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1 Introduction

In this paper, we study changepoint detection in the context of inference based on the Estimat-

ing Functions (EF) approach. The EF approach was originally developed by Godambe (1960)

for fully parametric estimation and by Durbin (1960) for estimating a simple autoregressive

structure. Several contributions have been developed thereafter, extending the application of

EF to more general, non independent and identically distributed (i.i.d.), stochastic processes;

whilst a complete review of the literature is beyond the scope of this paper, we refer, inter alia,

to the papers by Godambe (1985), Godambe & Heyde (1987), Jacod & Sørensen (2018), and

Francq & Zakoïan (2023); the reviews by Bera & Bilias (2002), Bera et al. (2006), and Heyde

(1997) o�er an excellent description of the state of the art on EF-based inference.

In essence, the EF approach is based on estimating a �nite dimensional parameter, say θ, by

solving the equation Hn (θ) = 0, for some observation-dependent function Hn (θ). A common

name for the resulting estimator is Quasi Likelihood Estimator (QLE). Clearly, several popular

estimation techniques can be cast in the EF framework. For example, the QMLE is a particular

case of QLE, which can be used when the QML criterion is di�erentiable, and Hn (θ) = 0

corresponds to the �rst-order conditions of the maximisation problem; however, QMLE can be

asymptotically less e�cient than QLE (see Francq & Zakoïan (2023) for examples). Similarly,

the GMM estimator of Hansen (1982) is related to QLE, with Hn (θ) = 0 corresponding to the

moment conditions, although the two estimation techniques di�er in the way the observations

are weighted. Christensen et al. (2016) show that, in general, the optimal QLE is strictly more

e�cient than the optimal GMM. Indeed, as Vinod (1997) puts it, it �[...] is remarkable that

whenever the OLS or ML estimators do not coincide with the OptEF, it is the OptEF that have

superior properties in both large and small samples� (p. 216).1 On account of these optimality

properties, the EF approach has become a very important technique in the toolbox of the

applied scientist in such diverse �elds as: survey sampling, where Godambe & Thompson (2009)

use EF to estimate the response probability parameters (see also the examples in Godambe

& Thompson 2009); biostatistics, where the EF approach has been applied to longitudinal

datasets in the highly in�uential paper by Liang & Zeger (1986); in �nance, where EF has been

suggested for the estimation of (discretely sampled) di�usion-type models (Bibby et al. 2010);

and in economics, where, for example, the estimation of the consumption based CAPM - see

Tauchen (1986) - which is usually carried out via GMM, with often ad hoc choices of moments,

1"OptEF" refers here to the optimal EF estimator.
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can instead be based on the EF approach, and Vinod (1997) reports a comprehensive empirical

illustration with a comparison between the EF and the GMM methods.

The EF approach is particularly attractive for time series where the dynamics is not fully

speci�ed, but the conditional mean is assumed to be a given function of past observations and

a �nite-dimensional parameter. Unlike "strong" models, which are generally determined by

a sequence of innovations (often assumed to be i.i.d.), models characterized only by the �rst

conditional moment (so-called "weak" location models) are not naturally amenable to (quasi)

likelihood-based inference. For example, the consistency of the Gaussian quasi-maximum likeli-

hood (QMLE) estimator requires, among other regularity assumptions, the correct speci�cation

of the �rst two conditional moments. In contrast, the QLE, which is obtained by solving estimat-

ing equations derived from the �rst conditional moment, can be consistent and asymptotically

normal without the correct speci�cation of the second conditional moment (see Francq & Zakoïan

2023). In this approach, only the conditional mean needs to be correctly speci�ed.

In many applications, however, the conditional mean may undergo a structural change, which

highlights the importance of testing for the possible presence of changepoints. This issue is of

particular importance in the context of a time series, where, as Hansen (2001) puts it: �Structural

change is pervasive in economic time series relationships, and it can be quite perilous to ignore.

Inferences about economic relationships can go astray, forecasts can be inaccurate, and policy

recommendations can be misleading or worse� (p. 127). The literature on changepoint has

a long history, starting with Page (1955), and we refer to Csörgö & Horváth (1997), Aue &

Horváth (2013), Casini & Perron (2019) and Horváth & Rice (2024) for state-of-the-art reviews.

Whilst numerous contributions have been developed to test for changepoints based on several

estimators, to the best of our knowledge nothing is available for the case of EF based inference,

and extending the results available for other existing techniques is not a trivial task. Hence,

in this paper we investigate the detection of changepoints in the conditional (parametric) mean

of a weak location model, using the EF approach to estimate the parameters. We make three

main contributions. First, we study the distribution of CUSUM test statistics constructed as

the partial sums of the quasi-Fisher scores used in the EF approach. The testing procedure

depends on the choice of a sequence of weights, leading to a potentially in�nite number of

consistent tests, and in this paper we show that the best test is related to Godambe's optimal

QLE, also discussing data-driven procedures for this optimal choice of weights. Second, we

study inference in the presence of a changepoint, also deriving the limiting distribution of the

estimated breakdate. Third, we also study the case where the conditional mean is misspeci�ed,
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developing Heteroskedasticity and Autocorrelation Consistent (HAC) versions of the tests.

Let us mention a few references on CUSUM-based test statistics that are most relevant to

our work. Ploberger & Krämer (1992) introduced an OLS-based CUSUM test for testing the

constancy of regression coe�cients. Horváth & Parzen (1994) proposed a weighted-CUSUM of

Fisher's scores for testing iidness. Berkes et al. (2004) adapted the approach to test parameter

constancy in GARCH model, using a QMLE-based score. Negri & Nishiyama (2017) considered

more general models with applications to ergodic and non-ergodic di�usion processes. Kutoyants

(2016) considered CUSUM statistics based on Fishers's score and studied goodness-of-�t tests

for di�usion processes and nonlinear time series models. Lee et al. (2003) considered a CUSUM

based on θ̂k − θ̂n for k = 1, . . . , n, where θ̂k is an estimator based on the �rst k observations.

Shao & Zhang (2010) proposed a self-normalized Kolmogorov-Smirnov test for a change point

in the mean of a time series. Aue & Horváth (2013) showed how CUSUM statistics can be used

to detect breaks in the unconditional and conditional means and variances of time series.

The remainder of the paper is organized as follows. Section 2 presents the EF approach. In

Section 3, we study the test statistic, its asymptotics under the null (Section 3.1), optimality

and inference under the alternative (Section 3.2), the case where the conditional mean may

not be correctly speci�ed (Section 3.3), and change-point estimation (Section 3.4). Numerical

illustrations based on simulated and real �nancial data are reported in Section 4.The datasets

and R-codes used for the illustration are available here: https://doi.org/10.5281/zenodo.

14899445. Examples and proofs are relegated to an appendix.

2 Model, assumptions and the estimating function approach

Consider a real time series (yt)t∈Z and the sigma-�eld Ft generated by {yu : u ≤ t}. Assume the

existence of a well-de�ned function mt(θ) = m(θ; yt−1, yt−2, . . . ), depending on some parameter

θ ∈ Θ where Θ is a compact subset of Rd, such that for some parameter value θ0 and all t ∈ Z,

mt := mt(θ0) = Et−1(yt), where Et(·) = E(· | Ft). (1)

It is assumed that m(θ; ·) is a well de�ned measurable function of {yu : u ≤ t} and that mt(·)

is almost surely continuous over Θ. It is always possible to write the model as

yt = mt + ϵt, (2)

where mt ∈ Ft−1 and (ϵt) is such that Et−1(ϵt) ≡ 0, or equivalently,

Et−1ϵt(θ0) = 0, ϵt(θ) = yt −mt(θ). (3)
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We refer to Model (2) as a weak location model, by contrast with models in which strong as-

sumptions are imposed on the error term, such as iidness.

Our main focus will be to test for the possible presence of changes in θ as time elapses. In

other words, assuming the observations y1, . . . , yn satisfy, for u0 ∈ (0, 1],

yt = yt,n =

 mt(θ1) + ϵt if t ≤ [nu0],

mt(θ2) + ϵt if t > [nu0],
(4)

where (ϵt) is such that Et−1(ϵt) ≡ 0 and θ1,θ2 ∈ Θ, we consider testing the hypothesis of

constancy over time

H0 : u0 = 1 (5)

versus the alternative hypothesis that a change occurs at an unknown change point

HA : u0 ∈ (0, 1) and θ1 ̸= θ2. (6)

We would like to point out that, in (6), we consider the alternative hypothesis of At-Most-One-

Change (AMOC) for simplicity and only for illustrative purposes; in principle, our approach

lends itself to being generalised to the case of multiple changepoints.

2.1 The estimating function approach

We begin by discussing the estimation of θ via the EF approach. For the sake of a concise

discussion, we only report the main aspects of estimation; illustrative examples are presented in

Section A of the Appendix.

Assume that n variables y1, . . . , yn have been observed from the time series {yt,−∞ < i < ∞}.

Consider the following assumed proxy of σ2
t (θ) := Et−1 {yt −mt(θ)}2:

κ2t(θ) = κ2 (θ; yt−1, yt−2, . . . ) . (7)

Note that mt(θ) and κ2t(θ) depend on the non-observed values {yu : u ≤ 0}. Moreover,

κ2t(θ) = κ2t(θ,γ) may depend on some unknown nuisance parameter γ (as well as σ2
t (θ)).

Let It be the sigma-�eld generated by {yu : 1 ≤ u ≤ t}, the information available at time t,

with It ⊂ Ft. Let m̃t(θ) be an It-measurable approximation of mt(θ).
2 Similarly, κ̃2t stands

for an It-measurable approximation of κ2t, which may be constant or may depend on θ; when

κ2t(θ) = κ2t(θ,γ) depends on a nuisance parameter γ ∈ Θ1 with Θ1 a compact set, and γ̂n is

an estimator of γ, then κ̃2t = κ̃2t(θ, γ̂n) denotes an In-measurable approximation of κ2t(θ).

2See Assumption A3 below for a more precise de�nition.
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Letting, under di�erentiability assumptions displayed below,

Υ̃t(θ) =
∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t
, with ϵ̃t(θ) = yt − m̃t(θ),

the parameter θ0 can be estimated by the solution θ̂ of

n∑
t=1

Υ̃t

(
θ̂
)
= 0. (8)

As far as the vocabulary goes, equation (8) is the estimating equation, and its left-hand side

the estimating function. This estimating function corresponds to Fisher's score for particular

conditional distributions of yt (see Example 2 in Section A in the Appendix) and in general it

can be interpreted as a quasi-score, hence the title of the paper. Any measurable solution θ̂ of

the estimating equation (8) is the QLE, and all the QLEs that we consider hereafter only di�er

by the weighting sequence κ̃2t. In Section A.1, we discuss some examples of QLE (see Examples

1 and 2), and illustrate the link between QLE and GMM (Example 3); in Section A.2, we discuss

examples of κ̃2t (see Example 4, where we also discuss data-driven rules to optimally select κ̃2t;

see Example 5 for GARCH estimation of κ̃2t).

2.2 Assumptions

To develop a test of the null hypothesis H0 of no change, we make the following assumptions.

De�ne

Υt(θ) =
∂mt(θ)

∂θ

ϵt(θ)

κ2t(θ)
, (9)

and, under the assumptions below, consider the matrices

I = E
(
σ2
t (θ0)

κ22t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ′

)
, (10)

J = −E
(

1

κ2t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ′

)
. (11)

A1 The process (yt)t∈Z is strictly stationary and ergodic.

A2 There exists ρ ∈ [0, 1) such that, almost surely (a.s.) supθ∈Θ |mt(θ) − m̃t(θ)| ≤ Ktρ
t,

where Kt is a generic Ft−1-measurable random variable such that suptEKr
t < ∞ for some r > 0.

A3 Let Υt(θ) =
∂mt(θ)

∂θ
ϵt(θ)
κ2t(θ)

. If E{Υt(θ)} = 0 for some θ ∈ Θ, then θ = θ0. The parameter

θ0 belongs to the interior of the compact set Θ.

A4 The function θ 7→ mt(θ) is twice continuously di�erentiable, and

sup
θ∈Θ

∥∥∥∥∂mt(θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥ ≤ Ktρ
t, a.s.
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where Kt is as in A2, ∥ · ∥ denotes any norm on Rd. Moreover, for some s > 0, E|yt|s < ∞ and

E supθ∈Θ

{
|mt(θ)|s +

∥∥∥∂mt(θ)
∂θ

∥∥∥s} < ∞.

A5 If λ⊤ ∂mt(θ0)
∂θ = 0 a.s. then λ = 0d.

A6 There exists a constant κ > 0 such that infθ∈Θ κ2t(θ) ≥ κ a.s.

A7 For all θ ∈ Θ the sequence {κ2t(θ)}t∈Z is stationary, ergodic and Ft−1-measurable, the

function θ 7→ κ2t(θ) is continuously di�erentiable, there exist ρ ∈ [0, 1) and Kt as in A2 such

that, almost surely,

sup
θ∈Θ

|κ2t(θ)− κ̃2t(θ)| ≤ Ktρ
t

for n large enough.3

A8 We have

E sup
θ∈Θ

∥Υt(θ)∥2 < ∞ and E sup
θ∈Θ

∥∥∥∥∂Υt(θ)

∂θ⊤

∥∥∥∥ < ∞.

AssumptionsA1-A8 have similarities with Assumptions A1-A10 in Francq & Zakoïan (2023),

and we refer to that paper for comments. In Section A.3 in the Appendix, we illustrate them

through some examples (see Examples 6 and 7, where we consider an application to AR(1)

models).

3 Change-point tests

Inspired by basic CUSUM statistics used in changepoint problems, we consider the process,

de�ned for u ∈ [0, 1] by

T̃ n(u) =
1√
n

[nu]∑
t=1

Υ̃t(θ̂).

By convention T̃ n(0) = 0 and, by de�nition of the QLE, we also have T̃ n(1) = 0. A natural

statistic for testing H0 is

S̃n = sup
u∈(0,1)

S̃n(u) = max
k∈{1,...,n−1}

S̃n(k/n), S̃n(u) = T̃
⊤
n (u)I

−1
n T̃ n(u)

where In denotes a non singular consistent estimator of I. Note that A5 entails that I is not

singular.

3Recall that κ̃2t may depend on γ̂n.
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3.1 Asymptotics under the null of no change

Inspired by the references mentioned in the introduction, we will show that, under the null

of no break, T̃ n(u) converges weakly to a Gaussian process T (u) = (T1(u), . . . , Td(u))
⊤ with

covariance structure ET (u) = 0 and Cov(T (u),T (v)) = I{min(u, v) − uv}. Thus, each com-

ponent of the vector I−1/2T (u) is a standard Brownian bridge {B(u), u ∈ [0, 1]}, with B(u) =

W (u)− uW (1) where {W (u), u ∈ [0, 1]} denotes a standard Brownian motion on Rd.

Theorem 1. Under Assumptions A1-A8, including H0, we have

S̃n
L→ S := sup

u∈(0,1)
T⊤(u)I−1T (u) = sup

u∈(0,1)

d∑
j=1

{Bj(u)}2,

where B(u) = (B1(u), . . . , Bd(u))
⊤ is a d-dimensional standard Brownian bridge.

Note that the distribution of S (for d ≤ 10) is tabulated in Lee et al. (2003). In the proof of

this theorem, we establish the following expansion which will be used throughout:

T n(u) :=
1√
n

[nu]∑
t=1

Υt(θ̂)

=
1√
n

[nu]∑
t=1

Υt(θ0)− u
n∑

t=1

Υt(θ0)

+
1

n

[nu]∑
t=1

(
∂

∂θ⊤Υt(θ̂
∗
)− J

)√
n(θ̂ − θ0) + oP (1)

:=T 0
n(u) +Rn(u)

√
n(θ̂ − θ0) + oP (1), (12)

where θ̂
∗
is between θ̂ and θ0, and

sup
u∈(0,1)

∥Rn(u)∥ = oP (1), sup
u∈(0,1)

∥T n(u)− T̃ n(u)∥ = oP (1). (13)

Remark 1. The estimation of I cannot be achieved by plug-in, using formula (10). Indeed,

the conditional variance function σ2
t (·) is generally unknown. However, a consistent estimator

of I = E
{
Υt(θ0)Υ

⊤
t (θ0)

}
is

In =
1

n

n∑
t=1

Υ̃t(θ̂n)Υ̃
⊤
t (θ̂n). (14)

Remark 2. Nyblom (1989) proposed a general theory for testing the constancy of the parameters

involved in the conditional distribution of a time series model. Applied to our semiparametric

framework, the Nyblom test4 replaces the supremum with a mean. More speci�cally, the test

rejects the parameter constancy for large values of

S̃N
n :=

1

n

n∑
k=1

S̃n(k/n)

4We are grateful to P.R. Hansen for pointing out that we can use this test in our framework.
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which, by the continuous mapping theorem, has the asymptotic distribution
∫ 1
0

∑d
j=1{Bj(u)}2du

under the assumptions of Theorem 1. The Nyblom test, which enjoys some optimality properties

under the alternative that the parameter process follows a martingale, is widely used in econo-

metrics (for an example see Hansen et al. (2014), where the test is used to assess the constancy

of a correlation).

Remark 3. The CUSUM test also has optimality properties, but for di�erent alternatives than

the Nyblom test. At the very beginning of their book, Horváth & Rice (2024) give a univariate

example where the (standardized) CUSUM test coincides with a likelihood ratio test and thus

enjoys its general good asymptotic properties. See Section A.4 for a multivariate example.

We can now construct a test for H0. At the signi�cance level α ∈ (0, 1), an asymptotic

critical region is given by

max
1≤k≤n

S̃n(k/n) > S1−α, (15)

where S1−α is the (1− α) quantile of the law of S.

3.2 Local Asymptotic Power comparisons

The estimator de�ned in (8) with κ̃2t proportional to σ2
t (θ0) is optimal in the Godambe sense

within the class of EF estimators solving

n∑
t=1

at−1(θ)ϵ̃t(θ) = 0, (16)

where at−1(θ) is a d × 1 vector belonging to Ft−1 (see Chandra & Taniguchi 2001). In this

section we show that Godambe's optimal QLEs lead to optimal tests, in the sense that they

optimize some local asymptotic power (LAP).

We will consider a sequence of "local breaks" occurring at a proportion u0 ∈ (0, 1) of the

observations.

3.2.1 Local break in the mean of a sequence of i.i.d. Gaussian variables

The simplest example of local break is obtained by assuming that y1, . . . , yn are independent

and Gaussian with variance σ2, and that yt = yt,n has mean θ0+ δ1/
√

[nu0] when t ≤ [nu0] and

θ0 + δ2/
√
n− [nu0] when t > [nu0]. We then have

1√
[nu0]

[nu0]∑
t=1

(yt − θ0) ∼ N
(
δ1, σ

2
)
,

1√
n− [nu0]

n∑
t=[nu0]+1

(yt − θ0) ∼ N
(
δ2, σ

2
)
,
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and thus
1√
n

n∑
t=1

(yt − θ0) ∼ N
(
δ3, σ

2
)
, δ3 =

√
u0δ1 +

√
1− u0δ2.

Note that, in this simple example, y = n−1
∑n

t=1 yt is the Q(M)LE of θ0 (under the null δ1 =

δ2 = 0 of no local break), T̃n(u) = Tn(u) = n−1/2
∑[nu]

t=1 (yt − y) is the usual CUSUM process,

and

S̃n = sup
u∈(0,1)

1

nσ̂2
y


[nu]∑
t=1

(yt − y)


2

, σ̂2
y =

1

n

n∑
t=1

(yt − y)2,

is nothing else than the Kolmogorov test statistic. Note also that (12)�(13) hold with Rn(u) =

u − [nu]/n and oP (1) = 0. The asymptotic distribution of the Kolmogorov test statistic under

such local breaks can be obtained as a corollary of the next result.

3.2.2 Local asymptotic power

Let us now return to the general situation. Suppose the conditional distribution of yt changes

at a single point, which is located at a �xed proportion u0 ∈ (0, 1) of the observations. Let

θ̂(1) be the QLE computed on y1, . . . , y[u0n] and θ̂(2) the QLE computed on y[u0n]+1, . . . , yn.

Recall that θ̂ is the QLE computed on all the observations y1, . . . , yn. Let the local alternatives

H1 = H1(δ1, δ2) such that, for Υt = Υt,n(θ0), as n → ∞

√
nu0

(
θ̂(1) − θ0

)
= −J−1 1

√
nu0

[nu0]∑
t=1

Υt + oP (1)
L→ N

(
δ1,J

−1IJ−1
)
, (17)

√
n(1− u0)

(
θ̂(2) − θ0

)
= −J−1 1√

n(1− u0)

n∑
t=[nu0]+1

Υt + oP (1)
L→ N

(
δ2,J

−1IJ−1
)
. (18)

Under mild regularity conditions (for example under mixing conditions), θ̂(1) and θ̂(2) are asymp-

totically independent, and we then have

√
n
(
θ̂ − θ0

)
= −J−1 1√

n

n∑
t=1

Υt + oP (1)
L→ N

(
δ3,J

−1IJ−1
)

(19)

with δ3 =
√
u0δ1 +

√
1− u0δ2.

Theorem 2. Assume H1(δ1, δ2), regularity conditions ensuring In → I a.s. with I non singu-

lar, (12)�(13) and (17)�(19). Then, for all u ∈ (0, 1), S̃n(u)/u(1− u) converges in distribution

to a noncentral chi-square distribution with d degrees of freedom. When
√
1− u0δ1 ̸= √

u0δ2,

the noncentrality parameter is not equal to 0 and the best LAP is obtained for the optimal QLE.
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Figure 1: Powers of the CUSUM, Nyblom, and Weighted CUSUM tests as a function of the break date u0.

3.2.3 Comparisons with other tests

As an illustration of Theorem 2, let us compare the LAPs of the CUSUM, NYBLOM (see

Remark 2) and Weighted CUSUM (W-CUSUM) in the simple case of Section 3.2.1. The 3 tests

reject for large values of S̃n S̃N
n and S̃W

n de�ned by

S̃n = max
1≤k<n

S̃n

(
k

n

)
, S̃N

n =
1

n

n∑
k=1

S̃n

(
k

n

)
, S̃W

n = max
1≤k<n

n2

k(n− k)
S̃n

(
k

n

)

with S̃n(k/n) =
{∑k

t=1(yt − y)
}2

/(nσ̂2
y). The critical values of the tests as well as the LAPs

are evaluated by using 50, 000 independent replications of the test statistics with n = 1, 000.

Figure 1 shows the LAPs for the nominal leavel α = 1% and the alternatives H1(δ1, δ2) with

δ1 = −δ2 = 3 for a grid of values of u0 ∈ {0.01, 0.02, . . . , 0.99}. As expected, the weighted

CUSUM is more powerful than the unweighted version when the local break u0 comes early or

late. Note that the CUSUM and Nyblom tests have similar power, often with a slight advantage

for the CUSUM.

3.3 Change-point tests with misspeci�ed conditional mean

In Sections 3.1-3.2, we assumed that mt(θ0) is truly the conditional mean of yt given Ft−1. In

this section, we propose to relax this assumption. The intuition is that, even if the conditional
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mean is not correctly speci�ed, its estimated parameter value should not vary too much when

the DGP is stable. Replace A3 and A5 by:

A3∗ Let Υt(θ) =
∂mt(θ)

∂θ
yt−mt(θ)
κ2t(θ)

where mt(·) is Ft−1-measurable. If E{Υt(θ)} = 0 for some

θ ∈ Θ, then θ = θ∗
0, where the so-called pseudo-true parameter θ∗

0 belongs to the interior of the

compact set Θ.

Under A8, let J∗ = E ∂
∂θ⊤Υt(θ

∗
0) and assume:

A5∗ J∗ is non singular.

Let µt = E(yt | Ft−1). Note that we may have µt ̸= mt(θ
∗
0), and more generally µt ̸= mt(θ) for

all θ ∈ Θ. See Example 11 for the case of a misspeci�ed AR(1).

Let Υ∗
t = Υt(θ

∗
0). We now need conditions ensuring the Central Limit Theorem (CLT)

1√
n

n∑
t=1

Υ∗
t

L→ N (0, I∗) (20)

for some long-run variance I∗. Let {α(h)}h≥0 be the α−mixing (strong mixing) coe�cients of

the process (Υ∗
t )t∈Z, de�ned by α(h) = supA∈σ(Υ∗

u,u≤t),B∈σ(Υ∗
u,u≥t+h) |P (A ∩B)− P (A)P (B)|.

We reinforce A1 by the following assumption.

A1∗ We have ∥Υ∗
1∥2+ν < ∞ and

∑∞
h=1{α(h)}ν/(2+ν) < ∞ for some ν > 0.

Note that, by Davydov's inequality, A1∗ entails the existence of the matrix I∗.

Theorem 3. Under Assumptions A1, A1∗, A2, A3∗, A4, A6-A8, there exists a QLE θ̂

satisfying
n∑

t=1

Υ̃t(θ̂) = 0, Υ̃t(θ) =
1

κ̃2t(θ)

∂m̃t(θ)

∂θ
ϵ̃t(θ),

for n large enough. Moreover θ̂ → θ∗
0 a.s. and, under A5∗,

√
n
(
θ̂ − θ∗

0

)
= −J∗−1 1√

n

n∑
t=1

Υt(θ
∗
0) + oP (1)

L→ N
(
0,J∗−1I∗J∗−1

)
as n → ∞.

Standard estimators of a long-run variance of the form I∗ are the Heteroskedasticity and

Autocorrelation Consistent (HAC) estimators (see Newey & West (1987) and Andrews (1991))

and spectral density estimators (see Den Haan & Levin 1997). Denote by I∗
n a consistent

estimator of I∗, and consider the process

S̃∗
n = sup

u∈(0,1)
S̃∗
n(u), S̃∗

n(u) = T̃
⊤
n (u)I

∗−1
n T̃ n(u).

Theorem 4. Under the Assumptions of Theorem 3, in particular the non-existence of a break,

and if I∗ is invertible we have S̃∗
n

L→ S.

12



Note that θ∗
0 in A3∗ may vary with κ2t, and thus the "optimal" test statistics is not nec-

essarily obtained by choosing κ2t proportional to the conditional variance, as is the case when

mt(·) corresponds to the well-speci�ed conditional mean (see Lemma 1 and Theorem 2).

3.4 Change-point estimation

One of the main goals of change-point analysis is to estimate the location of breaks under the

alternative. Results on this issue go back to Hinkley (1970) in the case of iid random variables.

To cite just one more recent reference for a general class of (strong) time series models, Ling

(2016) derived asymptotic results on estimated change-points.

Assume that, for θ1,θ2 belonging to Θ and for u0 ∈ (0, 1], Model (4) holds. Recall that

u0 = 1 corresponds to the null hypothesis of no change-point. As in the previous sections, θ̂

denotes a QLE such that
∑n

t=1 Υ̃t(θ̂) = 0.

We will introduce two stationary processes, (y
(1)
t )t∈Z and (y

(2)
t )t∈Z, which will be used to

approximate the observed process before and after the break, respectively. For all θ ∈ Θ, let

m
(i)
t (θ) = m(θ; y

(i)
t−1, y

(i)
t−2, . . . ) and κ

(i)
2t (θ) = κ2(θ; y

(i)
t−1, y

(i)
t−2, . . . ) be stationary approximations

of the conditional mean and weight sequence before and after the break.

B1 For i = 1, 2, the process y
(i)
t = m

(i)
t (θi) + ϵt, for t ∈ Z, is strictly stationary and ergodic.

For all θ ∈ Θ, let Υ
(i)
t (θ) =

∂m
(i)
t (θ)
∂θ

ϵ
(i)
t (θ)

κ
(i)
2t (θ)

where ϵ
(i)
t (θ) = y

(i)
t −m

(i)
t (θ). The pseudo-true

parameter value is introduced as follows.

B2 For all θ in Θ the variables Υ
(i)
t (θ) have �nite variances, and there is a unique solution

θ⋆
0 = θ⋆

0(θ1,θ2), belonging to the interior of Θ, to the equation

u0E
{
Υ

(1)
t (θ)

}
+ (1− u0)E

{
Υ

(2)
t (θ)

}
= 0.

We make the following technical assumptions.

B3 For i = 1, 2, the function κ
(i)
2t (·) is continuously di�erentiable and m

(i)
t (·) is twice continu-

ously di�erentiable. Moreover, there exists ρ ∈ (0, 1) such that, almost surely, for 1 ≤ t ≤ [nu0],

sup
θ∈Θ

{
|m(1)

t (θ)− m̃t(θ)|+

∥∥∥∥∥∂m(1)
t (θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥∥+ |κ(1)2t (θ)− κ̃2t(θ)|

}
≤ K

(1)
t ρt,

and for t > [nu0],

sup
θ∈Θ

{
|m(2)

t (θ)− m̃t(θ)|+

∥∥∥∥∥∂m(2)
t (θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥∥+ |κ(2)2t (θ)− κ̃2t(θ)|

}
≤ K

(2)
t ρt−[nu0],

where K
(1)
t is a measurable function of {y(1)u : u < t} and K

(2)
t is a measurable function of

{y(1)u , y
(2)
u : u < t}, with suptE{K(i)

t }r < ∞ for i = 1, 2 and some r > 0.

13



B4 For i = 1, 2 E|y(i)t |s < ∞ and E supθ∈Θ

{
|m(i)

t (θ)|s +
∥∥∥∥∂m

(i)
t (θ)
∂θ

∥∥∥∥s + ∣∣∣κ(i)2t (θ)
∣∣∣s} < ∞, for

some s > 0. Moreover, infθ∈Θ

∣∣∣κ(i)2t (θ)
∣∣∣ ≥ κ a.s. for some constant κ > 0.

B5 For i = 1, 2

E sup
θ∈Θ

∥∥∥Υ(i)
t (θ)

∥∥∥2 < ∞ and E sup
θ∈Θ

∥∥∥∥∥∂Υ(i)
t (θ)

∂θ⊤

∥∥∥∥∥ < ∞.

Assumptions B1-B5 are illustrated in Section A.3 of the Appendix.

Let the change-point estimator

k̃ = arg max
k∈{1,...,n−1}

S̃n(k/n), S̃n(u) = T̃
⊤
n (u)I

−1
n T̃ n(u).

The consistency of the change-point estimator is established in the following result.

Theorem 5. Under Assumptions B1-B5, when u0 ∈ (0, 1) and E
{
Υ

(1)
t (θ⋆

0)
}
̸= E

{
Υ

(2)
t (θ⋆

0)
}

we have
k̃

n
→ u0, in probability as n → ∞.

4 Numerical illustrations

In this section, we start by comparing on simulations the empirical sizes and powers of the break

test under di�erent settings and di�erent choices of the weights in the QLE. Then, we apply our

methodology to exchange rates.

4.1 Monte Carlo experiments

Our �rst Monte Carlo experiments aim to evaluate how the choice of the weighting sequence κ̃2t(·)

impacts the �nite sample performance of the test. We simulated a time series (yt) such that the

distribution of yt conditional on Ft−1 is a Gamma law with the shape parameter kt = m2
t /(kσ

2
t )

and the rate parameter θt = kσ2
t /mt, such that Et−1(yt) = mt and Vart−1(yt) = kσ2

t . We took

the ARMA(1,1) conditional mean mt = c+ ayt−1+ bmt−1 and 4 possibilities for the conditional

variance: σ2
t = 1 in DGP A (as for a standard ARMA model), σ2

t = mt in DGP B (as for an

INGARCH count time series model), σ2
t = m2

t in DGP C (as for an ACD duration model, or the

square of a GARCH), σ2
t = m

3/2
t in DGP D, which does not correspond to any standard model.

We considered 8 di�erent QLEs solving (8): for the estimators A, B, C and D the weight

sequence κ̃2t is proportional to 1, m̃t(θ), m̃
2
t (θ) and m̃

3/2
t (θ), respectively, and for the other 4

estimators the weights are data driven. More precisely, the estimator Q is the one that minimizes
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the QLIKn loss of Example 4 of Appendix A over the 4 weighting sequences of the estimators

A-D. The QLE named G estimates the weights using the GARCH(1,1) model (22), with the

QLE A as �rst step estimator θ̂. The QLEs X1 and X2 estimate the weights by (23) and (24),

respectively, also with the QLE A as �rst step estimator. The left part of Table 1 shows the

empirical sizes of the tests based on the 8 estimators for each of the 4 DGPs, when n = 2000,

(c, a, b) = (0.01, 0.1, 0.89) and the nominal level α ∈ {1%, 5%, 10%}. The relative frequencies

of rejection of the null H0 of no break, presented in Table 1 and in the other tables, are

computed over 1000 independent replications of each DGP. For a test of level 1% (respectively

5%, or 10%), the empirical relative frequency of rejection over 1000 independent replications

should vary between 0.4% and 1.7% (respectively 3.7% and 6.4%, or 8.2% and 11.9%) with a

probability of about 95%. Relative frequencies outside these bounds are highlighted (red for

overly high rejection rates, blue for overly low rates). The table shows that �rst-order errors

are generally well-controlled by the optimal tests and, more importantly, by the data-estimated

optimal tests, with only slight under-rejections in a few cases. However, non-optimal QLEs may

have poor empirical sizes, which is the main motivation for using the proposed data-estimated

optimal tests.

To compare the power of the di�erent tests, we considered DGPs with a break at t = 800.

For t = 1, . . . , 800 we took (c, a, b) = (0.01, 0.1, 0.89) and for t = 801, . . . , 2000 we took (c, a, b) =

(0.15, 0.1, 0.75). The other parameters are unchanged, leading to DGPs A∗-D∗. Note that before

and after the break the marginal mean c/(1 − a − b) = 1 and the update parameter a = 0.1

remain the same for all DGPs, only the persistence parameter b changes. Despite the DGPs

being chosen such that it was impossible to visually detect a change point in the trajectories,

the right part of Table 1 shows that the tests are often able to detect the break. As expected,

for the DGP X ∈ {A,B,C,D}, the most powerful test is (or is close to) X among {A,B,C,D}.

Interestingly, the data-selected estimators always perform very well, often as well as the optimal

estimator. The poorer performing tests are highlighted in color. These underperforming tests

are never the data-selected ones.

Figure 2 shows the empirical distributions of the change point estimates obtained with the

8 di�erent tests. The simulated DGP is DGPA∗.The �gure, together with the previous table,

shows that optimal and data-selected tests outperform others both in detecting breaks and in

estimating their positions.

We conducted another set of Monte Carlo simulations to evaluate the ability of the test to

detect structural breaks when the conditional mean is misspeci�ed but the matrix I∗ is estimated
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α A B C D Q G X1 X2 A B C D Q G X1 X2

DGP A DGP A∗

1% 1.0 2.7 4.9 4.7 0.9 0.6 0.7 0.8 79.8 32.6 20.2 26.0 71.5 77.2 76.8 77.2

5% 5.3 8.8 12.1 12.8 4.9 5.8 5.8 5.6 94.3 53.4 35.4 47.2 88.9 93.3 92.8 92.9

10% 10.1 14.6 18.3 18.7 9.5 11.0 10.2 10.1 97.0 65.7 46.3 60.4 93.1 96.7 96.6 96.6

DGP B DGP B∗

1% 0.9 0.7 1.7 1.1 0.7 0.4 0.7 0.7 59.9 80.5 30.0 69.6 79.6 77.2 82.1 82.3

5% 4.1 4.5 7.4 5.0 4.5 2.9 3.9 4.1 80.6 95.6 54.6 89.4 95.5 94.4 95.7 95.8

10% 9.8 8.4 13.0 10.8 8.4 8.4 8.3 8.8 89.7 98.4 68.5 96.0 98.4 98.3 98.7 98.5

DGP C DGP C∗

1% 5.8 1.1 0.7 0.7 0.7 0.6 0.8 0.8 49.7 70.9 81.8 83.2 81.8 81.7 83.5 88.8

5% 14.8 4.7 3.9 4.3 3.9 3.2 3.6 4.2 65.5 84.2 95.5 94.6 95.6 95.2 95.8 96.9

10% 22.9 9.9 9.3 8.8 9.3 7.3 8.0 8.7 74.0 91.2 97.9 98.0 97.9 97.6 97.7 98.5

DGP D DGP D∗

1% 1.7 1.1 1.7 0.9 0.9 0.7 1.0 1.1 52.3 79.7 67.1 86.7 82.6 81.1 81.6 84.5

5% 7.3 3.9 6.2 5.0 5.0 3.9 4.0 5.2 66.8 94.0 87.6 96.4 95.6 95.6 95.6 96.6

10% 13.6 8.3 10.6 9.7 9.8 8.8 8.7 9.5 76.1 97.2 94.9 98.0 97.7 98.1 98.1 98.1

Table 1: Empirical size (DGP A�D) and power (DGP A∗�D∗) of 8 QLE-based tests.

by a HAC estimator, as stated in Theorem 4. More speci�cally, we generated 1000 independent

simulations of size n = 2000 of an ARMA-GARCH model of the form yt = mt + ϵt, with

ϵt = σtηt, where ηt is an iid noise with a standardized Student distribution with ν = 11 degrees

of freedom, mt = c + ayt−1 + bmt−1 and σ2
t = ω + αϵ2t−1 + σ2

t−1. For the GARCH parameters

we took (ω, α, β) = (0.01, 0.1, 0.83), a values close to those typically estimated for real �nancial

return series. Panel H0 of Table 2 corresponds to a stable DGP with (c, a, b) = (0.01,−0.5, 0.89)

for t = 1, . . . , 2000. Panel H1 concerns a DGP with a break (c, a, b) = (0.01,−0.5, 0.89) for

t = 1, . . . , 800 and (c, a, b) = (0.01,−0.1, 0.89) for t = 801, . . . , 2000. To compute the test

statistic S̃∗
n we considered a misspeci�ed AR(1) model for m̃t. In Table 2 the column LSE

corresponds to a statistic S̃∗
n based on the score 1

κ̃2t(θ)
∂m̃t(θ)

∂θ ϵ̃t(θ) where κ̃2t(θ) ≡ 1, and WLS

corresponds to a score when κ̃2t(θ) is replaced by a GARCH(1,1) estimate of the volatility of

ϵ̃t(θ̂), where θ̂ is the �rst-step LSE of the pseudo-true value.

We have done other experiments with larger sample sizes and di�erent values of the pa-

rameters. Table 3 shows the results but for simulations of length n = 8000. The �rst panel

of the table, devoted to the size, has the same DGP as Table 2 under H0. For the second

panel corresponding to the power we changed the DGP to have a non-degenerated power:
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Figure 2: Distributions of the change point estimates

we took (c, a, b) = (0.01,−0.5, 0.89) for t = 1, . . . , 3200 and (c, a, b) = (0.01,−0.3, 0.89) for

t = 3201, . . . , 8000. Tables 2-3 show that, as expected, the �rst-order error is not well controlled

when I∗ is not estimated by a HAC estimator. The di�erent versions of the HAC estimator are

those of Andrews (1991), with pre-whitening. All performed similarly. Even with HAC estima-

tion of I∗, the type I errors remain far from their nominal values, especially for WLS in Table 2.

This is not surprising since long-run variances are notoriously di�cult to estimate accurately.

The bottom panels of Tables 2-3 con�rm the ability of the tests to detect breaks, even in a

misspeci�ed conditional mean model. The WLS test appears to be slightly more powerful in

Table 2, but this does not hold in other settings (see Table 3). For a well-speci�ed conditional

mean, Theorem 2 implies that WLS should be more powerful than LSE, but the result is likely

to be false in misspeci�ed models.
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H0

no HAC spectral Bartlett Parzen Tukey H. Quadratic

LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 0.0 0.0 1.6 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 0.2

5% 0.1 0.1 7.2 1.9 5.3 1.9 5.6 1.9 5.5 1.9 5.4 1.9

10% 0.1 0.8 11.7 5.9 10.5 5.2 10.3 5.1 10.2 5.2 10.2 5.1

H1

no HAC spectral Bartlett Parzen Tukey H. Quadratic

LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 84.5 97.6 97.8 99.5 96.8 99.5 96.8 99.5 96.8 99.5 96.8 99.5

5% 95.1 99.6 99.9 100.0 99.7 100.0 99.7 100.0 99.7 100.0 99.7 100.0

10% 97.2 99.9 100.0 100.0 99.9 100.0 99.9 100.0 99.9 100.0 99.9 100.0

Table 2: Size and power of the test when κ̃2t is constant (LSE) or is an estimated GARCH

volatility (WLS), and I∗
n is a short-run empirical variance (no HAC) or a HAC estimator.
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H0

no HAC spectral Bartlett Parzen Tukey H. Quadratic

LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 0.0 0.0 1.0 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.9 0.6

5% 0.4 0.9 4.7 4.0 4.4 3.9 4.4 3.9 4.4 3.9 4.4 3.9

10% 1.1 1.6 9.4 8.9 8.8 8.7 8.9 8.7 8.9 8.7 8.9 8.7

H1

no HAC spectral Bartlett Parzen Tukey H. Quadratic

LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 65.2 91.8 98.3 98.8 98.1 98.8 98.1 98.8 98.1 98.8 98.1 98.8

5% 83.5 97.3 99.8 99.8 99.7 99.8 99.7 99.8 99.7 99.8 99.7 99.8

10% 88.8 98.5 100.0 99.8 100.0 99.8 100.0 99.8 100.0 99.8 100.0 99.8

Table 3: As Table 2, but for simulations of length n = 8000 instead of n = 2000, and also

di�erent parameter values under H1.
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4.2 Application to exchange rates

As a simple real data illustration, consider the returns of the daily exchange rates of the US dollar

(USD) and the Swiss franc (CHF) against the euro from 1999-01-04 to 2022-07-12 (corresponding

to 6025 observations).

We estimated GARCH(1,1) models on the log-returns (i.e. ARMA(1,1) on the squared log-

returns yt) by QLEs. Tests for breaks were performed using the test statistic S̃n, for which the

optimal weights were estimated by the data-driven procedure (QLIK or based on the 3 GARCH

models de�ned in the previous section).

Figure 3 shows that there is no evidence of breaks for USD, but strong evidence of breaks

for CHF. The breakpoints are September 6, 2011 and January 15, 2015. In fact, the Swiss franc

exchange rate was pegged to the euro between these two dates.
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Figure 3: Trajectories of the CUSUM statistics S̃n(u) for di�erent QLEs and 2 exchange rates.

The red lines indicate the asymptotic critical values of the tests at the 1%, 5% and 10% levels.

An alternative approach to CUSUM tests for break detection involves minimizing the OLS

sum of squared residuals in a linear model where the beta coe�cient is constrained to remain

constant overm+1 subperiods of some minimum length. Bai & Perron (2003) showed that this is

feasible, even for m > 1, using a dynamic programming algorithm implemented in the R package

strucchange. Of course the results depend on the choice of the linear model. In our analysis,

we experimented with AR(p) for di�erent values of p. Although the dynamic programming
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algorithm is powerful, the computation time of this method is substantial5 because we allowed

up to m = 5 breaks. Thus, the AR delay was limited to p ≤ 7. For the USD series, we used the

R function breakpoints() with its default values. For the CHF series, we chose a minimum

segment size of 10% by specifying the parameter value h=0.1 instead of the default value h=0.15

(which is too large to allow breaks on September 6, 2011 and January 15, 2015). The number

of breaks, m, was estimated by BIC minimization. Table 4 shows that the estimated number

and timing of breaks vary considerably with p. For the CHF series, a break on September 6,

2011 is often detected, but unlike the CUSUM test, the break around January 15, 2015 is not

clearly identi�ed. The most tricky output is that for the USD series, 3 breaks are often detected

in Table 4, while the CUSUM test does not detect any break (see the left panel of Figure 3).

To further explore this discrepancy, Table 5 presents the QMLE estimates of GARCH(1,1)

models for the four subperiods de�ned by the three breaks identi�ed in the AR(p) models with

p ∈ {2, . . . , 5} (with each period beginning and ending �ve days before the detected breaks).

The estimated GARCH parameters across the four periods do not show substantial variation,

given their standard errors. A Wald test of the null hypothesis that the GARCH coe�cients are

the same across the four periods yields a p-value of 7.8%. This result does not provide su�cient

evidence to reject H0.
6 One explanation for the possible failure of the Bai-Perron test is that

the regression framework on which it is based is unable to capture the volatility persistence that

characterizes the dynamics of �nancial returns. For example, a long period of low volatility

followed by a period of high volatility could be seen as evidence of breaks, as the AR(p) model

for squared returns is inconsistent with this type of behaviour. To assess the possibility that

the Bai-Perron test misidenti�es breaks, we estimated a GARCH on the USD series and re-ran

the tests from Table 4 on two independent simulations of this GARCH model without breaks.

Table 5 shows that, contrary to our EF-based CUSUM tests, the Bai-Perron test does indeed

detect spurious breaks. The failure of the Bai-Perron test can be explained by the irrelevance

of the AR(p) model for squared returns (or, equivalently, of the ARCH(p) model for returns).

On the other hand, extensions of the Bai-Perron dynamic programming algorithm to persistent

models (such as GARCH ) do not seem to exist.

5It took 8 hours on a 4 year old PC to get Table 4.
6For this Wald test, we write H0 as Rθ0 = 09, where θ0 is the vector obtained by stacking the GARCH

parameters of the four subperiods. Let θ̂i be the GARCH QMLE of subperiod i of length ni. The variance of

θ̂i is approximated by Σi/ni. Let θ̂ = (θ̂
⊤
1 , . . . , θ̂

⊤
4 )

⊤. Under H0, the distribution of Rθ̂ is approximated by

the Gaussian distribution with mean 0 and block diagonal variance RΣR′, where Σ has block diagonal elements

Σi/ni. The Wald-type statistic follows.
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USD CHF

p 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

m 3 3 3 3 3 3 2 2 0 1 2 2 0 0 1 1

Dates 04-05-17 05-06-14 05-06-14 15-01-13 11-09-06 11-09-06 11-09-06

08-08-07 08-12-19 08-12-19 15-01-12 15-01-09

12-02-02 12-06-29

Table 4: Estimation of the number m of breaks and of their dates (year-month-day) by the R

function breakpoints() based on the algorithm of Bai & Perron (2003). The model is an AR(p)

on the squared returns.

Period ω α β

1999-01-04 to 2005-06-07 0.021 (0.027) 0.048 (0.048 ) 0.937 (0.056)

2005-06-21 to 2008-12-12 0.000 (0.001) 0.036 (0.017) 0.972 (0.013)

2008-12-30 to 2012-06-22 0.013 (0.006) 0.000 (0.007) 0.980 (0.012)

2012-07-06 to 2022-07-11 0.001 (0.002) 0.061 (0.044) 0.960 (0.024)

Table 5: For the USD series, GARCH(1,1) models �tted to 4 sub-periods, with estimated stan-

dard deviations in brackets.

Simulation 1 Simulation 2

p 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

m 3 2 2 2 2 2 2 2 4 3 3 3 3 3 3 0

Dates 914 1858 904 904 904 904

1858 2763 2349 2349 2349 2349

2763 3330 3304 3280 3317

4760

Table 6: As Table 4 but on two simulated trajectories of a GARCH without break.

5 Concluding remarks

This paper contributes to the time series literature on break detection by addressing models

where the conditional distributions are not fully speci�ed. We propose a novel econometric

methodology based on the CUSUM of quasi-scores to detect structural breaks in the conditional

mean of time series. A key advantage of this approach is its reliance on EF estimators, which
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require only weak, semi-parametric assumptions about the data-generating process (DGP). This

stands in contrast to traditional CUSUM methods based on Fisher's scores, which necessitate

full speci�cation of the conditional distribution.

We establish the asymptotic distribution of the proposed CUSUM statistics under the null

hypothesis of no change point and explore optimality considerations through LAP comparisons.

Notably, the weights that are optimal for estimation in Godambe's sense are also shown to be

optimal for hypothesis testing. To enhance robustness, we develop modi�ed test versions that

incorporate long-run matrix estimation, mitigating the risks of conditional mean misspeci�ca-

tion. Finally, the empirical applications demonstrate the e�ectiveness of our testing procedures

in identifying structural breaks in �nancial time series dynamics, underscoring their practical

utility. An interesting avenue for future research would be extending our methodology to test

for breaks in a broader range of conditional moments.
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Appendix: Discussion, Examples and Proofs

A Discussion and examples

In this section, we complement the assumptions spelt out in Section 2 by o�ering several illus-

trative examples; we also refer to the article by Francq & Zakoïan (2023) for further examples

and discussion.

A.1 Examples of QLE

Example 1 (Examples of QLE). When κ̃2t is a non zero constant, it is easy to see that the

solution of (8) is the Least Squares (LS) estimator. When yt ≥ 0 and κ̃2t is proportional to

m̃t(θ) > 0 (respectively, to m̃2
t (θ) > 0), then it can be veri�ed that the solution of (8) is the

Poisson (respectively, exponential) QMLE, obtained by minimising

n∑
t=1

m̃t(θ)− yt log m̃t(θ) (respectively
∑n

t=1 yt/m̃t(θ) + log m̃t(θ)).

Example 2 (An example when QLE is the MLE). Assume that the distribution of yt given

Ft−1 belongs to the one-parameter exponential family. This means that, with respect to a σ-

�nite measure, the conditional distribution admits a density of the form

gmt(y) = k(y) exp {η(mt)y − a(mt)} , (21)
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for some positive function k (·), and twice di�erentiable functions η(·) and a(·). It is well-known

that η′(mt) = a′(mt)/mt = 1/σ2
t . It follows that

∂ log gmt(θ)(yt)

∂θ
=

∂mt(θ)

∂θ

ϵt(θ)

σ2
t (θ)

.

Hence it follows that the QLE coincides with the MLE (only approximately when mt ̸= m̃t).

Example 3 (Link with GMM estimation). The Generalised Method of Moments (GMM) method

developed by Hansen (1982) is based on moment conditions of the form

Egt(θ) = 0,

i� θ = θ0, where gt(θ) : Rd → Rm with m ≥ d and

gt(θ) = ztϵt(θ),

and zt is an m-dimensional vector of instruments belonging to Ft−1. Let

gn(θ) = n−1
n∑

t=1

gt(θ),

be an empirical estimator of Egt(θ). The GMM estimator minimises g′
n(θ)Ŝ

−1
gn(θ), where Ŝ

is a positive de�nite weight matrix. The �rst-order conditions give the EF

n∑
t=1

Ω̂t (θ) Ŝ
−1

gn(θ) = 0,

where

Ω̂t(θ) =
∂gt(θ)

∂θ′ , and Ω̂(θ) = n−1
n∑

t=1

Ω̂t(θ).

Thus, the GMM estimators are QLEs, and Godambe's results imply that the optimal QLE is

always at least as e�cient (in Godambe's sense and asymptotically) as the optimal GMM. Indeed,

as mentioned in the Introduction, Christensen et al. (2016) show that in general the optimal QLE

is strictly more e�cient than the optimal GMM.

A.2 Examples of weighing sequences κ̃2t

Example 4 (Selection of κ̃2t by QLIK). In view of Example 1, several natural candidates exist for

the weighting sequence, such as: κ̃2t ∝ 1, κ̃2t ∝ m̃t(θ) (for positive data) or κ̃2t ∝ m̃2
t (θ), among

an in�nite number of other possibilities. Thus, assume we want to select the weights over a �nite

set of potential weighting sequences, say
{
κ̃
(h)
2t (θ)

}
for h ∈ {1, . . . ,H}. The optimal weighting
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sequence is the conditional variance, up to any non zero multiplicative constant; further, the

conditional variance is solution to the quasi-likelihood (QLIK) loss function. Hence, Francq &

Zakoïan (2023) propose a data-driven selection of the weights by minimizing over h the empirical

QLIK loss function de�ned as

QLIKn

(
κ̃
(h)
2t

(
θ̂
))

=
1

n

n∑
t=1

 ϵ̃2t

(
θ̂
)

ĉ
(h)
n κ̃

(h)
2t

(
θ̂
) + log

(
ĉ(h)n κ̃

(h)
2t

(
θ̂
)) ,

where

ĉ(h)n =
1

n

n∑
t=1

ϵ̃2t

(
θ̂
)

κ̃
(h)
2t

(
θ̂
) ,

and θ̂ is a �rst step estimator of θ0.

Example 5 (Estimation of κ̃2t by GARCH-X). As a second example, another natural estimator

of the conditional variance can be based on �tting a GARCH-type model on ϵ̃t = yt − m̃t

(
θ̂
)
,

for t = 1, . . . , n, where θ̂ is a �rst step consistent estimator of θ0. This leads to the simple

GARCH(1,1) estimator

κ̃2t = ω̂ + α̂ϵ̃2t−1 + β̂κ̃2,t−1 (22)

or to extended GARCH-X estimators like

κ̃2t = ω̂ + α̂ϵ̃2t−1 + β̂κ̃2,t−1 + π̂1

∣∣∣m̃t

(
θ̂
)∣∣∣ (23)

or

κ̃2t = ω̂ + α̂ϵ̃2t−1 + β̂κ̃2,t−1 + π̂1

∣∣∣m̃t

(
θ̂
)∣∣∣+ π̂2m̃

2
t

(
θ̂
)
. (24)

For instance, (24) allows weights proportional to the conditional mean or its square, and thus

can target the Poisson and exponential QMLEs (see also Example 1).

A.3 Examples and discussion of Assumptions A1-A8 and B1-B5

Example 6 (Discussion of Assumptions A1-A8). Assumptions A1-A8 can be made explicit

and studied for particular models, such as ARMA or GARCH. As an illustration, assume an

INGARCH model, obtained when yt given Ft−1 follows a Poisson distribution with intensity

parameter

mt = c0 + a0yt−1 + b0mt−1,

with obvious notation. In this case, it is known that Assumption A1 holds true when a0+b0 < 1,

and that the strictly stationary solution of the INGARCH model even admits moments at any
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order. It is easy to see that, when |b| < 1 for all θ ∈ Θ, Assumption A2 holds with

Kt = sup
θ∈Θ

{|a||y0|+ |b||m0(θ)|} ;

indeed, in this example Kt = K, but in general this variable can be time-varying in the case of

other models. Similarly, Assumption A7 can be shown to hold (although with another expression

of Kt = K). By the same token, it can be veri�ed that Assumption A5 holds if

a0 ̸= 0 and inf
θ∈Θ

c > 0.

Further, since yt admits moments of any order, Assumption A8 is always satis�ed. Is is also

clear that all the other assumptions hold true for many weighting sequences κ̃2t.

Example 7 (Conditional mean of the weak AR(1) process). Suppose that

yt = θ0yt−1 + ϵt, i ∈ Z, |θ0| < 1,

where ϵt is strictly stationary, ergodic and satis�es Et−1 (ϵt) = 0 (note the notational change, by

unbolding the scalars). Then, Assumption A1 is immediately satis�ed and it is clear that, with

Θ = [−1, 1], Assumptions A2 and A4 are also satis�ed. Moreover, we have

EΥt(θ) = E
(

y2t−1

κ2t(θ)

)
(θ − θ0) ,

showing that Assumption A3 holds true. Under the assumption σ2
t (θ0) > 0 in the �rst part of

A5, the second part holds true. It can be veri�ed via standard, if tedious, arguments, that a

su�cient condition for Assumption A8 to hold is

E sup
θ

(
σ2
t (θ0)

κ22t(θ)
y2t−1 +

y4t−1

κ22t(θ)
+

∣∣∣∣ 1

κ22t(θ)

∂κ2t
∂θ

∣∣∣∣ (|yt−1|+ y2t−1)

)
< ∞.

It should be noted that if, for instance, κ2t is of the form a+ by2t−1 with a, b > 0, and similarly

for σ2
t (θ0), the latter conditions may only require Ey2t < ∞. Finally, note that

I = E

(
σ2
t (θ0)

κ22t(θ0)
y2t−1

)
.

Example 8 (Illustration of Assumptions B1-B5). Consider the simple case where

y
(j)
t = θjy

(j)
t−1 + ϵt

with ϵt a strong white noise process, and j = 1, 2. If |θj | < 1 for j = 1, 2, then Assumption B1

holds. Taking Θ ⊂ (−1, 1), and assume for example that κ̃2t = κ2t ∝ 1, m̃1(θ) = 0, and

m̃t(θ) = mt(θ) = θyt−1 for t ≥ 2,
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then Assumption B3 readily holds. To show this result, we note that yt = y
(1)
t for i ≤ [nu0], that

y
(j)
[nu0]+1 =

∑∞
h=0 θ

h
j ϵ[nu0]+1−h and |y(2)[nu0]+1+k − y[nu0]+1+k| = |θ2|k|y(2)[nu0]+1 − y

(1)
[nu0]+1| for k ≥ 0.

So we can choose K
(1)
t = |y0| and

K
(2)
t =

∞∑
h=0

∣∣∣θh1 − θh2

∣∣∣ ∣∣ϵ[nu0]+1−h

∣∣ ,
in Assumption B3. Assumption B4 is always satis�ed and if Eϵ4t < ∞ then Assumption B5

also holds. Finally note that Assumption B2 holds with

E
{
Υ

(1)
t (θ)

}
= (θj − θ)

Eϵ21
1− θ2j

, θ⋆0 =

u0θ1
1− θ21

+
(1− u0)θ2
1− θ22

u0
1− θ21

+
1− u0
1− θ22

.

Example 9 (Illustration of Assumption B2). Assume that y1, . . . , yn are independent and Gaus-

sian with variance σ2, and mean equal to θ1 when t ≤ ⌊nu0⌋ and to θ2 when t > ⌊nu0⌋. We

have

T̃n(u) = Tn(u) = n−1/2

⌊(n+1)u⌋∑
t=1

(yt − y),

where y = n−1
∑n

t=1 yt. Then Assumption B2 holds with θ∗0 = u0θ1 + (1− u0)θ2. We also have

Υ
(j)
t (θ) = y

(j)
t − θ for j = 1, 2. Thus

∆(θ1, θ2) = θ2 − θ1.

A.4 Link between the weighted CUSUM and the LR statistics

Inspired by the example given by Horváth & Rice (2024), consider a sequence of independent

and Gaussian vectors Y1, . . . , Yk, . . . , Yn such that Yt ∼ N (µ1,Σ) for t ≤ k and Yt ∼ N (µ2,Σ)

for t > k, where Σ is a known non singular variance matrix. Let the null H0 : µ1 = µ2 and

the alternative H1 : µ1 ̸= µ2. The unknown parameters of interest are k and θ = (µ1,µ2).

Note that, at θ0 = (µ0,µ0) ∈ H0, the likelihood Ln(Y1, . . . , Yn;θ0, k) does not depend on k.

With obvious notations, the standard likelihood ratio leads to reject H0 for large values of

LR = sup1≤k≤n LR(k), where

LR(k) = log
Ln(Y1, . . . , Yn; θ̂, k)

Ln(Y1, . . . , Yn, θ̂0, k)
=

nk

2(n− k)
(µ̂1 − µ̂0)

⊤Σ−1(µ̂1 − µ̂0),

up to unimportant additive constants, noting that µ̂2 − µ̂1 = n
n−k (µ̂0 − µ̂1) and µ̂2 − µ̂0 =

k
n−k (µ̂0 − µ̂1). This likelihood ratio is directly related to the weighted CUSUM by

2LR = sup
u∈(0,1)

S̃n(u)

u(1− u)
+ oP (1).
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A.5 Examples of local breaks, misspeci�cation and change-point estimation

Example 10 (Example of a local break). The simplest example of a local break is obtained by

assuming that y1, . . . , yn are independent and Gaussian with variance σ2, and that yt = yt,n has

mean θ0 + δ1/
√

⌊nu0⌋ when t ≤ ⌊nu0⌋ and θ0 + δ2/
√

n− ⌊nu0⌋ when t > ⌊nu0⌋. Note that we

then have

1√
⌊nu0⌋

⌊nu0⌋∑
t=1

(yt − θ0) ∼ N
(
δ1, σ

2
)
,

1√
n− ⌊nu0⌋

n∑
t=⌊nu0⌋+1

(yt − θ0) ∼ N
(
δ2, σ

2
)
,

and
1√
n

n∑
t=1

(yt − θ0) ∼ N
(
δ3, σ

2
)
, δ3 =

√
u0δ1 +

√
1− u0δ2.

note that, in this simple example, y = n−1
∑n

t=1 yt is the Q(M)LE of θ0 (under the null δ1 =

δ2 = 0 of no local break), T̃n(u) = Tn(u) = n−1/2
∑⌊(n+1)u⌋

t=1 (yt−y) is the usual CUSUM process,

and (
T̃n (u)

)′
Î
−1

T̃n (u) = sup
u∈(0,1)

1

nσ̂2
y


⌊(n+1)u⌋∑

t=1

(yt − y)


2

, σ̂2
y =

1

n

n∑
t=1

(yt − y)2.

Example 11 (Misspeci�cation). Assume, perhaps wrongly, that mt(θ) = a + byt−1 with θ =

(a, b)′. We then have

Υ̊t(θ) =

 1

yt−1

 1

κ2t
(yt − a− byt−1)

Then Assumptions A3∗ and A5∗ are satis�ed with

θ̊0 = A−1b, b =

 E
(

yt
κ2t

)
E
(
ytyt−1

κ2t

)
 , A =

 E
(

1

κ2t

)
E
(
yt−1

κ2t

)
E
(
yt−1

κ2t

)
E
(
y2t−1

κ2t

)


when b and A exist and A = −J̊ is invertible (which is for instance the case when κ2t is constant

and Var(yt) > 0).

Assumption A1∗ is satis�ed if, for instance, κ2t ≡ κ > 0, ∥y1∥4+2ν < ∞ and
∑∞

h=1{αy(h)}ν/(2+ν) <

∞ for some ν > 0, where {αy(h)} denotes the sequence of the α−mixing coe�cients of (yt). A

non constant weighting sequence (κ2t) can reduce the moment requirement. In particular, if κ2t

is the volatility of an ARCH(1), or more generally κ2t > c1 + c2y
2
t−1 with positive constants c1

and c2, then only ∥y1∥2+ν < ∞ is required.

Example 12 ( Unconditional mean of Gaussian variables). Assume that y1, . . . , yn are inde-

pendent and Gaussian with variance σ2, and mean equal to θ1 when t ≤ [nu0] and to θ2 when
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t > [nu0]. We have T̃n(u) = Tn(u) = n−1/2
∑[nu]

t=1 (yt − y) where y = n−1
∑n

t=1 yt. Assumption

B2 is thus satis�ed with θ∗0 = u0θ1 + (1 − u0)θ2. We also have Υ
(i)
t (θ) = y

(i)
t − θ for i = 1, 2.

Thus ∆(θ1, θ2) = θ2 − θ1.

B Technical results and proofs

Denote by Xn
L→ X, or simply Xn

L→ PX , when a sequence of random vectors Xn converges

in distribution to a random vector X of distribution PX . For a sequence of random functions

{Xn(u), u ∈ [0, 1]} tending weakly to {X(u), u ∈ [0, 1]}, we denote Xn(·) =⇒ X(·). The follow-

ing result establishes the asymptotic distribution of the QLE.

Lemma 1 (Francq & Zakoïan (2023)). Under Assumptions A1-A8, a QLE θ̂ of θ0, such that

n∑
t=1

Υ̃t(θ̂) = 0, Υ̃t(θ) =
∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t(θ)
,

exists7 for n large enough, and as n → ∞ we have θ̂ → θ0 a.s. and

√
n
(
θ̂ − θ0

)
= −J−1 1√

n

n∑
t=1

Υt(θ0) + oP (1)
L→ N

(
0,Σ := J−1IJ−1

)
with

J = E

(
−1

κ2t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

)
, I = E

(
σ2
t (θ0)

κ22t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

)
.

If κ2t(θ0) ∝ σ2
t (θ0) then the asymptotic variance of the QLE, which is equal to

Σop =

{
E

1

σ2
t (θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

}−1

,

is optimal in the sense that Σ−Σop is semi positive de�nite.

B.1 Proof of Theorem 1

A Taylor expansion around θ0 yields

T n(u) =
1√
n

[nu]∑
t=1

Υt(θ0) + u

 1

nu

[nu]∑
t=1

∂

∂θ⊤Υt(θ̂
∗
)

√
n(θ̂ − θ0)

where θ̂
∗
is between θ̂ and θ0. By Lemma 1 we deduce (12). It follows from the functional

central limit theorem for stationary, ergodic martingale di�erences (see e.g. Theorem 18.3 of

Billingsley 1986) that

T 0
n(·) =⇒ T (·).

7uniqueness has been shown under the extra contraction assumption A10 of Francq & Zakoïan (2023).
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It remains to show (13). Let Vk(θ0) be the ball of center θ0 and radius 1/k. The strong

consistency of θ̂ entails that

∥Rn(u)∥ ≤

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ0)− J

)∥∥∥∥∥∥+ sup
θ∈Vk(θ0)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ0)−
∂

∂θ⊤Υt(θ)

)∥∥∥∥∥∥ .
We have,

sup
θ∈Vk(θ0)

sup
u∈(0,1)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ0)−
∂

∂θ⊤Υt(θ)

)∥∥∥∥∥∥ ≤ 1

n

n∑
t=1

sup
θ∈Vk(θ0)

∥∥∥∥ ∂

∂θ⊤Υt(θ0)−
∂

∂θ⊤Υt(θ)

∥∥∥∥
which tends, as n → ∞, to

E sup
θ∈Vk(θ0)

∥∥∥∥ ∂

∂θ⊤Υt(θ0)−
∂

∂θ⊤Υt(θ)

∥∥∥∥ .
by the ergodic theorem. By Fatou's lemma, and using the continuity assumptions in A2 and

A7, the latter expectation can be made arbitrarily small by choosing k su�ciently large. Let

(un) be a deterministic sequence converging to in�nity slower than n (i.e. n/un → ∞). Let

Y t =
∂

∂θ⊤Υt(θ0)− J . We have

sup
u∈(0,1)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ0)− J

)∥∥∥∥∥∥ ≤ sup
1≤k≤un

∥∥∥∥∥ 1n
k∑

t=1

Y t

∥∥∥∥∥+ sup
un≤k≤n

∥∥∥∥∥ 1n
k∑

t=1

Y t

∥∥∥∥∥ .
We have 1

k

∑k
t=1 Y t → 0 a.s. as k → ∞, hence the last term in the previous inequality converges

to 0 a.s. Moreover, by Markov inequality, for any ι > 0,

P

(
sup

1≤k≤un

∥∥∥∥∥ 1n
k∑

t=1

Y t

∥∥∥∥∥ > ι

)
≤ P

(
1

n

un∑
t=1

∥Y t∥ > ι

)
≤ un

nι
E ∥Y 1∥ → 0,

as n → ∞, from which we deduce that the �rst convergence in (13) holds.

Now, we have

sup
u∈(0,1)

∥T n(u)− T̃ n(u)∥ ≤ sup
u∈(0,1)

sup
θ∈Θ

∥∥∥∥∥∥ 1√
n

[nu]∑
t=1

∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t(θ)
− ∂mt(θ)

∂θ

ϵt(θ)

κ2t(θ)

∥∥∥∥∥∥
≤ 1√

n

n∑
t=1

sup
θ∈Θ

(∥∥∥∥∂mt(θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥ |ϵt(θ)|
κ2t(θ)

)

+
1√
n

n∑
t=1

sup
θ∈Θ

(
|mt(θ)− m̃t(θ)|

∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ 1

κ2t(θ)

)

+
1√
n

n∑
t=1

sup
θ∈Θ

(∣∣∣∣ 1

κ2t(θ)
− 1

κ̃2t(θ)

∣∣∣∣ ∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ |ϵ̃t(θ)|) .
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By Assumptions A6-A7, the �rst term in the right-hand side is bounded by

1

κ
√
n

∞∑
t=1

sup
θ∈Θ

|ϵt(θ)|Ktρ
t = O

(
1√
n

)
, a.s.

because the summands have �nite s-th order moment by A4. The same upper bound holds

for the other two terms of the right-hand side of the previous inequality. Hence the second

convergence in (13) is established.

B.2 Proof of Theorem 2

Since Υt = Υt,n is such that

1
√
nu0

[nu0]∑
t=1

Υt
L→ N (Jδ1, I) ,

1√
n(1− u0)

n∑
t=[nu0]+1

Υt
L→ N (Jδ2, I) ,

for u ≤ u0 we have

1√
nu

[nu]∑
t=1

(
Υt −

1
√
nu0

Jδ1

)
L→ N (0, I) ,

and thus

1√
n

[nu]∑
t=1

Υt
L→ N

(
u

√
u0

Jδ1, uI

)
,

1√
n

[nu0]∑
t=[nu]+1

Υt
L→ N

(
u0 − u
√
u0

Jδ1, (u0 − u)I

)
,

1√
n

n∑
t=[nu0]+1

Υt
L→ N

(√
1− u0Jδ2, (1− u0)I

)
,

and for u ≥ u0 we have

1√
n

[nu]∑
t=[nu0]+1

Υt
L→ N

(
u− u0√
1− u0

Jδ2, (u− u0)I

)
,

1√
n

n∑
t=[nu]+1

Υt
L→ N

(
1− u√
1− u0

Jδ2, (1− u)I

)
.

We therefore have

T 0
n(u) =

1√
n

[nu]∑
t=1

Υt − u
n∑

t=1

Υt


=

1√
n

[nu]∑
t=1

(1− u)Υt − u
1√
n

[nu0]∑
t=[nu]+1

Υt − u
1√
n

n∑
t=[nu0]+1

Υt

L→ T u0(u) ∼ N {Jδu0(u), u(1− u)I} , δu0(u) =
u(1− u0)√

u0
δ1 − u

√
1− u0δ2,

when u ≤ u0, and

T 0
n(u) =

1√
n

[nu0]∑
t=1

(1− u)Υt + (1− u)
1√
n

[nu]∑
t=[nu0]+1

Υt − u
1√
n

n∑
t=[nu]+1

Υt

L→ T u0(u) ∼ N {Jδu0(u), u(1− u)I} , δu0(u) =
√
u0(1− u)δ1 −

u0(1− u)√
1− u0

δ2,
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when u ≥ u0. It follows that, for all u ∈ (0, 1), T⊤
u0
(u)I−1T u0(u)/u(1− u) follows a chi-square

distribution with d degrees of freedom and noncentrality parameter

1

u(1− u)
δ⊤u0

(u)JI−1Jδu0(u),

which is maximal for the optimal QLE. We conclude by noting that the noncentral chi-squared

distribution satis�es the stochastic-equal-mean order property: the larger the mean (i.e. the

noncentrality parameter) is, the larger is the cdf, at any point. Note that the noncentrality

parameter is maximal at u0.

B.3 Proof of Theorem 3

By standard arguments, it can be shown that A2, A4 and A7 entail

sup
θ∈Θ

∥∥∥∥∥
n∑

t=1

Υ̃t(θ)−Υt(θ)

∥∥∥∥∥ ≤
∞∑
t=1

Ktρ
t < ∞ a.s. (25)

This entails that the initial values that are generally used to compute recursively m̃t(θ) and

κ̃2t(θ) have no consequence on the asymptotic behavior of the QLEs. In particular (25) and the

ergodic theorem entail that, for any neighborhood V (θ1) of θ1 ∈ Θ,

lim
n→∞

inf
θ∈V (θ1)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υ̃t(θ)

∥∥∥∥∥ ≥ lim
n→∞

inf
θ∈V (θ1)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υt(θ)

∥∥∥∥∥
≥ ∥EΥt(θ1)∥ − E sup

θ∈V (θ1)∩Θ
∥Υt(θ)−Υt(θ1)∥ .

If Vm(θ) denotes the ball of center θ and radius 1/m, by the dominated convergence theorem

E sup
θ∈Vm(θ1)∩Θ

∥Υt(θ)−Υt(θ1)∥

is arbitrarily small whenm is large enough. ByA3∗, we also have ∥EΥt(θ1)∥ > 0 when θ1 ̸= θ∗
0.

We thus have shown that for any θ1 ̸= θ∗
0, there exists a neighborhood V (θ1) of θ1 such that

lim inf
n→∞

inf
θ∈V (θ1)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υ̃t(θ)

∥∥∥∥∥ > 0, a.s.

and that for any neighbourhood V (θ∗
0) of θ

∗
0

lim sup
n→∞

inf
θ∈V (θ∗

0)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υ̃t(θ)

∥∥∥∥∥ = 0, a.s.

By compactness of Θ, the existence and consistency of the QLE then follow.
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A �rst order Taylor expansion, (25), and the consistency of θ̂ imply

0d =
1√
n

n∑
t=1

Υ̃t(θ̂) =
1√
n

n∑
t=1

Υt(θ̂) + oP (1) =
1√
n

n∑
t=1

Υt(θ
∗
0) + J∗

n

√
n(θ̂ − θ∗

0) + oP (1),

where the row i of J∗
n is of the form n−1

∑n
t=1

∂
∂θ⊤Υit(θ

∗), and θ∗ is such that ∥θ∗ − θ∗
0∥ ≤

∥θ̂ − θ∗
0∥. Using the consistency of θ̂, for n large enough we have

∥J∗
n − J∗∥ ≤ 1

n

n∑
t=1

sup
θ∈Vm(θ∗

0)∩Θ

∥∥∥∥ ∂

∂θ⊤Υt(θ)−
∂

∂θ⊤Υt(θ
∗
0)

∥∥∥∥+
∥∥∥∥∥J∗ − 1

n

n∑
t=1

∂

∂θ⊤Υt(θ
∗
0)

∥∥∥∥∥
for all m. The ergodic theorem entails that the a.s. limit as n → ∞ of the right-hand side

is arbitrarily small when m is large. The Bahadur representation, that is the expression of
√
n
(
θ̂ − θ∗

0

)
, follows. The last result follows from (20), which comes from A1∗ and the CLT of

Herrndorf (1984).

B.4 Proof of Theorem 4

By the functional CLT of Herrndorf (1984) and the Cramer-Wold device, A1∗ entails

(I∗)1/2√
n

[n·]∑
t=1

Υt(θ
∗
0) =⇒ W (·),

where W (·) denotes a standard d-dimensional Brownian motion. The proof is therefore like that

of Theorem 1.

B.5 Proof of Theorem 5

Let

T n(u) =


1√
n

∑[nu]
t=1 Υ

(1)
t (θ̂) if u ≤ u0,

1√
n

∑[nu0]
t=1 Υ

(1)
t (θ̂) + 1√

n

∑[nu]
t=[nu0]+1Υ

(2)
t (θ̂) if u > u0.

i) We start by showing that

sup
u∈(0,1)

∥T n(u)− T̃ n(u)∥ = oP (1). (26)
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We �rst consider the supremum over u ∈ (u0, 1), which is the most complicated term. We have

sup
u∈(u0,1)

∥T n(u)− T̃ n(u)∥ ≤ sup
θ∈Θ

∥∥∥∥∥∥ 1√
n

[nu0]∑
t=1

∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t(θ)
− ∂m

(1)
t (θ)

∂θ

ϵ
(1)
t (θ)

κ
(1)
2t (θ)

∥∥∥∥∥∥
+ sup

u∈(u0,1)
sup
θ∈Θ

∥∥∥∥∥∥ 1√
n

[nu]∑
t=1+[nu0]

∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t(θ)
− ∂m

(2)
t (θ)

∂θ

ϵ
(2)
t (θ)

κ
(2)
2t (θ)

∥∥∥∥∥∥
≤ 1√

n

[nu0]∑
t=1

sup
θ∈Θ

(∥∥∥∥∥∂m(1)
t (θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥∥ |ϵ(1)t (θ)|
κ
(1)
2t (θ)

)

+
1√
n

[nu0]∑
t=1

sup
θ∈Θ

(
|m(1)

t (θ)− m̃t(θ)|
∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ 1

κ
(1)
2t (θ)

)

+
1√
n

[nu0]∑
t=1

sup
θ∈Θ

(∣∣∣∣∣ 1

κ
(1)
2t (θ)

− 1

κ̃2t(θ)

∣∣∣∣∣
∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ |ϵ̃t(θ)|
)

+
1√
n

n∑
t=1+[nu0]

sup
θ∈Θ

(∥∥∥∥∥∂m(2)
t (θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥∥ |ϵ(2)t (θ)|
κ
(2)
2t (θ)

)

+
1√
n

n∑
t=1+[nu0]

sup
θ∈Θ

(
|m(2)

t (θ)− m̃t(θ)|
∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ 1

κ
(2)
2t (θ)

)

+
1√
n

n∑
t=1+[nu0]

sup
θ∈Θ

(∣∣∣∣∣ 1

κ
(2)
2t (θ)

− 1

κ̃2t(θ)

∣∣∣∣∣
∥∥∥∥∂m̃t(θ)

∂θ

∥∥∥∥ |ϵ̃t(θ)|
)
.

By Assumptions B3-B4, the �rst term in the right-hand side is bounded by

1

κ
√
n

∞∑
t=1

sup
θ∈Θ

|ϵ(1)t (θ)|K(1)
t ρt = O

(
1√
n

)
, a.s.

using the existence of a bound for a small-order moment for supθ∈Θ |ϵ(1)t (θ)|K(1)
t . The other

terms can be handled in the same way. We similarly show that supu∈(0,u0) ∥T n(u)− T̃ n(u)∥ =

oP (1). Thus (26) is established.

ii) Now we prove that

θ̂ → θ⋆
0 a.s. as n → ∞. (27)

We note that θ̂ = argminθ∈Θ

∥∥∥n−1
∑n

t=1 Υ̃t(θ)
∥∥∥. Let Υt(θ) = Υ

(1)
t (θ) if t ≤ [nu], and

Υt(θ) = Υ
(2)
t (θ) otherwise. For any neighborhood V (θ3) of θ3 ∈ Θ, using the fact that
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supθ∈Θ

∥∥∥∑∞
t=1 Υ̃t(θ)−Υt(θ)

∥∥∥ < ∞ a.s., we have

lim
n→∞

inf
θ∈V (θ3)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υ̃t(θ)

∥∥∥∥∥
≥ lim

n→∞

∥∥∥∥∥n−1
n∑

t=1

Υt(θ3)

∥∥∥∥∥− lim
n→∞

sup
θ∈V (θ3)∩Θ

∥∥∥∥∥n−1
n∑

t=1

Υt(θ)

∥∥∥∥∥
≥
∥∥∥u0E {Υ(1)

t (θ3)
}
+ (1− u0)E

{
Υ

(2)
t (θ3)

}∥∥∥− sup
i=1,2

E sup
θ∈V (θ3)∩Θ

∥∥∥Υ(i)
t (θ)−Υ

(i)
t (θ3)

∥∥∥ ,
where the �rst term in the r.h.s. is positive for θ3 ̸= θ∗

0, while the second term can be made

arbitrarily small when the neighborhood shrinks to the singleton {θ3} by arguments already

given. The consistency of θ̂ follows as in the proof of Theorem 3.

iii) Under B5 let

I⋆ = u0E

{
Υ

(1)
t (θ⋆

0)
(
Υ

(1)
t (θ⋆

0)
)⊤}

+ (1− u0)E

{
Υ

(2)
t (θ⋆

0)
(
Υ

(2)
t (θ⋆

0)
)⊤}

,

J⋆ = u0E

{
∂

∂θ⊤Υ
(1)
t (θ⋆

0)

}
+ (1− u0)E

{
∂

∂θ⊤Υ
(2)
t (θ⋆

0)

}
.

We will show that

sup
u∈(0,1)

∣∣∣∣ 1nS̃n(u)− L(u)

∣∣∣∣ = oP (1) (28)

where

L(u) =

 {u(1− u0)}2∆′(θ1,θ2)I
⋆−1∆(θ1,θ2) if u ≤ u0

{u0(1− u)}2∆′(θ1,θ2)I
⋆−1∆(θ1,θ2) if u > u0

and, recalling that θ⋆
0 depends on θ1 and θ2,

∆(θ1,θ2) = E
{
Υ

(1)
t (θ⋆

0)
}
− E

{
Υ

(2)
t (θ⋆

0)
}
.

By the arguments of the proof of Theorem 1 we have, with θ̂
∗
u between θ̂ and θ⋆

0,

1√
n
T n(u) =

1

n

[nu]∑
t=1

Υt(θ
⋆
0) + u

 1

nu

[nu]∑
t=1

∂

∂θ⊤Υt(θ̂
∗
u)

 (θ̂ − θ⋆
0)

Given that T̃ n(1) = 0 in view of (26) we have, for θ̂
∗
between θ̂ and θ⋆

0,

T n(1) = oP (1) =
1√
n

n∑
t=1

Υt(θ
⋆
0) + J⋆

n

√
n(θ̂ − θ⋆

0), J⋆
n =

1

n

n∑
t=1

∂

∂θ⊤Υt(θ̂
∗
).

Moreover, we have

J⋆
n =

1

nu

[nu]∑
t=1

∂

∂θ⊤Υt(θ̂
⋆

u) +
1

nu

[nu]∑
t=1

{
∂

∂θ⊤Υt(θ̂
⋆
)− ∂

∂θ⊤Υt(θ̂
⋆

u)

}

− 1

nu

[nu]∑
t=1

(
∂

∂θ⊤Υt(θ̂
⋆
)− J⋆

n

)
+

(
1− [nu]

nu

)
J⋆

n.
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Thus, by already given arguments

1√
n
T n(u) =

1

n

[nu]∑
t=1

Υt(θ
⋆
0)− u

n∑
t=1

Υt(θ
⋆
0)

+
1

n

[nu]∑
t=1

(
∂

∂θ⊤Υt(θ̂
∗
u)− J⋆

n

)
(θ̂ − θ⋆

0) + uoP (1)

:=
1√
n
T 0

n(u) +Rn(u)(θ̂ − θ⋆
0) + oP (1), (29)

where the reminder term is independent of u. We will show that, in contrast with the �rst

convergence in (13) of the proof of Theorem 1, we have

sup
u∈(0,1)

∥Rn(u)∥ = OP (1). (30)

We have, using the consistency of θ̂
∗
u to θ⋆

0,

∥Rn(u)∥ ≤

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ
⋆
0)− J⋆

)∥∥∥∥∥∥+ sup
θ∈Vk(θ

⋆
0)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ
⋆
0)−

∂

∂θ⊤Υt(θ)

)∥∥∥∥∥∥
+ ∥J⋆

n − J⋆∥.

As in the proof of Theorem 1, it can be shown that the second term in the r.h.s. converges to 0

in probability, uniformly in u ∈ (0, 1). It can also be shown that the third term converges to 0

in probability. Moreover,

sup
u∈(0,u0)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ
⋆
0)− J⋆

)∥∥∥∥∥∥ ≤ sup
u∈(0,u0)

∥∥∥∥∥∥ 1n
[nu]∑
t=1

(
∂

∂θ⊤Υt(θ
⋆
0)− E

{
∂

∂θ⊤Υ
(1)
t (θ⋆

0)

})∥∥∥∥∥∥
+

∥∥∥∥E{ ∂

∂θ⊤Υ
(1)
t (θ⋆

0)

}
− J⋆

∥∥∥∥
where the �rst term in the r.h.s. converges to 0 in probability by already given arguments. It

can also be shown that a similar bound holds when the supremum of the l.h.s. term is taken

over (u0, 1). Thus (30) is established, from which it follows that the second term in the r.h.s. of

(29) converges to 0 in probability as n → ∞.

Now we have, for u ≤ u0,

1√
n
T 0

n(u) = u(1− u)
1

[nu]

[nu]∑
t=1

Υ
(1)
t (θ⋆

0)− u(u0 − u)
1

[nu0]− [nu]

[nu0]∑
t=[nu]+1

Υ
(1)
t (θ⋆

0)

− u(1− u0)
1

n− [nu0]

n∑
t=[nu0]+1

Υ
(2)
t (θ⋆

0) + oP (1)

→ u(1− u)E
{
Υ

(1)
t (θ⋆

0)
}
− u(u0 − u)E

{
Υ

(1)
t (θ⋆

0)
}

− u(1− u0)E
{
Υ

(2)
t (θ⋆

0)
}
, in probability as n → ∞.
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Thus, for u ≤ u0,

1√
n
T 0

n(u) →u(1− u0)∆(θ1,θ2), in probability as n → ∞,

and we similarly show that, for u > u0,

1√
n
T 0

n(u) →u0(1− u)∆(θ1,θ2), in probability as n → ∞.

Thus, (28) is not yet established but we have shown that 1√
n
T 0

n(u) → T (u) for all u ∈ (0, 1),

where

T (u) =

 u(1− u0)∆(θ1,θ2) if u ≤ u0,

u0(1− u)∆(θ1,θ2) if u > u0.

Now we have, letting Y
(i)
t = Υ

(i)
t (θ⋆

0)− EΥ
(i)
t (θ⋆

0) for i = 1, 2,

sup
u∈(0,u0)

∥∥∥∥ 1√
n
T 0

n(u)− T (u)

∥∥∥∥ ≤ sup
u∈(0,u0)

∥∥∥∥∥∥ u

[nu]

[nu]∑
t=1

Y
(1)
t

∥∥∥∥∥∥+
∥∥∥∥∥∥ u0 − u

[nu0]− [nu]

[nu0]∑
t=[nu]+1

Y
(1)
t

∥∥∥∥∥∥
+ (1− u0)

∥∥∥∥∥∥ 1

n− [nu0]

n∑
t=[nu0]+1

Y
(2)
t

∥∥∥∥∥∥+ op(1). (31)

The third term in the r.h.s. converges to 0 in probability as n → ∞ in view of the stationarity

and ergodicity of Y
(2)
t . Moreover, by the arguments used in the proof of Theorem 1,

sup
u∈(0,u0)

∥∥∥∥∥∥ u

[nu]

[nu]∑
t=1

Y
(1)
t

∥∥∥∥∥∥ ≤ sup
1≤k≤kn

∥∥∥∥∥ 2n
k∑

t=1

Y
(1)
t

∥∥∥∥∥+ sup
kn≤k≤n

∥∥∥∥∥ 2n
k∑

t=1

Y
(1)
t

∥∥∥∥∥
where the last term in the r.h.s. converges to 0 a.s. and, by the Markov inequality, for any ι > 0,

and kn/n → 0,

P

(
sup

1≤k≤un

∥∥∥∥∥ 1n
k∑

t=1

Y
(1)
t

∥∥∥∥∥ > ι

)
≤ P

(
1

n

kn∑
t=1

∥∥∥Y (1)
t

∥∥∥ > ι

)
≤ kn

nι
E
∥∥∥Y (1)

1

∥∥∥→ 0,

as n → ∞, from which we deduce that the �rst term in the r.h.s. of (31) converges in probability

to 0. The second termcan be handled similarly. It follows that the l.h.s. of (31) converges in

probability to 0. We similarly show that the same convergence holds when the supremum is

taken over (u0, 1). We thus have shown that

sup
u∈(0,1)

∥∥∥∥ 1√
n
T 0

n(u)− T (u)

∥∥∥∥→ 0, in probability as n → ∞.

In view of equations (26), (29) and (30), we also have

sup
u∈(0,1)

∥∥∥∥ 1√
n
T̃ n(u)− T (u)

∥∥∥∥→ 0, in probability as n → ∞. (32)

Noting that the matrix In converges in probability to I⋆, the convergence in (28) is established.

To conclude, it su�ces to apply the argmax theorem (see Theorem 3.2.2 of Van der Vaart and

Wellner, 1996).
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