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Air Pollution and Fertility Outcomes in Thailand 

 

Pasita Chaijaroen1 and Pallavi Panda2  

 

Abstract 

The intertwining dynamics of air pollution and fertility have emerged as crucial facets of public 

health and demographic studies. This study evaluates the impact of air pollution exposure due to 

fires on fertility outcomes of women in Thailand. We construct a woman-age panel using the Thai 

2019 Multiple Indicator Cluster Survey (MICS) and high-resolution satellite data on incidence of 

fires in neighboring areas as an exogenous source of variation that impacts PM2.5 levels in 

downwind areas. Exploiting the exogenous fluctuations in PM2.5 levels using the wind direction 

IV, we identify the causal effect of PM2.5 exposure on fertility. Our results show that an increase 

in the levels of PM2.5 pollution concentration by1µg/m3 causes a 7-10% drop in births next year 

with respect to our sample mean. The fertility decline is corroborated by an increase in short term 

contraceptive use by women. We find stronger effects for women residing in the rural areas. We 

also find evidence of child quality-quantity tradeoff. With a first year of life exposure to PM2.5, 

we observe an increase in children’s protein consumption and pre-school enrollment. Since 

declining fertility can change the demographic composition and affect economic development, 

these results add to our knowledge of the varied ways in which air pollution can affect society. 
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Introduction 

Air pollution has profound implications for human health and well-being. Elevated levels 

of air pollution have been linked to increased infant mortality rates (Arceo et al., 2016; Chay & 

Greenstone, 2003), compromised children's well-being (Janke, 2014; Neidell, 2004), decreased 

life expectancy and increased common chronic diseases (Qiu et al., 2023). Concurrently, fertility 

choices play a pivotal role in shaping demographic trends and societal structures. Therefore, in 

recent years, the intertwining dynamics of air pollution and fertility have emerged as crucial facets 

of public health and demographic studies (Frutos et al., 2015; Gao et al., 2024; Nieuwenhuijsen et 

al., 2014; Stump et al., 2023; Zhang & Yanni, 2023).  

However, there is limited available evidence regarding the effects of significant sources of 

pollution outside urban areas, such as forest fires, which are common in rural regions of developing 

countries. This study fills the gap in the literature by evaluating the impact of air pollution exposure 

on fertility by using individual-level data in Thailand and identifies mechanisms of impact such as 

increased information, increased investments in child quality, and increased use of contraception. 

Exposure to air pollution often correlates with unobserved socioeconomic factors, 

behavioral patterns, or other environmental influences that can also affect fertility outcomes. 

Failing to account for these unobserved factors can lead to biased estimates when assessing the 

impact of air pollution on fertility. In this study, we address these data and empirical challenges, 

providing robust evidence that quantifies the fertility consequences of short-term exposure to air 

pollution.  

To causally identify the effect of air quality on fertility and child health outcomes, we use 

upwind burning as an instrumental variable. We isolate exogenous fluctuations in PM2.5 levels 

resulting from neighborhood area fires and wind direction, which helps in disentangling air 
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pollution from potentially confounding factors.  The wind direction IV is considered exogenous to 

local economic activities and therefore helps identify the causal effect of PM2.5 exposure on 

fertility (Freeman et al., 2019; Khanna et al., 2021). To carry out this analysis, we use the 17-

province dataset in the Thai 2019 Multiple Indicator Cluster Survey (MICS) for women’s fertility 

outcomes and socioeconomic variables. For our main fertility outcome analysis, we construct a 

woman-age panel dataset using information on marriage and birth timings from a cross-sectional 

survey of women aged between 15-49 years old. In addition, we use a variety of sources to 

accurately measure air pollution and weather patterns. Specifically, we utilize high-resolution 

remote-sensing data on PM2.5, fires, and wind, along with ground-based measurements of rainfall 

and air temperature.  By integrating these data, we create a dataset that allows us to investigate 

how upwind burning affects PM2.5 and fertility outcomes in women downwind. 

Our results show that an increase in the level of PM2.5 pollution concentration by 1 µg/m3 

would result in a drop of 7-10% births next year with respect to our sample mean.
3
 These effects 

are in line with the effect of air pollution on fertility and fertility intentions in other parts of the 

developing world. Gao et al. (2024) document a 12-percentage point decline in births due to air 

pollution exposure in China. Similarly, Zhang & Yanni (2023) show that air pollution significantly 

negatively affects fertility intentions in China. Sellers & Gray (2019) show that higher 

temperatures were negatively associated with intention for another child suggesting that women 

may be deliberately reducing their fertility in the wake of environmental stress in Indonesia. 

The magnitude of impact is also significant in Thailand’s demographic context. In 

historical terms, a 7-10% drop in births might seem moderate, but it is important to understand that 

 
3

 The average number of births in our sample is 0.1 births per woman-year (see Appendix Table A1). Our results 

indicate a decline 0.007-0.01 births per woman next year due to pollution exposure. 
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Thailand’s fertility rate has already decreased significantly. In 2022, the fertility rate in Thailand 

was around 1.3 children per woman, one of the lowest in Asia. Therefore, this decline has profound 

implications on demographic shifts towards an aging population, changes in gender and family 

structures, as well as economic and social implications. To put this further in context, a compulsory 

schooling law in Thailand that increased female enrollment in secondary and high school led to a 

decline in ever giving birth for females, with the largest drops around 4-5 percentage points at 14 

and 15 years (Chaijaroen & Panda, 2023). Therefore, the impact we observe is akin to other factors 

that may reduce fertility like increasing female education and family planning policies. To assess 

if this decline in fertility is intentional, we use individual-level pooled cross-sectional data to 

analyze contraception use in these cohorts of women. This fertility decline is corroborated by an 

increase in short term contraceptive use by women. We find the effect to be higher for rural 

women, and most of the decline in fertility is concentrated in younger women below 25 years of 

age.  

We also evaluate the applicability of Becker’s Quality-Quantity tradeoff model of fertility 

in the context of Thailand (Becker & Lewis, 1973). If parents value child quality, increased 

exposure to pollution can lead parents to make higher investment in children to compensate for 

probable adverse human capital effects. We show that, in Thailand, parents make investments to 

improve child quality if the child experiences PM2.5 exposure in their formative first year of life. 

With a first year of life exposure to PM2.5, we observe an increase in children’s protein and milk 

consumption and an increase in pre-school enrollment. However, parents are not able to mitigate 

all the negative shocks of PM2.5 exposure. We show that first year increased PM2.5 exposure 

leads to a decrease in weight-for-age and weight-for-height z-scores of the affected cohort.  
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Forest fires and agricultural burning are considered the main causes of air pollution outside 

of metro areas in Thailand. Air pollution from fires can result in economic losses due to healthcare 

expenses, decreased productivity, disruptions to tourism, and damage to agricultural crops. There 

is evidence of multiple adverse health effects from agricultural fires including increasing 

hypertension and cardiovascular risk (Pullabhotla & Souza, 2022). We show that the resulting 

ambient air pollution from fires can also affect microeconomic fertility decisions within a 

household. Our results emphasize that vulnerable populations like pregnant women and children 

could be adversely affected by the air pollution exacerbating health inequities. By altering the 

demographic structure, exposure to pollution can have long run effects on economic development. 

Therefore, we add to this growing literature and provide causal evidence of the varied ways in 

which poor air quality can affect women’s fertility, child health, and household allocation of 

resources in a developing country context.  

Background 

In Thailand, forest and agricultural fires have been a recurring environmental challenge 

with significant impacts on the country's ecosystems, air quality, public health, and economy. Air 

pollution in Thailand is seasonal, escalating after the rainy season ends in mid-October. Pollution 

levels peak during the burning season, typically from February to April, when farmers engage in 

slash-and-burn agriculture to clear land for cultivation (See Figure 4a). These fires often get out of 

control, leading to widespread forest fires and haze pollution. Additionally, forest fires in 

neighboring countries, such as Laos, Myanmar and Cambodia, can also contribute to haze 

pollution in Thailand, particularly during the dry season when winds carry smoke across borders. 

Figure 1 shows a snapshot of Thailand, taken on March 15, 2019, showing the various fire hotspots 

within Thailand and neighboring countries of Laos, Myanmar, and Cambodia. Fires in the 
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neighboring countries are also of high intensity leading to a considerable impact on the health and 

well-being of Thai population as shown in Figure 2.  

Forest and agricultural fires in Thailand result in elevated levels of air pollution, with high 

concentrations of particulate matter (PM2.5 and PM10) and harmful gases like carbon monoxide 

and nitrogen dioxide, leading to poor air quality and health risks for residents. As shown in Figure 

3 and Appendix Table A1, the average annual PM2.5 for the 17 provinces in our dataset between 

2013-2019 (calculated from monthly PM2.5) is 21.1 μg/m3, which is much higher than the WHO’s 

current recommended level at 5 μg/m3 (Pai et al., 2022). While southern provinces experience 

lower levels of PM2.5, even the lowest provincial average is about 15 μg/m3, suggesting 

substantial particulate matter exposure for residents in these 17 provinces. The persistently high 

levels of PM2.5, along with growing outliers over the last decade, have raised serious concerns for 

health policy (see Figure 4b). 

At the same time, fertility patterns have been changing in Thailand. Per World Bank data, 

Thailand’s Total Fertility Rate (TFR) has been sharply declining, with the TFR at 1.3 in 2022, 

much below the replacement rate.
4
 An exposure to air pollution and resulting changes in fertility 

intentions could arguably exacerbate this trend. In our data, we observe the expected inverted U-

shape patterns of fertility by age where women in 20-35 display peak fertility behavior and it 

decreases with age (see Figure 5 Panel A). Given that women in different age groups display 

heterogenous fertility patterns, it is important to take this into account as we evaluate the impact 

of air pollution on fertility decisions of women. Just evaluating the relationship between the 

number of births and PM2.5, we observe a negative correlation as shown in Figure 5 Panel B. 

 
4

 For comparison, the TFR is lower than many developed economies, e.g. New Zealand (1.7), Netherlands (1.5), 

United States (1.7), United Kingdom (1.6), etc. and much lower than its developing economy counterparts, e.g. 

Cambodia (2.3), Laos (2.4), Indonesia (2.2), Viet Nam (1.9), etc. in 2022. 
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Given the observed interrelationships between fires, PM2.5, and fertility patterns by age, we delve 

further into the impact of air pollution on fertility and the various mechanisms explaining those 

relationships. 

Data 

We combine data from multiple sources to conduct our empirical analysis. First, we tap on 

the 17-province dataset in the Thai 2019 Multiple Indicator Cluster Survey (MICS) for women’s 

fertility outcomes and socioeconomic variables. The MICS surveys are conducted every few years 

and cover many aspects of children and women such as women’s reproductive health, childhood 

development, and household socioeconomic status, among others. We first examine how air 

pollution affects household fertility decisions, specifically the number of children born. To this 

end, we construct a woman-age panel dataset for fertility using the 17-province cross-sectional 

survey in 2019. Here, we rely on birth timing information from the women module and household 

member information in the household rosters. Our main variable of interest in this part of the 

analysis is the number of births at each age. Due to sparse births before the age of 14, we bottom-

code the age of births at 14. We also limit the maximum age for our fertility analysis at 40 years 

old. The average number of births per woman-year is approximately 0.1 as shown in Appendix 

Table A1. A limitation of this dataset is that the survey is not geocoded and therefore we must 

carry our analysis at the province level. 

We also investigate how air pollution affects the quality of children through investments 

in children, such as young children’s food consumption and enrollment in preschools, and how it 

relates to children’s anthropometric outcomes. Since the MICS surveys are not panel data, we need 

to create a pooled cross-sectional dataset. To do this, we combine data from two separate cross-

sectional surveys together: the 2015 survey covering 14 provinces and the 2019 survey covering 
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17 provinces. Note here that the 14 provinces surveyed in 2015 are a subset of the provinces 

included in the 2019 survey. The food consumption data are available for children aged 2 and 

below. It indicates whether a child consumed a specific food group, such as protein or grains, in 

the day before the interview. The preschool enrollment variable is a dummy indicator for whether 

a child has ever attended preschool or kindergarten and is available for children aged between 3 

and 4 years old. 

We then combine the MICS data with air pollution and weather data from various sources. 

For air pollution exposure, we would use upwind burning as an instrument for PM2.5 exposure, 

so we require data on PM2.5, burning, and wind direction. We rely on remote sensing data sources 

from 2013 to 2019 to construct these variables. First, we use PM2.5 data from the Modern-Era 

Retrospective Analysis for Research and Applications Version 2 (MERRA-2) dataset. We create 

monthly average ground-level PM2.5 values by utilizing components of PM2.5 data from 

MERRA-2's assimilation aerosol diagnostics dataset. This dataset is available in a 0.5⁰ x 0.625⁰ 

grid format, so we construct our provincial PM2.5 variable as an area-weighted average of all grid 

point values that fall into a province’s boundary. The average annual PM2.5 for our sample is 

approximately 21 μg/m3 (see Appendix Table A1). 

For the upwind burning instrument, we use remote sensing fire data from the Fire 

Information for Resource Management System (FIRMS) platform. Specifically, we use daily 

hotspots in Thailand and neighboring countries reported using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on board the Terra and Aqua satellites. Our wind direction data 

comes from the National Centers for Environmental Prediction (NCEP) Reanalysis 1 dataset. We 

then locate fires within a specified distance that lie upwind, defined as being within the same octant 

as the prevailing wind direction, like that in Rangel & Vogl (2019). To alleviate the concerns over 
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endogeneity, we focus only on hotspots outside of a province of interest. Given that Thai provinces 

are of different sizes, and we limit exposure to fires outside the province, our main specifications 

use 300 kms from the centroid of the province to locate fires that lie upwind.
5
 

As weather conditions, such as rainfall and temperatures, can arguably influence both air 

pollution levels and many of the outcomes examined in this study, we control for both rainfall and 

temperature in all our regression models. The primary data source for these variables is the Global 

Historical Climatology Network (GHCN) daily database. This dataset is compiled from weather 

stations across Thailand and provides daily data. We observe approximately 19 annual upwind fire 

counts, average annual temperatures of 28C, and average annual rainfall of 4.4 millimeters in our 

dataset (see Appendix Table A1).  

Empirical Specification 

In the first step of our empirical analysis, we evaluate how air pollution affects fertility 

decision at the micro level. Let 𝑌𝑖𝑡 be the number of births given by woman i in year t. Then, our 

main estimating equation can be written as  

𝑌𝑖𝑡 = 𝜃 + 𝛽1𝑃𝑀2.5𝑝𝑡−1 + 𝛾1𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑝𝑡−1 + 𝛾2𝑋𝑖𝑡 + 𝜇𝑖 + 𝜖𝑖𝑝𝑡 ,   (1) 

where 𝑃𝑀2.5𝑝𝑡−1 and 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑝𝑡−1 denote the woman’s previous year exposures to 

PM2.5 and weather variations at the province, p, level, respectively. We control for average 

temperature and total rainfall as these weather conditions can affect both the air pollution levels 

and fertility decisions. 𝑋𝑖𝑡  is a vector of control variables which includes a set of age fixed effects. 

The age fixed effects account for the heterogenous preferences over fertility by women in different 

age cohorts. By controlling for woman fixed effects, 𝜇𝑖, we are effectively controlling for any 

 
5

 We also check for robustness of results to upwind burning for various distances viz. 250 KM, 400 KM, and 500 

KM. 
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mother or household specific time invariant unobservables that may affect birth patterns. This 

specification also accounts for differences in women in different provinces with spatially 

differentiated economic development. Standard errors are clustered at the province level to account 

for any error correlations within a province. 

In the next step of our analysis, we evaluate how air pollution affects investment in children 

and their quality using the pooled cross-sectional data set. Let 𝑄𝑖𝑡  be an outcome of child i at time 

t. Then, our estimating equation of interest can be written as 

𝑄𝑖𝑡 = 𝛼 + 𝛽1𝑃𝑀2.5𝑝,𝑦𝑟1 + 𝛾1𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑝,𝑦𝑟1 + 𝛾2𝑋𝑖𝑡 + 𝜇𝑝 + 𝜖𝑖𝑝𝑡 ,   (2) 

where 𝑃𝑀2.5𝑝,𝑦𝑟1 and 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑝,𝑦𝑟1 denote the child’s first-year-of-life exposures to 

PM2.5 and weather variations, respectively. 𝑋𝑖𝑡  is a vector of control variables which includes the 

caretaker’s education, the household’s family size, the number of children below 5, the total 

number of bedrooms, the household head’s ethnicity, whether the household resides in a rural area, 

and a set of interview month-region fixed effects. We also include province fixed effects, 𝜇𝑝, to 

control for province-specific time-invariant unobservables that that might have confounded our 

estimation, such as topography and geographic location. 

Estimating (1) and (2) using OLS may raise concerns over endogeneity. For example, slash 

and burn is one of the major causes of PM2.5, but it also helps generate income, which can affect 

fertility decisions or investment in children. To alleviate these concerns, we adopt an instrumental 

variable approach and use upwind burning as an instrument. The literature considers wind 

direction IV as exogenous to local economic activities for several reasons. First, as noted by 

Freeman et al. (2019) and Khanna et al. (2021), wind direction is influenced by nature and is 

therefore less likely to impact local economic activities. We have also checked if the gross 
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provincial products (GPP) are affected by our instrument and did not find any significant effects.6 

Second, wind directions, in combination with distant hotspots, are fast-changing (Rangel and Vogl, 

2019) and hard to predict, so they are less likely to cause avoidance behaviors. Even though major 

seasonal wind patterns in Thailand are governed by the Indian monsoon and hence are predictable, 

we control for these prevailing wind patterns using the region-month fixed effects and still find 

significant effects of air pollution. In addition, in some parts of the country, such as the South and 

the West, local wind directions substantially deviate from the monsoon patterns. 

Results 

First, we present the results on the impact of PM2.5 exposure on fertility. Since our 

estimation methods include IV regressions, we first test if the instrument is weak, i.e., if its 

correlation with the endogenous regressors, conditional on any controls, is close to zero. We 

present these results in Table 1 Panel A. In all the specifications, the number of fires strongly 

predicts the PM2.5 levels, and we have an F-statistic far above the Stock and Yogo thresholds 

(Stock & Yogo, 2005). Table 1 Panel B columns (1) and (2) present OLS estimates for the effect 

of PM2.5 on number of births. We note a significant decline in number of births. However, since 

OLS maybe biased, our preferred specifications are presented in Table 1 Panel B Columns (3)-(5). 

These present the IV estimation results of the effect of PM2.5 exposure in the previous year on the 

number of births using upwind burning as an instrumental variable. This is the resulting effect if 

the fire is within 300 Kilometers and the woman is exposed to the pollution downwind.
7
 Across 

the specifications, controlling for rain and average temperatures, we note a statistically significant 

 
6

 Results are available upon request. 

7
 We also test for fires occurring farther or nearer to the woman at various radii like 250 KM, 400 KM, and 500 

KM, and results are consistent across specification (see Table 5 Panel A). 
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fall of approximately 0.008 births in a year if the woman experiences increased PM2.5 exposure 

in the previous year. For reference, since the average number of births in our sample is 0.1 births 

per woman-year (see Appendix Table A1), this represents an 8 percent decline with respect to the 

mean. These results are in line with the existing literature showcasing a decline in fertility and 

fertility intentions due to exposure to air pollution in China (Gao et al., 2024; Zhang & Yanni, 

2023) and climate shocks in Indonesia (Sellers & Gray, 2019). 

<TABLE 1 HERE> 

Given that we observe a decline in number of births, we next evaluate the heterogeneity in 

impact. Table 2 Panel A shows that the fall in births is concentrated among the rural, low education, 

and high asset women.
8
 As depicted in Table 2 (2), (4), and (5), we document a decline in births 

of about 0.01 for rural, low education, and high asset women. Particularly, we see a statistically 

significant and a stronger decline in number of births for rural women.
9
 This is anticipated as rural 

women have higher levels of fertility to begin with, leading to a more significant decline due to 

pollution exposure.  It could also be argued that rural women may not have access to equipment 

to shield from the effect of air pollution, like access to HEPA air purifiers that are widely available 

in urban areas, leading to a change in their fertility intentions. Lastly, rural women do not have 

access to better quality healthcare that could help alleviate the impact of pollution (Panda & 

Chaijaroen, 2020). The fertility decline is also stronger in magnitude among the high asset women. 

Furthermore, we observe a significant heterogeneity by the age of women. As shown in Table 2 

Panel B, we see a significant decline in fertility in younger women below 30 years.  

 
8

 The MICS data does not have any information on income of the households. The survey collects data on 

possession of assets like radio, telephone, refrigerators, bicycle, etc. which leads us to categorize women into high 

asset vs. low asset groups. 

9
 On the other hand, the magnitude of impact is very similar across the low educated and high educated women.  



 13 

<TABLE 2 HERE> 

Since we observe a significant decline in births due to PM2.5 exposure, we ascertain that 

the impact is due to pollution and not due to other channels like increase in agricultural income. 

First, since we restrict our estimations to fires outside the province, that ensures that the changes 

are not due to local provincial economic activity. We also note that there is no effect on the gross 

provincial products (GPP) due to our instrument. Second, in Thailand, the agricultural season 

which consists of primarily rice cultivation, does not coincide with the peak fire season. Therefore, 

the increase in agricultural income is not contemporaneous with increase in PM2.5 levels. To 

further ease any concerns, we also limit our estimation to provinces which do not have large forest 

or crop field cover and get similar results (see Appendix Table A2 Panel b) corroborating that it is 

not an increase in agricultural incomes that is leading to these changes in fertility. Lastly, we check 

if the decline in births is limited to the burning season or if individuals postpone their fertility to 

non-burning season in the same year. These results are presented in Appendix Table A2 Panel A. 

We find the coefficients are similar in magnitude between the peak fire season and the agricultural 

season indicating no seasonal heterogeneity in fertility. 

Mechanisms 

We evaluate the various mechanisms that could explain a decline in fertility of women due 

to an increase in PM2.5 exposure. We show that the fertility decline is an intentional effect of the 

pollution exposure. With increased PM2.5 exposure three months before the survey date, in Table 

3 Panel A, we document an increase in contraception use by women. In this part of our analysis, 

we created a repeated cross-sectional dataset of women by pooling the MICS surveys in 2015 and 

2019. We find that women increase their contraception use by about 8.8 percentage points after 

controlling for household assets, place of residence, woman’s age and education, number of 
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children in the household, province fixed effects, and region-month fixed effects (see Table 3 Panel 

A (1)).
10

 Moreover, in Table 3 Panel A (2) and (3), we see the increase concentrated in short-term 

contraceptives like birth control pills rather than permanent contraceptives like sterilization. This 

elaborates on the mechanism by which we observe the decline in births.  Due to pollution exposure, 

which they foresee to be a short-term shock, women take immediate measures to reduce the chance 

of pregnancy. On the other hand, we do not find any evidence of a biological mechanism i.e. an 

increase in miscarriages due to pollution exposure. In our survey, the question on miscarriage is 

asked only for the latest pregnancy without specifying the time dimension. Therefore, we tabulate 

failed pregnancy by province with high and low pollution exposure and find no correlation. 

<TABLE 3 HERE> 

Air quality can have an impact not only on the quantity of children, but also the quality of 

children. This is especially true if parents are substituting quantity for quality (Becker & Lewis, 

1973). Adverse economic and climatic shocks like droughts or floods in the first year of a child’s 

life has a significant impact on short- and long-term outcomes like child health, schooling, and 

human capital formation (Abiona, 2017; Aguilar & Vicarelli, 2022; Ferreira & Schady, 2009). If 

there is an adverse shock, like increased air pollution exposure, parents may decide to spend more 

on existing children to alleviate the negative impact of exposure. Given limited household budget, 

we would see the substitution from quantity to quality, which would be another mechanism that 

explains the decrease in fertility due to air pollution. To evaluate this channel of impact and to 

assess the quality investments by parents, we document the impact of PM2.5 exposure during the 

first year of life of children on food consumption and pre-school enrollment.  

 
10

 The increase in contraception use is consistent across specifications when the fire is observed at 400 KM or 250 

KM. Results available on request. 
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Since protein calorie malnutrition in early childhood can lead to permanent impairment of 

central nervous system, parents can, in principle, make improvements in children’s dietary intake 

to reverse any adverse effects (Fogel, 2004).  In our context, we observe that parental investment 

in children increases as we document an increase in protein and milk consumption in the affected 

cohort of children. The results are presented in Table 4 Panel A. Controlling for household and 

province characteristics along with seasonality in food consumption, we show in Table 4 Panel A 

(2) and (4) that the protein consumption increases by approximately 0.1 percentage points and 

milk consumption increases by 2.5 percentage points. We do not see a statistically significant 

increase in either carbohydrate or fruits and vegetable intake. This is in line with less household 

spending on carbohydrates and foods that make up basic diets in developing countries (Colen et 

al., 2018; Salois et al., 2012).
11

 The investments continue beyond food consumption and, in Table 

4 Panel A (5) we find a 2.4 percentage point increase in pre-school enrollment for the child cohort 

affected by the increased PM2.5 levels in the first year of their life. 

<TABLE 4 HERE> 

Despite the increase in parental investment in children to avert the negative effect of air 

pollution exposure, we document a statistically significant fall in the Weight-for-Age z-scores 

(WAZ) and Weight-for-Height z-scores (WHZ) of children. However, we do not observe a 

statistically significant fall in the Height-for-Age z-scores (HAZ), perhaps as it is a more long-

term indicator of child health. The results are presented in Table 4 Panel B. An increase in PM2.5 

by 1 μg/m3 leads to a fall of approximately 0.03 standard deviations in the WAZ and WHZ scores. 

 

 
11

 MICS does not collect data on income for us to be able to evaluate income elasticities for our sample or to 

decipher if there are income changes in the household due to exposure to air pollution. 
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Robustness 

We run various robustness checks to ensure that the baseline impact we observe is due to 

increased pollution exposure due to fires, and it is not dependent on our model specification. To 

alleviate the concern that our definition of treatment—fires within a range of 300 KM—is driving 

these effects, we also derive estimates of the effect of pollution exposure using various thresholds 

for the distance of upwind burning from the province centroid location. Specifically, we estimate 

the effects of upwind burning for various distances viz. 250 KM, 400 KM, and 500 KM as shown 

in Table 5 Panel A (1)-(3). The effect is robust across specifications and the effect ranges between 

0.007 to 0.01 decline in births due to pollution exposure from the upwind burning and is consistent 

with our original specification. We also estimate the impact on births if we restrict the PM2.5 spike 

to the peak fire season only. These results are presented in Table 5 Panel A (4). As expected, the 

results are significant and greater in magnitude, with a decline of 0.01 births due to high PM2.5 

exposure. 

Next, we run a placebo test and show that the effects do not exist when fires are randomly 

generated. Specifically, we randomize the number of fires in the fire season overtime using a 

uniform distribution and estimate the impact on PM2.5 levels.
12

 These results are presented in 

Table 5 Panel B. As expected, we do not find any statistically significant impact of a placebo fire 

exposure on PM2.5 levels for different radii of exposure in Table 5 Panel B (1)-(4). With this 

falsification test, we validate the strength of our instrumental variable, and the causal impact of 

fires on PM2.5 levels downwind and correspondingly on women’s fertility choices. 

<TABLE 5 HERE> 

 
12 We also generate random fires using Chi Square distribution and results are similar. Results are available on 

request. 
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We also show robustness of our results to alternate clustering of standard errors and 

alternate specifications. It may be argued that the level of clustering and the number of clusters 

derived at the province level can lead to false statistical significance. Therefore, we show that our 

results are robust to a more granular clustering by survey units. Table 6 Panel A clusters standard 

errors at the survey unit level and we see that our results are statistically significant at this granular 

level of clustering as well.  

To alleviate any remaining concerns about the exogeneity of fires as a source impacting 

PM2.5 levels in downwind areas, we show a statistically significant decline in fertility of women 

when the fires occur outside Thailand’s border, specifically in the neighboring countries of Laos, 

Myanmar, and Cambodia. Fires in these neighboring countries are plausibly exogenous and are 

independent of Thailand’s economic activity. Therefore, an increase in PM2.5 levels due to 

upwind burning in these countries will affect women’s fertility and children’s health outcomes in 

Thailand only due to an increase in pollution. Specifically, we analyze the impact of neighboring 

country fires within a 500 KM radius on women’s fertility and children’s outcomes in border 

provinces of Thailand. The results are presented in Table 6 Panel B. Table 6 B (1) shows a 

statistically significant fall of approximately 0.005 births in a year if the woman experiences 

increased PM2.5 exposure in the previous year. The magnitude of impact is a little bit lower than 

our main specifications, but it is to be expected as the fires are farther in neighboring countries. 

We see a similar decrease in WAZ and WHZ scores of children in Table 6 B (2) and (3), as our 

main specifications.
13

 

<TABLE 6 HERE> 

 
13

 Though, it should be noted that the sample size is much lower due to the specification being restricted to border 

provinces. 



 18 

Lastly, migration could be a concern in this analysis. If women systematically migrate due 

to pollution exposure, then that could bias our results. We check for migration patterns in our 

sample. We note that migration occurs mostly in the Central and South regions and is mostly within 

the same region, therefore alleviating our concern of migration due to pollution. Moreover, since 

wind directions, in combination with distant hotspots, are fast-changing (Rangel and Vogl, 2019) 

and hard to predict, they are less likely to cause avoidance behaviors. 

Discussion 

 In this paper, we show that exposure to air pollution has a causal impact on fertility of 

women in Thailand. Our results demonstrate the negative and significant effect of air pollution 

arising from fires and upwind burning on women’s fertility. We document stronger impact on 

rural, younger, and lower educated women. The rise in PM2.5 levels leads women to use more 

short-term contraceptives to avoid pregnancy.  

 We also evaluate the applicability of Becker’s Quantity-Quality fertility tradeoffs in 

Thailand’s context. We provide evidence that, consistent with the theory, there is an increase in 

parental investment in children that are exposed to pollution in the first year of their life. Therefore, 

we observe an increase in quality and a decrease in quantity of children. We document a change 

in dietary patterns with an increase in protein and milk consumption as well as an increase in pre-

school enrollment. However, parents are not able to overhaul all the adverse effect from the 

pollution exposure in the formative years of life of the child. The first-year exposure leads to a 

significant decrease in WAZ and WHZ scores for children.  

Air pollution in developing countries can have significant economic, social, and 

environmental impacts. The costs of air pollution in these countries can include healthcare 

expenses due to increased respiratory illnesses, lost productivity from sick days, crop damage 
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leading to lower agricultural yields, and environmental degradation. However, our knowledge is 

limited on the impact of air pollution globally across diverse contexts and different sources of 

pollution (Pullabhotla & Souza, 2022). We provide evidence, in a developing country context, on 

an additional channel of demographic impact which can further exacerbate the costs associated 

with air pollution. Moreover, since declining fertility can change the demographic composition 

and affect economic development, these results are of utmost importance to policymakers and add 

to our knowledge of the many ways in which air pollution can affect the society.  
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Figures 

 

Figure 1: Fire Hotspots Map of Thailand 

 

 
 
Note: This figure shows the fire hotspots (depicted by red dots) within Thailand and in neighboring countries of 

Laos, Cambodia, and Myanmar. The snapshot is taken on March 15, 2019. 

 

Figure 2: Fire Intensity 

 

 
Note: This figure shows the intensity of fires within Thailand and in neighboring countries of Laos, Cambodia, and 

Myanmar from 2009-2019. 
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Figure 3: Average PM2.5 levels in Thailand 

 

 
Note: This figure shows the average PM2.5 levels in our dataset for the 17-provinces within Thailand. 

 

Figure 4: Trends of PM2.5 levels in Thailand 

 
Panel A 

 
Note: This panel shows the boxplot of the median 

monthly PM2.5 levels, using data from 2009-2019. 

Panel B 

 
Note: This panel shows the boxplot of the median 

yearly PM2.5 levels from 2009-2019. 
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Figure 5: Fertility Patterns 

 
   Panel A       Panel B 

 

  
Note: Panel A plots the average number of births by age of women. Panel B shows the negative correlation between 

a previous year exposure to PM2.5 and number of births. 
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Tables 

 

Table 1: Impact on Fertility 

 
Panel A: First Stage IV Results 

 

 (1) (2) (3) 

 PM2.5 PM2.5 PM2.5 

Fire Count within 

300 KM 

0.149*** 0.113*** 0.113*** 

(0.000) (0.000) (0.000) 

Rain 
 -1.019*** -1.023*** 

 (0.000) (0.000) 

Avg. Temp. 
 -0.711 -0.724 

 (0.166) (0.158) 

Age at Birth   -0.436*** 

   (0.000) 

Squared Age at Birth   0.000579* 

   (0.052) 

Kleibergen-Paap 

Wald rk F-Stat 

64.5 20.02 20.11 

(0.000) (0.0004) (0.0004) 

Age FE YES YES NO 

Observations 70077 70077 70077 

 

Note: p-values in parentheses. These are first stage of IV estimation depicting a strong relationship between fires 

and PM2.5 levels. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 

 

 
Panel B: Impact of PM2.5 on Fertility 

 
 (1) (2) (3) (4) (5) 

Specification OLS OLS IV IV IV 

PM2.5 
-0.00836*** -0.00712*** -0.00447** -0.00850*** -0.00819*** 

(0.000) (0.000) (0.012) (0.008) (0.008) 

Rain 
 0.0105***  0.00896** 0.00883** 

 (0.000)  (0.047) (0.046) 

Avg. Temp. 
 0.0439***  0.0444*** 0.0431*** 

 (0.000)  (0.000) (0.000) 

Age at Birth     0.00936*** 

     (0.002) 

(Age at Birth)2     -0.000507*** 

     (0.000) 

Age FE YES YES YES YES NO 

Observations 70129 70129 70077 70077 70077 

Note: p-values in parentheses. All specifications estimate the effect of increased PM2.5 exposure on births because 

of fires occurring within 300 kms.  Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 2: Heterogeneity in Effect of PM2.5 Exposure 

 
Panel A: By Place, Education, and Wealth 

 
 (1) (2) (3) (4) (5) (6) 

 Urban Rural High education Low education High assets Low assets 

PM2.5 -0.00236 -0.0118** -0.00541** -0.00921** -0.0131*** -0.00646* 

 (0.499) (0.018) (0.037) (0.016) (0.004) (0.076) 

Rain 0.0166*** 0.00495 0.00642 0.0106** 0.00525 0.0106** 

 (0.003) (0.363) (0.310) (0.029) (0.476) (0.016) 

Avg. Temp. 0.0456*** 0.0440*** 0.0374*** 0.0470*** 0.0450*** 0.0440*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Observations 23469 46608 18384 51693 21224 48853 

Note: p-values in parentheses. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 
Panel B: By Age 

 

 (1) (2) (3) (4) (5) (6) 

 All Age <=20 Age 20-25 Age 25-30 Age 30-35 Age >35 

PM2.5 -0.00850*** -0.0131** -0.00783 -0.0117* -0.00150 -0.00236 

 (0.008) (0.014) (0.249) (0.068) (0.710) (0.590) 

Rain 0.00896** 0.00243 0.0131 0.00937 0.00985 0.0108** 

 (0.047) (0.698) (0.104) (0.387) (0.124) (0.045) 

Avg. Temp. 0.0444*** 0.0490*** 0.0316** 0.0738*** 0.0265** -0.00119 

 (0.000) (0.000) (0.011) (0.000) (0.022) (0.896) 

Age FE YES YES YES YES YES YES 

Observations 70077 13452 13138 14361 14998 10554 

Note: p-values in parentheses. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 3: Fertility Decline Mechanisms 

 
Panel A: Contraceptive Use 

 

 

 (1) (2) (3) 

3-month 

before 

exposure 

Overall 

Contraceptive 

Use 

Short-term 

Contraceptive 

Use 

Permanent 

Contraceptive 

Use 

PM2.5 0.00882** 0.00954* -0.000721 

 (0.011) (0.056) (0.911) 

Rain 0.00856* 0.0111 -0.00250 

 (0.084) (0.193) (0.591) 

Avg. Temp. -0.0230 0.00241 -0.0255 

 (0.361) (0.947) (0.164) 

Province FE YES YES YES 

Observations 15036 15036 15036 

Note: p-values in parentheses. All specifications control for household assets, rural area, caretaker education, 

mother’s age (linear and quadratic), number of children, province fixed effects, and region-month fixed effects. 

Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 4: Impact of First Year PM2.5 Exposure on Children 

 
Panel A: Food Consumption and Pre-School Enrollment 

 

 

 (1) (2) (3) (4) (5) 

 

Carbohydrate Protein 

Fruit and 

Vegetables Milk 

Pre-School 

Enrollment 

PM2.5 0.00655 0.00987*** -0.00436 0.0247** 0.0234*** 

 (0.287) (0.001) (0.569) (0.026) (0.005) 

Rain 0.0290* 0.000273 0.00106 0.0560*** -0.0182 

 (0.067) (0.963) (0.928) (0.000) (0.127) 

Avg. Temp. -0.0111 -0.00338 -0.0486*** -0.192*** -0.133*** 

 (0.450) (0.755) (0.007) (0.000) (0.000) 

Province FE YES YES YES YES YES 

Observations 5222 5222 5221 5220 7212 

Note: p-values in parentheses. All specifications control for household assets, rural area, caretaker education, 

province fixed effects, and region-month fixed effects. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 

 
Panel B: Weight-for-Age Z-Scores (WAZ), Weight-for-Height Z-Scores (WHZ), and Height-for-Age Z-Scores 

(HAZ) 

 
 (1) (2) (3) 

 WAZ  WHZ HAZ 

PM2.5 -0.0288*** -0.0272** -0.00522 

 (0.007) (0.021) (0.764) 

Rain -0.0494* -0.0467* 0.0077 

 (0.097) (0.087) (0.728) 

Avg. Temp. -0.094** -0.128*** 0.0481 

 (0.036) (0.006) (0.269) 

Province FE YES YES YES 

Observations 13783 13568 13594 

Note: p-values in parentheses. All specifications control for household assets, rural area, household size, household 

ethnicity, if the household has children under 5 years of age, caretaker education, province fixed effects, and region-

month fixed effects. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 5: Robustness Checks – Fire exposure 

 
Panel A: Proximity of Fires 

 
 (1) (2) (3) (4) 

Specification 
Radius:  

250 KM 

Radius:  

400 KM 

Radius:  

500 KM 

Peak Season Only 

IV Specification 

PM2.5 
-0.00659* -0.00721 -0.00948*** -0.00953*** 

(0.058) (0.118) (0.005) (0.004) 

Rain 
0.0111** 0.0104* 0.00786* 0.00780* 

(0.024) (0.078) (0.052) (0.087) 

Avg. Temp. 
0.0437*** 0.0439*** 0.0447*** 0.0447*** 

(0.000) (0.000) (0.000) (0.000) 

Province FE YES YES YES YES 

Observations 70077 70077 70077 70077 

Note: p-values in parentheses. Columns (1)-(3) estimate the effect of PM2.5 exposure on births with IV specification 

for alternate distance of neighborhood fires. Column (4) estimates the effect of PM2.5 exposure on births during 

peak burning season (February-April) with IV specification. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

  

 
Panel B: Placebo Exposure 

 
 (1) (2) (3) (4) 

Specification 
Radius:  

300 KM 

Radius:  

250 KM 

Radius:  

400 KM 

Radius:  

500 KM 

Fire Counts 
-0.0234 -0.0850 0.0223 -0.00693 

(0.737) (0.479) (0.499) (0.680) 

Rain 
-1.112*** -1.130*** -1.110*** -1.128*** 

(0.000) (0.000) (0.000) (0.0000) 

Avg. Temp. 
0.369 0.269 0.269 0.370 

(0.391) (0.546) (0.583) (0.402) 

Province FE YES YES YES YES 

Observations 70129 70129 70129 70129 

Note: p-values in parentheses. All specifications randomize the number of fires in the fire season (December-May) 

for various distance of neighborhood fires using a uniform distribution and estimate the effect on PM2.5 for placebo 

fire exposure. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Table 6: Robustness Checks – Alternate Specifications 

 
Panel A: Alternate clustering of standard errors 

 
 (1) (2) (3) (4) (5) 

Specification OLS OLS IV IV IV 

PM2.5 
-0.00836*** -0.00712*** -0.00447*** -0.00850*** -0.00819*** 

(0.000) (0.000) (0.001) (0.000) (0.000) 

Rain 
 0.0105***  0.00896*** 0.00883*** 

 (0.000)  (0.003) (0.004) 

Avg. Temp. 
 0.0439***  0.0444*** 0.0431*** 

 (0.000)  (0.000) (0.000) 

Age at Birth     0.00936*** 

     (0.002) 

(Age at Birth)2     -0.000507*** 

     (0.000) 

Age FE YES YES YES YES NO 

Observations 70129 70129 70077 70077 70077 

Note: p-values in parentheses. All specifications estimate the effect of increased PM2.5 exposure on births because 

of fires occurring within 300 kms. Standard errors are clustered at the survey unit level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 

  

 
Panel B: Fire in Neighboring Countries 

 
 (1) (2) (3) (4) 

Specification Fertility WAZ WHZ HAZ 

PM2.5 
-0.0576* -0.0538** -0.0747*** 0.0196 

(0.056) (0.032) (0.000) (0.732) 

Rain 
-0.0768 -0.0411 -0.0556 0.0306 

(0.202) (0.408) (0.187) (0.536) 

Avg. Temp. 
0.0486*** -0.0470 -0.0193 0.0538 

(0.003) (0.420) (0.754) (0.142) 

Province FE YES YES YES YES 

Observations 20802 3959 3911 3898 

Note: p-values in parentheses. All specifications estimate the effect of exogenous fires in neighboring countries 

within 500km radius on fertility (column 1) and child outcomes (columns 2,3,4) in border provinces. All children 

outcomes specifications control for household assets, rural area, household size, household ethnicity, if the 

household has children under 5 years of age, caretaker education, province fixed effects, and region-month fixed 

effects. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 
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Appendix 
 

Table A1: Summary Statistics 

 
 Mean S.D. Count Min Max 

Woman-Age Panel Dataset 

No. births in a year 0.097 0.300 72093 0.000 2.000 

Avg annual PM2.5 21.103 3.945 64664 12.420 27.814 

Annual upwind fire 

counts 18.912 15.937 64664 0.090 55.940 

Avg annual rainfall (in 

millimeters) 4.396 1.431 71963 1.896 9.297 

Avg annual temperature 

(in Celsius) 28.074 0.718 71963 26.137 29.418 

Pooled Cross-sectional Data for Women 

Ever given birth 0.439 0.496 2276 0.000 1.000 

Age of woman 19.918 2.173 2282 17.000 41.000 

Completed at least high 

school 0.654 0.476 2282 0.000 1.000 

Rural 0.676 0.468 2282 0.000 1.000 

Household never 

migrated 0.718 0.450 2282 0.000 1.000 

Household speaks Thai 0.804 0.397 2282 0.000 1.000 

Any household member 

owns agricultural land 0.494 0.500 2277 0.000 1.000 

Number of rooms used 

for sleeping 2.285 0.899 2282 1.000 8.000 

Children’s Outcomes 

Weight for age -0.362 1.339 15669 -5.842 5.837 

Weight for height 0.005 1.525 15669 -5.924 5.996 

Height for age -0.662 1.449 15669 -5.989 5.965 

Food consumption: grains 

and carbs 0.790 0.407 7002 0.000 1.000 

Food consumption: fruits 

and vegetables 0.743 0.437 7005 0.000 1.000 

Food consumption: Meat 

and other protein 0.834 0.372 7004 0.000 1.000 

Food consumption: Milk 

and dairy 0.505 0.500 7003 0.000 1.000 

Ever enrolled in pre-

school or kindergarten 0.869 0.338 6702 0.000 1.000 

 

Note: The summary statistics are calculated for our dataset and our analysis period between 2013-19. 
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Table A2: Effect of agricultural season on births 
 

Panel A: Effect of Pollution exposure on births in agricultural vs. non-agricultural season 

 
 Burning Season Growing Season 

 (1) (2) (3) (4) 

Specification IV IV IV IV 

PM2.5 
-0.00440*** -0.00428*** -0.00412** -0.00394* 

(0.000) (0.000) (0.049) (0.055) 

Rain 
0.000595 0.000493 0.00747** 0.00744** 

(0.689) (0.738) (0.018) (0.017) 

Avg. Temp. 
0.0144*** 0.0139*** 0.0277*** 0.0270*** 

(0.000) (0.000) (0.000) (0.000) 

Age at Birth  0.00627***  0.00516*** 

  (0.000)  (0.026) 

(Age at Birth)2  -0.000244***  -0.000277*** 

  (0.000)  (0.000) 

Age FE YES NO YES NO 

Observations 70077 70077 70077 70077 

Note: p-values in parentheses. All specifications estimate the effect of increased PM2.5 exposure on births because 

of fires occurring within 300 kms.  The first two columns note the effect of PM2.5 exposure on births in the 

fire/burning season. The last two columns note the effect of PM2.5 exposure on births in the agricultural/rice 

growing season. Standard errors are clustered at the province level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 
 

Panel B: Omission of provinces with crop fields and forests 

 
 (1) (2) (3) (4) (5) 

Specification OLS OLS IV IV IV 

PM2.5 
-0.00718*** -0.00539*** -0.00249 -0.00925** -0.00902** 

(0.000) (0.002) (0.302) (0.046) (0.049) 

Rain 
 0.0118***  0.00776 0.00759 

 (0.001)  (0.152) (0.157) 

Avg. Temp. 
 0.0426***  0.0447*** 0.0436*** 

 (0.000)  (0.000) (0.000) 

Age at Birth     0.0107** 

     (0.012) 

(Age at Birth)2     -0.000531*** 

     (0.000) 

Age FE YES YES YES YES NO 

Observations 48718 48718 48685 48685 48685 

Note: p-values in parentheses. All specifications estimate the effect of increased PM2.5 exposure on births because 

of fires occurring within 300 kms. Standard errors are clustered at the survey unit level. 

*** Significant at 1% level, ** significant at 5% level, * significant at 10% level. 

 


