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Abstract

Some important contests have participation costs and ‘default alloca-

tions’ where the contest prize is still awarded even when no-one actively

competes. This paper incorporates flexible forms of these features into a

general (single-prize) all-pay contest model under arbitrary asymmetry. We

offer a tractable equilibrium characterization that fundamentally rests on

only two measures (per-player): ‘reach’ and a new concept, ‘strength’. We

then i) analyze how participation costs and default allocations can be em-

ployed as novel tools in contest design, ii) solve ‘clearinghouse’ models of

price competition under full asymmetry for the first time, and iii) offer

a new equilibrium refinement for symmetric multi-player all-pay contests.

Throughout, the combination of participation costs and default allocations

is key and often reverses otherwise familiar intuitions.
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1 Introduction

The burgeoning literature on contests analyzes situations where players compete

with sunk resource investments in order to win some form of prize. This successful

literature has considered many applications including R+D, rent-seeking, political

campaigns, rewards in organizations, litigation, contract tendering, and conflict.1

Typically, such contests are modeled with an exogenous number of participants.

However, in practice, in addition to their potential investment costs, players often

face (fixed) costs of active participation, such as entry fees, set-up costs, foregone

outside options or minimum required outlays. As such, players face a non-trivial

decision of whether or not to actively participate in a contest.

In these cases, as we later show, the contest outcome can depend upon what

we term as the ‘default allocation’ - what happens to the prize in the event that

no player actively participates. As reviewed below, the existing literature contains

relatively few models with endogenous, costly participation, and all such models

(implicitly) assume that the prize is withheld when all players refrain from active

participation. This prevents any analysis of some common situations where the

prize must always be allocated, or where the contest organizer cannot commit

to withholding it. Important examples include i) tendering processes where a

contract is renewed with an incumbent unless a bid is received from an entrant, ii)

policy decisions where an outcome remains unless it is contested by a lobbyist, iii)

legal disputes where, unless a party starts litigation, some default outcome applies,

iv) political settings where the electorate votes in favor of different candidates on

the ballot list with exogenous probabilities unless a candidate engages in active

campaigning, or v) market settings where, unless a rival firm lists on a digital

platform (or ‘clearinghouse’), consumers trade with their default firms in given

proportions depending on geographical location or past experience.

To help address this gap, our paper makes three main contributions. First, it

provides a general framework that can explicitly characterize all potential equilib-

ria in a full information (single prize) all-pay contest with endogenous participa-

tion while allowing for flexible forms of participation costs and default allocations,

under arbitrary asymmetry. Despite the complexity of the problem, we offer a

tractable characterization that fundamentally rests on only two measures (per-

player): ‘reach’ and a new concept which we introduce as ‘strength’.

Second, after using our framework to further understand how participation

1For reviews, see Konrad (2009), Dechenaux et al. (2015), Corchón and Serena
(2018), and Fu and Wu (2019).
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costs and default allocations affect equilibrium behavior, we analyze how they can

be used as novel, practical tools in contest design. Such tools have remained under-

explored within the literature (as reviewed by Fu and Wu 2019 and Chowdhury

et al. 2023) and so our results are striking. For instance, contrary to the usual

motivation for handicapping stronger players to ‘level the playing field’ (e.g. Baye

et al. 1993, Szech 2015, Franke et al. 2018), we show how asymmetric participation

costs or default allocation probabilities can optimally stimulate competition even

in otherwise symmetric settings. This implies that participation costs and default

allocations may arise endogenously in practice; further underlining the importance

of our framework.

Finally, we use our framework to solve the broad family of ‘clearinghouse’ mod-

els (e.g. Baye and Morgan 2001, Baye et al. 2004, Baye et al. 2006) under arbitrary

asymmetry for the first time - something that was previously intractable under

conventional approaches within the associated literature. As further explained be-

low, clearinghouse models are commonly used within industrial organization and

marketing to study the role of price comparison platforms (or ‘clearinghouses’)

on pricing and advertising.2 By doing this, we also open up the ability to derive

equilibrium uniqueness in an n-player symmetric all-pay contest. Thus, partici-

pation costs alongside default allocations, can offer a new equilibrium refinement

in a setting which is well-known to otherwise suffer from equilibrium multiplicity

(Baye et al. 1996). Within the unique equilibrium, we further provide some com-

parative statics related to the ‘competitiveness’ of a contest and show how they

can differ markedly to previous results (e.g. Hillman and Samet 1987, Fang et al.

2020). In this, and throughout the paper, we demonstrate how the combination of

participation costs and default allocations is key. Together, they can often reverse

otherwise familiar intuitions.

In more detail, Sections 2-4 present our main framework with default alloca-

tions and a general form of participation costs that can incorporate both ‘direct’

participation costs, such as entry fees, set-up costs, or forgone outside options, and

‘indirect’ participation costs, such as minimum required bids or reservation offers.

By building on some popular tools in the study of all-pay contests (e.g. Siegel

2Clearinghouse models are also used as a foundation to study wider issues
such as consumer search, obfuscation, choice complexity and even some macroe-
conomic topics. For reviews and recent examples, see Guimaraes and Sheedy
(2011), Moraga-González and Wildenbeest (2012), Armstrong (2015), Spiegler
(2015), Kaplan and Menzio (2016), Burdett and Menzio (2017), Bergemann et al.
(2021), Armstrong and Vickers (2022) and Ronayne and Taylor (2022).
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2009, 2010, 2014), the framework shows how one can flexibly introduce default

allocations and participation costs into a full-information (single prize) all-pay

contest under arbitrary asymmetry.

Within the framework, each player must simultaneously decide whether to

be ‘active’ or ‘passive’. Unlike a passive player, an active participant incurs a

participation cost but is able to submit a bid or ‘offer’. The prize is then awarded

to the player with the highest active offer. However, rather than assuming that the

prize is withheld in the event that no player is active, we allow for the possibility

that the prize is still awarded. Specifically, in such a scenario, we assume that any

player i wins according to some tie-break rule, equivalent to a ‘default allocation

probability’, xi.

Under arbitrary asymmetry, the paper derives a two-player equilibrium that is

unique (apart from some knife-edge parameter cases). The resulting equilibrium

is tractable and neatly depends on only two measures, ‘reach’ and a new concept

which we refer to as ‘strength’. Broadly speaking, a player’s reach determines

their willingness to be active when their rival is also active, whereas a player’s

strength determines their willingness to be active when their rival is passive. In

the previous literature, these measures would have been equivalent to each other

and consistent with Siegel’s (2009) definition of reach. However, in our context

with participation costs and default allocations, the two measures differ and prove

sufficient for determining the form of equilibrium in what would otherwise be a

complex problem. For instance, in equilibrium, we find that i) neither player

actively competes if they both have low strength, ii) only one player actively

competes if one player has high strength while the other has low reach, or iii) both

players actively compete with positive probability (in several possible forms) if

one player has high strength and the other has sufficient reach.

Section 5 further examines how the framework’s novel features, participation

costs and default allocations, influence the equilibrium and how they can be used

as new, practical tools in contest design. In particular, we study how a contest or-

ganizer would select participation costs, {A1, A2}, and default allocation probabil-

ities, {x1, x2}. Throughout, we assume the organizer has an ‘offer-based objective’

involving any combination of expected offers, expected total offers, or expected

winning offers. Despite the existing literature suggesting that greater player het-

erogeneity typically lowers competition (e.g. Baye et al. 1993, Szech 2015, Franke

et al. 2018), our results demonstrate that an offer-orientated organizer will find it

optimal to use an asymmetric contest design even when the players are otherwise

symmetric. Specifically, the organizer will strictly prefer to give one player i a
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strictly lower participation cost, Ai = 0 < Aj, or default allocation probability,

xi < xj.
3

Next, Section 6 shows how our framework can be used to solve the broad family

of ‘clearinghouse’ models (e.g. Baye and Morgan 2001, Baye et al. 2004, Baye et al.

2006) under arbitrary asymmetry. Specifically, by using tools from contest theory,

we are able to allow for a full set of player asymmetries in a way that should open

up new theoretical and empirical research where asymmetry is important, such

as platform design or the regulation of platform steering and fees. This extends

the initial work by Baye et al. (1996) and Baye et al. (2012) who demonstrate

how a special (but widely used) case of the clearinghouse family, Varian’s (1980)

model of sales, is equivalent to a form of all-pay contest (with zero participation

costs) under full symmetry.4 Our framework extends this initial link to encompass

the full clearinghouse family beyond Varian by a) incorporating endogenous, costly

advertising at a digital platform or ’clearinghouse’ (via participation costs) and the

possibility of winning the shoppers’ custom even when no firm actively competes

at the platform (via default allocation probabilities), and b) allowing for a full set

of player asymmetries.

Finally, Section 7 then uses this connection to derive equilibrium uniqueness in

n-player symmetric all-pay contests, while also exploring a number of comparative

statics related to the ‘competitiveness’ of a contest. Interest in such competition

effects within full information all-pay contests has been rejuvenated due to Fang

et al.’s (2020) recent analysis. However, we show how the combination of partici-

pation costs and default allocations can reverse some standard results.5

3The optimality of asymmetric contest designs in symmetric situations has also
been documented in a few other papers but our setting and contest design tools
are distinct. For instance, Drugov and Ryvkin (2017) and Barbieri and Serena
(2022) show how a biased contest success function can be optimal for a general
family of pure-strategy contests or dynamic contest settings respectively, while
Pérez-Castrillo and Wettstein (2016) show how identity-dependent prizes can be
optimal under private information.

4To understand the intuition of this initial link, note i) each firm’s price implies
an associated surplus offer to consumers, ii) the firm with the highest offer wins
the ‘prize’ - equivalent to the custom of ‘shopper’ consumers who buy from the
firm with best offer, iii) each firm’s offer involves a sunk (opportunity) cost in the
form of reduced revenues from its loyal ‘non-shopper’ consumers, and iv) a firm’s
value of winning is dependent upon the level of its surplus offer.

5Fang et al. (2020) show the effects of a range of competitiveness measures in
all-pay contests under a different setting with multiple prizes and convex effort
costs. In our context, we study the effects of some parallel measures, including
increases in the number of players and (single-prize) scaling where the number of
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Related Literature

Our focus is on full-information all-pay contests with single prizes and (potentially)

asymmetric players. Aside from the seminal contributions by Hillman and Samet

(1987), Hillman and Riley (1989) and Baye et al. (1996), the more recent works by

Siegel (2009, 2010, 2014) are most relevant. Within these papers, Siegel develops

a popular, tractable approach involving the concept of ‘reach’ to analyze a broad

category of all-pay contests with general payoff functions and arbitrary asymmetry,

but without endogenous costly participation or default allocations. In contrast,

we bring some elements of these papers together within our context while allowing

for flexible forms of costly participation and default allocation probabilities. We

explicitly characterize all potential equilibria and show how they depend on each

player’s reach, and a new measure, ‘strength’.

To our knowledge, we are the first to study default allocations, and even the

role of costly, endogenous participation has not received a lot of previous atten-

tion. However, maybe confusingly, standard models without explicit participation

costs are sometimes framed in terms of participation. For instance, following Hill-

man and Riley (1989) or Gradstein (1995), equilibria in asymmetric models often

exhibit a player selecting a zero bid with positive probability in a way that is

sometimes interpreted as non-participation rather than active participation with

a zero bid. Our model with participation costs has no such ambiguity because it

explicitly distinguishes between the two. This distinction is consistent with some

of our applications including the clearinghouse setting where firms can participate

with an offer of zero consumer surplus (e.g. by advertising the monopoly price

under unit demand) in a way that is qualitatively distinct from not participating

(by refraining from advertising).

Aside from our paper, a small contest literature considers endogenous partici-

pation more explicitly with either direct participation costs (e.g. Fu and Lu 2010,

Fu et al. 2015), or indirect participation costs (e.g. Hillman and Samet 1987,

Morgan et al. 2012, Bertoletti 2016, Chowdhury 2017, Boosey et al. 2020). While

much of this literature considers a broader range of contests beyond our all-pay

setting, all of these papers assume that participation costs are symmetric and

that the prize is withheld if no player actively participates. In contrast, within

our all-pay setting with arbitrary asymmetry, we introduce a general form of par-

ticipation costs and allow the prize to be awarded even when no player actively

participates. In addition, we demonstrate how asymmetric participation costs can

players and the prize value are both increased proportionately.
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arise endogenously in terms of contest design.67

The clearinghouse sales framework (e.g. Baye and Morgan 2001, Baye et al.

2004, Baye et al. 2006) encompasses a large range of sales models, including Varian

(1980) as a special case with zero participation costs and no default allocations.

Within the special case of Varian (1980), some older literature studies a limited

form of asymmetries in simplified settings (e.g. Narasimhan 1988, Baye et al.

1992, Wildenbeest 2011, Shelegia 2012), whilst Myatt and Ronayne (2024) study

a more general form of asymmetries. Outside the special case of Varian, there

is very little work. Arnold et al. (2011) allow for one form of asymmetry, whilst

Shelegia and Wilson (2021) allow for wider asymmetries by employing a specific

‘equilibrium’ tie-break rule (or default allocation) that acts to equalize players’

strengths. In contrast, the current paper uses tools from contest theory to offer

a general clearinghouse characterization for any default allocation probabilities

under a flexible form of participation costs and arbitrary asymmetry. As noted

above, this substantially expands the initial work pioneered by Baye et al. (1996)

and Baye et al. (2012) who made the connection between between all-pay contests

and the special case of Varian (1980) under symmetry.

Beyond our paper, Montez and Schutz (2021) explore another connection be-

tween all-pay contests and pricing in a very different context where firms simulta-

neously source unobservable inventories before setting prices. Their paper focuses

on inventory behavior and associated public policy, but as a side result, they show

how their equilibrium can tend to a version of the asymmetric clearinghouse equi-

librium as inventory costs become fully recoverable. However, contrary to the

full clearinghouse literature and our framework, they assume that the informed

‘shopper’ consumers do not buy if neither firm advertises (implying that default

allocation probabilities are zero). Our results highlight the importance of this

assumption and derive the equilibrium for all default allocation probabilities in

order to fully connect the literatures on all-pay contests and clearinghouse sales

price competition.

6Some of these listed papers further differ to our base set-up due to their
assumptions of sequential participation decisions (e.g. Fu and Lu 2010 and Morgan
et al. 2012) or private information (e.g. Hammond et al. 2019 and Liu and Lu
2019). The two latter papers also assume participation costs in the form of entry
fees that can be used to supplement the prize fund. We exclude this possibility to
focus solely on the role of costly participation.

7As we later show, participation costs create a discontinuity in the players’
payoffs. Duvocelle and Mourmans (2021) study some wider forms of payoff dis-
continuities and show how Siegel’s equilibrium payoff results can still apply.
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2 Model

2.1 Assumptions

Consider two risk-neutral players, i = {1, 2}, and a contest to win a single prize.

Each player must decide whether to actively participate in the contest, and if so,

how much to bid. We assume that the players’ participation and bidding decisions

are simultaneous. Specifically, we model this as a one-stage decision where each

player i chooses a bid or ‘offer’, ui ∈ {ϕ}
⋃
[0,∞). Under our terminology, we

class player i as an ‘active’ participant if she submits an explicit offer ui ∈ [0,∞).

On the other hand, if player i selects ui = ϕ, she makes no explicit offer and is

termed as only a ‘passive’ participant.8

Given the players’ chosen strategies, S = {u1, u2}, player i’s probability of

winning is then given by the following contest success function, Ψi(·):

Ψi(·) =



1 if ui ≥ 0 and uj ∈ {ϕ}
⋃
[0, ui)

yi if ui = uj with ui ≥ 0 and uj ≥ 0

xi if ui = uj = ϕ

0 otherwise

(1)

Intuitively, as consistent with the wider literature on participation costs, player

i wins outright if she submits an active offer, ui ≥ 0, and player j either submits

a lower active offer or only participates passively. If both players submit the same

active offer, then player i wins with a tie-break probability, yi. As the exact level

of yi will prove irrelevant, we allow any yi ∈ [0, 1] such that y1 + y2 = 1. However,

in contrast to the literature, we allow the prize to still be awarded even when both

players are passive, ui = uj = ϕ. In such an event, player i wins with a ‘default

allocation probability’, xi ≥ 0, where x1 + x2 ≡ X ∈ [0, 1].

For a given set of strategies, S, and contest success function, Ψi(·), player i’s
8Our ‘simultaneous’ set-up implies that players make their bidding decisions

without knowing the exact number of active participants. This assumption helps
provide a clean analysis and is consistent with the entire clearinghouse literature
and much of the contest literature (e.g. Fu et al. 2015, Hammond et al. 2019
and Liu and Lu 2019). However, the Supplementary Online Appendix considers
an alternative two-stage set-up where active players learn the number of other
active participants before bidding. It verifies how the equilibrium still shares many
features with that in the main model, including its dependence on our measure of
strength.
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expected payoff can be described as

E(Πi(S; Ψi(·))) = Ψi(·)Wi(ui) + [1−Ψi(·)]Li(ui) (2)

where Wi(ui) and Li(ui) provide general descriptions of player i’s (net) payoffs

from winning and losing respectively for any given offer, including passive partic-

ipation where Wi(ϕ) ≡ W ϕ
i and Li(ϕ) ≡ Lϕ

i . In addition, we make the following

assumptions for each player i:

A1) Wi(ui) > Li(ui) for any given ui ∈ {ϕ}
⋃
[0,∞).

A2) For any ui ∈ [0,∞), both Wi(ui) and Li(ui) have the same unique finite

maximizer, um
i ∈ [0,∞), and are strictly decreasing in ui > um

i .

A3) c(um
i ) ≡ Lϕ

i − Li(u
m
i ) > 0 and W ϕ

i > Wi(u
m
i ).

A4) xi > 0.

A1 simply assumes that the payoffs from winning are always larger than those

from losing for any given offer (including passive participation, W ϕ
i > Lϕ

i ).

A2 assumes that player i’s payoffs from winning and losing both have a unique

finite maximizer and are strictly decreasing in the player’s offer thereafter. More-

over, although not always required, A2 also assumes that Wi(ui) and Li(ui) have

the same such maximizer, um
i . To allow for a form of non-monotonicity in player

i’s payoffs (or headstarts in the sense of Siegel 2009), this maximizer can be non-

zero, um
i ∈ [0,∞). The maximizer can also differ across players um

i ̸= um
j , to reflect

potentially different technologies, preferences, or prior investments.9

A3 assumes the existence of participation costs in a flexible way such that

Lϕ
i > Li(u

m
i ) and W ϕ

i > Wi(u
m
i ). To understand this, and as later formalized,

note that player i will never want to select an active offer lower than um
i . A3

then assumes that losing (or winning) under passive participation to gain Lϕ
i (or

W ϕ
i ) is always strictly preferred to losing (winning) under active participation to

gain, at most, Li(u
m
i ) (or Wi(u

m
i )). Without A3, the distinction between passive

and active participation becomes blurred and the default allocation probabilities

become ill-defined.

9A2 is consistent with past research and many applications. We believe that
all previous contest papers (implicitly) assume that the related functions are both
maximized at zero or some positive constant, e.g. Siegel (2009). Within the
clearinghouse literature, Wi(ui)/Li(ui) is effectively a constant ratio related to the
proportions of different types of consumers, and so both functions also have a
common maximizer as later detailed in Section 6.
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A4 assumes that each player has a strictly positive default allocation proba-

bility as consistent with the organizer being unable to perfectly commit to with-

holding the prize from either player in the event that both players are passive.

Without A4, some economically uninteresting equilibrium multiplicity can arise.

We now characterize the Nash equilibria for any permitted set of default allo-

cation probabilities, {x1, x2}, and payoff functions, Wi(ui) and L(ui) for i = {1, 2}.
To allow for mixed strategies, we define i) (1−αi) ∈ [0, 1] as player i’s probability

of passive participation (with ui = ϕ), ii) αi ∈ [0, 1] as player i’s probability of ac-

tive participation on some support ui ∈ [ui, ūi] where 0 ≤ ui ≤ ūi, and iii) Fi(u) as

player i’s overall (unconditional) offer distribution on ui ∈ {ϕ}
⋃
[0,∞).10 Lastly,

we denote um = max{um
1 , u

m
2 } ≥ 0.

2.2 Definitions

Despite the complexity of our framework, we will show how the equilibria will

fundamentally depend on only two measures for each player, ‘reach’ and a new

concept, ‘strength’. These two measures will drive players’ participation decisions.

Broadly speaking, a player’s reach determines their willingness to be active when

their rival is also active, whereas a player’s strength determines their willingness

to be active when their rival is passive.

Definition 1. For a given contest, the reach of player i, ri, is the unique value of

ui ≥ um
i that solves

Wi(ui) = Lϕ
i (3)

if such a solution exists, and ri = −∞ otherwise. When Wi(u
m
i ) ≥ Lϕ

i , a

unique solution always exists with ri ≥ um
i . When Wi(u

m
i ) < Lϕ

i , no solution

exists.11

Intuitively, player i will never find it optimal to provide an active offer above

her ‘reach’, ri, because it is defined as the active offer ui ≥ um
i at which player i’s

10To facilitate the use of Fi(u), we abuse notation slightly and treat ϕ as if
it were a number less than 0. Player i then sets ui = ϕ with probability mass
(1 − αi) = Fi(ϕ), and submits an active offer on ui ∈ [ui, ūi] with aggregate
probability αi = 1 − Fi(ϕ) where Fi(u) = 0 for u < ϕ, Fi(u) = 1 for u ≥ ūi, and
F ′
i (u) ≥ 0 for all u.
11A solution exists and is unique iff Wi(u

m
i ) ≥ Lϕ

i because, for ui ≥ um
i , the

LHS of (3) is i) at most Wi(u
m
i ) and ii) strictly decreasing for ui ≥ um

i , while iii)
Lϕ
i is a constant unbounded above.

10



payoff from winning for sure, Wi(ui), equals her payoff from losing for sure under

passive participation, Lϕ
i . Further, when player j ̸= i is active, player i can never

win under passive participation and can therefore only guarantee Lϕ
i from being

passive. Hence, when player j is active, player i will prefer to submit an active

offer ui ≥ um
i only if Wi(u

m
i ) ≥ Lϕ

i or equivalently, only if ri ≥ um
i .

Definition 2. For a given contest, the strength of player i, si, is the unique value

of ui ≥ um
i that solves

Wi(ui) = Ωi ≡ Lϕ
i + xi(W

ϕ
i − Lϕ

i )
ci(u

m
i )

bi(um
i )

(4)

if such a solution exists, and si = −∞ otherwise, where ci(u
m
i ) ≡ Lϕ

i −Li(u
m
i ) >

0 and bi(u
m
i ) ≡ Wi(u

m
i )−Li(u

m
i )−xi(W

ϕ
i −Lϕ

i ). When Wi(u
m
i ) ≥ Lϕ

i +xi(W
ϕ
i −Lϕ

i )

(or equivalently when Wi(u
m
i ) ≥ Ωi or bi(u

m
i ) ≥ ci(u

m
i )), a unique solution always

exists with si ≥ um
i . When Wi(u

m
i ) < Lϕ

i + xi(W
ϕ
i − Lϕ

i ), no solution exists.12

While the definition of strength is more involved, it provides clear implications

for player i’s participation decision when player j ̸= i is passive. If player j is

passive, player i’s expected payoff from being passive equals Lϕ
i + xi(W

ϕ
i − Lϕ

i ).

Hence, player i will prefer to submit an active offer ui ≥ um
i only if Wi(u

m
i ) ≥

Lϕ
i + xi(W

ϕ
i − Lϕ

i ) or equivalently, only if si ≥ um
i . In more detail, when si ≥ um

i ,

player i’s strength is the level of active offer, ui ≥ um
i , at which her payoff from

winning for sure, Wi(ui), is equal to an expression that we denote by Ωi. Where

relevant, Ωi, can be understood as player i’s expected payoff at the point where

she is indifferent between being passive and submitting an active offer of um
i .

13

Note the following important remarks about reach and strength. First, our

use of the term ‘reach’ broadly parallels the existing literature, e.g. Siegel (2009).

However, in the previous literature, a player’s reach would always equal our mea-

sure of strength. To see this, note from (3) and (4) that ri = si if player i has

12A solution exists and is unique iff Wi(u
m
i ) ≥ Ωi because, for ui ≥ um

i , the LHS
of (4) is i) at most Wi(u

m
i ) and ii) strictly decreasing for ui ≥ um

i , while iii) Ωi is
a constant unbounded above.

13More precisely, note that player i’s expected payoff from being passive equals
Lϕ
i + xi(1 − αj)(W

ϕ
i − Lϕ

i ). If, as will be true in equilibrium, i) player j never
selects any active offers below um

i , such that (1− αj) = Fj(u
m
i ), and ii) there are

no ties at um
i , then player i’s expected payoff from submitting um

i is Li(u
m
i )+ (1−

αj)(Wi(u
m
i )−Li(u

m
i )). Whenever player i is indifferent between these two payoffs,

it must be that (1−αj) = ci(u
m
i )/bi(u

m
i ), where (1−αj) ∈ (0, 1] if si ≥ um

i . Hence,
after substituting (1 − αj) = ci(u

m
i )/bi(u

m
i ) back in, Ωi represents the expected

payoff whenever player i is indifferent between ϕ and um
i .

11



i) zero participation costs, ci(u
m
i ) ≡ Lϕ

i − Li(u
m
i ) = 0, and/or ii) a zero default

allocation probability, xi = 0. This highlights the important interaction between

participation costs in A3, ci(u
m
i ) > 0, and default allocation probabilities in A4,

xi > 0; when combined, they imply that each player’s reach is strictly larger than

their strength, ri > si for i = {1, 2}. Hence, each player is strictly more willing to

be active when their rival is active relative to when their rival is passive. Second,

without loss of generality, we will assume that either i) s1 > s2, or ii) s1 = s2 and

um
1 ≥ um

2 . Then, whereas some existing papers refer to the player with the higher

reach as the ‘stronger’ player, we will only employ this language under A5 below.

Indeed, under A5, it is possible that the ‘stronger’ player 1, with s1 ≥ s2, can have

a lower reach, r1 < r2.

A5) Player 1 is assigned to be the ‘stronger’ player (and Player 2 as the ‘weaker’

player) with i) s1 > s2, or ii) s1 = s2 and um
1 ≥ um

2 .

Finally, to help exposition, we will sometimes focus on equilibria in ‘generic’

contests as defined by Definition 3. Appendix B later characterizes the full set of

equilibria for all generic and non-generic contests, and shows that the equilibria in

non-generic contests can involve some less interesting equilibrium multiplicities.

Definition 3. A ‘generic’ contest does not involve the following knife-edge cases:

ri = um
i or si = um

i for any i = 1, 2.

3 Equilibrium Analysis

To derive the equilibria, Section 3.1 first considers some preliminary steps be-

fore Section 3.2 provides the main characterization. Any proofs are provided in

Appendix A unless stated otherwise.

3.1 Preliminaries

Lemma 1. Any active offer, ui, is strictly dominated for player i if a) ui < um
i ,

or b) ui ∈ (um
i , u

m
j ).

This implies that player i will only consider an active offer equal to ui = um
i or

ui ≥ um ≡ max{um
i , u

m
j }. The proof is immediate. a) Any active offer ui ∈ [0, um

i )

is strictly dominated by ui = um
i as it would raise player i’s payoffs from winning

or losing (via A2), and yet never reduce her probability of winning. b) Any

ui ∈ (um
i , u

m
j ) is also strictly dominated by um

i . To see this, note from above that

player j will never select any active offer uj < um
j . Hence, moving any mass in

12



ui ∈ (um
i , u

m
j ) to ui = um

i would raise player i’s payoffs from winning or losing,

but have no effect on her probability of winning.

Lemma 2. Suppose only one player, player i, is active with positive probability,

αi > 0 and αj = 0. Then, in equilibrium, it must be that ui = ūi = um
i .

Again, the proof is immediate. In this case, player i must set ui ≥ um
i and

player j must set uj = ϕ such that player i wins with probability one. Given this,

by reducing ui to um
i , player i can strictly increase her payoffs via A2 and still win

with certainty.

Lemma 3. In equilibrium, player i cannot put a point mass on any active offer

other than ui = um
i . Further, if u

m
1 = um

2 = um, then at most, one player can put

a point mass on um.

As detailed in the proof, this just follows standard mixed-strategy results - if

not, at least one player would have an incentive to redistribute their probability

mass elsewhere. Now denote the size of any potential point mass at um
i by βi ≥ 0.

As player i’s probability of active participation on ui ≥ um
i is denoted by αi ∈ [0, 1],

then it must be that αi ≥ βi.

Lemma 4. Suppose player i selects an offer strictly above um
i with positive prob-

ability in equilibrium such that αi > βi ≥ 0. Then, it must be that:

a) both players make offers above um with positive probability and share a common

upper bound, ū ≡ ū1 = ū2 > um,

b) any u ∈ (um, ū] is a point of increase of F1(u) and F2(u),

c) on u ∈ (um, ū] for k = 1, 2 and l ̸= k,

Fk(u) =
Wl(ū)− Ll(u)

Wl(u)− Ll(u)
. (5)

Intuitively, if αi > βi in equilibrium then player i makes active offers strictly

above um
i . If so, then the other player must be doing the same otherwise player

i could optimally reduce her offers towards um
i . Moreover, if um

i < um
j , then any

u ∈ (um
i , u

m
j ) is dominated for both players and so they must make offers strictly

above um. As consistent with standard results (without participation costs), the

two players must then continuously randomize up to a common upper bound, ū.

By deriving expected payoffs and equilibrium payoffs for a given ū, one can then

characterize the implied distribution in active offers for each player, (5).

13



3.2 Characterization

Building on Lemmas 1-4, we now characterize the full equilibria. To further aid

exposition, it is convenient to denote the following two expressions:

θi(u) = 1−
Wj(u)− Lϕ

j

(W ϕ
j − Lϕ

j )xj

(6)

σi(u) = 1− cj(u)

bj(u)
≡ 1−

Lϕ
j − Lj(u)

Wj(u)− Lj(u)− xj(W
ϕ
j − Lϕ

j )
(7)

Given the usual complexities with models of this sort, it is notable that we

now demonstrate that any generic contest has a unique, tractable equilibrium and

that the equilibrium can be reduced to five qualitatively distinct cases that only

depend upon the relative sizes of s1 and r2. As the proof is lengthy, it is provided

separately in Appendix B.

Theorem 1. Given A1-5, there exists a unique equilibrium for any generic contest:

i) When s1 < um
1 (and hence s2 < um

2 ), neither player is active, α1 = α2 = 0.

ii) When s1 > um
1 and r2 ≤ um, player 1 is always active at um

1 , α1 = β1 = 1, and

player 2 is always passive, α2 = 0.

iii) When r2 > um
2 ≥ s1 > um

1 , player 1 selects um
1 with probability β1 = α1 =

θ1(u
m
2 ) ∈ (0, 1) and player 2 selects um

2 with probability β2 = α2 = σ2(u
m
1 ) ∈ (0, 1).

iv) When r2 > s1 > um, players 1 and 2 are active with probabilities α1 = θ1(ū) ∈
(0, 1) and α2 = 1−F2(u

m
1 ) = σ2(u

m
1 ) ∈ (0, 1). They both randomize on (um, ū] with

Fi(u) in (5) where ū = s1, β1 = F1(u
m)−(1−α1) ≥ 0 and β2 = F2(u

m)−F2(u
m
1 ) ≥

0.

v) When s1 ≥ r2 > um, players 1 and 2 are active with probabilities α1 = 1 and

α2 = 1−F2(u
m
1 ) ∈ (0, 1). They both randomize on (um, ū] with Fi(u) in (5) where

ū = r2, β1 = F1(u
m) ≥ 0 and β2 = F2(u

m)− F2(u
m
1 ) ≥ 0.

We now discuss the intuition of Theorem 1 in terms of reach and strength.

Later sections will build on this to offer a fuller examination of how default allo-

cation probabilities and participation costs directly affect equilibrium.

To start, it is useful to initially consider the (quasi-) symmetric case where

r1 = r2 = r, s1 = s2 = s and um
1 = um

2 = um. Here, as r > s, Theorem 1 collapses

to a simple form involving only case i) and iv) depending solely on s ≶ um. First,

suppose s < um such that case i) applies. From Definition 2, this implies that
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Lϕ + x(W ϕ − Lϕ) > W (um). Therefore, neither player wishes to be active -

given that the other player is passive, a player earns Lϕ + x(W ϕ −Lϕ) and has no

incentive to be active in order to earn, at most, W (um). This equilibrium is unique

because the remaining possibility where both players are always active cannot be

an equilibrium as one player would always deviate due to costly participation (A3).

Next suppose s > um such that case iv) applies. From Definition 2, this implies

that W (um) > Lϕ+x(W ϕ−Lϕ) such that each player has an incentive to be active

if the other is passive. However, both players cannot be active with probability one

in equilibrium due to the assumption of costly participation. Hence, the unique

equilibrium involves both players being active with interior probability, α ∈ (0, 1),

and randomizing over active offers with F (u), where ū = s > um and β = 0.

We now give an initial overview of the intuition of Theorem 1 under player

asymmetry. However, some simple example settings are also provided shortly in

Section 4.1. First, consider case i). Here, the stronger player 1 has low strength,

s1 < um
1 . Using Definition 2 and A5, this implies that both players have low

strength, s1 = s2 = −∞, such that Lϕ
i + xi(W

ϕ
i − Lϕ

i ) > Wi(u
m
i ) for i = {1, 2}.

Therefore, neither player wishes to be active when the other is passive and this

equilibrium can be shown to be unique. Each player i earns Lϕ
i + xi(W

ϕ
i − Lϕ

i ).

Next, examine case ii) where the stronger player 1 has a relatively higher

strength, s1 > um
1 , but player 2 has a relatively low reach, r2 < um. Using

Definitions 1 and 2, this implies a) W1(u
m
1 ) > Lϕ

1 + x1(W
ϕ
1 − Lϕ

1) - if player 2

is passive, player 1 has a strict incentive to be active, and b) W2(u
m) < Lϕ

2 - if

player 1 is active, player 2 strictly prefers to remain passive. Hence, this ensures a

pure-strategy equilibrium where only player 1 actively competes. Moreover, given

the specified values of reach and strength, this equilibrium is unique. Player 1

earns W1(u
m
1 ) while player 2 earns Lϕ

2 .

Now defer cases iii) and iv) and jump to case v). Here, s1 ≥ r2 > um such that

player 1 has a high strength and player 2 has a sufficient reach. Via Definitions

1 and 2, this implies that both players are willing to be active with αi > βi -

player 1 is willing to be active if player 2 is passive, but if player 1 is active then

player 2 is also willing to be active. Specifically, by building on Lemma 4, the

unique equilibrium involves a) both players mixing over active offers with F (u)

up to ū = r2 > um, b) player 2 mixing over active participation with interior

probability, α2 ∈ (0, 1), but c) player 1 remaining strong enough to always be

active, α1 = 1. This latter feature implies that the default allocation probabilities

are never implemented within this case. As such, this form of equilibrium bears a

qualitative resemblance to standard asymmetric equilibria without participation
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costs or default allocation probabilities (e.g. Hillman and Riley 1989 or Siegel

2010). Note that α1 = 1 also implies that player 2 can only guarantee an equilib-

rium payoff of Lϕ
2 , while player 1 earns a payoff equal to W2(ū) > Lϕ

1 , as equivalent

to the standard model.

Next, move back to the more novel cases iii) and iv), and start with case iv).

Here, um < s1 < r2, such that player 1’s strength is sufficiently high while player

2 has a high reach. Like in case v), this implies that both players are willing to be

active with αi > βi. Hence, once again, in the unique equilibrium, both players

mix over active offers with a non-degenerate distribution, F (u) up to ū > um

and player 2 mixes over active participation with interior probability, α2 ∈ (0, 1).

However, unlike case v), the upper bound differs, ū = s1, and player 1 also mixes

over active participation with a strictly interior probability, α1 ∈ (0, 1) as she is

not strong enough to be active with probability one. Consequently, the default

allocation probabilities are implemented with positive probability. Each player i

earns payoffs higher than Lϕ
i but strictly lower than if they both remained passive,

Lϕ
i + xi(W

ϕ
i − Lϕ

i ). Hence, this case has a Prisoner’s Dilemma feature that is not

present in the previous literature - the players would strictly prefer everyone to

remain passive, but have an individual incentive to deviate and be active.

Finally, return to case iii). Here, player 1 has a moderate strength, s1 ∈
(um

1 , u
m
2 ] and player 2 has a relatively high reach, r2 > um

2 . Hence, this case can

only occur if um
2 > um

1 . Thus it require several underlying dimensions of underlying

symmetry as player 1 has the higher strength but the lower level of maximizing

offer. Using Definitions 1 and 2, the conditions on reach and strength imply

W1(u
m
1 ) > Lϕ

1 + x1(W
ϕ
1 − Lϕ

1) > W1(u
m
2 ) and W2(u

m
2 ) > Lϕ

2 . Intuitively, player 1

is strong enough to be active at um
1 when player 2 is passive, but player 2 would

prefer to be active at um
2 if player 1 chooses um

1 . Further, player 1 is not strong

enough to be active at um
2 when player 2 is passive, but player 2 would be active

there if player 1 is. As a result, this case produces an unusual, novel form of

equilibrium that is new to the literature - both players use a binary strategy to

randomize between being passive and selecting their own minimum active offer,

um
i . In equilibrium, both players earn Lϕ

i + xi(W
ϕ
i − Lϕ

i )(1− αj) and so like case

iv), the case also has a Prisoner’s Dilemma feature where the players would prefer

a commitment to no active offers.

16



4 Examples

This section offers some simple examples of the equilibrium. Aside from highlight-

ing some features of Theorem 1, it also further illustrates the concepts of reach and

strength, and forms a useful base for other later parts of the paper. Specifically,

in an otherwise standard all-pay contest, Section 4.1 first offers an example that

allows for direct participation costs, as consistent with entry fees, set-up costs or

foregone outside options, while Section 4.2 expands this to show how our frame-

work can also allow for indirect participation costs in the form of a minimum bid

or reservation offer.

4.1 An Example with Direct Participation Costs

Suppose each player i values the contest’s prize at Vi > 0. The total cost of player i

submitting an active offer of ui ≥ 0 equals kiu
a
i +Ai where i) kiu

a
i is the associated

effort cost (with ki > 0 and a > 0 as parameters), and ii) Ai ∈ (0, Vi] is a direct

participation cost. Each player i’s default allocation probability continues to be

denoted by xi ∈ (0, 1). Using our framework, we can then write player i’s payoff

functions as Wi(ui) = Vi− kiu
a
i −Ai and Li(ui) = −kiu

a
i −Ai which further imply

um
1 = um

2 = 0, W ϕ
i = Vi and Lϕ

i = 0.

Following Definitions 1 and 2, one can compute reach and strength, (8) and

(9). Intuitively, player i’s reach and strength are both increasing in the prize value,

Vi, but decreasing in the costs of making a given active bid, ki, Ai and a. Further,

player i’s strength is also decreasing in her default allocation probability, xi.

ri =


(

Vi−Ai

ki

)1/a

if ri ≥ um
i = 0 ⇔Vi ≥ Ai

−∞ if ri < um
i = 0 ⇔ Vi < Ai

(8)

si =


[

1
ki

(
Vi − Ai

(1−xi)

)]1/a
if si ≥ um

i = 0 ⇔ Vi(1− xi) ≥ Ai

−∞ if si < um
i = 0 ⇔ Vi(1− xi) < Ai

(9)

For ease of exposition, let k1 = k2 = 1 and a = 1. Then, when no lower than

um
i = 0, reach and strength reduce to ri = (Vi − Ai) and si = Vi − Ai

(1−xi)
, where

s1 ≥ s2 requires V1 − A1

(1−x1)
≥ V2 − A2

(1−x2)
. Notice that this does not require player

1 to have the higher prize value - it can be offset by a lower participation cost

or default allocation probability. The equilibrium cases in Theorem 1 then follow
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straightforwardly (albeit without case iii which cannot exist given um
1 = um

2 = 0):

case i) applies with no active participation if V1 < A1

(1−x1)
(such that s1 < um),

case ii) applies where only player 1 is active if V1 − A1

(1−x1)
> 0 > V2 − A2 (such

that s1 > 0 > r2), case iv) applies where both players mix over active offers with

α1, α2 ∈ (0, 1) if V2 − A2 > V1 − A1

(1−x1)
> 0 (such that r2 > s1 > 0), and case v)

applies where both players mix over active offers with α1 = 1 and α2 ∈ (0, 1) if

V1 − A1

(1−x1)
≥ V2 − A2 > 0 (such that s1 ≥ r2 > 0).14

4.2 An Example with Indirect Participation Costs

In contrast to direct participation costs, other ‘indirect’ forms of participation costs

can derive from a minimum required bid or ‘reservation offer’. In such settings,

any valid active offer must be weakly larger than some level, uR ≥ 0. From A2

and Lemma 1, such a reservation offer will only have an effect on equilibrium if

uR > um
i for at least one player; any affected player i then has to choose between

ui = ϕ and ui ≥ uR > um
i . Hence, like in the seminal analysis (under symmetry

with linear effort costs) by Hillman and Samet (1987), a reservation offer can

create indirect participation costs by prompting player i to submit an active offer

at a higher level than she might have done otherwise.

This can be easily captured within our more general framework by slightly

modifying the game. First, without loss, we can modify each player i’s win and

loss functions to equal Wi(u
R) and Li(u

R) for ui ∈ [0, uR) but to remain otherwise

unchanged. Denote these as W̃i(·) and L̃i(·), respectively. From above, we then

know that player i will only consider any active offer ui ≥ max{um
i , u

R}. Hence,

player i’s new maximizer becomes ũm
i ≡ max{um

i , u
R}. Second, we can use these

to calculate a revised level of strength, s̃i, from (4), and apply Theorem 1 to the

modified game. For instance, consider the introduction of a binding reservation

offer, uR > um
1 = um

2 = 0, into our previous example with k1 = k2 = 1, a = 1 and

A1 = A2 = 0. The reservation offer acts now as the only participation cost. It

reduces player i′s willingness to compete when their rival is passive by decreasing

their strength, s̃i = Vi − xiu
R

(1−xi)
when s̃i ≥ uR, and makes it less likely that the

equilibrium falls into a case involving more active participation.

14Specifically, case iv) has ū = s1 = V1 − A1

(1−x1)
, Π∗

1 = W1(ū) = A1
x1

(1−x1)
, Π∗

2 =

W2(ū) = V2−A2−V1+
A1

(1−x1)
, α1 = θ1(ū) = 1−

( Π∗
2

x2V2

)
, α2 = 1−F2(0) =

A1

(1−x1)V1
,

and Fi(ui) =
Π∗

j+ui+Aj

Vj
for i = {1, 2}, and case v) has ū = r2 = V2 − A2, Π

∗
1 =

W1(ū) = (V1 − V2) + (A2 −A1), Π
∗
2 = W2(ū) = 0, α1 = 1, α2 = 1−F2(0) =

V2−A2

V1
,

F1(u1) =
u1+A2

V2
and F2(u2) = 1−

(
V2−A2

V1

)
+
(
u1

V1

)
.
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5 Contest Design

To continue demonstrating the benefits of our framework, this section analyzes

how a contest organizer would optimally design the novel features of our model:

i) the participation costs, and ii) the default allocation probabilities. As later

detailed, these contest design tools have received little or no attention within the

existing literature (e.g. Chowdhury et al. 2023 and Fu and Wu 2019).

We will assume that the organizer wishes to maximize offers. Specifically, a

contest design will be referred to as ‘offer-maximizing’ if it maximizes any weighted

combination of the sum of total expected offers, E(u1) +E(u2), and the expected

winning offer, E(umax): λ[E(u1) + E(u2)] + (1 − λ)E(umax) ∀λ ∈ [0, 1]. Aside

from capturing familiar contest objectives related to the associated level of effort

or bids, this objective can also correspond to consumer surplus in our later clear-

inghouse sales context. Throughout, whenever the players are mixing over the

interval (um, ū], we refer to an ‘improvement’ (or ‘reduction’) in player i’s offers

in the sense of first-order stochastic dominance (FOSD). Holding constant player

j’s strategy, such an improvement (or reduction) ensures both an increase (or

decrease) in player i’s expected offer, E(ui), and the contest’s expected winning

offer, E(umax).
15

We first consider the optimal design of participation costs under the assumption

that the contest organizer can individually manipulate each player’s (direct) costs

of being active, A1 ≥ 0 and A2 ≥ 0, at the start of the game. To focus on

the optimal design of participation costs per se, we assume that A = {A1, A2}
comprises of players’ set-up costs rather than entry fees which could be otherwise

used to enhance the prize fund.

While the spirit of our results can be shown more broadly, we focus on the

following setting. First, apart from A, we assume the players are otherwise sym-

metric. This implies that the players will vary in both reach and strength whenever

A1 ̸= A2. Second, for each player i and for all active offers, we re-define the payoff

functions as follows: L(u) ≡ l(u) − Ai and W (u) ≡ w(u) − Ai where w(u) and

l(u) satisfy versions of A1-A3 and where um ≥ 0 is their maximizer. In particular,

as consistent with A3, to ensure that costly participation remains even if Ai = 0,

15Technically, it is sufficient to define a FOSD improvement (or reduction) to
occur when a) the player’s new offer distribution F̂i(u) is weakly less (greater)
than their original offer distribution Fi(u) for all active offers, u ∈ [0,∞), b) the
player’s new probability of being passive, (1−α̂i), is weakly less (greater) than their
original probability of being passive, (1 − αi), and c) either i) F̂i(u) < (>)Fi(u)
for at least some u ∈ [0,∞), and/or ii) (1− α̂i) < (>)(1− αi).
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we assume that some other form of exogenous, baseline participation cost always

applies such that Lϕ > l(um) and W ϕ > w(um). Finally, we maintain some basic

potential for the players to be active by letting w(um) > Lϕ + x(W ϕ + Lϕ) such

that si > um when Ai = 0 for any player i.

As a preliminary step, consider the effects of a marginal increase in Aj ̸=i while

holding Ai constant. From (3)-(4), this will make active participation more costly

for player j and so it strictly reduces her reach and strength (when they exceed

um), but leaves player i’s reach and strength unchanged. Hence, we know that

player 1 will have the higher strength and reach, s1 > s2 and r1 > r2, whenever

A1 < A2. We can now state the following for any generic or non-generic contest:

Proposition 1. In any contest under our assumptions, it is always strictly offer-

maximizing to set A1 = 0 and A2 = Ā ≡ x(Wϕ−Lϕ)(Lϕ−l(um))
w(um)−l(um)−x(Wϕ−Lϕ)

> 0 such that

s1 = r2 > um.

One may have predicted that the offer-maximizing design would involve zero

participation costs for both players. Indeed, this is easy to show if participation

costs are forced to be symmetric, A1 = A2. However, Proposition 1 demonstrates

that such logic is incorrect if the contest designer can employ an asymmetric

contest design. Indeed, despite the players being a priori symmetric, an offer-

maximizing organizer will optimally set A1 = 0 and A2 = Ā > 0. The fact that

asymmetric participation costs may arise endogenously in this way underlines the

importance of our framework. As example applications, this implies that a contest

organizer may wish to use asymmetric participation costs to stimulate higher bids

in otherwise symmetric tendering contexts. Further, in our later clearinghouse

setting, it suggests that a digital platform’s use of asymmetric, discriminatory

advertising fees to businesses wishing to list on its website may be pro-competitive

by raising offers to consumers.

To consider the intuition, suppose 1 is the stronger player with s1 ≥ s2 (such

that A1 ≤ A2). Then, as detailed in the proof, it must be offer-maximizing to set

A1 low enough such that s1 > um. If not, the players would be too inactive. Then,

given our setting, we know s1 > um can occur in either equilibrium case iv) or

v). However, much of the key intuition can be understood via case iv). Here, first

consider a decrease in the stronger player’s participation cost, A1, while holding

A2 constant. This increases 1’s strength and prompts her to be more aggressive

via an increase in ū = s1. In turn, via a form of strategic complementarity, player

2 responds by also becoming more aggressive. Hence, equilibrium active offers

improve, as consistent with the instinctive logic of lowering participation costs.
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However, now consider an increase in the weaker player’s participation cost,

A2, while holding A1 constant. Ceteris paribus, this encourages 2 to be less ag-

gressive and without any change in 1’s strategy, this would induce 2 to be active

with a lower probability. However, to maintain equilibrium, 1 has to respond by

relocating some passive participation probability towards her point mass at um.

This then reduces 2’s payoff from being passive (and increases her payoff from

being active above um) and thus restores 2’s willingness to randomize in the same

fashion as before the change in A2.

The net result involves an overall improvement in offers: i is active with a

higher probability (at um), while 2’s behavior is unchanged. Hence, it is this effect

that ensures A1 = A2 = 0 is not optimal. In essence, the stronger player has

to act more aggressively in order to encourage the further weakened player to

contest. Specifically, within case iv), the designer faces incentives to decrease A1

while increasing A2 such that s1 rises and r2 falls until s1 = r2. At this point, it is

offer-maximizing to set the lowest values of {A1, A2} possible while still ensuring

set s1 = r2, which gives A1 = 0 and A2 = Ā > 0. Notice that Ā is increasing in

x > 0 and our measure of baseline participation costs, Lϕ − l(um) > 0.

The existing literature on all-pay auctions has suggested that when two players

become more asymmetric, they are likely to compete less aggressively via the

‘discouragement effect’ (e.g. Baye et al. 1993). Results on contest design build

on this to show how competition can be increased by handicapping the ex ante

stronger player and favoring the ex ante weaker player in order to ‘level the playing

field’.16 Somewhat similarly, we demonstrate how an organizer can induce more

fierce competition by using asymmetric participation costs. However, our results

differ in two important ways. First, in contrast to much of the literature, we show

how an asymmetric contest design can stimulate competition even when the players

are otherwise symmetric.17 Second, and more unusually, rather than leveling

the playing field, our results suggest that offer-maximizing organizers should use

participation costs to create or enhance any difference between the two players’

strengths. Indeed, the weaker (stronger) player with the relatively higher (lower)

participation costs should optimally be made even weaker (stronger) by increasing

(reducing) their participation costs. Throughout, it is important to note that it

16For instance, Szech (2015) and Franke et al. (2018) show this in relation to
the use of tie-break rules or headstarts/multiplicative biases, respectively.

17As noted in the introduction, a small stream of literature has found a sim-
ilar principle can also apply but these focus on different settings and different
mechanisms (e.g. Drugov and Ryvkin 2017, Barbieri and Serena 2022, and Pérez-
Castrillo and Wettstein 2016).
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is the combined presence of (baseline) participation costs and default allocations

that is key in our result as Ā would equal zero if either x = 0 or Lϕ − l(um) = 0.

Finally, consider how a contest organizer would optimally design the default

allocation probabilities, x ≡ {x1, x2}. The use of x offers a practical, low-cost

form of contest design that has remained unstudied within the previous literature.

By using our framework, one can show that an organizer will optimally ‘favor’

one of the players by increasing one player’s default allocation probability and

decreasing the other’s. Again, an asymmetric contest design is optimal even when

the players are otherwise symmetric. In the extreme, the designer will actually

make one of the players the ‘default winner’ by setting xj → 1 and xi → 0. Hence,

in the context of our motivating examples from the introduction, this is consistent

with contract-tender settings where some firm is automatically selected in the

event of no bids - our result suggests that such a contest design may be optimal

for an organizer because it can stimulate more competitive bidding. The result

can also have interesting implications outside the context of contest design. For

instance, it suggests that electoral campaigning activity may be greater in settings

where there would otherwise be a clear-cut favorite to win the vote in the absence

of any campaigning. As the explanation and intuition of the default allocation

probability result is very similar to Proposition 1, we defer further details to the

Supplementary Online Appendix.

6 Clearinghouse Models under Full Asymmetry

This section now shows how our framework can be used to characterize the full

clearinghouse equilibrium under arbitrary asymmetry for the first time. Clearing-

house models (e.g. Baye and Morgan 2001, Baye et al. 2004, Baye et al. 2006) are

commonly used within industrial organization and marketing to study the role of

price comparison platforms (or ‘clearinghouses’) on pricing and advertising. Previ-

ously, the literature had only been able to consider firm asymmetries in simplified

or special settings.18 However, by using the tools of contest theory, we can freely

allow for a full set of asymmetries. As a consequence, our paper should open up

new theoretical and empirical research where asymmetry is important, such as

platform design or the regulation of platform fees.

To begin, consider a relatively general version of a duopoly clearinghouse

18For instance, see Narasimhan (1988), Baye et al. (1992), Wildenbeest (2011),
Arnold et al. (2011), Shelegia and Wilson (2021) and Myatt and Ronayne (2024).
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model. Suppose there are two firms, i = {1, 2}, that each sell a single good.

All consumers have the same product preferences and so each consumer has an

identical demand function for firm i’s good, Di(pi), given firm i’s price, pi. How-

ever, note that this demand function can differ across the two firms. Let firm i have

a constant marginal cost, ki ≥ 0, so that firm i’s potential profits per-consumer

equal πi(pi) = (pi − ki)Di(pi). We assume these profits are strictly quasi-concave

in pi with a unique maximizer at firm i’s monopoly price, pmi .

Consumers are split into two types. Each firm i has a base of ‘non-shopper’

consumers with mass λi > 0 who only consider purchasing from their designated

firm i. In addition, there is a group of ‘shopper’ consumers with mass S > 0 who

are initially allocated to the firms in respective proportions, x1 and x2. However,

any shoppers allocated to firm i become aware of firm j ̸= i iff firm j advertises

at a digital platform (or ‘clearinghouse’). Hence, if firm j does not advertise, the

shoppers allocated to firm i only consider firm i but if firm j advertises, then

the shoppers assigned to firm i trade with the firm offering the best deal (using

any tie-breaking rule in the event of a tie). Within a one-shot game, each firm

i simultaneously selects its price, pi, and whether to advertise for a fixed cost,

Ai > 0.

We now translate the model into our framework. First, given firm i’s price, it

is straightforward to calculate firm i’s implied utility offer, ui, its monopoly utility

offer, um
i , and its per-consumer profits in terms of ui, πi(ui).

19 One can then

construct firm i’s payoffs from winning and losing as follows. Suppose firm i opts

to be ‘active’ by advertising. If it has the highest offer, it wins all the shoppers to

receive Wi(ui) = (S+λi)πi(ui)−Ai, but otherwise, it earns Li(ui) = λiπi(ui)−Ai.

Alternatively, if firm i opts to be passive by not advertising, then it will optimally

offer um
i . If firm j advertises, then firm i will then only trade with its share of

non-shoppers to obtain Lϕ
i = λiπi(u

m
i ). However, if firm j is also passive, firm

i will also retain its share of shoppers to receive (xiS + λi)πi(u
m
i ). Equivalently,

in the language of the framework, when both firms are passive firm i will earn

Lϕ
i +xi(W

ϕ
i −Lϕ

i ) where W
ϕ
i = (S+λi)πi(u

m
i ). Finally, one can verify that A1-A4

apply given λi > 0, S > 0, xi > 0, and Ai > 0 ∀i. The measures of strength and

reach can then be calculated, and Theorem 1 can be stated to fully derive the

19Specifically, as the consumers have identical product preferences, all con-
sumers value firm i’s offer with the associated consumer surplus, ui = CSi(pi) =∫∞
pi

Di(x)dx, where u
m
i = CSi(p

m
i ). To then calculate firm i’s per-consumer profit

function in terms of ui, one can denote pi(ui) = CS−1
i (ui) and di(ui) = Di(pi(ui))

to obtain πi(ui) = di(ui)(pi(ui)− ki).
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market equilibrium.

7 Equilibrium with n > 2 Symmetric Players

Within the all-pay contest literature, there is a well-known equilibrium multiplicity

problem when there are n > 2 symmetric players. Specifically, in addition to the

symmetric equilibrium, there also exists a continuum of asymmetric equilibria

(Baye et al. 1996). In what follows, Section 7.1, first uses our framework to

demonstrate how the combination of participation costs and default allocation

probabilities, even if arbitrarily small, can resolve this issue to ensure that only the

symmetric equilibrium remains. To do so, we build on the clearinghouse literature

where a parallel problem exists; the symmetric clearinghouse setting with zero

advertising costs (à la Varian 1980) also has an infinite number of equilibria when

there are more than two firms. There, however, Arnold and Zhang (2014) show

how the presence of positive advertising costs à la Baye and Morgan (2001) can

ensure equilibrium uniqueness. We demonstrate that this equilibrium uniqueness

also holds in our more general contest framework, and highlight how it requires the

simultaneous presence of participation costs and default allocations. Given this

unique equilibrium, Section 7.2 then provides some comparative statics related to

the ‘competitiveness’ of a contest.

7.1 Unique Equilibrium

In their seminal paper, Baye et al. (1996) demonstrate how a standard, symmet-

ric, single-prize all-pay contest (without participation costs or default allocation

probabilities) has an infinite number of equilibria when there are more than two

players. This has remained a long-standing problem within the literature, pro-

viding uncertainty over players’ predicted behavior. Specifically, such multiple

equilibria have the following features (translated into our set-up and notation).

Due to the absence of participation costs, each player is always active with prob-

ability one, α = 1. There then exists i) a unique symmetric equilibrium where all

players mix over [um, ū] with no mass at um, and ii) a continuum of asymmetric

equilibria where at least two players mix over [um, ū], while others mix over [ui, ū]

with a positive mass point at um, where ui > um is a free individual parameter

(and where the relevant player i bids um with probability one if ui ≥ ū).

However, we now show how the combination of participation costs and default

allocation probabilities can guarantee equilibrium uniqueness for all parameter
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values, even in non-generic contests where r = um or s = um. To proceed under

n ≥ 2 symmetric players, we maintain assumptions A1-A3 and an n-player version

of A4 such that xi = (X/n) > 0 for all i:

Proposition 2. Suppose there are n ≥ 2 symmetric players. Given A1-A3 and

xi = (X/n) > 0 for all i, the unique equilibrium of any generic or non-generic

contest is symmetric:

i) When s ≤ um, all players are passive, αi = 0 ∀i.
ii) When s > um, all players are active with probability αi = α ∈ (0, 1) in (10).

They all randomize on [um, ū] with Fi(u) = F (u) in (11) where ū = s and βi = 0

∀i.

α = 1−
(
c(um)

b(um)

) 1
n−1

(10)

F (u) =

(
W (ū)− L(u)

W (u)− L(u)

) 1
n−1

(11)

Proposition 2 shows how all asymmetric equilibria disappear and that only

the symmetric equilibrium remains once both participation costs and default al-

location probabilities become positive. Provided participation is not too costly,

the remaining unique equilibrium involves the players mixing between passive and

active participation with the same interior probability, and randomizing symmet-

rically over [um, ū] without mass at um. This applies for all parameters in both

generic and non-generic contests. Hence, our result could be used as a equilibrium

refinement in the standard model to select the symmetric equilibrium.

Although lengthy to prove, the intuition of Proposition 2 can be understood as

follows. All the potential asymmetric equilibria involve at least one player using

mass at the lowest possible active offer, um. Such an offer at um is relatively un-

competitive because at least two other players always mix over [um, ū]. Within our

framework, the use of such a mass point at um becomes dominated and cannot be

part of equilibrium. Thus, only symmetric equilibria can remain.Then, one can use

a logic akin to Theorem 1, to show that only a single symmetric equilibrium exists.

Again, like at other points in our paper, the combination of positive participation

costs and default allocation probabilities is key in driving this result.20

20Indeed, when X = 0 a continuum of asymmetric equilibria exists even
when participation costs are positive. For instance, when X = 0, there ex-
ists a continuum of equilibria where i) all n > 2 firms randomize on (um, r]

with F (u) =
(

Lϕ−L(u)
W (u)−L(u)

) 1
n−1

, ii) n − 1 firms remain passive with probability
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7.2 The Effects of Competition

Finally, we now discuss some features of the unique equilibrium with respect to

the ‘competitiveness’ of a contest. Interest in the effects of competition within

full information all-pay contests, such as ours, has been rejuvenated due to Fang

et al.’s (2020) recent analysis. While allowing for multiple prizes, they show a

variety of insightful results under the assumption that players face convex effort

costs. In contrast, within our single-prize setting, we show how the introduction

of participation costs and default allocations can reverse some previous findings

in relation to i) an increase in the number of players, and ii) ‘scaling’, where the

number of players and size of prize are both increased proportionately. To see

these features most easily, we place some more structure on our symmetric n ≥ 2

model. Specifically, we focus on a symmetric version of the linear example from

Section 4.2 with reservation offer, uR > um = 0.

7.2.1 Increase in the Number of Players

First, consider an increase in the number of players, n. In a standard, symmetric

all-pay contest with linear effort costs (and no participation costs or default al-

locations), it is well-known that expected individual offers, E(u), are decreasing

in n (e.g. Hillman and Samet 1987). This is further confirmed in a more general

setting with convex effort costs by Fang et al. (2020). Similarly, in the parallel

clearinghouse literature with zero advertising costs à la Varian (1980), it is also

well-known that the expected price, E(p), is increasing in the number of firms

(e.g. Morgan et al. 2006). Intuitively, a higher number of players reduces the

expected reward per player by diminishing the chance of any given player winning

the contest and so players are discouraged from competing aggressively. We refer

to this as the ‘active competition effect’.

In contrast, as we demonstrate shortly, when participation costs and default

allocation probabilities are both strictly positive, the expected offer, E(u), can

rise in response to more players. Hence, if participation costs vary across different

real-world settings, this result could help reconcile the mixed empirical findings

regarding how contest offers are affected by the number of players (see Dechenaux

et al. 2015) or the empirical literature on how the number of firms affects market

prices in clearinghouse settings (e.g. Allen et al. 2014, Lach and Moraga-González

1− α =
(

Lϕ−L(um)
W (um)−L(um)

) 1
n−1

, but iii) the remaining firm arbitrarily splits the same

probability mass between being passive and active with an offer um.
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2017).

To see this in more detail, re-consider Proposition 2 within our linear example

setting from Section 4.2. Here, we know that the equilibrium involving active

players exists if s > uR or equivalently, uR < (1 − x)V . After setting passive

offers to zero for ease, ϕ ≡ 0, one can show that a player’s expected offer, E(u) =∫ s

uR uf(u)du, equals V
n
−
(

uR

(n−X)

)
T where T = X + (1 − X)

(
nuR

V (n−X)

) 1
n−1 . For

any n ≥ 2 and any X > 0, it then follows that E(u) is strictly increasing in

n if uR is sufficiently close to the boundary for active participation, (1 − x)V .

Intuitively, an increase in n now generates a second, opposing effect which we

refer to as the ‘passive competition effect’. In contrast to the active competition

effect, this effect prompts the players to make higher offers by reducing each

player’s chance of winning when passive via their default allocation probability,

x = X/n. The passive competition effect is strongest when participation costs are

relatively large. Indeed, when participation costs are close to the boundary for

active participation, (1 − x)V , this effect can dominate the active competition

effect, such that E(u) increases in n. This result is novel to the literature because

it requires the combination of participation costs and default allocations, uR > 0

and X > 0. If instead, uR = 0 or X = 0, then E(u) is decreasing in n.

7.2.2 (Single-Prize) Scaling

Now consider a different change in competitiveness in the form of (single-prize)

‘scaling’ where an initial contest with n players and a single prize worth V is scaled

up by a factor, m ≥ 1, wherem is an integer. This creates a new, scaled-up contest

with n̂ = mn players and a single prize worth V̂ = mV . While such scaling keeps

the average reward per player constant at V/n, it still increases competitiveness

because players have to beat a larger number of rivals to win.21

In a standard, symmetric, single-prize all-pay contest with linear effort costs

(and no participation costs or default allocations) by Hillman and Samet (1987),

one can easily verify that scaling does not change the level of expected offers,

21This (single-prize) version of scaling coincides with other concepts used else-
where in the contest literature outside all-pay contests, such as ‘replicating’ (e.g.
Wärneryd 2001), or its converse, ‘divisioning’ (e.g. Brookins and Jindapon 2022).
However, it differs somewhat to Fang et al.’s (2020) (multi-prize) definition of
scaling where the scaled-up contest involves an increased number of prizes. In
their setting, even if the initial contest only has one prize of size V , the scaled-up
contest involves m prizes each worth V , rather than a single prize worth mV . We
focus on our (single-prize) definition because our framework is not equipped to
study multiple prizes.
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E(u) = V/n ≡ V̂/n̂. Intuitively, each player optimally responds to the enhanced

prize and higher number of rivals by using an offer distribution with a larger

variance, but an equal expected offer. Now consider Fang et al.’s (2020) analysis

involving a version of Hillman and Samet (1987) with multiple prizes and a general

cost function. They show that (multi-prize) scaling has no effect if costs are linear,

but that such scaling reduces expected offers if costs are convex (Theorem 3, Fang

et al. 2020).

In contrast, by using Proposition 2, we can show that (single-prize) scaling

can produce strictly higher expected offers even with linear costs. To see this

simply, consider the example from Section 7.2.1 again but set the total default

allocation probability equal to one, X = 1. After scaling the initial contest, each

player’s default allocation probability reduces from x = 1/n to x̂ = 1/mn. In the

scaled-up contest, strength, ŝ = V̂ − x̂uR

(1−x̂)
= mV − 1

nm−1
uR, is increasing in m,and

active participation requires ŝ > uR or uR < nm−1
n

V . Hence, to ensure that active

participation can occur for any m ≥ 1,we require uR < n−1
n
V . It then follows

that the expected offer within the scaled-up contest, E(û), equals V̂
nm

− uR

(nm−1)
=

V
n

[
1− n

nm−1
uR

V

]
. As E(û) is increasing inm, (single-prize) scaling produces higher

expected offers. This implies that consolidating m identical contests into a grand

contest can raise the level of individual and aggregate bids. While this result

contrasts with previous results in all-pay settings, it is in line with much of the

scaling literature under different types of contests (e.g. Wärneryd 2001, Fu and

Lu 2009).

8 Conclusion

Due to the presence of fixed participation costs, players often face non-trivial de-

cisions of whether to actively participate in contests. In such cases, as consistent

with some common situations, the outcome of the contest can depend upon the ‘de-

fault allocation’ - how the prize is awarded if no player actively competes. To start

understanding this issue, our paper makes three main contributions. First, it pro-

vides a general, tractable framework that can explicitly characterize all potential

equilibria in all-pay contests under endogenous participation with arbitrary asym-

metries, while allowing for flexible forms of both participation costs and default

allocations. Second, it analyzes how the novel features of our model, participation

costs and default allocations, can be used as new, practical tools in contest design.

We show how asymmetric participation costs or default allocation probabilities can
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optimally stimulate competition even in an otherwise symmetric setting. Finally,

the paper uses the framework to solve the broad family of ‘clearinghouse’ models

(e.g. Baye and Morgan 2001, Baye et al. 2004, Baye et al. 2006) under arbitrary

asymmetry for the first time. By using methods from contest theory, we are able

to allow for a full set of player asymmetries in a way that should open up new

theoretical and empirical research where asymmetry is important, such as plat-

form design or the regulation of platform steering and fees. In doing so, we are

also able to offer a new equilibrium refinement for multi-player symmetric all-pay

contests, and provide some comparative statics related to the ‘competitiveness’ of

a contest that differ markedly to the existing literature. Throughout the paper,

we show how the combination of participation costs and default allocations is key.

Appendix A: Main Proofs

Proof of Lemma 3. By adapting well-known results in the contest or clearing-

house literatures (e.g. Narasimhan 1988, Hillman and Riley 1989, Baye et al. 1992,

Baye et al. 1996), we know that in equilibrium: i) no player will ever use a point

mass at u > um, and ii) if one player has a point mass at u, then the other player

will not. Hence, when combined with Lemma 1, player i can only possibly use a

point mass at um
i or um

j . We now prove that player i will never put a point mass

at um
j ̸= um

i . First, suppose um
i > um

j . A point mass at um
j cannot be optimal as

ui = um
j is dominated via Lemma 1. Second, suppose um

i < um
j . By reversing the

previous argument together with Lemma 1, we know that player j will never select

uj ∈ [um
i , u

m
j ). Thus, if player i had a mass point at um

j , then she would optimally

deviate by moving the mass from um
j to um

i in order to increase her payoffs from

winning (or losing) without affecting her probability of winning.

Proof of Lemma 4. Suppose αi > βi ≥ 0. a) From Lemma 1, we know no player

will set an active offer in the interval (min(um
i , u

m
j ), u

m). Hence, given Lemmas

2 and 3, player i must make offers above um with positive probability. For this

to be optimal, it must be that player j also makes offers above um with positive

probability, otherwise i would deviate. Hence, ū1, ū2 > um. By adapting standard

well-known results (e.g. Narasimhan 1988, Hillman and Riley 1989, Baye et al.

1992, Baye et al. 1996), one can then demonstrate ū1 = ū2 as well as b). For c), we

know that any player l = {1, 2} has an expected payoff from any u ∈ (um, ū] equal

to Ll(u) + Fk(u)[Wl(u)− Ll(u)] given k ̸= l. For player l to mix over u ∈ (um, ū],
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she must earn the same equilibrium payoffs, Π∗
l , over this interval. At ul = ū, she

can guarantee to win (as there are no mass points at ū). Hence, it must be that

Π∗
l ≡ Wl(ū) which implies the unique active offer distribution Fk(u) in (5).

The proof of Theorem 1 is contained separately in Appendix B.

Proof of Proposition 1. We proceed through a number of steps. Given our

assumptions, it is useful to firstly summarize which equilibrium cases are relevant

(across both generic and non-generic contests in Theorems 1 and 2).22 Specifically,

from the text, we know um
1 = um

2 = um, and for any player i we also know that

ri > si for any Ai ≥ 0, and si > um when Ai = 0. Therefore, cases T1iii and T2c

can never apply. However, all other cases remain possible. This leaves T1i and

T2b where α1 = α2 = 0, T2a where α2 = 0 and α1 = β1 ∈ [0, 1)∩ [σ1(u
m
2 ), θ1(u

m)],

T1ii and T2d where α2 = 0 and α1 = β1 = 1, T1iv where 1 > αi > βi ≥ 0 for

i = {1, 2}, and T1v where 1 = α1 > β1 ≥ 0 and 1 > α2 > β2 ≥ 0.

From these, it is immediate that any A consistent with T1i and T2b can

never be offer maximizing as both players would always be passive. Further,

any A consistent with T1ii, T2a, or T2d (which all have α1 = β1 ∈ (0, 1] and

α2 = 0) can never be offer maximizing either because it would be dominated by

some A consistent with T1v. Intuitively, in T1v (where 1 = α1 > β1 ≥ 0 and

1 > α2 > β2 ≥ 0), we know that i) player 2 is active with positive, rather than

zero, probability, and ii) player 1 is active with a weakly higher probability and

has an average active offer strictly above um. Hence, the offer-maximizing A must

lie somewhere within the remaining cases, T1iv and T1v. To understand more,

the next two lemmas detail the comparative statics within these two cases.

Lemma 5. Let um < r2 ≤ s1 such that T1v applies. Then a) a marginal increase

in A1 leaves both players’ offers unchanged, while b) a marginal increase in A2

reduces both players’ offers in the sense of FOSD.

Proof. In T1v, given um
1 = um

2 = um, we know ū = r2, F1(u) = F2(u) =
w(r2)−l(u)
w(u)−l(u)

,

α1 = 1, 1 − α2 = F2(u
m
1 ), β1 = F1(u

m), β2 = 0, Π∗
1 = w(r2) − A1 and Π∗

2 =

w(r2) − A2 ≡ Lϕ. a) From the text we know ∂r2/∂A1 = 0. Hence, a marginal

increase in A1 has no impact on the players’ offers because F1(u), F2(u), (1−α1),

and (1−α2) all remain unchanged. b) From the text, also recall ∂r2
∂A2

= 1
w′(r2)

< 0.

22For ease of exposition, we refer to the cases of Theorems 1 and 2 in abbreviated
form, e.g. T1i refers to case i of Theorem 1, and T2a refers to case a of Theorem
2.
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Hence, both player’s offers reduce because F1(u), F2(u) and (1−α2) are all strictly

increasing in A2 via r2, while α1 is independent of A2.

Lemma 6. Let um < s1 < r2 such that case T1iv applies. Then a) a marginal

increase in A1 reduces both players’ offers in the sense of FOSD, and b) a marginal

increase in A2 improves player 1’s offers in the sense of FOSD but leaves player

2’s offers unchanged.

Proof. In T1iv, given um
1 = um

2 = um, we know ū = s1, F1(u) = F2(u) =
w(s1)−l(u)
w(u)−l(u)

,

1 − α1 = w(s1)−A2−Lϕ

(Wϕ−Lϕ)x
∈ (0, 1), β1 = F1(u

m) − (1 − α1), 1 − α2 = F2(u
m
1 ), β2 = 0

and Π∗
i = w(s1)−Ai for i = 1, 2. a) From the text we know ∂s1/∂A1 < 0. Hence,

both players’ offers reduce in the sense of FOSD as F1(u), F2(u), (1 − α1) and

(1−α2) are all increasing in A1. b) From the text, also recall ∂s1/∂A2 = 0. Thus,

in terms of offers, the only changes that occur involve a decrease in 1−α1 and an

associated increase in β1,
∂(1−α1)

∂A2
= − ∂β1

∂A2
< 0. Hence, player 1’s offers improve in

the sense of FOSD, but player 2’s offers remain unchanged.

To complete the proof of Proposition 1, suppose A1 ≤ A2 such that s1 ≥ s2

and r1 ≥ r2. First, consider case T1iv where um < s1 < r2. Here, we know that a

marginal reduction in A1 (and associated increase in s1) will improve both players’

offers, and a marginal increase in A2 (and associated reduction in r2) will improve

player 1’s offers, but leave 2’s unchanged. Hence, within this case, it is strictly

offer maximizing to reduce A1 and increase A2 until the boundary point where we

approach s1 = r2. At this point, we enter case T1v where um < r2 ≤ s1. In this

case, we know that a marginal reduction in A2 (and associated increase in r2) can

improve both player’s offers. Therefore, we know that reducing A2 until the point

where r2 = s1 > um must be strictly offer-maximizing.

Implementing the point r2 = s1 > um by manipulating {A1, A2} is always

possible given our assumption that r1 > s1 > um when A1 = 0. Indeed, there are

an infinite number of pairs of {A1, A2} for which r2 = s1 > um.With use of (3) and

(4), any such pair must satisfy A1 +
x(Wϕ−Lϕ)(Lϕ−(l(um)−Ai))
w(um)−l(um)−x(Wϕ−Lϕ)

= A2 or equivalently,

A2 =
A1(w(um)−l(um))+x(Wϕ−Lϕ)(Lϕ−l(um))

w(um)−l(um)−x(Wϕ−Lϕ)
. From Lemma 5, the offer maximizing pair

must be the one with the lowest value of A2. Hence, it is offer maximizing to set

A1 = 0 and A2 =
x(Wϕ−Lϕ)(Lϕ−l(um))

w(um)−l(um)−x(Wϕ−Lϕ)
≡ Ā where Ā > 0 due to our assumptions

Lϕ > l(um) and w(um) > Lϕ + x(W ϕ + Lϕ).

Proof of Proposition 2. The proof proceeds in a series of steps that build on

those in Arnold and Zhang (2014):
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STEP 1: To begin, it is trivial to reproduce versions of Lemmas 1-3 for the

case of n > 2 symmetric players. Further, by following standard results in the

literature (e.g. Baye et al., 1992), it is also straightforward to note a few addi-

tional results (without full proof) that apply when at least two players are active

with positive probability. i) At least one player must have a lower bound of their

support, ui, equal to um. To show this, suppose one or more players share the

lowest lower bound, min{uj} > um. Then at least one such player would opti-

mally deviate by relocating probability mass from just above the lower bound to

um because this would strictly increase their payoffs via A2 and yet leave their

probability of winning (nearly) unchanged. ii) There can be no interval of active

offers, u ∈ (u′, u′′) with u′ < u′′, that is only in the support of one player. If so,

that player’s expected payoffs would be decreasing across the interval and so they

would optimally reallocate the probability mass in the interval to the lower end

of the interval. iii) These two results then imply that if at least two players are

active with positive probability, then the lower bound for at least two players, ui

and uj, must equal um.

STEP 2: In equilibrium, no player i can have αi = 1. We prove this by

contradiction across three exhaustive cases. First, suppose there are at least two

players, i and j, with αi = αj = 1. In this case, it must be that ui = uj =

um. If not, with ui < uj, then player i would always wish to deviate. Further,

from Lemma 3, we also know there can be no ties in active offers within any

equilibrium. Hence, players i and j must lose whenever they select um and so

earn an equilibrium payoff of L(um). They would then wish to deviate to being

passive to earn Lϕ via A3. Hence, at most, only one player can have αi = 1.

Second, suppose αi = 1 and αj = 0 for all j ̸= i. For this to be an equilibrium, i

cannot wish to deviate to being passive, and any player j cannot wish to deviate

to um + ε for sufficiently small ε. This requires W (um) ≥ Lϕ + x(W ϕ − Lϕ) and

Lϕ ≥ W (um + ε) respectively, which provides a contradiction for small enough ε

given x(W ϕ −Lϕ) > 0. Finally, suppose only one player i has αi = 1, and at least

one player j has αj ∈ (0, 1). From Step 1, we know at least two players k and

l must have uk = ul = um. This cannot be an equilibrium if player i is neither

k or l, as then players k and l will definitely lose at um and so would prefer to

deviate. Hence, suppose player i equals k. If so, then i has to put a point mass

on um or else l would lose for sure at um and so would wish to deviate. Therefore,

given αi = 1 and αh < 1 ∀h ̸= i, all players other than i must have an equilibrium

payoff Π∗
h = Lϕ, while player i earns Π∗

i = Lϕ + x(W ϕ − Lϕ)Πh̸=i(1 − αh) > Lϕ.

From Π∗
h = Lϕ and αj ∈ (0, 1), it must be that ūj = r otherwise j would deviate
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to above ū if ū < r. However, from Π∗
i > Lϕ, it must be that ūi < ūj =

r. Yet this leads to a contradiction: at ui = ūi, i’s payoff is lower than Π∗
i .

At ūi, player j who randomizes just above ūi has an expected payoff equal to

Π∗
j =L(ūi) + (W (ūi)− L(ūi))Πh̸=jFh(ūi) and this must equal Π∗

j = Lϕ. However,

at ūi, player i earns L(ūi)+ (W (ūi)−L(ūi))Πh̸=iFh(ūi) and this must be less than

Lϕ because Fj(ūi) < 1 and Fi(ūi) = 1.

STEP 3: In equilibrium, any player who is active with positive probability

has the same upper bound, ū. Suppose not. Specifically, suppose there are two

active players, i and j, with ūi ≡ ū > ūj > um. From Step 1, we know it

must be that Fi(ū) = 1 and Fi(ū − ε) < 1 for any ε > 0, such that Fi(ūj) ∈
(0, 1). As there can be no ties, we also know that Π∗

i = W (ū). For this to be

equilibrium, we require i) player i’s expected payoff at ū to be weakly larger than

her expected payoff at ūj: W (ū) ≥ L(ūj) + (W (ūj) − L(ūj))Πh̸=iFh(ūj), and ii)

player j’s expected payoff at ūj to be weakly larger than her expected payoff at ū:

L(ūj)+(W (ūj)−L(ūj))Πh̸=jFh(ūj) ≥ W (ū). However, this leads to a contradiction

because both inequalities cannot hold simultaneously as Πh̸=iFh(ūj) > Πh̸=jFh(ūj)

given Fi(ūj) ∈ (0, 1) and Fj(ūj) = 1. Therefore, all active players must set a

common upper bound, ū, and so achieve an equilibrium payoff, W (ū).

STEP 4: In equilibrium, all players must have αi = α ∈ [0, 1). From above,

we know that each player must be passive with positive probability as no player

can be active with probability one. Thus, any player i must earn equilibrium

payoffs of Π∗
i = Lϕ + x(W ϕ − Lϕ)Πh̸=i(1 − αh). If any player i is active with

positive probability, αi ∈ (0, 1), then we further know that Π∗
i = W (ū) such that

W (ū) = Lϕ+x(W ϕ−Lϕ)Πh̸=i(1−αh). Clearly, it then follows that any player i with

αi ∈ (0, 1) must share the same value of αi = α ∈ (0, 1). Further it cannot be that

one or more players have αi = α ∈ (0, 1) while one or more players have αk = 0

as player k would then earn strictly lower expected payoffs than an active player i

and so wish to deviate to ū, a contradiction; Π∗
k = Lϕ+x(W ϕ−Lϕ)Πh̸=k(1−αh) <

Π∗
i = Lϕ + x(W ϕ − Lϕ)Πh̸=i(1− αh) = W (ū).

STEP 5: If s ≤ um, then the equilibrium is unique and symmetric with α =

0. From Step 4, we know αi = α ∈ [0, 1) for all i. Given s ≤ um, we know

Lϕ + x(W ϕ − Lϕ) ≥ W (um). In this case, there is always an equilibrium at

α = 0 as no player has a strict incentive to deviate to αi > 0 as they earn

Lϕ+x(W ϕ−Lϕ) by being passive andW (um) at most from being active. Moreover,

there is never an equilibrium with α ∈ (0, 1) as this would require any individual

player to be indifferent between being passive and being active at um, such that

Lϕ+x(W ϕ−Lϕ)(1−α)n−1 = L(um)+(W (um)−L(um))(1−α)n−1. However, given
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s ≤ um, this can never hold for α ∈ (0, 1). Hence, the only possible equilibrium

involves α = 0.

STEP 6: If s > um, then the equilibrium is unique and symmetric with α ∈
(0, 1) and Fi(u) = F (u) for all i and for all u ∈ [um, ū]. If s > um, then Lϕ+x(W ϕ−
Lϕ) < W (um). Hence, there can be no equilibrium with α = 0 as a player would

wish to deviate to um instead. Therefore, it must be that α ∈ (0, 1). Next, we

show that for any two players, i and j, it cannot be that Fi(u
′) > Fj(u

′) for some

offer u′ > um. First, suppose that both players select u′ with positive probability.

Fi(u
′) > Fj(u

′) then implies that player j has a higher probability of winning at

u′ and so the two players cannot have the same equilibrium payoffs, contrary to

an earlier result, Π∗
i = W (ū) ∀i. Second, suppose u′ is only selected with positive

probability by player i and not j. From Step 3, we know ūi = ūj = ū > um,

and so there would have to be some û ∈ (u′, ū) in the support of both players,

with Fi(û) > Fj(û) (unless player j has a mass point at û but this is ruled out as

we know mass points can only arise at um for one player, via a n-player version

of Lemma 3). Hence, like above, this leads to a contradiction as the two players

cannot have the same equilibrium payoffs. Third, suppose u′ is only selected with

positive probability by player j and not i. At u′, we know player j must earn

L(u′) + (W (u′) − L(u′))(1 − Fi(u
′))Πk ̸=i,j(1 − Fk(u

′)) = Π∗
j , while player i would

earn Πi(u
′) = L(u′)+(W (u′)−L(u′))(1−Fj(u

′))Πk ̸=i,j(1−Fk(u
′)). Given Fi(u

′) >

Fj(u
′), this leads to Πi(u

′) > Π∗
j = W (ū), which again gives a contradiction.

Fourth, suppose u′ is not selected by either player with positive probability. In

this case, consider the highest offer below u′ which is selected by at least one

player with positive probability, u′′. Such an offer u′′ > um has to exist, otherwise

α = 0. As there are no point masses above um, we must have Fi(u
′′) = Fi(u

′) and

Fj(u
′) = Fj(u

′′). Hence, if Fj(u
′) > Fj(u

′) then Fj(u
′′) > Fj(u

′′) and so one can

then apply the previous deductions again to show a contradiction with u′′ instead

of u′.

Lastly, for any two players, i and j, it also cannot be that Fi(u
m) > Fj(u

m).

From above, we know for all i: αi = α and Fi(u) = F (u) for u > um. Hence, it

must also be that Fi(u
m) = F (um) ∀i. Therefore, when s > um, the equilibrium

is unique and symmetric.

STEP 7: Finally, when s > um, we derive the equilibrium values of α and F (u)

in (10) and (11), together with ū = s and β = 0. First, given Fi(u
m) = F (um), all

the players could, in principle, use an identical mass point at um. However, this

is ruled out by a n-player version of Lemma 3 which says that only one player at

most can use such a mass point. Hence, β = 0. Second, given α ∈ (0, 1), each
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player must be indifferent between i) being passive and selecting um, such that

Π∗
i = Lϕ + x(W ϕ −Lϕ)(1−α)n−1 = L(um) + (W (um)−L(um))(1−α)n−1, and ii)

selecting any u ∈ (um, ū], such that Π∗
i = W (ū) = L(u) + F (u)n−1(W (u)− L(u)).

By rearranging, these provide (10) and (11). Finally by setting Π∗
i = W (ū) =

Lϕ+x(W ϕ−Lϕ)(1−α)n−1 and inserting (10) for the value of α, one can show that

ū = s. One can then verify that 1− α = F (um) such that β = 0 as required.

Appendix B: Proof of Theorem 1

This appendix provides the proof of Theorem 1 by deriving a more general result,

Theorem 2, which characterizes the set of equilibria for both generic and non-

generic contests. For convenience, it is useful to define

δi(u) = 1− Wi(u)− Li(u
m
i )

Wi(um
i )− Li(um

i )
. (12)

Theorem 2. Given A1-5, the equilibrium in any generic or non-generic contest

follows Theorem 1 unless any of the following knife-edge cases apply. If so, the

equilibrium is potentially non-unique:

a) When s1 = um
1 , player 2 is always passive, α2 = 0, but player 1 selects um

1 with

any probability α1 = β1 ∈ [0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)].

b) When r2 = um
2 and s1 < um

1 , then neither player is active, α1 = α2 = 0.

c) When r2 = um
2 , s1 > um

1 and um
1 < um

2 , player 1 is always active with

um
1 , α1 = β1 = 1, and player 2 selects um

2 with any probability α2 = β2 ∈
[0,min{σ1(u

m
1 ), δ1(u

m
2 )}].

d) When r2 = um
2 , s1 > um

1 and um
1 ≥ um

2 , player 1 is always active with um
1 ,

α1 = β1 = 1, and player is always passive, α2 = 0.

The proof of Theorem 2 proceeds as follows. Step 1 provides an exhaustive

list of possible equilibrium forms. Step 2 defines some further features for each

equilibrium form, and characterizes some necessary parameter conditions for each

form to exist. Finally, Step 3 shows how these parameter conditions are enough to

characterize the equilibria for the entire parameter space in a way that is consistent

with Theorem 2.
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Step 1: Possible Equilibrium Forms

Lemmas 1-4 in Section 3 offer a start in thinking about possible equilibrium forms.

However, to narrow this down further, Lemma 7 shows that both players cannot

be active in equilibrium with probability one.

Lemma 7. Suppose both players are active with positive probability in equilibrium

such that αk > 0 for k = 1, 2. Then it cannot be that α1 = α2 = 1. Instead,

either i) αk = βk > 0 for k = 1, 2, in which case it must be that um
j > um

i and

αj = βj ∈ (0, 1) for some j, or ii) αk > βk ≥ 0 for k = 1, 2, in which case it must

be that α2 ∈ (0, 1).

Proof of Lemma 7. Suppose both players are active with positive probability

in equilibrium such that αk > 0 for k = 1, 2. Then, we know it must be that

either i) αk = βk > 0 for k = 1, 2, or ii) αk > βk ≥ 0 for k = 1, 2 because Lemma

4 rules out the possibility that αi > βi ≥ 0 but αj = βj > 0. First consider

i). Here, two initial conditions must hold. First, from Lemma 3, it must be that

um
1 ̸= um

2 . Hence, without loss, let um
j > um

i . Then it must be that αj = βj < 1.

If instead, αj = βj = 1, then player i would lose with certainty by selecting um
i ,

and so would deviate to αi = βi = 0 to earn Lϕ
i > Li(u

m
i ) via A3. Now consider

ii). Here, it cannot be that α2 = 1. We prove this by contradiction under two

exhaustive cases. First, suppose α2 = 1 with α1 = 1 and let um
i = um ≥ um

j .

From Lemma 4, we know both players must mix on (um, ū] and that player i must

select ui (arbitrarily close to) um with positive probability, with no ties at such a

point. Given αj = 1, i must always lose when making such an offer and so earn

an equilibrium payoff (arbitrarily close to) Li(u
m
i = um). However, i would then

strictly prefer to deviate by setting ui = ϕ as Lϕ
i − Li(u

m
i ) > 0 via A3. Second,

suppose α2 = 1 with α1 ∈ (0, 1). Given α2 = 1, player 1 will earn Lϕ
1 when passive.

From Lemma 4, we know that player 1 must mix up to ū and that player 1 will

win with certainty at ū, earning W1(ū). Hence, for player 1 to mix between ϕ and

ū, we require Lϕ
1 = W1(ū). This implies ū = r1. For α2 = 1, we need to rule out

any deviations to ϕ and so we require W2(ū) ≥ Lϕ
2 + (1− α1)x2(W

ϕ
2 − Lϕ

2). From

the definition of strength, the RHS is equivalent to W2(s2). Hence, we require

W2(ū) ≥ W2(s2) which implies ū ≤ s2. Therefore, when combined with ū = r1

and s1 < r1, we require s1 < r1 = ū ≤ s2. This implies s1 < s2; a contradiction

via A5.

Using this with the results from Lemmas 1-4, we can now list the possible

equilibrium forms as follows.
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Lemma 8. Given Lemmas 1-4 and 7, the only possible equilibrium forms are:

1. Neither player is active, α1 = α2 = 0.

2. Player i is always active with um
i , αi = βi = 1, and player j is always passive,

αj = 0.

3. Player i randomizes between being active at um
i and being passive, αi = βi ∈

(0, 1), while player j is always passive, αj = 0.

4. Each player k randomizes between being active at um
k and being passive, αk =

βk ∈ (0, 1), for k = 1, 2, where um
j > um

i .

5. Player j randomizes between being active at um
j and being passive, αj = βj ∈

(0, 1), but player i is always active with um
i , αi = βi = 1, where um

j > um
i .

6. Both players are active above um and active with interior probability, 1 > αi >

βi ≥ 0 for i = 1, 2.

7. Both players are active above um where one player, player 2, is active with

interior probability, 1 > α2 > β2 ≥ 0, and one player, Player 1, is active with

probability one, 1 = α1 > β1 ≥ 0.

Proof of Lemma 8. By definition, any equilibrium must have αi ≥ βi ≥ 0 for

i = {1, 2}. Hence, the only possible outcomes can be exhaustively listed by a)

α1 = β1 = α2 = β2 = 0, b) αi = βi > 0 and αj = βj ≥ 0, and c) αi > βi ≥ 0 for

at least one player i. We now show how these possible outcomes are fully covered

by equilibrium forms 1-7 in the Lemma. First, a) corresponds directly to form 1.

Second, we can split b) into four sub-cases that directly correspond to forms 2, 3,

4, and 5 respectively. Note that Lemma 7 rules out αi = βi = 1 for both players,

and also ensures that um
j > um

i must hold in forms 4 and 5. Finally, if c) applies

then we know from Lemma 4 that αj > βj ≥ 0 must also apply, with both players

being active above um. Hence, c) can be split into two sub-cases that correspond

directly to forms 6 and 7. In form 7, note it cannot be that α2 = 1 due to Lemma

7.

Step 2: Further Results on each Equilibrium Form

We now detail some further features of the equilibrium forms and define some

necessary parameter conditions for the existence of each form. These results apply

for both generic and non-generic contests.

Lemma 9. Equilibrium Form 1: α1 = α2 = 0 is an equilibrium iff si ≤ um
i for

i = {1, 2}.
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Proof of Lemma 9. If α1 = α2 = 0, then each player i expects to earn Lϕ
i +

xi(W
ϕ
i −Lϕ

i ). For α1 = α2 = 0, we require no player i to have an incentive to deviate

by submitting an active offer, even if they were to win at um
i with probability one.

This requires Wi(u
m
i ) ≤ Lϕ

i + xi(W
ϕ
i − Lϕ

i ) for i = {1, 2}. From the definition of

strength this is equivalent to si ≤ um
i for i = {1, 2}.

Lemma 10. Equilibrium Form 2: αi = βi = 1 and αj = 0 is an equilibrium iff

i = 1, j = 2, s1 ≥ um
1 and r2 ≤ um.

Proof of Lemma 10. If αi = βi = 1 and αj = 0 then from Lemma 2, player

i earns Wi(u
m
i ) and player j earns Lϕ

j . For this to be an equilibrium, it is first

necessary that player i has no incentive to deviate to ui = ϕ to earn Lϕ
i +xi(W

ϕ
i −

Lϕ
i ). Hence, we require Wi(u

m
i ) ≥ Lϕ

i + xi(W
ϕ
i − Lϕ

i ), which from the definition

of strength, gives si ≥ um
i . Second, it is necessary that player j has no incentive

to deviate. If j deviated, she would optimally deviate to either i) just above um

to earn slightly below Wj(u
m) if um

i = um ≥ um
j , or ii) um to earn Wj(u

m) if

um
i < um

j = um. Hence, as a necessary condition, we require Lϕ
j ≥ Wj(u

m), which

by using the definition of reach requires rj ≤ um. Thus, this equilibrium requires

si ≥ um
i and rj ≤ um. As we now prove, these two conditions cannot both hold

unless i = 1 and j = 2. We proceed by contradiction. Suppose j = 1 such that

r1 ≤ um. As x1 > 0, this gives s1 < r1 ≤ um. First suppose um = um
2 . This then

implies s1 < um
2 which when combined with A5, gives s2 ≤ s1 < um

2 such that

s2 ≥ um
2 can never apply. Finally, suppose um = um

1 . Then s1 < r1 ≤ um gives

s1 < um
1 which implies s1 = −∞ from Definition 2. From A5, this further implies

s2 ≤ s1 = −∞ such that s2 ≥ um
2 ≥ 0 can also never apply. Hence, it must be

that i = 1 and j = 2.

Lemma 11. Equilibrium Form 3: αi = βi ∈ (0, 1) and αj = 0 is an equilibrium

iff i = 1, j = 2, s1 = um
1 and α1 = β1 ∈ (0, 1) ∩ [σ1(u

m
2 ), θ1(u

m)].

Proof of Lemma 11. Suppose αi = βi ∈ (0, 1) and αj = 0. First, in order

for player i to be willing to mix between um
i and ϕ, we require Wi(u

m
i ) = Lϕ

i +

xi(W
ϕ
i − Lϕ

i ) given αj = 0. This implies si = um
i from the definition of strength.

Further, as player j is passive, she must earn Π∗
j = Lϕ

j + xj(W
ϕ
j −Lϕ

j )(1− αi). To

be an equilibrium, we require neither player to have an incentive to deviate. For

i, this is trivial because she has no other profitable deviations. For j, we proceed

to consider two exhaustive situations: um
j ≥ um

i and um
j < um

i .

Begin with the situation with um
j ≥ um

i . Here, player j could deviate from ϕ to

um
j (or just above um

j if um
i = um

j ). To rule this out, we need Π∗
j = Lϕ

j + xj(W
ϕ
j −
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Lϕ
j )(1−αi) ≥ Wj(u

m
j ) which is equivalent to αi ≤ θi(u

m
j ). For later, it is useful to

note that this condition binds, that is θi(u
m
j ) < 1, when Wj(u

m
j ) > Lϕ

j ↔ um
j < rj.

But more immediately, note that to allow αi > 0 as required, we need θi(u
m
j ) > 0

or equivalently, Wj(u
m) < Lϕ

j + xj(W
ϕ
j − Lϕ

j ). Via the definition of strength, this

implies sj < um
j , which in turn implies sj = −∞. Hence, as si = um

i ≥ 0, it

must be that i = 1 and j = 2 from A5. Given these player identities, we require

W2(u
m) < Lϕ

2 + x2(W
ϕ
2 − Lϕ

2) which implies from (7) that σ1(u
m
2 ) < 0.

Now consider the other situation with um
j < um

i . Here, we need to consider

two possible deviations by player j to a) um
j , or b) just above um

i . First consider

deviation a). This will not be optimal if

Π∗
j = Lϕ

j + xj(W
ϕ
j − Lϕ

j )(1− αi) ≥ Lj(u
m
j ) + (Wj(u

m
j )− Lj(u

m
j ))(1− αi) (13)

Given Lϕ
j > Lj(u

m
j ) from A3, this condition holds for any αi if Wj(u

m
j ) ≤

Lj(u
m
j ) + xj(W

ϕ
j −Lϕ

j ). The condition also continues to hold for higher Wj(u
m
j ) if

Wj(u
m
j ) ≤ Lϕ

j + xj(W
ϕ
j − Lϕ

j ) (such that sj ≤ um
j ) because there, even at αi = 0,

(13) holds. For Wj(u
m
j ) > Lϕ

j + xj(W
ϕ
j − Lϕ

j ) (such that sj > um
j ), then one

can rearrange (13) to require αi ≥ σi(u
m
j ) = 1 − Lϕ

j −Lj(u
m
j )

Wj(um
j )−Lj(um

j )−xj(W
ϕ
j −Lϕ

j )
. Now

consider deviation b) to just above um
i > um

j . To rule this out we require Π∗
j =

Lϕ
j +xj(W

ϕ
j −Lϕ

j )(1−αi) ≥ Wj(u
m
i ) or equivalently, αi ≤ θi(u

m
i ) = 1− Wj(u

m
i )−Lϕ

j

(Wϕ
j −Lϕ

j )xj
.

We now explore deviations a) and b) in three exhaustive parameter regions

and show that in each case, it must be that αi = βi ∈ (0, 1) must lie within the

interval, [σi(u
m
j ), θi(u

m)], as required. Finally, we then prove that in each case, it

must be that i = 1 and j = 2.

First, suppose sj ≤ um
j . Here, deviation a) is never profitable using earlier

results, but to rule out deviation b) we need αi ≤ θi(u
m
i ). To then allow αi > 0 as

required, we need θi(u
m
i ) > 0 or equivalently, Wj(u

m
i ) < Lϕ

j +xj(W
ϕ
j −Lϕ

j ). Given

um
i > um

j , this always holds because Wj(u
m
i ) < Wj(u

m
j ) ≤ Lϕ

j +xj(W
ϕ
j −Lϕ

j ) where

the last part follows from sj ≤ um
j . So, if sj ≤ um

j then any αi = βi ∈ (0, 1) can

be an equilibrium provided αi ≤ θi(u
m
i ).

Second, suppose sj > um
j and rj ≤ um

i . Deviation b): the latter condition on

rj implies θi(u
m
i ) ≥ 1 such that any αi = βi ∈ (0, 1) will automatically satisfy

αi ≤ θi(u
m
i ). However, to rule out deviation a), given sj > um

j , we know from

earlier results that we require αi ≥ σi(u
m
j ). Hence, to allow αi = βi ∈ (0, 1) we

need σi(u
m
j ) < 1. This is assured by sj > um

j and A3: Lϕ
j −Lj(u

m
j ) > 0 and (which

in turn gives Wj(u
m
j ) − Lj(u

m
j ) − xj(W

ϕ
j − Lϕ

j ) > 0). So if sj > um
j and rj ≤ um

i

then any αi = βi ∈ (0, 1) can be an equilibrium provided αi ≥ σi(u
m
j ).
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Third, suppose sj > um
j and rj > um

i . From earlier results we need both

αi ≥ σi(u
m
j ) and αi ≤ θi(u

m
i ) to rule out deviations b) and a), respectively. Whilst

sj > um
j and rj > um

i ensure that σi(u
m
j ) < 1 and θi(u

m
i ) > 0 as required, we still

need to ensure θi(u
m
i ) ≥ σi(u

m
j ) in order for some αi = βi ∈ (0, 1) to be possible.

This condition can be rewritten as

1−
Wj(u

m
i )− Lϕ

j

(W ϕ
j − Lϕ

j )xj

≥ 1−
Lϕ
j − Lj(u

m
j )

Wj(um
j )− Lj(um

j )− xj(W
ϕ
j − Lϕ

j )

or Wj(u
m
i ) ≤ Wj(sj), which is equivalent to sj ≤ um

i . So if sj > um
j and

rj > um
i ≥ sj, then any αi = βi ∈ (0, 1) can be an equilibrium provided αi = βi ∈

[σi(u
m
j ), θi(u

m
i )].

Finally, notice that in all three regions, it follows that i = 1 and j = 2 from

A5. In the first region, we require sj ≤ um
j < um

i = si and so i = 1. In the second

region, we require sj > um
j and rj ≤ um

i = si, and so si > sj follows from sj < rj

for sj ≥ um
j . In the third region, we require sj > um

j and rj > si = um
i ≥ sj, and

so even if si = sj the fact that um
i > um

j implies i = 1 from A5.

To summarize, when um
i > um

j , an equilibrium with αi = βi ∈ (0, 1) and

αj = 0 can arise iff i = 1, j = 2 and either i) s2 ≤ um
2 < um

1 = s1 and α1 ≤
θ1(u

m
1 ) (where σ1(u

m
2 ) ≤ 0); ii) s2 > um

2 , r2 ≤ um
1 = s1, and α1 ≥ σ1(u

m
2 )

(where θ1(u
m
1 ) ≥ 1), or iii) s2 > um

2 , r2 > um
1 = s1, and α1 ∈ [σ1(u

m
2 ), θ1(u

m
1 )]

(where 0 < σ1(u
m
2 ) ≤ θ1(u

m
1 ) < 1). Therefore, in all three cases i = 1, j = 2,

α1 ∈ (0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)]. Furthermore, when um
j = um ≥ um

i , we also found

an equilibrium with αi = βi ∈ (0, 1) and αj = 0 can arise iff i = 1, j = 2,

s1 = um
1 ≤ um

2 , s2 < um
2 , α1 ≤ θ1(u

m), and σ1(u
m
2 ) ≤ 0. Thus, overall, an

equilibrium with αi = βi ∈ (0, 1) and αj = 0 arises iff i = 1, j = 2, s1 = um
1 and

α1 = β1 ∈ (0, 1) ∩ [σ1(u
m
2 ), θ1(u

m)].

Lemma 12. Equilibrium Form 4: αi = βi ∈ (0, 1), αj = βj ∈ (0, 1) with um
j > um

i

is an equilibrium iff i = 1, j = 2, um
1 < s1 ≤ um

2 < r2, α1 = β1 = θ1(u
m
2 ), and

α2 = β2 = σ2(u
m
1 ).

Proof of Lemma 12. Suppose αi = βi ∈ (0, 1) and αj = βj ∈ (0, 1) with

um
j > um

i . Given this, for player j to mix over ϕ and um
j , we require L

ϕ
j +xj(W

ϕ
j −

Lϕ
j )(1−αi) = Wj(u

m
j ). This implies that player i must have αi = βi = θi(u

m
j ). For

θi(u
m
j ) ∈ (0, 1) as required, one then needs sj < um

j < rj. Given αi = βi = θi(u
m
j )

and um = um
j , there are no possible profitable deviations for player j. Now for
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player i to mix with αi = βi ∈ (0, 1) we require Lϕ
i + xi(W

ϕ
i − Lϕ

i )(1 − αj) =

Li(u
m
i ) + (1 − αj)(Wi(u

m
i ) − Li(u

m
i )). This implies player j must have αj =

σj(u
m
i ) and that player i has an associated equilibrium payoff equal to Wi(si). For

σj(u
m
i ) ∈ (0, 1), we require si > um

i . Further, to ensure player i does not wish to

deviate to just above um
j we also require Wi(si) ≥ Wi(u

m
j ) or si ≤ um

j . Thus, we

need um
i < si ≤ um

j together with sj < um
j < rj. From Definition 2, note that

sj < um
j implies sj = −∞. Hence, it must be that i = 1 and j = 2 via A5 as

sj = −∞ < 0 ≤ um
i < si.

Lemma 13. Equilibrium Form 5: αi = βi = 1, βj = αj ∈ (0, 1) with um
j > um

i

is an equilibrium iff i = 1, j = 2, r2 = um
2 > um

1 , s1 > um
1 , and α2 = β2 ∈

(0, 1) ∩ (0,min{δ2(um
2 ), σ2(u

m
1 )}].

Proof of Lemma 13. Given αi = βi = 1, player j can only earn Lϕ
j when

passive. However, given um
j > um

i , player j will earn Wj(u
m
j ) when active. Hence,

for player j to mix with βj = αj ∈ (0, 1), we require Lϕ
j = Wj(u

m
j ) such that

um
j = rj. As xj > 0, this implies um

j = rj > sj and so it must be that sj = −∞.

We also require player i to have no incentive to deviate from um
i to i) ϕ or ii)

just above um
j . To rule out i), we require Li(u

m
i ) + (Wi(u

m
i )− Li(u

m
i ))(1− αj) ≥

Lϕ
i + xi(W

ϕ
i − Lϕ

i )(1 − αj) or αj = βj ≤ σj(u
m
i ). To rule out ii), we require

Li(u
m
i ) + (Wi(u

m
i )− Li(u

m
i ))(1− αj) ≥ Wi(u

m
j ) or αj = βj ≤ 1− Wi(u

m
j )−Li(u

m
i )

Wi(um
i )−Li(um

i )
=

δj(u
m
j ). Thus, we require αj = βj ≤ min{δj(um

j ), σj(u
m
i )}. Hence, to allow for

αj = βj > 0, we require min{δj(um
j ), σj(u

m
i )} > 0. Given um

j > um
i , this is satisfied

if si > um
i . When combined with sj < um

j = rj such that sj = −∞, it must be

that i = 1 and j = 2 via A5 as sj = −∞ < 0 ≤ um
i < si.

Lemma 14. Equilibrium Form 6: 1 > αi > βi ≥ 0 for i = {1, 2} is an equilibrium

iff r2 > s1 > um, ū = s1, α1 = θ1(ū), α2 = σ2(u
m
1 ), β1 = F1(u

m) − (1 − α1) ≥ 0,

and β2 = F2(u
m)− F2(u

m
1 ) ≥ 0.

Proof of Lemma 14. Suppose 1 > αi > βi ≥ 0 for i = {1, 2}. From Lemma 4,

each player k must mix over uk ∈ {ϕ}
⋃
(um, ū]. For this to be part of equilibrium,

each player k must earn their equilibrium payoff, Π∗
k, from any such uk. Thus, to be

indifferent between ϕ and ū specifically, requires Π∗
k = Lϕ

k+xk(1−αl)(W
ϕ
k −Lϕ

k) =

Wk(ū) such that αl = 1− Wk(ū)−Lϕ
k

xk(W
ϕ
k −Lϕ

k)
≡ θl(ū) for any k, l ̸= k ∈ {1, 2}.

Without loss let um
i ≤ um

j . Initially consider a first possibility where βi > 0.

Then, player i must earn its equilibrium payoff, Π∗
i , from setting um

i . Hence,
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Π∗
i = Li(u

m
i ) + (Wi(u

m
i ) − Li(u

m
i ))(1 − αj). By setting this equal to the pre-

vious expression, Π∗
i = Lϕ

i + xi(1 − αj)(W
ϕ
i − Lϕ

i ), one obtains an alternative

expression for αj = σj(u
m
i ). Hence, by setting αj = σj(u

m
i ) = θj(ū), we find

Π∗
i = Wi(si) such that ū = si. Now consider player j. She must earn her equi-

librium profit when selecting select uj (arbitrarily close to) um. Thus, Π∗
j =

Lj(u
m)+ (Wj(u

m)−Lj(u
m))(1−αi+βi). By setting this equal to Π∗

j = Wj(ū), it

gives βi =
Wj(ū)−Lj(u

m)

Wj(um)−Lj(um)
− θi(ū) ≡ Fi(u

m) − (1 − αi). By rearranging the expres-

sion for βi, we then require si > sj to ensure βi > 0 as assumed. Hence it must

be that i = 1 and j = 2. By definition it follows that β2 = F2(u
m) − (1 − α2).

Then, using the definition of strength, one can show (1− α2) = F2(u
m
1 ) such that

β2 = F2(u
m)− F2(u

m
1 ) ≥ 0 given um

1 ≤ um
2 = um. Lastly, given s1 > s2, to ensure

αk ∈ (βk, 1) for k ∈ {1, 2}, we require r2 > s1 > um.

Now continue to assume um
i ≤ um

j , but consider the remaining possibility with

βi = 0. For player j to be indifferent between setting um
j = um and being passive,

we require Lj(u
m
j ) + (Wj(u

m
j ) − Lj(u

m
j ))(1 − αi) = Lϕ

j + xj(W
ϕ
j − Lϕ

j )(1 − αi).

Hence, one obtains an alternative expression for αi = σi(u
m
j ). Then by setting

αi = σi(u
m
j ) = θi(ū), we find Π∗

j = Wj(sj) such that ū = sj. Given βi = 0,

player i should not want to deviate to um
i . Hence, we require Π∗

i = Wi(ū) ≥
Li(u

m
i ) + (Wi(u

m
i )− Li(u

m
i ))(1− αj). After rearranging, this gives Wi(sj) ≤ Lϕ

i +
ci(u

m
i )

bi(um
i )
(W ϕ

i − Lϕ
i )xi = Wi(si) or si ≤ sj. Given βj ≥ 0, player i should also earn

Π∗
i by setting ui just above um

j such that Π∗
i = Wi(ū) = Li(u

m
j ) + (Wi(u

m
j ) −

Li(u
m
j ))(1 − αj + βj). This confirms that βj = Fj(u

m
j ) − (1 − αj). This equals

zero if si = sj but is otherwise positive. Hence, when s1 = s2, player i can either

be 1 or 2, but when si < sj then it must be that j = 1 and i = 2 from A5.

Either way, this again confirms that ū = s1 and β1 = F1(u
m)− (1− α1) ≥ 0 and

β2 = F2(u
m) − (1 − α2) = F2(u

m) − F2(u
m
1 ) = 0. Further, again, we require the

same conditions, r2 > s1 > um, to ensure αk ∈ (0, 1) and αk > βk for k ∈ {1, 2}.
Finally, we also need to verify that Fk(u) in (5) is well-behaved for both k =

{1, 2} with i) Fk(ū) = 1, and ii) F ′
k(u) > 0 for all u ∈ (um, ū]. i) is satisfied

automatically. For ii), note F ′
k(u) has the same sign as −L′

l(u)[Wl(u)−Wl(ū)]−
W ′

l (u)[Wl(ū)−Ll(u)], and that this is guaranteed to be positive for all u ∈ (um, ū]

ifWl(ū) > Ll(u
m) for l = {1, 2}. As Lϕ

l > Ll(u
m), this condition would be satisfied

if Wl(ū) ≥ Lϕ
l . Using the definition of reach, this requires rl ≥ ū for l = {1, 2}

which follows given r2 > ū = s1 > um, and r1 > s1.

Lemma 15. Equilibrium Form 7: 1 > α2 > β2 ≥ 0 and 1 = α1 > β1 ≥ 0 is an

equilibrium iff s1 ≥ r2 > um, ū = r2, α2 = 1 − F2(u
m
1 ), β1 = F1(u

m) > 0 and
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β2 = F2(u
m)− F2(u

m
1 ) ≥ 0.

Proof of Lemma 15. Suppose 1 > α2 > β2 ≥ 0 and 1 = α1 > β1 ≥ 0. From

Lemma 4, each player k must mix over uk ∈ {ϕ}
⋃
(um, ū]. First, it must be true

that β1 > 0 in equilibrium. If not, with β1 = 0, then player 2 would always lose

when choosing u2 arbitrarily close to um and so she would prefer to deviate to ϕ

instead as Lϕ
2 − L2(u

m
2 ) > 0 via A3. Second, it then follows that β2 = 0 when

um
1 ≥ um

2 . To understand this, note that given β1 > 0, β2 must equal zero if

um
1 = um

2 from Lemma 3. Further, if um
1 > um

2 then player 2 will always lose at

um
2 given α1 = 1. Therefore, player 2 would optimally set β2 = 0 and instead,

deviate to ϕ as Lϕ
2 − L2(u

m
2 ) > 0 via A3. Third, for α2 ∈ (0, 1), player 2 must

earn Π∗
2 from any u2 ∈ {ϕ}

⋃
(um, ū]. Hence, she must be indifferent between

setting u i) equal to ϕ, ii) just above um, and iii) equal to ū. Given α1 = 1, this

implies Π∗
2 = Lϕ

2 = L2(u
m) + (W2(u

m)−L2(u
m))β1 = W2(ū) such that ū = r2 and

β1 =
W2(ū)−L2(um)
W2(um)−L2(um)

≡ F1(u
m). Fourth, to ensure ū > um, we require r2 > um. (This

also ensures F1(u
m) > 0 given Lϕ

2 > L2(u
m) via A3.) Fifth, given α1 > β1 > 0,

player 1 must earn Π∗
1 from any u1 ∈ [um, ū]. Given β2 = 0 when um

1 ≥ um
2 , player

1 must earn Π∗
1 = L1(u

m
1 ) + (1− α2)(W1(u

m
1 )−L1(u

m
1 )) by selecting u1 = um

1 . By

setting this equal to Π∗
1 = W1(ū), one obtains α2 = 1− W1(ū)−L1(um

1 )

W1(um
1 )−L1(um

1 )
≡ 1−F2(u

m
1 ).

Given ū > um, our previous condition, r2 > um, ensures α2 ∈ (0, 1) as required. It

then follows that player 2 has a mass point at um
2 of size β2 = F2(u

m)− (1−α2) =

F2(u
m)−F2(u

m
1 ). As consistent with our earlier claim, this is positive if um

1 < um
2 ,

and zero if um
1 ≥ um

2 . Further, player 1 should not want to deviate to being passive,

so we require W1(ū) ≥ Lϕ
1 + x1(W

ϕ
1 −Lϕ

1)(1−α2) ≡ W1(s1). This implies s1 ≥ r2.

So overall, we require s1 ≥ r2 > um. (Finally, we need to verify that Fk(u) in (5)

is well-behaved for both k = {1, 2} with i) Fk(ū) = 1, and ii) F ′
k(u) > 0 for all

u ∈ (um, ū]. Using the details from the proof for Lemma 14, this requires rk ≥ ū

for k = {1, 2}. Here, this follows given r1 > s1 ≥ ū = r2 > um.)

Step 3: Characterizing the Parameter Space

To complete the derivation, Step 3 uses the results from Step 2 to identify the pos-

sible equilibria in each region and show how the equilibrium results are consistent

with Theorems 1 and 2.

First, by using Step 2, it is tedious but straightforward to show that the equi-

libria detailed in Lemmas 9-15 cover all valid parameter cases under our assump-

tions and definitions. Hence, at least one equilibrium form exists in each possible
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parameter constellation.

Second, we need to show that Theorems 1 and 2 cover all possible equilibria,

that each equilibrium is correctly detailed within the Theorems, and that the

equilibria within Theorem 1 are unique. To proceed, we work through Lemmas 9-

15 in reverse order. The necessary and sufficient conditions regarding the levels of

reach and strength in Lemma 15, s1 ≥ r2 > um, are not compatible with any other

Lemma from Step 2 and are fully captured by case v) in Theorem 1. Similarly, the

necessary and sufficient conditions in Lemma 14 are not compatible with any other

Lemmas from Step 2 and are fully covered by case iv) Theorem 1. The necessary

and sufficient conditions in Lemma 13 are fully covered by case c) of Theorem 2.

However, at these conditions, Lemma 10 can also apply and so case c) of Theorem

2 permits α2 = 0 as well as α2 ∈ (0, 1). The necessary and sufficient conditions in

Lemma 12 are not compatible with any other Lemmas from Step 2 and are fully

covered by cases iii) Theorem 1. The necessary and sufficient conditions in Lemma

11 are fully covered by case a) of Theorem 2. However, at these conditions, the

necessary and sufficient conditions for Lemmas 10 and 9 can also apply if r2 ≤ um

or s2 ≤ um
2 , respectively. Nevertheless, these equilibrium possibilities are still

consistent with Theorem 2a because θ1(u
m) ≥ 1 if r2 ≤ um, and σ1(u

m
2 ) and

θ1(u
m) equal zero if s2 ≤ um

2 . The necessary and sufficient conditions in Lemma

10 are not compatible with any other Lemma from Step 2 and are fully covered in

Theorem 1 case ii), apart from the overlap situations that we have already covered,

and apart from the situation where s1 > um
1 and r2 = um

2 ≤ um
1 but this is covered

by case d) of Theorem 2. Finally, the necessary and sufficient conditions in Lemma

9 are not compatible with any other Lemma from Step 2 and are fully covered in

Theorem 1i) apart from the overlap situations that we have already covered, and

apart from the situation where s1 < um
1 and r2 = um

2 but this is covered by case

b) of Theorem 2.
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