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Abstract 

Artificial Intelligence (AI) today occupies a central ranking, especially in a context where 

technological progress is omnipresent. Among the most influential tools, deep learning has 

established itself in both professional and academic domains. This article focuses on the 

effectiveness of convolutional neural networks for detecting weeds competing with rice. To achieve 

this, an extension of the pre-trained Inception_V3 model was used for image classification, while 

MobileNet was employed for image processing. This innovative approach, tested on a rice field 

where distinguishing between rice and weeds is challenging, represents a significant advancement 

in the AI field. However, the training of both models revealed limitations: Inception_V3 exhibited 

overfitting after the 10th iteration, while MobileNet showed high volatility and overfitting from the 

first iteration. Despite these challenges, Inception_V3 stood out for its superior accuracy. 
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1 Introduction 

 
The rise of machine learning has transformed numerous sectors, with applications ranging from 

spam email detection to customer segmentation for advertisements, weather forecasting, and 

climate change studies. Machine learning also plays a crucial role in discovering genetic sequences 

linked to diseases and in developing algorithms for autonomous vehicles and drones (Lantz, 2019). 

Artificial neural networks, inspired by the biological functioning of the central nervous system, 

especially the human brain, are an integral part of the machine learning family (O’Shea & Nash, 

2015). These networks, though powerful, differ from convolutional neural networks, which belong 

to the deep learning category. Convolutional neural networks are particularly effective in image 

processing and computer vision due to their complex structure based on stacking multiple 

convolutional layers (Tuffery, 2023). 

These research advancements, accompanied by technological progress, have gradually been 

integrated into agriculture, where deep learning and machine learning are increasingly used 

(AgroTIC, 2018; Liakos et al., 2018). Computer vision, for instance, has found applications in crop 

monitoring (Wu et al., 2021), especially for weed detection in various plantations. Models such as 

CaffNet have been used to detect weeds in soybean fields (dos Santos Ferreira et al., 2017), while 

WeedNet-R has been applied to sugar beet plantations (Guo et al., 2023), and other models have 

been deployed for pepper cultivation (Subeesh et al., 2022). Remote sensing is also used to monitor 

weeds in rice fields (Rosle et al., 2021). 

However, weed management remains a major challenge for agricultural economics. Their 

detection, which is complex (Khan et al., 2016), is crucial as they compete directly with crops 

(Buhler, 2002). Rudimentary weed detection methods may lead to the misuse of herbicides (Abbas 

et al., 2018), contributing to the excessive application of toxic products to crops (Griffon, 1999). 

In the face of these challenges, deep learning offers promising solutions. Image classification 

techniques based on binary cross-entropy (Ruby & Yendapalli, 2020) and multispectral methods 

like WeedNet (Sa et al., 2017) have been developed to improve weed detection. The contribution of 

neural network models in image processing, coupled with experimentation on different loss 

functions, continues to push the boundaries of this field (Zhao et al., 2015). 

This article proposes an innovation in deep learning by extending the use of pre-trained models 

for weed detection classification. This classification task is particularly complex because, unlike 

other classification tasks involving distinct elements, there is a strong similarity between the 

elements to be classified. 

Indeed, the question arises: Which convolutional neural network model should be used to 

recognize, classify, and predict weeds in a rice field? 

To address this question, the article follows the structure below: the second section presents the 

materials and methods, followed by the results in the third section. The fourth section is dedicated 

to discussion, and the article concludes with a fifth section on the conclusion. 
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2  Materials and Methods 

2.1 Materials 
The R/RStudio software was used throughout the experimentation and modeling process, 

with the TensorFlow and Keras modules being the most utilized. Other modules, such as tidyverse, 

raster, and mapview, were also employed for data preparation and visualization. 

For data collection, a Phantom 4 Pro drone was used to capture aerial images. Additionally, 

the entire process was carried out using a computer equipped with an AMD Ryzen 7 5800X 16-core 

processor with 96MB cache, 32GB of RAM at 3600 MHz, and an AMD Radeon RX 6700 graphics 

card with 10GB cache. The quality of the work and the speed of the experimental process depend 

heavily on the computing technology used, particularly the components listed above. 

 

2.2 Méthods 

2.2.1 Image processing 

Image processing involves training, validating, and testing a convolutional neural network 

model using data in the form of images. The goal is to highlight the most discriminative features 

within these images. To achieve this, several pre-trained models were evaluated, including: 

DenseNet_201, EfficientNet_B0, InceptionResNet_V2, Inception_V3, MobileNetV3_large, 

MobileNet, ResNet_101, ResNet_50, VGG16, VGG19, and Xception. The optimal model was 

selected based on the loss value, accuracy, and convergence over a given number of iterations. 

Before training the model, preliminary steps are necessary, such as: 

• Reading the image from a specified location. 

• Decoding the image (JPEG or PNG) for transformation into a tensor object. 

• Resizing the image to the desired dimensions. 

The pre-trained models were trained individually to assess their performance. For this purpose, 

each model was compiled using an optimizer algorithm to update weights (gradient descent) while 

minimizing a specified loss function. A precision metric was then chosen to evaluate the model’s 

performance during training and evaluation. Finally, a loss function was selected to measure the 

difference between the predicted probability distribution and the actual probability distribution 

(labeled data). After compilation, the adjustment phase involved minimizing the loss function on 

the training and evaluation data over a set number of iterations and batch sizes. 

For visualization, the intermediate layers of the neural network were activated, which involved 

performing image predictions via tensors. In other words, the outputs from the input layers or 

images were obtained. 

 

2.2.2 Classification 

Convolutional neural network models are renowned for their ability to perform classification 

tasks due to their capacity to capture the spatial features of images. 
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Figure 1 – Classification Procedure 

 

The above figure outlines the sequence of steps necessary for achieving accurate classification. 

The first step involves structuring the input data by splitting the image into several small patches. These 

patches are then labeled as “1” if they represent weeds and “0” otherwise. The splitting process is 

carried out using a function or algorithm capable of dividing the input image into subsets. The resulting 

files are numbered and stored in two separate folders to ensure correct reading during the prediction 

phase. 

The second step involves splitting the data into training and evaluation datasets. This is followed 

by data preparation, including converting images into tensors, randomization, batching, and ultimately 

transforming them into raster data. The third step is the training phase, followed by prediction in the 

fourth step, and ending with the transformation of training results for visualization. 

 

3 Résults 

3.1 Image processing 

 
The figure below shows an image representing a rice field where both rice and non-rice 

elements can be observed. This is also a digital image (pixels) that is translated into numerical data 

to feed the convolutional neural network model. This serves as the input data provided to the model 

for making predictions or classifications.
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Figure 2 –  Image Captured by a Drone (Altitude: 30m) 

 

After extracting the first activation layer from the training of pre-trained convolutional neural  

network models, the following results were obtained: 

 

densenet_201 efficientnet_b0 inceptionresnet_v2 inception_v3 

 
 

 

mobilenetV3_large mobilenet resnet_101 resnet_50 

 
 

 

vg116 vgg19 xception 
 

Figure 3 –  Processing the Input Image with Pre-trained Neural Network Models 

 

Three distinct colors corresponding to three different characteristics were observed in Figure 3. 

For the VGG16 and VGG19 models, only green was visible. For DenseNet_201, ResNet_101, and 

ResNet_50, only yellow was visible. For other models, the distinction of soil structure through color 

is apparent but not homogeneous. In other words, the color assignment to various soil elements 

differs across models.
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input Mobilenet 

 

 

MH Sol/Eau Riz 
 

Figure 4 – Soil Occupancy Structure 

 

Figure 4 shows that the soil occupancy structure is clearly identifiable using the pre-trained 

MobileNet model. Weeds, soil/water, and rice are represented by three distinct colors. 

 

3.2 Classification 
Figure 5 shows a sample of rice images obtained by subdividing the input image (Figure 2) after 

applying a specific function. 
 

 

 

 

Figure 5 – Rice Sample from Input Image 

 

In contrast, Figure 6 shows a sample image where no traces of rice are visible.. 
 

 

 

 

Figure 6 – Weed Sample from Input Image 

 

In total, the input image was subdivided into 505 sub-images of weeds and 505 sub-images of 

rice, each measuring 128 × 128 pixels. 
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Table 1 – Comparison Between Architectures of Two Pre-Trained CNN Models 
 

Inception_V3.1 MobileNet 

One (01) input layer One (01) input layer 

Six (06) convolutional layers Four (04) convolutional layers 

Six (06) activation functions Six (06) activation functions 

Six (06) normalization operations Six (06) normalization operations 

Two (02) max-pooling layers Two (02) zero-padding layers 

One (01) flattening layer Three (03) depthwise convolutional layers 

Two (02) fully connected layers One (01) flattening layer 

Number of parameters: 2,769,152 Two (02) fully connected layers 

 Number of parameters: 33,586,241 

Source: Authors 

The quality of image processing results from the Inception_V3 and MobileNet pre-trained 

models led to a comparison of their performance. An extension was implemented on the 

Inception_V3 model to lighten computations, prevent overfitting, and ensure the convergence of 

loss and accuracy values for both training and evaluation data. 

The training results for the two models are shown below: 

 

Inception_V3.1 Mobile_Net 
 

Figure 7 – Training of a CNN Model with Extended Input Data 

 

For the first model, a rising trajectory in accuracy and a declining trajectory in loss were 

observed for both training and evaluation data over 30 iterations. A slight convergence was noted, 

with a relatively stable and less volatile curve. Accuracy reached its maximum at the 15th iteration 

for training data, approaching a value of 1. For evaluation data, accuracy remained above 0.8 

without exceeding 0.9. 

For the MobileNet model, the loss trajectory showed convergence between training and 

evaluation data. However, the accuracy curve exhibited high volatility and a downward trend after 

30 iterations, indicating early overfitting. Moreover, accuracy on the training data never exceeded 

0.6, deeming it very low.
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Table 2 – Training Diagnostic 
 
 

 
Indicator 

Inception_V3 MobileNet 

Final value Average Final value Average 

Loss (Training) 0.0671 2.0586 0.6914 9.8400 
Accuracy (Training) 0.9870 0.9210 0.4907 0.5320 

Loss (validation) 1.3500 2.7280 0.6934 8.1840 

Accuracy (validation) 0.7233 0.7190 0.4980 0.5280 

Source : Author’s computation 

 

 

The table above shows the final values and averages for each model concerning the loss and 

accuracy variables throughout the training and evaluation phases. Specifically, the "average" 

column indicates the average of each variable over 30 iterations, while the "final value" column 

corresponds to the value obtained at the 30th iteration. 

 

 

Inceptionv3  
Mobilenet 

 

 

  
Prob ≤ 0.5 Pob > 0.5 

Figure 8 – Overlay of Rice Field and Mosaic 

 

Figure 8 illustrates the overlay of the input data (a rice field) and the output data (a distribution 

of tiles on the rice field). Two tiles of different colors are visible in the figure. This indicates that if 

the tile is gray, the probability of weed presence is less than 0.5. If it is transparent, the probability 

exceeds 0.5 

 

 
 

(a : inception_V3.1) (b) 
(c)

 

 

Figure 9 – Rice fields and Mosaic 

 

A transformation of the output data into raster format allowed us to convert grayscale data (see 

Figure (b)) into RGB data, on which the probability distribution was performed (see Figure (b)). 

Additionally, assembling the tiles into a black-and-white mosaic revealed information quite similar 
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to that of the color mosaic. A white tile indicates the presence of weeds in the rice field with a 

probability approximately equal to 1 (Prob(Weeds) ≈ 1), whereas this probability is less than 0.5 if 

the tile is black (Prob(Weeds) < 0.5). If the tile is gray, the presence of weeds is estimated to be 

between 0.5 and 0.9 (0.5 ≤ Prob(Weeds) < 0.9). 

 

4 Discussion 
 

The image processing results using DenseNet_201, ResNet_101, ResNet_50, VGG16, and 

VGG19 models were inconclusive because the most specific features did not clearly emerge. 

Conversely, the performance of MobileNetV3_large, EfficientNet_B0, InceptionResNet_V2, 

Inception_V3, and Xception models was considered average. For these models, the soil occupancy 

data showed some confusion, and the images were not clear enough to enable precise weed 

distinction. 

On the other hand, the MobileNet model succeeded in making weeds, soil, water, and rice 

visible. Regarding classification, however, MobileNet tended to underestimate the presence of 

weeds, assigning a probability below 0.5. Consequently, the model labeled certain areas with gray 

tiles where weeds were clearly present, resulting in a predominance of gray tiles in those zones (see 

Figure 8). 

The precision rate estimated for MobileNet was 49%, compared to 83% for Inception_V3.1. 

Although MobileNet demonstrated satisfactory performance in image processing, its precision rate 

in classification disqualifies it as the optimal model. 

Furthermore, the final performance of the Inception_V3.1 model surpassed MobileNet, despite 

MobileNet's lower loss value. On average, Inception_V3.1 provided satisfactory results. 

In light of these findings, the Inception_V3.1 model meets the requirements for convergence and 

high precision, making it the optimal model for weed detection in a rice field, despite moderate 

effectiveness in image processing. The optimization of this model reduced computation time by 

limiting the number of parameters. The addition of fully connected layers endowed it with the 

ability to learn complex relationships between inputs and outputs, capturing sophisticated nonlinear 

dependencies within the data (Basha et al., 2020). 

 

5 Conclusion 
 

It is well established that deep learning is one of the most valuable fields of artificial intelligence 

for data science. Among revolutionary techniques, convolutional neural networks have transformed 

both image processing and classification. Technological advances and experimentation have led to 

the emergence of pre-trained models that have proven particularly effective in various competitions. 

To further enhance this efficiency, an extension was applied to the pre-trained Inception_V3 model 

to improve its precision. 

 

Our experimentation demonstrated that while MobileNet achieved satisfactory performance in 

processing images of rice crop data, the modified Inception_V3.1 model outperformed others in 

classification tasks. It is also clear that data quality significantly influences the results obtained. 

 

Our work produced conclusive results, leading us to conclude that the Inception_V3.1 model is 

optimal for weed detection in a rice field. 
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