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Abstract. In this paper, we study price stickiness in a dual-channel supply chain

where a single manufacturer sells its product through an online channel and a retailer.

We construct a noncooperative game where the manufacturer and the retailer decide

on whether or not to costlessly adjust their prices after a demand shock. If the demand

shock is positive, then the Nash equilibrium is always unique and non-sticky. If the

demand shock is negative, then there exist Nash equilibria where some prices are sticky.

Moreover, no Nash equilibrium is always Pareto optimal, pointing to the possibility of

the Prisoner’s Dilemma.
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1 Introduction

In this paper, we study price stickiness in a dual-channel supply chain facing demand

shocks. Many empirical works show that the prices in many industries involving online

retailing, consumer products, restaurants, and newspapers are sticky for periods rang-

ing from a few months to more than a year (see, for example, Arbatskaya and Baye,

2004; Bils and Klenow, 2004; Kauffman and Lee, 2010; Klenow and Kryvtsov, 2008;

Knotek, 2008; MacDonald and Aaronson, 2006). According to the economic theory,

possible reasons for price stickiness involve the cost of price adjustment (menu costs,

managerial costs, synchronization, and staggering), market structure (industry con-

centration, coordination failure), asymmetric information (price as signal of quality,

search and kinked demand curve, psychological price points), demand-based factors

(procyclical elasticity of demand, inventories, non-price competition), and contracts

(explicit or implicit).1 Among these reasons, we focus on the market structure in this

paper, studying the effects of price competition under a vertical market structure on

price stickiness. The effects of price competition were earlier derived under a horizon-

tal market structure –for a differentiated duopoly– by Hansen et al. (1996). Their

main findings showed that when price adjustment costs are absent, an equilibrium of

a simultaneous-move game in price competition arises only when at least one of the

firms in the duopoly adjusts its price to a demand shock. In particular, they found

that both firms always adjust their prices if the demand shock is either positive or

sufficiently large and negative, whereas only one of the firms adjusts its price if the

demand shock is sufficiently small and negative.

In this paper, we ask whether, or to what extent, the results of Hansen et al.

(1996) can arise when the industry structure involves firms that are both vertically

and horizontally related. To answer this question, we consider a dual-channel supply

chain model where a single manufacturer sells its product directly through an online

channel and indirectly through an imperfectly substitutable retailing channel where

a single retailer operates. Whereas the introduction of price adjustment to a one-

period dual-channel supply chain model is novel to the best of our knowledge, the

model itself has been extensively studied in the operations research literature. (See

Balasubramanian, 1998; Chiang et al., 2003; Kurata et al., 2007; Yan and Pei, 2009;

1See Kauffman and Lee (2010) for a short review of the literature on price stickiness in economics

and marketing.
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Rodŕıguez and Aydın, 2015; Matsui, 2016, He et al. (2023), and Zhang et al. (2023),

among others.)

In both operations research and economic theory, price stickiness has been usually

treated in dynamic models where prices are assumed to incompletely adjust due to

the difference between their current and notional levels (see, for example, Simaan and

Takayama, 1978; Piga, 2000; Cellini and Lambertini, 2007; Wiszniewska-Matyszkiel

et al., 2015; Liu et al, 2017; Lu et al., 2019, Chen et al., 2020, among others.) In

these models, the adjustment of prices takes time and the rate of adjustment is usually

exogenously given. However, our model endogenizes the adjustment of prices as an

equilibrium outcome of a non-cooperative strategic game. In more detail, our model

considers two strategic games like in Hansen et al. (1996). One of the games (the price-

setting game) is played by the members of the supply chain before the realization of

a demand shock and the other game (the price adjustment game) is played after they

learn about this shock. In the price-setting game, prices are set in two stages. In the

first stage, the manufacturer and the retailer cooperatively determine the wholesale

price and in the second stage they engage in simultaneous-move price competition to

determine the retailing price and the online price non-cooperatively. After the manu-

facturer and the retailer calculate and announce the equilibrium prices as a solution

to the price-setting game, they find themselves in a situation where they both learn

that the demand curves in the retailing and online channels are affected by an unan-

ticipated common shock. To predict their pricing behavior under this new situation,

we consider, as we said earlier, a price adjustment game where the manufacturer and

the retailer simultaneously decide on whether to costlessly adjust their prices or keep

them unadjusted after they learn the sign and size of a demand shock.

The theoretical and computational results we obtain by solving the price adjustment

game show similarities with those of Hansen et al. (1996) but also some additional (and

noncomparable) elements because of the vertical relationship present in our model but

not in theirs. In more detail, our results show that the dominant equilibrium never

arises in the price adjustment game but a (pure strategy) Nash equilibrium always

exists. If the demand shock is positive, then the Nash equilibrium is always unique

and fully non-sticky, like in Hansen et al. (1996), i.e., the equilibrium arises only when

all prices are adjusted. If the demand shock is negative, then we can also observe, like

in Hansen et al. (1996), Nash equilibria in which only some prices (either some of the

prices of the manufacturer or the price of the retailer) are sticky. However, a Nash
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equilibrium where the retailer’s price is sticky cannot arise unless the manufacturer

adjusts both the wholesale price and the online price. The equilibrium of price adjust-

ment is also affected by the relative powers of the manufacturer and the retailer when

they bargain over the wholesale price. We show that the price adjustment game can

have multiple equilibria (where either the manufacturer or the retailer, but not both,

make price adjustments) only if the relative bargaining power of the manufacturer is

extremely small. Also, an equilibrium where the only unadjusted price is the online

price of the manufacturer can arise only if the relative bargaining power of the manu-

facturer is extremely high. On the other hand, the size of the substitutability between

the products sold in the online and retail markets turns out to affect the equilibrium of

the price adjustment game mostly if the relative bargaining power of the manufacturer

is moderate and the demand shock is negative (and moderate). Moreover, we show

that no Nash equilibrium is always Pareto optimal, implying that the supply chain is

likely to be trapped in the Prisoner’s Dilemma, though with small probability.

Our work studying price stickiness in a one-period dual-channel supply chain can

also be related to a recent paper by He et al. (2023), who comprehensively study

optimal pricing strategies in a two-period dual-channel supply chain under market

changes. In their model, the manufacturer and the retailer can adopt a different or

same price strategy over two periods in their online and offline markets respectively,

thus there may arise four different strategy profiles unlike the eight strategy profiles

in our paper. This difference is caused by the fact that in their model the retailer’s

decision to use the same or different retail prices in two periods must always be aligned

with the manufacturer’s implicit decision to use the same or different wholesale prices

in two periods. Apart from this, their model and ours has two substantial differences:

First, the prices in their model are determined using a sequential (Stackelberg) game,

where the manufacturer first chooses the wholesale price and the online price for two

periods and next the retailer chooses its retail prices for two periods. In contrast,

in our model the manufacturer and the retailer first determine the wholesale price

cooperatively using the generalized Nash bargaining and then they determine their

online and retail prices using a simultaneous-move price competition game. Another

substantial difference in their paper and ours is that they assume that the manufacturer

and the retailer can choose, among the four possible strategy profiles, the one that

yields the highest profit to each of them, and they call this solution notion as the

strategy equilibrium. In contrast, our model predicts the equilibrium profile among
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the possible eight strategy profiles of the manufacturer and the retailer using the Nash

equilibrium concept according to which each firm should decide whether or not to

change its price(s), in the wake of an unanticapated demand shock, as a best response

to the other firm’s decision. Since the Nash equilibrium outcome does not have to be

Pareto efficient, let alone being Pareto superior, we obtain results where the firms in

the supply chain may be trapped in the Prisoner’s Dilemma, unlike in the results of

He et al. (2023).

The remainder of the paper is organized as follows. Section 2 presents the basic

structures, Sections 3 and 4 give theoretical and computational results respectively,

and finally Section 5 concludes.

2 Basic Structures

We consider a dual-channel supply chain involving a retailing channel and an online

channel. A single manufacturer sells its product to a set of homogenous consumers

directly through the online channel and indirectly through a single retailer in the

retailing channel. The manufacturer produces its product at a constant marginal cost

that is normalized to zero. The demands of the retailing and online channels are as

follows:

DR(pR, pO) = a− pR + bpO, (1)

DO(pR, pO) = 1− a− pO + bpR. (2)

Above, the retailing and online channels are assumed to share one unit of maximal

demand for the product. The parameter a denotes the share of the retailing channel

in this maximal demand, while the rest, 1− a, is the share of the online channel. The

variables pR and pO denote the product prices in the retailing channel and the online

channel respectively, while the parameter b denotes the cross-price elasticity coefficient

between the retailing and online channels. We assume that b ∈ (0, 1), which reflects

that consumers consider two channels as imperfect substitutes. Also, we assume away

any showrooming effect (or cost) of the retailing channel.

We let ω denote the wholesale price charged by the manufacturer to the retailer

in the retailing channel. We assume that the prices (ω, pR, pO) are determined in a

two-stage game. In the first stage of this game, the manufacturer and the retailer
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cooperatively determine the wholesale price ω using the generalized Nash bargaining

process (Nash, 1950; Harsanyi and Selten, 1972). For this process, we denote the

relative bargaining powers of the manufacturer and the retailer by λM ∈ [0, 1] and 1−
λM respectively and normalize their disagreement payoffs to zero. In the second stage,

knowing the value of ω chosen in the previous stage, the retailer and the manufacturer

engage in simultaneous-move price competition to non-cooperatively determine the

retailing price pR and the online price pO.

We assume that both the manufacturer and the retailer are risk-neutral i.e., they

only care about maximizing their profits. Given a price vector (ω, pR, pO), we can

calculate the profits of the manufacturer and the retailer in the retailing channel as

πM(ω, pR, pO) = ωDR(pR, pO) (3)

and

πR(ω, pR, pO) = (pR − ω)DR(pR, pO) (4)

respectively. Similarly, we define the manufacturer’s profit in the online channel as

πO(pR, pO) ≡ pODO(pR, pO). (5)

Finally, we assume that all elements of the model described above, involving their

cooperative or non-cooperative strategy choices in each stage of the game they are

playing, are common knowledge.

3 Theoretical Results

Below, we will first solve the two-stage price-setting game described in Section 2. Recall

that this game involves perfect information as both the manufacturer and the retailer

are assumed to know the value of wholesale price ω determined in the first stage before

starting the simultaneous-move price competition in the second stage. Therefore, we

can solve this game starting from the second stage backward. In the second stage of

this game, the manufacturer and the retailer will choose their prices pO and pR to

maximize, for any given value of ω ≥ 0, their profits

max
pO≥0

πO(pR, pO) (6)
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and

max
pR≥0

πR(ω, pR, pO) (7)

respectively. Simultaneously solving these two problems will yield the Bertrand-Nash

equilibrium plans pO(ω) and pR(ω) as a function of ω. Given these plans, the manu-

facturer and the retailer can solve in the first stage the bargaining problem

max
ω≥0

[πM(ω, pR(ω), pO(ω))]λM [πR(ω, pR(ω), pO(ω))]1−λM . (8)

The solution to this problem will be ω∗ that will induce the equilibrium prices p∗O ≡
pO(ω∗) and p∗R ≡ pR(ω∗).

Proposition 1. In the absence of any unanticipated demand shock, the two-stage price-

setting game played by the supply chain results in the equilibrium prices (ω∗, p∗O, p
∗
R)

given by

ω∗ =
λM (2a+ b(1− a))

4− 2b2
(9)

p∗O =
1

4− b2

(
2(1− a) + ba+

bλM(2a+ b(1− a))

4− 2b2

)
(10)

p∗R =
2a+ b(1− a)

4− b2

(
1 +

2λM
4− 2b2

)
. (11)

We relegate the proofs of all propositions to Appendix B. The equilibrium prices

in Proposition 1 will be instrumental for the rest of our theoretical results. (One can

easily check that the prices ω∗, p∗O, and p∗R are all increasing in the manufacturer’s

bargaining power λM and the cross-price coefficient b. Also, ω∗ and p∗R are increasing

in a, the demand share parameter of the retailing channel, and p∗O is decreasing.)

Now, suppose that immediately after the price-setting game is strategically over

and the manufacturer and the retailer announce to the public the equilibrium prices

ω∗, p∗O, and p∗R in accordance with the demand curves in (1) and (2), the manufacturer

and the retailer learn that the demand curves in the retailing and online channels were

affected by a previously unanticipated common shock ε. That is, the manufacturer and

the retailer become ex-post aware about the existence and the realization of ε. Con-

sequently, they become ex-post aware about the actual demand curves in the retailing

and online channels, satisfying
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D′R(pR, pO) = a(1 + ε)− pR + bpO, (12)

D′O(pR, pO) = (1− a)(1 + ε)− pO + bpR (13)

where ε is a commonly known constant lying in the interval (−1,∞). (Thus, we allow

negative as well as positive shocks.)

Given the newly acquired information about the demand functions, the manufac-

turer and the retailer have to decide whether to adjust their prices or not. If any of

them chooses to adjust its price(s), it has to incur a lump-sum cost z ≥ 0 for each price

adjustment. We model the decision problems of the manufacturer and the retailer with

the help of a simultaneous-move decision game where each player (echelon) has two

strategies for each of its price(s), namely ‘Adjust (A)’ or ‘Do not Adjust (D)’. In this

game, we assume that the manufacturer decides whether to adjust ω∗ and/or p∗O and

the retailer decides whether to adjust p∗R. Thus, the manufacturer has four strategies,

indexed by sMO ∈ SMO = {AA,AD,DA,DD}. For example, the strategy AD means

that the manufacturer adjusts ω∗ and does not adjust p∗O. On the other hand, the

retailer has only two strategies, indexed by sR ∈ SR = {A,D}, for adjusting p∗R. Thus,

we denote a strategy profile in the described decision game by (sMO, sR) ∈ SMO × SR.

We assume that the manufacturer and the retailer simultaneously announce their

price adjustment decisions represented by a strategy profile (sMO, sR), and then fol-

lowing this profile, they play the two-stage game described in Section 2 under the

new demand functions (12) and (13). So, given a profile (sMO, sR) and the induced

two-stage game, let πM(sMO, sR) and πO(sMO, sR) denote the resulting profits of the

manufacturer in the retailing and online channels respectively and let πR(sMO, sR)

denote the resulting profit of the retailer in the retailing channel. Also, let us de-

note by πMO(sMO, sR) the total profit of the manufacturer in the two channels, i.e.,

πMO(sMO, sR) = πM(sMO, sR) + πO(sMO, sR) for all (sMO, sR). (Here, all profit calcu-

lations take into account the cost of price adjustments, as well.)

The players M and R, their strategy spaces SMO and SR, and their profit functions

πMO(sMO, sR) and πR(sMO, sR) defined for each (sMO, sR) ∈ SMO × SR constitute a

single-shot noncooperative decision game for price adjustments, which we will simply

call ‘the price adjustment game’. In Table 1 we list all possible strategy profiles in this

game, and in Table 2 we show the two players’ payoffs at each strategy profile.
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Table 1. The strategy profiles in the price adjustment game

Strategy Profile Manufacturer Retailer

Acronym Wholesale Price Online Price Retail Price

DDD Do Not Adjust Do Not Adjust Do Not Adjust

DDA Do Not Adjust Do Not Adjust Adjust

DAD Do Not Adjust Adjust Do Not Adjust

DAA Do Not Adjust Adjust Adjust

ADD Adjust Do Not Adjust Do Not Adjust

ADA Adjust Do Not Adjust Adjust

AAD Adjust Adjust Do Not Adjust

AAA Adjust Adjust Adjust

Given the price adjustment game, we say that a strategy sMO ∈ SMO is a dominant

strategy for the manufacturer if

πMO(sMO, sR) ≥ πMO(sMO, sR) for all sR ∈ SR. (14)

Likewise, we say that a strategy sR ∈ SR is a dominant strategy for the retailer if

πR(sMO, sR) ≥ πR(sMO, sR) for all sMO ∈ SMO. (15)

Then, we say that a strategy profile (sMO, sR) ∈ SMO×SR is a dominant equilibrium if

sMO and sR are dominant strategies for the manufacturer and the retailer respectively.

As the dominant equilibrium is extremely demanding, it rarely exist in normal-form

games. Thus, we will also be considering the Nash (1950) equilibrium, as a weaker

concept. A strategy profile (s∗MO, s
∗
R) is a (pure-strategy) Nash equilibrium of the

price adjustment game if

πMO(s∗MO, s
∗
R) ≥ πMO(sMO, s

∗
R) for all sMO ∈ SMO and (16)

πR(s∗MO, s
∗
R) ≥ πR(s∗MO, sR) for all sR ∈ SR. (17)

We will be concerned whether the dominant or Nash equilibrium, whenever exists,

is also efficient, i.e., Pareto optimal. We say that a strategy profile (sMO, sR) ∈ SMO×
SR is said to be Pareto optimal if there exists no other strategy profile (s′MO, s

′
R) ∈
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SMO×SR such that πi(s
′
MO, s

′
R) ≥ πi(sMO, sR) for all i ∈ {MO,R} and πi(s

′
MO, s

′
R) >

πi(sMO, sR) for some i ∈ {MO,R}. If a strategy profile is not Pareto optimal, we say

it is Pareto non-optimal.

Table 2. The price adjustment game

Retailer

D A

M
an

u
fa

ct
u
re

r

DD πMO(DD,D), πR(DD,D) πMO(DD,A), πR(DD,A)

DA πMO(DA,D), πR(DA,D) πMO(DA,A), πR(DA,A)

AD πMO(AD,D), πR(AD,D) πMO(AD,A), πR(AD,A)

AA πMO(AA,D), πR(AA,D) πMO(AA,A), πR(AA,A)

To explore whether the price adjustment game admits dominant and/or Nash equi-

libria, we have to first calculate the profits of the manufacturer and the retailer at

each possible strategy profile. We make these calculations in Appendix A. Trivially, if

the cost of price adjustment z is sufficiently high, then (DD,D) would always be the

unique equilibrium; i.e., it would be optimal for each player not to adjust its price(s).

In the rest of this paper, we set the adjustment cost parameter z to zero and seek an

answer to the following non-trivial question: Can the strategy of not adjusting a price

can be the dominant, or a best-response, strategy for any player whenever the cost

of adjustment is zero? To answer this question, we compare the profits calculated in

Appendix A, and obtain several theoretical results.

Proposition 2. The strategy profile (DD,D) cannot be a Nash equilibrium for any

ε ∈ (−1,∞) \ {0}.

Proposition 2 says that an equilibrium where no price in the supply chain is adjusted

can never arise. The reason is that in a situation where the players are recommended

to play according to the profile (DD,D), the retailer would always find it optimal to

play the profile (DD,A) by adjusting its price unilaterally.
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Proposition 3. The strategy profile (DA,D) cannot be a Nash equilibrium whenever

ε > 0 or −1 < ε < max
{
−1,−2b2

(
1 + λM

4−2b2
)}

.

The above result says that the manufacturer’s adjusting only its online price and

the retailer’s not adjusting its price cannot constitute a Nash equilibrium whenever

the demand shock is positive or it is negative but sufficiently large in the absolute

value. The reason is that at such values of the demand shock, the retailer would find

it optimal to deviate from the profile (DA,D) where it keeps its price unadjusted to

the profile (DA,A) where it adjusts its price.

Proposition 4. Neither the strategy profile (AD,D) nor the strategy profile (DD,A)

can be a Nash equilibrium whenever ε > 0.

Proposition 4 says that whenever the demand shock is positive, an equilibrium

where the only adjusted price in the supply chain is either the manufacturer’s wholesale

price or the retailer’s price can never arise. The reason is that the manufacturer would

find it optimal to adjust its online price, by deviating from the profile (AD,D) to

the profile (AA,D) and by deviating from the profile (DD,A) to the profile (DA,A).

The complexity of some profit comparisons prevents us from making further inferences

theoretically. In the following section, we will obtain these inferences computationally.

4 Computational Results

We perform our computations with the help of MATLAB, Release 2023b. (The source

code and the resulting data are available from the author upon request.) In our model,

the parameters a, b, and λM are all confined to the unit interval (0, 1). For our compu-

tations, we vary each of these parameters in the set {0.025, . . . , 0.975} with increments

of 0.050. On the other hand, the demand shock parameter ε is confined in our model

to the interval (−1,∞). To make ε bounded in our computations, we vary it in the

set {−0.99, . . . , 0.99} with increments of 0.02. Given the above specifications about

a, b, λm, and ε, we will be looking for the equilibria of the price adjustment game under

a total number of 800,000 (= 203 × 100) distinct parameter settings. We start our

analysis by searching for the dominant equilibrium.

Result 1. In the domain of our computations, there exists no vector of parameters
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under which either the price adjustment game has a dominant equilibrium or any player

in this game has a dominant strategy.

The above result implies that the price adjustment game is not strategically trivial

for any player. Given the above result, we immediately turn our attention to the Nash

equilibrium. In Table 3, we report the frequency each strategy profile arises in a Nash

equilibrium during our computations. These computations yield the following results.

Result 2. For each vector of parameters in the domain of our computations, the price

adjustment game has a Nash equilibrium in pure strategies.

Result 2 implies that the best responses of the manufacturer and the retailer always

intersect at some strategy profiles, leading to a Nash equilibrium in pure strategies.

Thus, the players never have to appeal to mixed strategies to find and coordinate on

a Nash equilibrium.

Table 3. The frequency of each strategy profile to be played in a Nash equilibrium

under 800,000 parameter settings

Profile Frequency

(DD,D) 0

(DA,D) 0

(AD,D) 0

(AA,D)∗ 3,880

(DD,A) 133,914

(DA,A) 172,932

(AD,A) 656

(AA,A) 492,498

∗ Under any parameter setting where (AA,D) is an equilibrium, (DD,A) is also an

equilibrium. Under all other parameter settings, the equilibrium is unique.

Result 3. None of the strategy profiles (DD,D), (DA,D), and (AD,D) ever arises

as a Nash equilibrium, while each of the remaining strategy profiles can be a Nash

equilibrium at some vectors of parameters in the domain of our computations.
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Result 3 implies that a strategy profile where the retailer chooses not to adjust its

price cannot arise as a Nash equilibrium unless the manufacturer chooses to adjust its

prices in both the online and retailing channels. This result is in line with the result in

Proposition 2, while it also complements the sufficiency results in Propositions 3 and 4

where (DA,D) or (AD,D) are found to be non-equilibrium profiles only under certain

restrictions on ε.

Result 4. The strategy profile (AA,A) can arise as a Nash equilibrium at each value

of ε, whether negative or positive. Moreover, if ε is positive, then (AA,A) is always

the unique Nash equilibrium.

The above result says that no Nash equilibrium other than (AA,A) can arise when

the demand shock ε is positive. Results 3 and 4 together imply that a Nash equilibrium

in which some of the prices in the supply chain are not adjusted can arise only when

the demand shock is negative. Next, we consider the equilibrium that appeared with

the smallest frequency in our computations.

Result 5. The strategy profile (AD,A) can arise as a Nash equilibrium only if λM is

sufficiently high, i.e., λM ∈ {0.925, 0.975}.

Notice that the above (extremely restrictive) condition on λM is not sufficient for

the profile (AD,A) to be a Nash equilibrium. We already know from Result 4 that

ε must be negative for (AD,A) to be an equilibrium, and even that is not sufficient.

In our computations, in 400,000 parameter settings the parameter ε is negative-valued

and only 656 of them (1.64%) admit the profile (AD,A) to be a Nash equilibrium, as

reported in Table 3.

Our next result establishes that the Nash equilibrium is always unique unless the

bargaining power of the manufacturer is sufficiently low.

Result 6. The price adjustment game can have multiple equilibria only if λM is

sufficiently small, i.e., λM ∈ {0.025, 0.075}.

Although multiple equilibria may exist, not all pairs of strategy profiles can co-exist

in equilibrium.

Result 7. Whenever the price adjustment game has multiple equilibria, these equilibria

are always (DD,A) and (AA,D). Moreover, (AA,D) is a Nash equilibrium only if
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(DD,A) is also a Nash equilibrium whereas the converse is not true. Furthermore, the

manufacturer always prefers to be in the equilibrium (AA,D) while the retailer prefers

to be in (DD,A).

The above result says that if a strategic situation where the only unadjusted price

in the supply chain is the retailer’s price comprises an equilibrium, then a strategic sit-

uation where the only adjusted price is the retailer’s price must also be an equilibrium,

while the converse of this statement is not true. Moreover, none of these two equilibria

Pareto dominates the other. Each player prefers to be in an equilibrium play where it

adjusts its price(s) while the other player does not. Nonetheless, this result does not

imply that any of these two equilibria should be Pareto optimal.

Now, we will deal with the Pareto optimality of each equilibrium. Table 4 reports

the percentage of parameter settings in our computational domain at which a given

Nash equilibrium is Pareto optimal. Table 4 shows that the equilibrium profile (AD,A)

and especially the equilibrium profile (AA,D) are almost always Pareto optimal. Also,

the likelihood that any of the two equilibrium profiles (DD,A) and (DA,A) will be

Pareto optimal under randomly chosen parameter settings is quite high (around 90%).

On the other hand, our results show that the profile (AA,A), the most frequently

occurring equilibrium of the price adjustment game, is Pareto optimal only under

approximately 73% of the parameter settings.

Table 4. The percentage of parameter settings at which

a given Nash equilibrium is Pareto optimal

Equilibrium Percentage

(AA,D) 99.95

(DD,A) 89.59

(DA,A) 89.76

(AD,A) 97.41

(AA,A) 72.98

Result 8. For each equilibrium of the price adjustment game, there exists a nonempty

set of parameter settings at which the given equilibrium is not Pareto optimal. However,

the measure of this set is quite narrow for most of the equilibria.
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Overall, our computations reveal that for approximately 20 percent (a total of

160,863) of all 800,000 parameter settings in our computational domain, the resulting

equilibrium (or equilibria if there is more than one) is not Pareto optimal. Thus, the

members of the supply chain may occasionally face an annoying situation similar to

what is already known as the Prisoner’s Dilemma.2

Finally, we will investigate how the model parameters (a, b, λM , ε) will affect the

identification of the equilibria of the price adjustment game. We already know from

Result 4 that whenever ε > 0, the equilibrium is unique and equal to (AA,A) inde-

pendent of the values of the other parameters. Thus, we will restrict our attention

to the case where ε < 0. Under this setting, we will vary ε in the set of values

{−0.99,−0.65,−0.35,−0.01} and for each value of ε we will vary λM in the set {0.025,

0.525, 0.975}. Thus, we will have 12 pairs of (ε, λM) and for each of them we will vary

each of the parameters a and b in the set {0.025, . . . , 0.975} with increments of 0.050

and depict the corresponding Nash equilibria in the 12 panels of Figure 1 using a color

map.

Our results in panels (a)-(c) show that if the negative demand shock is extremely

large (ε = −0.99), then the equilibrium is always uniquely equal to (AA,A) unless

the manufacturer’s bargaining power is extremely small (λM = 0.025). In that ex-

treme case, the profile (DA,A) can become the unique equilibrium if and only if the

substitutability of retailing and online channels, b, is above a critical threshold that is

generally increasing with a. Whenever b is below that threshold, (AA,A) remains to be

the unique equilibrium. When the magnitude of demand shock becomes smaller, i.e.,

ε ∈ {−0.65,−0.35}, as assumed in panels (d)-(i) of Figure 1, we observe that the fre-

quency of the equilibrium (AA,A) becomes smaller, and even becomes zero whenever

the manufacturer’s bargaining power, λM , is extremely small. Moreover, we start to

observe the equilibrium (DD,A) when ε is sufficiently small or when λM is sufficiently

high.

2However, unlike in the well-known game of Prisoner’s Dilemma, in the price adjustment game no

Nash equilibrium is ever dominant equilibrium.
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Figure 1. The effects of (a, b, λM , ε) on the identification of equilibria
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We also notice that the frequency of the equilibrium (DA,A) becomes smaller and

the frequency of the equilibrium (AA,A) becomes higher as λM becomes higher. When

ε is as small as −0.35 and λM reaches its extreme level of 0.975 in our computational

domain, we can even observe the rare equilibrium profile (AD,A) if a is large and b is

intermediate. Moreover, whenever λM is as small as 0.025, if ε is either equal to−0.35 as

in panels (g)-(i) or equal to−0.01 as in panels (j)-(l), then we observe multiple equilibria

involving (AA,D) and (DD,A) provided that the channel substitution parameter b is

sufficiently high. The frequency of observing multiple equilibria is higher if ε is lower.

The last three panels also reveal that neither the frequent equilibrium (AA,A) nor the

rare equilibrium (AD,A) is ever observed when ε is extremely small. Of the remaining

three possible equilibria, (AA,D) ceases to appear if λ is intermediate or large. The

typical equilibrium is always (DD,A) when ε is extremely small, while we also observe

(DA,A) when the parameter b is sufficiently small.

5 Conclusion

In this paper, we studied the possibility of sticky prices in a dual-channel supply chain

where a single manufacturer sells its product directly through the online channel and

indirectly through a single retailer in the retailing channel. We assumed that the online

and retailing channels which are imperfectly substitutable engage in a simultaneous-

move price competition while the wholesale price charged to the retailer is determined

by a Nash bargaining process between the manufacturer and the retailer. Using this

model, we constructed a price adjustment game where the manufacturer and the re-

tailer simultaneously decide on whether to adjust their prices or keep them unadjusted

in response to a (positive or negative) demand shock when the cost of price adjustment

is zero.

Theoretically calculating the possible profits in the supply chain under each possible

decision profile and making several numerical computations, we established that the

price adjustment game always has a (Nash) equilibrium in pure strategies and the

likelihood that this equilibrium will be unique is very high. If the demand shock

is positive, then the price adjustment game will always have a unique equilibrium;

moreover, in this equilibrium all prices are adjusted. On the other hand, if the demand

shock is negative, then in any equilibrium of the price adjustment game some prices
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are left unadjusted even when the cost of adjustment is zero. However, there exists no

equilibrium where all prices are left unadjusted.

An equilibrium where the retailer does not adjust its price can arise only if the

manufacturer adjusts both of its prices. We observe this particular equilibrium quite

infrequently and only if the manufacturer’s bargaining power is extremely low and the

substitutability between the retailing and online channels is sufficiently high. Besides,

this equilibrium arises only if the price adjustment game has another equilibrium where

only the retailer adjusts its price.

Moreover, our results show that no equilibrium is always Pareto optimal; thus,

the supply chain is always likely (though with low probability) to be trapped in a

situation resembling the Prisoner’s Dilemma. A paper by Lu et al. (2019) shows

that an infinitely-lived supply chain that operates under incomplete and exogenously

given price adjustment may use cooperative advertising to escape from the Prisoner’s

Dilemma in a strategic game where each member chooses to be either myopic or far-

sighted in their dynamic calculations. Future research may study whether cooperative

advertising may also be a solution to prevent the appearance of the Prisoner’s Dilemma

in our static model where the decision of price (un)adjustment is endogenously obtained

as the equilibrium outcome of a strategic game.
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Appendix A (Price and Profit Calculations)

Here, we will calculate the profits of the manufacturer and the retailer at each strategy

profile in the price adjustment game under the assumption that all price adjustment

costs are zero.

For each strategy sMO ∈ SMO of the manufacturer and for each strategy sR ∈ SR of

the retailer, let us denote the corresponding prices of the manufacturer in the retailing

and online channels by ω(sMO, sR) and pO(sMO, sR) and the corresponding price of

the retailer in the retailing channel by pR(sMO, sR). Below, we calculate these prices

referring to the prices ω∗, p∗O, and p∗R calculated in the absence of any demand shock

and using these new prices we will calculate the induced profits of the manufacturer

and the retailer, πMO(sMO, sR) and πR(sMO, sR), respectively.
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(sMO, sR) = (DD,D) :

ω(DD,D) = ω∗ (18)

pO(DD,D) = p∗O (19)

pR(DD,D) = p∗R (20)

πM(DD,D) = ω∗(D∗R + aε) = ω∗(p∗R − ω∗ + aε) (21)

πO(DD,D) = p∗ODO(DD,D) = p∗O(D∗O + (1− a)ε)

= (p∗O)2 + (1− a)εp∗O (22)

πMO(DD,D) = ω∗(p∗R − ω∗ + aε) + (p∗O)2 + (1− a)εp∗O (23)

πR(DD,D) = (p∗R − ω∗)(D∗R + aε) = (p∗R − ω∗)(p∗R − ω∗ + aε) (24)

(sMO, sR) = (DD,A) :

ω(DD,A) = ω∗ (25)

pO(DD,A) = p∗O (26)

pR(DD,A) =
a(1 + ε) + bP ∗O + ω∗

2
= p∗R +

aε

2
(27)

πM(DD,A) = ω∗(D∗R + aε+ (p∗R − pR(DD,A))) = ω∗
(
p∗R − ω∗ +

aε

2

)
(28)

πO(DD,A) = p∗O(D∗O + (1− a)ε− b(p∗R − pR(DD,A)))

= (p∗O)2 +

(
(1− a)ε+

baε

2

)
p∗O (29)

πMO(DD,A) = ω∗
(
p∗R − ω∗ +

aε

2

)
+ (p∗O)2 +

(
(1− a)ε+

baε

2

)
p∗O (30)

πR(DD,A) = (pR(DD,A)− ω∗)(D∗R + aε+ (p∗R − pR(DD,A)))

=
(
p∗R − ω∗ +

aε

2

)2
(31)
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(sMO, sR) = (DA,D) :

ω(DA,D) = ω∗ (32)

pO(DA,D) =
(1− a)(1 + ε) + bP ∗R

2
= p∗O +

(1− a)ε

2
(33)

pR(DA,D) = p∗R (34)

πM(DA,D) = ω∗(D∗R + aε+ b(pO(DA,D)− p∗O))

= ω∗
(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
(35)

πO(DA,D) = pO(DA,D)(D∗O + (1− a)ε+ p∗O − pO(DA,D))

=

(
p∗O +

(1− a)ε

2

)2

(36)

πMO(DA,D) = ω∗
(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
+

(
p∗O +

(1− a)ε

2

)2

(37)

πR(DA,D) = (p∗R − ω∗)(D∗R + aε+ b(pO(DA,D)− p∗O))

= (p∗R − ω∗)
(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
(38)

(sMO, sR) = (DA,A) :

ω(DA,A) = ω∗ (39)

pO(DA,A) = p∗O +
2(1− a)ε+ baε

4− b2
(40)

pR(DA,A) = p∗R +
2aε+ b(1− a)ε

4− b2
(41)

πM(DA,A) = ω∗(a(1 + ε)− pR(DA,A) + bpO(DA,A))

= ω∗(pR(DA,A)− ω∗) (42)
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πO(DA,A) = pO(DA,A)((1− a)(1 + ε)− pO(DA,A) + bpR(DA,A))

= (pO(DA,A))2 (43)

πMO(DA,A) = ω∗(pR(DA,A)− ω∗) + (pO(DA,A))2 (44)

πR(DA,A) = (pR(DA,A)− ω∗)2 (45)

(sMO, sR) = (AD,D) :

ω(AD,D) = λMp
∗
R (46)

pO(AD,D) = p∗O (47)

pR(AD,D) = p∗R (48)

πM(AD,D) = ω(AD,D)(D∗R + aε) = ω(AD,D) (p∗R − ω∗ + aε) (49)

πO(AD,D) = p∗O(D∗O + (1− a)ε) = (p∗O)2 + (1− a)εp∗O (50)

πMO(AD,D) = ω(AD,D) (p∗R − ω∗ + aε) + (p∗O)2 + (1− a)εp∗O (51)

(52)

πR(AD,D) = (p∗R − ω(AD,D))(D∗R + aε)

= (p∗R − ω(AD,D)) (p∗R − ω∗ + aε) (53)

(sMO, sR) = (AD,A) :

ω(AD,A) =

(
λM(4− b2)

2λM + 4− b2

)
pR(AD,A)

=
λM

(
a(1 + ε)(4− b2) + b

[
2(1− a) + ba+ bλM (2a+b(1−a))

4−2b2

])
8− (2− λM)b2

(54)

pO(AD,A) = p∗O (55)
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pR(AD,A) =
a(1 + ε) + bP ∗O + ω(AD,A)

2

=
(2λM + 4− b2)

(
a(1 + ε) + b

4−b2

[
2(1− a) + ba+ bλM (2a+b(1−a))

4−2b2

])
8− (2− λM)b2

(56)

πM(AD,A) = ω(AD,A)(p∗R − ω∗ + aε+ p∗R − pR(AD,A)) (57)

πO(AD,A) = p∗O(p∗O + (1− a)ε+ b(pR(AD,A)− p∗R)) (58)

πMO(AD,A) = ω(AD,A)(p∗R − ω∗ + aε+ p∗R − pR(AD,A))

+ p∗O(p∗O + (1− a)ε+ b(pR(AD,A)− p∗R)) (59)

πR(AD,A) = (pR(AD,A)− ω(AD,A))(p∗R − ω∗ + aε+ p∗R − pR(AD,A)) (60)

(sMO, sR) = (AA,D) :

ω(AA,D) =
−(1− ϕp∗R) +

√
(1− ϕp∗R)2 + 4ϕλMp∗R
2Γ

(61)

ϕ =
b2

(4− b2)[p∗R − ω∗ + aε+ b(1− a) ε
2
]

(62)

pO(AA,D) =
(1− a)(1 + ε) + bP ∗R

2
= p∗O +

(1− a)ε

2
(63)

pR(AA,D) = p∗R (64)

πM(AA,D) = ω(AA,D)(a(1 + ε)− p∗R + bpO(AA,D))

= ω(AA,D)

(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
(65)

πO(AA,D) = pO(AA,D)((1− a)(1 + ε)− pO(AA,D) + bp∗R)

=

(
p∗O +

(1− a)ε

2

)2

(66)

πMO(AA,D) = ω(AA,D)

(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
+

(
p∗O +

(1− a)ε

2

)2

(67)

πR(AA,D) = (p∗R − ω(AA,D))

(
p∗R − ω∗ + aε+

b(1− a)ε

2

)
(68)
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(sMO, sR) = (AA,A) :

ω(AA,A) = (1 + ε)ω∗ (69)

pO(AA,A) = (1 + ε)p∗O (70)

p(AA,A) = (1 + ε)p∗R (71)

πM(AA,A) = (1 + ε)2ω∗(p∗R − ω∗) (72)

πO(AA,A) = (1 + ε)2(p∗O)2 (73)

πMO(AA,A) = (1 + ε)2
(
ω∗(p∗R − ω∗) + (p∗O)2

)
(74)

πR(AA,A) = (1 + ε)2(p∗R − ω∗)2 (75)

Appendix B (Proofs of Propositions)

Proof of Proposition 1. We will first simultaneously solve the optimization prob-

lems in (6) and (7) to find the Bertrand-Nash equilibrium plans pO(ω) and pR(ω) as

a function of ω. The first-order conditions for (6) and (7) yields the best-response

functions

pR(pO) =
a+ bPO + ω

2
(76)

pO(pR) =
1− a+ bPR

2
. (77)

Solving the above functions together yield the Bertrand-Nash equilibrium plans

pR(ω) =
2a+ b(1− a) + 2ω

4− b2
(78)

pO(ω) =
2(1− a) + ba+ bω

4− b2
. (79)

On the other hand, the first-order condition for the bargaining problem (8) can be

calculated as

λM
ω

+
1− λM
pR − ω

(
∂pR(ω)

∂ω
− 1

)
+

1

a− pR + bpO

(
−∂pR(ω)

∂ω
+ b

∂pO(ω)

∂ω

)
= 0. (80)
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Using (78) and (79), we calculate

∂pR(ω)

∂ω
=

2

4− b2
(81)

∂pO(ω)

∂ω
=

b

4− b2
. (82)

Inserting (78), (79), (81), and (82), into (80), we obtain the solution ω∗ as in (9).

Finally, inserting (9) into (78) and (79) yields (10) and (11). �

Proof of Proposition 2. Using (24) and (31), we can calculate

πR(DD,A)− πR(DD,D) =
(
p∗R − ω∗ +

aε

2

)2
− (p∗R − ω∗)(p∗R − ω∗ + aε)

=
a2ε2

4
(83)

which is always non-negative. Thus, in the face of any demand shock, the retailer

always would find it optimal to unilaterally deviate from the strategy profile (DD,D)

whenever the adjustment costs are zero (or sufficiently small), implying that (DD,D)

cannot be a Nash equilibrium. �

Proof of Proposition 3. Using (38) and (45), we can calculate

πR(DA,A)− πR(DA,D) =

(
p∗R +

2aε+ b(1− a)ε

4− b2
− ω∗

)2

−(p∗R − ω∗)
(
p∗R − ω∗ + aε+

b(1− a)ε

2

)

= (p∗R − ω∗)(4a+ 2b(1− a))

(
b2

4− b2

)
ε

+

(
2aε+ b(1− a)ε

4− b2

)2

=

(
2a+ b(1− a)

4− b2

)2((
1 +

λM
4− 2b2

)
2b2ε+ ε2

)
(84)

which is negative if and only if

max

{
−1,−2b2

(
1 +

λM
4− 2b2

)}
< ε < 0. (85)
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Thus, whenever the above inequality does not hold, the retailer always would find it

optimal to unilaterally deviate from the strategy profile (DA,D) to (DA,A) whenever

the adjustment costs are zero (or sufficiently small), implying that (DA,D) cannot be

a Nash equilibrium. �

Proof of Proposition 4. We should notice that

λM
ω(AA,D)

+
1− λM

p∗R − ω(AA,D)
(−1) +

1

p∗R − ω∗ + aε+ b(1− a) ε
2

(
b2

4− b2

)
= 0 (86)

and

λM
ω(AD,D)

+
1− λM

p∗R − ω(AD,D)
(−1) = 0. (87)

Therefore,

λM
ω(AA,D)

+
1− λM

p∗R − ω(AA,D)
(−1) <

λM
ω(AD,D)

+
1− λM

p∗R − ω(AD,D)
(−1) , (88)

implying ω(AA,D) > ω(AD,D). Using (51) and (67), we can now calculate

πMO(AA,D)− πMO(AD,D) = [ω(AA,D)− ω(AD,D)](p∗R − ω∗ + aε)

+ω(AA,D)
b(1− a)ε

2
+

(1− a)2ε2

4
, (89)

which is always positive if ε > 0. Thus, whenever the demand shock is positive, the

manufacturer would always find it optimal to unilaterally deviate from the strategy

profile (AD,D) to (AA,D) whenever the adjustment costs are zero (or sufficiently

small), implying that (AD,D) cannot be a Nash equilibrium. �

Proof of Proposition 5. Using (30) and (44), we can calculate

πMO(DA,A)− πMO(DD,A) = ω∗
(

[2a+ b(1− a)]

4− b2
− a

2

)
ε

+p∗O

(
[4(1− a) + 2ba]

4− b2
− (1− a)− ba

2

)
ε

+

(
[2(1− a) + ba]

4− b2

)2

ε2

which is positive if ε > 0. Thus, whenever ε is positive, the manufacturer would find it

optimal to unilaterally deviate from the strategy profile (DD,A) to (DA,A) whenever

the adjustment costs are zero (or sufficiently small), implying that (DD,A) cannot be

a Nash equilibrium. �
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