(c̄i,t). This contradicts

the optimality of (c̄i, k̄i, b̄i).
We have R̄t is strictly positive because otherwise we can choose another allocation such

that bi,t−1 = ∞ and at the date t, we have the consumption c′i,t+1 = ∞, which make the
utility of agent i infinity, contradiction.

31Here, we do not need that ui(0) = 0.

XIV
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