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1 Introduction

In this paper, we study changepoint detection in the context of inference based on the Estimat-
ing Functions (EF) approach. The EF approach was originally developed by Godambe (1960)
for fully parametric estimation and by Durbin (1960) for estimating a simple autoregressive
structure. Several contributions have been developed thereafter, extending the application of
EF to more general, non independent and identically distributed (i.i.d.), stochastic processes;
whilst a complete review of the literature is beyond the scope of this paper, we refer, inter alia,
to the papers by Godambe (1985), Godambe & Heyde (1987), Jacod & Sgrensen (2018), and
Francq & Zakoian (2023); the reviews by Bera & Bilias (2002), Bera et al. (2006), and Heyde
(1997) offer an excellent description of the state of the art on EF-based inference.

In essence, the EF approach is based on estimating a finite dimensional parameter, say 6, by
solving the equation H,, (@) = 0, for some observation-dependent function H, (6). A common
name for the resulting estimator is Quasi Likelihood Estimator (QLE). Clearly, several popular
estimation techniques can be cast in the EF framework. For example, the QMLE is a particular
case of QLE, which can be used when the QML criterion is differentiable, and H, () = 0
corresponds to the first-order conditions of the maximisation problem; however, QMLE can be
asymptotically less efficient than QLE (see Francq & Zakolan (2023) for examples). Similarly,
the GMM estimator of Hansen (1982) is related to QLE, with H,, (@) = 0 corresponding to the
moment conditions, although the two estimation techniques differ in the way the observations
are weighted. Christensen et al. (2016) show that, in general, the optimal QLE is strictly more
efficient than the optimal GMM. Indeed, as Vinod (1997) puts it, it “[...] is remarkable that
whenever the OLS or ML estimators do not coincide with the OptEF, it is the OptEF that have
superior properties in both large and small samples” (p. 216).! On account of these optimality
properties, the EF approach has become a very important technique in the toolbox of the
applied scientist in such diverse fields as: survey sampling, where Godambe & Thompson (2009)
use EF to estimate the response probability parameters (see also the examples in Godambe
& Thompson 2009); biostatistics, where the EF approach has been applied to longitudinal
datasets in the highly influential paper by Liang & Zeger (1986); in finance, where EF has been
suggested for the estimation of (discretely sampled) diffusion-type models (Bibby et al. 2010);
and in economics, where, for example, the estimation of the consumption based CAPM - see

Tauchen (1986) - which is usually carried out via GMM, with often ad hoc choices of moments,

MOptEF" refers here to the optimal EF estimator.



can instead be based on the EF approach, and Vinod (1997) reports a comprehensive empirical
illustration with a comparison between the EF and the GMM methods.

The EF approach is particularly attractive for time series where the dynamics is not fully
specified, but the conditional mean is assumed to be a given function of past observations and
a finite-dimensional parameter. Unlike "strong" models, which are generally determined by
a sequence of innovations (often assumed to be i.i.d.), models characterized only by the first
conditional moment (so-called "weak" location models) are not naturally amenable to (quasi)
likelihood-based inference. For example, the consistency of the Gaussian quasi-maximum likeli-
hood (QMLE) estimator requires, among other regularity assumptions, the correct specification
of the first two conditional moments. In contrast, the QLE, which is obtained by solving estimat-
ing equations derived from the first conditional moment, can be consistent and asymptotically
normal without the correct specification of the second conditional moment (see Francq & Zakoian
2023). In this approach, only the conditional mean needs to be correctly specified.

In many applications, however, the conditional mean may undergo a structural change, which
highlights the importance of testing for the possible presence of changepoints. This issue is of
particular importance in the context of a time series, where, as Hansen (2001) puts it: “Structural
change is pervasive in economic time series relationships, and it can be quite perilous to ignore.
Inferences about economic relationships can go astray, forecasts can be inaccurate, and policy
recommendations can be misleading or worse” (p. 127). The literature on changepoint has
a long history, starting with Page (1955), and we refer to Csorgd & Horvath (1997), Aue &
Horvath (2013), Casini & Perron (2019) and Horvath & Rice (2024) for state-of-the-art reviews.
Whilst numerous contributions have been developed to test for changepoints based on several
estimators, to the best of our knowledge nothing is available for the case of EF based inference,
and extending the results available for other existing techniques is not a trivial task. Hence,
in this paper we investigate the detection of changepoints in the conditional (parametric) mean
of a weak location model, using the EF approach to estimate the parameters. We make three
main contributions. First, we study the distribution of CUSUM test statistics constructed as
the partial sums of the quasi-Fisher scores used in the EF approach. The testing procedure
depends on the choice of a sequence of weights, leading to a potentially infinite number of
consistent tests, and in this paper we show that the best test is related to Godambe’s optimal
QLE, also discussing data-driven procedures for this optimal choice of weights. Second, we
study inference in the presence of a changepoint, also deriving the limiting distribution of the

estimated breakdate. Third, we also study the case where the conditional mean is misspecified,



developing Heteroskedasticity and Autocorrelation Consistent (HAC) versions of the tests.

Let us mention a few references on CUSUM-based test statistics that are most relevant to
our work. Ploberger & Kramer (1992) introduced an OLS-based CUSUM test for testing the
constancy of regression coefficients. Horvath & Parzen (1994) proposed a weighted-CUSUM of
Fisher’s scores for testing iidness. Berkes et al. (2004) adapted the approach to test parameter
constancy in GARCH model, using a QMLE-based score. Negri & Nishiyama (2017) considered
more general models with applications to ergodic and non-ergodic diffusion processes. Kutoyants
(2016) considered CUSUM statistics based on Fishers’s score and studied goodness-of-fit tests
for diffusion processes and nonlinear time series models. Lee et al. (2003) considered a CUSUM
based on gk — §n for k =1,...,n, where /H\k is an estimator based on the first k observations.
Shao & Zhang (2010) proposed a self-normalized Kolmogorov-Smirnov test for a change point
in the mean of a time series. Aue & Horvéath (2013) showed how CUSUM statistics can be used
to detect breaks in the unconditional and conditional means and variances of time series.

The remainder of the paper is organized as follows. Section 2 presents the EF approach. In
Section 3, we study the test statistic, its asymptotics under the null (Section 3.1), optimality
and inference under the alternative (Section 3.2), the case where the conditional mean may
not be correctly specified (Section 3.3), and change-point estimation (Section 3.4). Numerical
illustrations based on simulated and real financial data are reported in Section 4.The datasets
and R-codes used for the illustration are available here: https://doi.org/10.5281/zenodo.

14899445, Examples and proofs are relegated to an appendix.

2 Model, assumptions and the estimating function approach

Consider a real time series (y;)iez and the sigma-field F; generated by {y, : v < t}. Assume the
existence of a well-defined function my(0) = m(0;y¢—1,yi—2, ... ), depending on some parameter

0 € © where O is a compact subset of R?, such that for some parameter value 8y and all ¢t € Z,
my = mt(00) = Etfl(yt), where Et() = E( | ]:t) (1)

It is assumed that m(0;-) is a well defined measurable function of {y, : v < ¢} and that my(-)

is almost surely continuous over ©. It is always possible to write the model as
Yr = my + €, (2)
where m; € F;—1 and (€;) is such that Fy_1(e) = 0, or equivalently,

Ei 1€,(00) =0, €(0) = yr — my(6). (3)


https://doi.org/10.5281/zenodo.14899445
https://doi.org/10.5281/zenodo.14899445

We refer to Model (2) as a weak location model, by contrast with models in which strong as-
sumptions are imposed on the error term, such as iidness.
Our main focus will be to test for the possible presence of changes in 0 as time elapses. In
other words, assuming the observations yi, ..., y, satisfy, for ug € (0, 1],
me(601) + e if t < [nug],

Yt = Ytn = (4)
my(02) + ¢ if t > [nug],

where (e;) is such that E;_1(e;) = 0 and 61,02 € O, we consider testing the hypothesis of
constancy over time

H(): uO:1 (5)

versus the alternative hypothesis that a change occurs at an unknown change point
Ha: ug€ (0, 1) and 64 75 0. (6)

We would like to point out that, in (6), we consider the alternative hypothesis of At-Most-One-
Change (AMOC) for simplicity and only for illustrative purposes; in principle, our approach

lends itself to being generalised to the case of multiple changepoints.

2.1 The estimating function approach

We begin by discussing the estimation of @ via the EF approach. For the sake of a concise
discussion, we only report the main aspects of estimation; illustrative examples are presented in
Section A of the Appendix.

Assume that n variables y1, . . ., y,, have been observed from the time series {y;, —0o0 < i < 00}.

Consider the following assumed proxy of o2(0) := Ey_1 {y; — m:(0)}*:
Kot(0) = K2 (03 Yt—1,Yt—2,...) - (7)

Note that m(@) and k2(0) depend on the non-observed values {y, : u < 0}. Moreover,
k2t (0) = kot(0,7) may depend on some unknown nuisance parameter v (as well as o2(0)).
Let Z; be the sigma-field generated by {y, : 1 < u < t}, the information available at time ¢,
with Z, € F;. Let m;(0) be an Zi-measurable approximation of m;(6).? Similarly, %o; stands
for an Z;-measurable approximation of ko, which may be constant or may depend on @; when
kot(0) = K2t(0,7) depends on a nuisance parameter v € @, with ®; a compact set, and 7, is

an estimator of «y, then Koy = K24(6,7,,) denotes an Z,,-measurable approximation of xo(8).

2See Assumption A3 below for a more precise definition.



Letting, under differentiability assumptions displayed below,

_ (0 @(0)

4(0) 00 Ry

Wlth Et(H) =Yt — T%t(e),

the parameter 8y can be estimated by the solution 0 of
n ~
> T (0) =0 (®)
t=1
As far as the vocabulary goes, equation (8) is the estimating equation, and its left-hand side
the estimating function. This estimating function corresponds to Fisher’s score for particular
conditional distributions of y; (see Example 2 in Section A in the Appendix) and in general it
can be interpreted as a quasi-score, hence the title of the paper. Any measurable solution 0 of
the estimating equation (8) is the QLE, and all the QLEs that we consider hereafter only differ
by the weighting sequence Kg¢. In Section A.1, we discuss some examples of QLE (see Examples
1 and 2), and illustrate the link between QLE and GMM (Example 3); in Section A.2, we discuss

examples of Koy (see Example 4, where we also discuss data-driven rules to optimally select Koy;

see Example 5 for GARCH estimation of ko).

2.2 Assumptions

To develop a test of the null hypothesis Hg of no change, we make the following assumptions.

Define
om(0) €(0)
T:(0) = 9
t( ) 80 K/Qt(a), ( )
and, under the assumptions below, consider the matrices

_ o7(60) Ome(00) Ome(6o)
I = E(@(eo) 00 00’ )

- 1 3mt(00) 6mt(00)
Jo= _E<K2t(00) 00 00’ >

A1 The process (y;),cyz is strictly stationary and ergodic.

A2 There exists p € [0,1) such that, almost surely (a.s.) supgeg |m:(0) — m(0)] < Kip',

where K is a generic F;_j-measurable random variable such that sup, EK] < oo for some r > 0.

A3 Let Yy(0) = awge(e) ,:;t(zg). If E{Y:(0)} = 0 for some 6 € O, then 8 = 0. The parameter

6y belongs to the interior of the compact set O.
A4 The function 6 — my(0) is twice continuously differentiable, and

00 00

sup

H < Ko, a.s.
0co



where K, is as in A2, || - || denotes any norm on R%. Moreover, for some s > 0, Fly,|* < co and

E supgceo {\mt( )°+ Hamt H } < 00.

A5 T AT2mel80) — 0 5. then A = 0,.

A6 There exists a constant £ > 0 such that infgeg k2:(0) > £k a

AT For all 8 € © the sequence {K2t(0)}tel is stationary, ergodic and F;_i-measurable, the
function @ — k9 (0) is continuously differentiable, there exist p € [0,1) and K; as in A2 such
that, almost surely,

sup |K2¢(8) — Fae(0)] < Kyp'
€O

for n large enough.?

A8 We have

Esup || X:(0)]* <oo and Esup
6co 6co

Y ,(6) H

Assumptions A1-AS8 have similarities with Assumptions A1-A10 in Francq & Zakoian (2023),
and we refer to that paper for comments. In Section A.3 in the Appendix, we illustrate them
through some examples (see Examples 6 and 7, where we consider an application to AR(1)

models).

3 Change-point tests

Inspired by basic CUSUM statistics used in changepoint problems, we consider the process,

defined for u € [0, 1] by
[nu

By convention Tn(O) = 0 and, by definition of the QLE, we also have Tn(l) = 0. A natural

%\

statistic for testing Hp is

~ ~ ~ ~ ~T ~
Sp = sup Sp(u)= max S,(k/n), Sp(u) =T, (u)I;'T,(u)

u€(0,1) ke{l,..,n—1}

where I,, denotes a non singular consistent estimator of I. Note that A5 entails that I is not

singular.

3Recall that K2; may depend on 7,,.



3.1 Asymptotics under the null of no change

Inspired by the references mentioned in the introduction, we will show that, under the null
of no break, T',(u) converges weakly to a Gaussian process T(u) = (T1(u), ..., Ty(u))T with
covariance structure ET(u) = 0 and Cov(T(u), T (v)) = I{min(u,v) — uv}. Thus, each com-
ponent of the vector I™'/?T(u) is a standard Brownian bridge {B(u),u € [0,1]}, with B(u) =
W (u) — uW (1) where {W (u),u € [0,1]} denotes a standard Brownian motion on R?.

Theorem 1. Under Assumptions A1-A8, including Hy, we have

S, 5 5= sup T (w)I'T(u) = sup Z{B
u€(0,1) u€e(0, 1)

where B(u) = (By(u), ..., Bq(u))" is a d-dimensional standard Brownian bridge.

Note that the distribution of S (for d < 10) is tabulated in Lee et al. (2003). In the proof of

this theorem, we establish the following expansion which will be used throughout:

To(w) = > Y(0)
t=1
:in 3 Y:(60) — uzn: Y¢(6o) + - 1y <89T - J) V(8 — 80) + op(1)
t=1 t=1 t=1
=T (u) + Ry (u)v/n(8 — 85) + op(1), (12)

where 8" is between 8 and 0y, and
sup [[Ru(u)| =op(1),  sup | Tn(w) = Tu(u)] = op(1). (13)
ue(0,1) ue(0,1)
Remark 1. The estimation of I cannot be achieved by plug-in, using formula (10). Indeed,

the conditional variance function ¢2(-) is generally unknown. However, a consistent estimator

of I =E{Y(60)Y/(0)} is
I~~~ aT -
= =3 "Xu(6,)Y, (62). (14)
(e
Remark 2. Nyblom (1989) proposed a general theory for testing the constancy of the parameters
involved in the conditional distribution of a time series model. Applied to our semiparametric

framework, the Nyblom test? replaces the supremum with a mean. More specifically, the test

rejects the parameter constancy for large values of
1 -
=" Sulk/n)
k=1

“We are grateful to P.R. Hansen for pointing out that we can use this test in our framework.




which, by the continuous mapping theorem, has the asymptotic distribution fol Z?ZI{B]- (u)}2du
under the assumptions of Theorem 1. The Nyblom test, which enjoys some optimality properties
under the alternative that the parameter process follows a martingale, is widely used in econo-
metrics (for an example see Hansen et al. (2014), where the test is used to assess the constancy

of a correlation).

Remark 3. The CUSUM test also has optimality properties, but for different alternatives than
the Nyblom test. At the very beginning of their book, Horvath & Rice (2024) give a univariate
example where the (standardized) CUSUM test coincides with a likelihood ratio test and thus

enjoys its general good asymptotic properties. See Section A.4 for a multivariate example.

We can now construct a test for Hg. At the significance level a € (0,1), an asymptotic
critical region is given by

max Sn(k/n) > Si_a, (15)

where S1_, is the (1 — a) quantile of the law of S.

3.2 Local Asymptotic Power comparisons

The estimator defined in (8) with &g proportional to 02(6) is optimal in the Godambe sense

within the class of EF estimators solving
n
> ai1(0)e(0) =0, (16)
t=1

where a;—1(0) is a d x 1 vector belonging to F;_; (see Chandra & Taniguchi 2001). In this
section we show that Godambe’s optimal QLEs lead to optimal tests, in the sense that they
optimize some local asymptotic power (LAP).

We will consider a sequence of "local breaks" occurring at a proportion ug € (0,1) of the

observations.

3.2.1 Local break in the mean of a sequence of i.i.d. Gaussian variables

The simplest example of local break is obtained by assuming that yi,...,y, are independent

and Gaussian with variance o2, and that y; = y;,, has mean 6y + 61/+/[nuo] when t < [nuo) and
0o + d2/+/n — [nup] when ¢t > [nug]. We then have

[nuo)

1
(yt - 90) ~ N (617 02) )

1 n
1 _ o — 00) ~ N (52, 07)
[nug] tzl Vn — [nug) t=[1§0}+1(y 0) (62,07)



and thus

1 n
S Do o) ~ N (33,0) 55 = ol + VT~ ol
t=1

Note that, in this simple example, 7 = n=1 31| y; is the Q(M)LE of 6y (under the null §; =
82 = 0 of no local break), Tp,(u) = T),(u) = n~1/2 [nu] 1(yt — ) is the usual CUSUM process,

and
[nu]

- 1 _ o n
So= s LS ey =t

S
ue(0,1) Yy | v t—1

is nothing else than the Kolmogorov test statistic. Note also that (12)—(13) hold with R, (u) =

u — [nu]/n and op(1) = 0. The asymptotic distribution of the Kolmogorov test statistic under

such local breaks can be obtained as a corollary of the next result.

3.2.2 Local asymptotic power

Let us now return to the general situation. Suppose the conditional distribution of y; changes
at a single point, which is located at a fixed proportion ug € (0,1) of the observations. Let
5(1) be the QLE computed on y1,. .., Y, and 5(2) the QLE computed on ypyonj41,---»Yn-
Recall that 8 is the QLE computed on all the observations y1,...,y,. Let the local alternatives
Hy = Hy(61, 62) such that, for X, = X¢,,(6p), as n — oo

[nuo]
~ 1 L _ _
vnug (0 — 0p) = —J 1 §T+ 1) SN (8, T 1Jg1), 17
“0( (1) 0) Vg = op(1) = N (8 ) (17)
n(l - UO) <§(2) - 90) = _J_1; E T+ OP(I) £>/\/(62,J_11J_1) . (18)

Under mild regularity conditions (for example under mixing conditions), /0\(1) and 5(2) are asymp-
totically independent, and we then have

ﬁ<§—90> =—-J Zrt—i-Op —)N((Sg, 1IJ_1) (19)

=1

with d3 = JlTo(h + 1 — upds.

Theorem 2. Assume Hi(d1,02), reqularity conditions ensuring I, — I a.s. with I non singu-
lar, (12)=(13) and (17)~(19). Then, for all w € (0,1), S, (u)/u(l — u) converges in distribution
to a noncentral chi-square distribution with d degrees of freedom. When /1T —ugd1 # \/uod2,
the noncentrality parameter is not equal to 0 and the best LAP is obtained for the optimal QLE.

10
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Figure 1: Powers of the CUSUM, Nyblom, and Weighted CUSUM tests as a function of the break date wo.

3.2.3 Comparisons with other tests

As an illustration of Theorem 2, let us compare the LAPs of the CUSUM, NYBLOM (see
Remark 2) and Weighted CUSUM (W-CUSUM) in the simple case of Section 3.2.1. The 3 tests

reject for large values of S, §7]1V and EZV defined by
~ ~ ~ 1 < ~ ~ 2
S, = max S, <k> , ST]LV = —ZSH (k) , SXV = max nisn <k>
1<k<n n n n 1<k<n k(n — k) n

with S, (k/n) = {Zle(yt — y)}2 /(nG2). The critical values of the tests as well as the LAPs
are evaluated by using 50,000 independent replications of the test statistics with n = 1,000.
Figure 1 shows the LAPs for the nominal leavel & = 1% and the alternatives Hj(d1,d2) with
91 = —d2 = 3 for a grid of values of uy € {0.01,0.02,...,0.99}. As expected, the weighted
CUSUM is more powerful than the unweighted version when the local break ug comes early or

late. Note that the CUSUM and Nyblom tests have similar power, often with a slight advantage
for the CUSUM.

3.3 Change-point tests with misspecified conditional mean

In Sections 3.1-3.2, we assumed that m¢(6) is truly the conditional mean of y; given F;_1. In

this section, we propose to relax this assumption. The intuition is that, even if the conditional

11



mean is not correctly specified, its estimated parameter value should not vary too much when

the DGP is stable. Replace A3 and A5 by:

A3* Let X4(0) = 8”359(0) yt,;:'zg()e) where my(+) is F;_1-measurable. If E{Y;(0)} = 0 for some
0 € O, then 0 = 6, where the so-called pseudo-true parameter 6; belongs to the interior of the
compact set O.

Under A8, let J* = Ea%'rt(%) and assume:

A5* J* is non singular.

Let uy = E(y: | Fi—1). Note that we may have py # my(05), and more generally p; # m(0) for
all @ € ©. See Example 11 for the case of a misspecified AR(1).
Let X} = Y(6(). We now need conditions ensuring the Central Limit Theorem (CLT)

U=

for some long-run variance I*. Let {«(h)};~, be the a—mixing (strong mixing) coefficients of

LSy L) (20)
t=1

the process (X;),c, defined by a(h) = SUP seq (s o peorsusiem [P(AN B) = PA)P(B)|.
We reinforce A1 by the following assumption.
A1* We have || X3 l24, < 00 and 33°  {a(h)}*/ @) < oo for some v > 0.

Note that, by Davydov’s inequality, A1* entails the existence of the matrix I'*.

Theorem 3. Under Assumptions Al, A1*, A2, A3*", A4, AG6-AS8, there exists a QLE 0

satisfying

S G0 Ao )
;Tt(e) - 07 Tt(e) - E%(G) o6

for n large enough. Moreover 0— 0, a.s. and, under A5*,

n

) * *— 1 * x—1 x px—
\/ﬁ<9—00):—J 1\/ﬁ;rt(eo)+0p(1)ﬁ>N(o,J Y as n— .

Standard estimators of a long-run variance of the form I* are the Heteroskedasticity and
Autocorrelation Consistent (HAC) estimators (see Newey & West (1987) and Andrews (1991))
and spectral density estimators (see Den Haan & Levin 1997). Denote by I a consistent

estimator of I*, and consider the process

a* Q* Qo* 7 *— 17
Sy = sup S;(u), S¥(u) =T, (u) I 1T, (u).
u€(0,1)
Theorem 4. Under the Assumptions of Theorem 3, in particular the non-ezxistence of a break,

and if I is invertible we have g,’; 5.

12



Note that 6 in A3* may vary with ko, and thus the "optimal" test statistics is not nec-
essarily obtained by choosing ko proportional to the conditional variance, as is the case when

my(+) corresponds to the well-specified conditional mean (see Lemma 1 and Theorem 2).

3.4 Change-point estimation

One of the main goals of change-point analysis is to estimate the location of breaks under the
alternative. Results on this issue go back to Hinkley (1970) in the case of iid random variables.
To cite just one more recent reference for a general class of (strong) time series models, Ling
(2016) derived asymptotic results on estimated change-points.

Assume that, for 61,602 belonging to © and for up € (0, 1], Model (4) holds. Recall that

-~

ug = 1 corresponds to the null hypothesis of no change-point. As in the previous sections, 6
denotes a QLE such that >} | Y:(6) =0.
We will introduce two stationary processes, (ygl))tez and (y?))tez, which will be used to

approximate the observed process before and after the break, respectively. For all 8 € ©, let

mgi)(H) = m(0; yﬁ)l,yt(%, ...) and /{é?(@) = Ko(6; yt(i)l,yg%, ... ) be stationary approximations

of the conditional mean and weight sequence before and after the break.

B1 For i = 1,2, the process yy) = m,(fi)(Hi) + €, for t € Z, is strictly stationary and ergodic.

; (%) (4) . . .
For all 8 € ©, let Y\ (9) = 27 %f(?) where ¢”(8) = y{”) — m{”(8). The pseudo-true
Koy

parameter value is introduced as follows.
B2 For all 8 in © the variables 'I‘,@(B) have finite variances, and there is a unique solution

o = 05(01,602), belonging to the interior of O, to the equation
uoE {r§1>(9)} +(1—ug)E {r@(@)} = 0.

We make the following technical assumptions.

B3 For i = 1, 2, the function /{g)(-) is continuously differentiable and mfﬁ)() is twice continu-
ously differentiable. Moreover, there exists p € (0, 1) such that, almost surely, for 1 <t < [nuy],
omy"(8) 0 (6)

00 00

sup {|m§1)(0) —my(0)] +
6cO

H&W%@Mﬂsﬁ%a

and for t > [nug],

om;” (0)  9im(6)
00 90

wp@mﬁwwwmww+
6coO

+ 5 (6) —%2t(0)|} < KO pt-wol

where Kt(l) is a measurable function of {yz(}) cu < t} and Kt@) is a measurable function of

{y&l),yq(f) u < t}, with sup, E{Kt(i)}T < oo for i = 1,2 and some r > 0.
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; ) %)
B4 Fori=1,2 E|yt( )|S < 0o and Fsupgceo {|m£z)(0)|5 + 8m§79(0)

s . s
+ ‘ﬁé?(@)‘ } < 00, for
some s > 0. Moreover, infgco ‘/@é?(@)‘ > K a.s. for some constant £ > 0.
B5 For:=1,2

ar(’(6)

, 2
E sup HTE”(G)H <oo and FEsup 50T

0co [ISC)

Assumptions B1-B5 are illustrated in Section A.3 of the Appendix.
Let the change-point estimator
~ ~ ~ ~T ~
k= arg max S,(k/n), Sp(u) =T, (u)I,;' T, (u).
ke{l,...,n—1}

The consistency of the change-point estimator is established in the following result.

Theorem 5. Under Assumptions B1-B5, when ug € (0,1) and E{ (1)(0*)} + E{ (0*)}

we have

— — ug, n probability as n — oo.
n

4 Numerical illustrations

In this section, we start by comparing on simulations the empirical sizes and powers of the break
test under different settings and different choices of the weights in the QLE. Then, we apply our

methodology to exchange rates.

4.1 Monte Carlo experiments

Our first Monte Carlo experiments aim to evaluate how the choice of the weighting sequence Ko (+)
impacts the finite sample performance of the test. We simulated a time series (y;) such that the
distribution of y; conditional on F;_; is a Gamma law with the shape parameter k; = m?/(ko?)
and the rate parameter 6; = ko?/my, such that F;_(y;) = my and Vary_1(y;) = ko?. We took
the ARMA(1,1) conditional mean m; = ¢+ ay;—1 + bmy_1 and 4 possibilities for the conditional
variance: 07 = 1 in DGP A (as for a standard ARMA model), 62 = m; in DGP B (as for an
INGARCH count time series model), 2 = m? in DGP C (as for an ACD duration model, or the
square of a GARCH), 0 = mt/ in DGP D, which does not correspond to any standard model.

We considered 8 different QLEs solving (8): for the estimators A, B, C and D the weight

~2

sequence Ko is proportional to 1, m(0), m;(0) and mt/ (0), respectively, and for the other 4

estimators the weights are data driven. More precisely, the estimator Q is the one that minimizes
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the QLIK,, loss of Example 4 of Appendix A over the 4 weighting sequences of the estimators
A-D. The QLE named G estimates the weights using the GARCH(1,1) model (22), with the
QLE A as first step estimator 8. The QLEs X1 and X2 estimate the weights by (23) and (24),
respectively, also with the QLE A as first step estimator. The left part of Table 1 shows the
empirical sizes of the tests based on the 8 estimators for each of the 4 DGPs, when n = 2000,
(¢,a,b) = (0.01,0.1,0.89) and the nominal level o € {1%,5%,10%}. The relative frequencies
of rejection of the null Hy of no break, presented in Table 1 and in the other tables, are
computed over 1000 independent replications of each DGP. For a test of level 1% (respectively
5%, or 10%), the empirical relative frequency of rejection over 1000 independent replications
should vary between 0.4% and 1.7% (respectively 3.7% and 6.4%, or 8.2% and 11.9%) with a
probability of about 95%. Relative frequencies outside these bounds are highlighted (red for
overly high rejection rates, blue for overly low rates). The table shows that first-order errors
are generally well-controlled by the optimal tests and, more importantly, by the data-estimated
optimal tests, with only slight under-rejections in a few cases. However, non-optimal QLEs may
have poor empirical sizes, which is the main motivation for using the proposed data-estimated
optimal tests.

To compare the power of the different tests, we considered DGPs with a break at t = 800.
Fort =1,...,800 we took (c,a,b) = (0.01,0.1,0.89) and for t = 801,...,2000 we took (c,a,b) =
(0.15,0.1,0.75). The other parameters are unchanged, leading to DGPs A*-D*. Note that before
and after the break the marginal mean ¢/(1 —a —b) = 1 and the update parameter a = 0.1
remain the same for all DGPs, only the persistence parameter b changes. Despite the DGPs
being chosen such that it was impossible to visually detect a change point in the trajectories,
the right part of Table 1 shows that the tests are often able to detect the break. As expected,
for the DGP X € {A,B,C,D}, the most powerful test is (or is close to) X among {A,B,C,D}.
Interestingly, the data-selected estimators always perform very well, often as well as the optimal
estimator. The poorer performing tests are highlighted in color. These underperforming tests
are never the data-selected ones.

Figure 2 shows the empirical distributions of the change point estimates obtained with the
8 different tests. The simulated DGP is DGPA*.The figure, together with the previous table,
shows that optimal and data-selected tests outperform others both in detecting breaks and in
estimating their positions.

We conducted another set of Monte Carlo simulations to evaluate the ability of the test to

detect structural breaks when the conditional mean is misspecified but the matrix I* is estimated

15



o« A B C D Q G XI X2 A B C D Q G Xl X2
DGP A DGP A*

1% 1.0 27 49 47 09 06 07 08 798 326 202 260 715 77.2 768 77.2

5% 53| 88 121 128 49 58 58 56 943 534 | 354 472 889 933 928 929

10% 10.1 146 183 187 95 11.0 102 101  97.0 657 463 604 931 96.7 96.6 96.6
DGP B DGP B*

1% 09 07 17 11 07 04 07 07 [599 805 300 69.6 79.6 77.2 821 82.3

5% 41 45, 74 50 45 29 39 41 [ 80.6 956 | 546 894 955 944 957 95.8

10% 98 84130 108 84 84 83 88 [897 934 685 960 984 983 987 985
DGP C DGP C*

1% | 58 11 07 07 07 06 08 08 (497 709 818 832 818 8.7 835 888

5% (148 | 47 39 43 39 32 36 42 655 842 955 946 956 952 958 96.9

10% (229 99 93 88 93 7.3 80 87 740 912 979 98.0 97.9 97.6 97.7 985
DGP D DGP D*

1% 1.7 11 17 09 09 07 1.0 11 [523 797 671 867 82.6 811 81.6 845

5% 73| 39 62 50 50 39 40 52 668 940 | 876 964 956 956 956 96.6

10% (136 83 106 9.7 98 88 87 95 |[76.1 972 949 98.0 97.7 981 98.1 98.1

Table 1: Empirical size (DGP A-D) and power (DGP A*-D*) of 8 QLE-based tests.

by a HAC estimator, as stated in Theorem 4. More specifically, we generated 1000 independent
simulations of size n = 2000 of an ARMA-GARCH model of the form y; = m; + €, with
€t = o041, where 1 is an iid noise with a standardized Student distribution with v = 11 degrees
of freedom, m; = ¢+ ayt—1 + bmy_1 and af = w+ ae?_l + Jf_l. For the GARCH parameters
we took (w,a, ) = (0.01,0.1,0.83), a values close to those typically estimated for real financial
return series. Panel Hg of Table 2 corresponds to a stable DGP with (¢, a,b) = (0.01, —0.5,0.89)
for t = 1,...,2000. Panel Hy concerns a DGP with a break (c,a,b) = (0.01,—0.5,0.89) for
t =1,...,800 and (c,a,b) = (0.01,—0.1,0.89) for t = 801,...,2000. To compute the test

statistic S¥ we considered a misspecified AR(1) model for 7. In Table 2 the column LSE

corresponds to a statistic S* based on the score ﬁw)aﬁgée)é(ﬁ) where k9:(0) = 1, and WLS
corresponds to a score when kg (@) is replaced by a GARCH(1,1) estimate of the volatility of
Et(/@\), where 8 is the first-step LSE of the pseudo-true value.

We have done other experiments with larger sample sizes and different values of the pa-
rameters. Table 3 shows the results but for simulations of length n = 8000. The first panel
of the table, devoted to the size, has the same DGP as Table 2 under Hg. For the second

panel corresponding to the power we changed the DGP to have a non-degenerated power:
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Figure 2: Distributions of the change point estimates

we took (c¢,a,b) = (0.01,—-0.5,0.89) for t = 1,...,3200 and (c,a,b) = (0.01,—0.3,0.89) for
t = 3201,...,8000. Tables 2-3 show that, as expected, the first-order error is not well controlled
when I* is not estimated by a HAC estimator. The different versions of the HAC estimator are
those of Andrews (1991), with pre-whitening. All performed similarly. Even with HAC estima-
tion of I'*, the type I errors remain far from their nominal values, especially for WLS in Table 2.
This is not surprising since long-run variances are notoriously difficult to estimate accurately.
The bottom panels of Tables 2-3 confirm the ability of the tests to detect breaks, even in a
misspecified conditional mean model. The WLS test appears to be slightly more powerful in
Table 2, but this does not hold in other settings (see Table 3). For a well-specified conditional
mean, Theorem 2 implies that WLS should be more powerful than LSE, but the result is likely

to be false in misspecified models.
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Hyo

no HAC spectral Bartlett Parzen Tukey H. Quadratic

LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 0.0 0.0 1.6 0.2 12 0.2 12 02 12 02 12 0.2

5% 0.1 0.1 7.2 1.9 53 1.9 56 1.9 5.5 1.9 54 1.9

10% 0.1 0.8 11.7 5.9 105 52 10.3 51 10.2 52 10.2 5.1

H,

no HAC spectral Bartlett Parzen Tukey H. Quadratic
LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 845 976 97.8 99.5 968 99.5 96.8 99.5 96.8 99.5 96.8 99.5
5% 95.1 99.6 99.9 100.0 99.7 100.0 99.7 100.0 99.7 100.0 99.7 100.0
10% 972 99.9 100.0 100.0 99.9 100.0 99.9 100.0 99.9 100.0 99.9 100.0

Table 2: Size and power of the test when Ko; is constant (LSE) or is an estimated GARCH

volatility (WLS), and I is a short-run empirical variance (no HAC) or a HAC estimator.
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Hyp

no HAC spectral Bartlett Parzen Tukey H. Quadratic
LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 0.0 0.0 1.0 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.9 0.6

5% 0.4 0.9 4.7 4.0 4.4 3.9 44 3.9 4.4 3.9 4.4 3.9

10% 1.1 1.6 9.4 8.9 8.8 8.7 8.9 8.7 8.9 8.7 8.9 8.7
H,;

no HAC spectral Bartlett Parzen Tukey H. Quadratic
LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS LSE WLS

1% 652 91.8 983 988 981 988 981 988 981 988 98.1 988
5% 835 973 998 998 997 998 997 998 99.7 99.8 99.7 99.8
10% 88.8 98.5 100.0 99.8 100.0 99.8 100.0 99.8 100.0 99.8 100.0 99.8

Table 3: As Table 2, but for simulations of length n = 8000 instead of n = 2000, and also

different parameter values under Hjy.
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4.2 Application to exchange rates

As a simple real data illustration, consider the returns of the daily exchange rates of the US dollar
(USD) and the Swiss franc (CHF) against the euro from 1999-01-04 to 2022-07-12 (corresponding
to 6025 observations).

We estimated GARCH(1,1) models on the log-returns (i.e. ARMA(L,1) on the squared log-
returns y;) by QLEs. Tests for breaks were performed using the test statistic §n, for which the
optimal weights were estimated by the data-driven procedure (QLIK or based on the 3 GARCH
models defined in the previous section).

Figure 3 shows that there is no evidence of breaks for USD, but strong evidence of breaks
for CHF. The breakpoints are September 6, 2011 and January 15, 2015. In fact, the Swiss franc

exchange rate was pegged to the euro between these two dates.

UsD CHF
— QLIK=C
O GARCH 0 - — QLIK=A
X1 GARCH=X1=X2
- X2
< <
i
= ™ = ™ 1
1) W)
o . 1

. v :
_ IMM N S
T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
u u

Figure 3: Trajectories of the CUSUM statistics §n(u) for different QLEs and 2 exchange rates.

The red lines indicate the asymptotic critical values of the tests at the 1%, 5% and 10% levels.

An alternative approach to CUSUM tests for break detection involves minimizing the OLS
sum of squared residuals in a linear model where the beta coefficient is constrained to remain
constant over m+1 subperiods of some minimum length. Bai & Perron (2003) showed that this is
feasible, even for m > 1, using a dynamic programming algorithm implemented in the R package
strucchange. Of course the results depend on the choice of the linear model. In our analysis,

we experimented with AR(p) for different values of p. Although the dynamic programming
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algorithm is powerful, the computation time of this method is substantial® because we allowed
up to m = 5 breaks. Thus, the AR delay was limited to p < 7. For the USD series, we used the
R function breakpoints() with its default values. For the CHF series, we chose a minimum
segment size of 10% by specifying the parameter value h=0.1 instead of the default value h=0.15
(which is too large to allow breaks on September 6, 2011 and January 15, 2015). The number
of breaks, m, was estimated by BIC minimization. Table 4 shows that the estimated number
and timing of breaks vary considerably with p. For the CHF series, a break on September 6,
2011 is often detected, but unlike the CUSUM test, the break around January 15, 2015 is not
clearly identified. The most tricky output is that for the USD series, 3 breaks are often detected
in Table 4, while the CUSUM test does not detect any break (see the left panel of Figure 3).
To further explore this discrepancy, Table 5 presents the QMLE estimates of GARCH(1,1)
models for the four subperiods defined by the three breaks identified in the AR(p) models with
p € {2,...,5} (with each period beginning and ending five days before the detected breaks).
The estimated GARCH parameters across the four periods do not show substantial variation,
given their standard errors. A Wald test of the null hypothesis that the GARCH coefficients are
the same across the four periods yields a p-value of 7.8%. This result does not provide sufficient
evidence to reject Hy.% One explanation for the possible failure of the Bai-Perron test is that
the regression framework on which it is based is unable to capture the volatility persistence that
characterizes the dynamics of financial returns. For example, a long period of low volatility
followed by a period of high volatility could be seen as evidence of breaks, as the AR(p) model
for squared returns is inconsistent with this type of behaviour. To assess the possibility that
the Bai-Perron test misidentifies breaks, we estimated a GARCH on the USD series and re-ran
the tests from Table 4 on two independent simulations of this GARCH model without breaks.
Table 5 shows that, contrary to our EF-based CUSUM tests, the Bai-Perron test does indeed
detect spurious breaks. The failure of the Bai-Perron test can be explained by the irrelevance
of the AR(p) model for squared returns (or, equivalently, of the ARCH(p) model for returns).
On the other hand, extensions of the Bai-Perron dynamic programming algorithm to persistent

models (such as GARCH ) do not seem to exist.

5Tt took 8 hours on a 4 year old PC to get Table 4.

5For this Wald test, we write Hy as ROy = 0o, where 6y is the vector obtained by stacking the GARCH
parameters of the four subperiods. Let 9, be the GARCH QMLE of subperiod i of length n;. The variance of
0, is approximated by X;/n;. Let 0= (5?, .. .,§I)T. Under Hy, the distribution of RO is approximated by
the Gaussian distribution with mean 0 and block diagonal variance RXR’, where X has block diagonal elements

33 /n;. The Wald-type statistic follows.
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USD CHF

p 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
m 3 3 3 3 3 3 2 2 0 1 2 2 0 0 11
Dates 04-05-17 05-06-14 05-06-14 15-01-13  11-09-06  11-09-06 11-09-06
08-08-07 08-12-19 08-12-19 15-01-12  15-01-09
12-02-02 12-06-29

Table 4: Estimation of the number m of breaks and of their dates (year-month-day) by the R
function breakpoints() based on the algorithm of Bai & Perron (2003). The model is an AR(p)

on the squared returns.

Period w a B
1999-01-04 to 2005-06-07 0.021 (0.027

(0.027) 0.048 (0.048 ) 0.937 (0.056)
2005-06-21 to 2008-12-12  0.000 (0.001)  0.036 (0.017)  0.972 (0.013)
2008-12-30 to 2012-06-22  0.013 (0.006)  0.000 (0.007)  0.980 (0.012)

(0.002) (0.024)

2012-07-06 to 2022-07-11  0.001 (0.002) 0.061 (0.044) 0.960 (0.024

Table 5: For the USD series, GARCH(1,1) models fitted to 4 sub-periods, with estimated stan-

dard deviations in brackets.

Simulation 1 Simulation 2
D 0 1 2 3 4 5 6 7 0 1 2 3 45 6 7
m 3 2 2 2 2 2 2 2 4 3 3 3 3 3 3 0
Dates 914 1858 904 904 904 904
1858 2763 2349 2349 2349 2349
2763 3330 3304 3280 3317
4760

Table 6: As Table 4 but on two simulated trajectories of a GARCH without break.

5 Concluding remarks

This paper contributes to the time series literature on break detection by addressing models
where the conditional distributions are not fully specified. We propose a novel econometric
methodology based on the CUSUM of quasi-scores to detect structural breaks in the conditional

mean of time series. A key advantage of this approach is its reliance on EF estimators, which
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require only weak, semi-parametric assumptions about the data-generating process (DGP). This
stands in contrast to traditional CUSUM methods based on Fisher’s scores, which necessitate
full specification of the conditional distribution.

We establish the asymptotic distribution of the proposed CUSUM statistics under the null
hypothesis of no change point and explore optimality considerations through LAP comparisons.
Notably, the weights that are optimal for estimation in Godambe’s sense are also shown to be
optimal for hypothesis testing. To enhance robustness, we develop modified test versions that
incorporate long-run matrix estimation, mitigating the risks of conditional mean misspecifica-
tion. Finally, the empirical applications demonstrate the effectiveness of our testing procedures
in identifying structural breaks in financial time series dynamics, underscoring their practical
utility. An interesting avenue for future research would be extending our methodology to test

for breaks in a broader range of conditional moments.
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APPENDIX: DISCUSSION, EXAMPLES AND PROOFS

A Discussion and examples

In this section, we complement the assumptions spelt out in Section 2 by offering several illus-
trative examples; we also refer to the article by Francq & Zakoian (2023) for further examples

and discussion.

A.1 Examples of QLE

Example 1 (Examples of QLE). When Ko is a non zero constant, it is easy to see that the

solution of (8) is the Least Squares (LS) estimator. When yy > 0 and Kot is proportional to

my(0) > 0 (respectively, to m?(0) > 0), then it can be verified that the solution of (8) is the

Poisson (respectively, exponential) QMLE, obtained by minimising
n
Z my(0) — ylogmy(0)  (respectively > ) | yi/my(0) + logme(0) ).
t=1

Example 2 (An example when QLE is the MLE). Assume that the distribution of y; given
Fi—1 belongs to the one-parameter exponential family. This means that, with respect to a o-

finite measure, the conditional distribution admits a density of the form

Im (y) = k(y) exp {n(me)y — a(m)}, (21)
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for some positive function k (-), and twice differentiable functions n(-) and a(-). It is well-known

that ' (my) = a'(my)/my = 1/a?. It follows that

0108 G, (0)(yt)  Omy(0) €,(0)
o0 00 02(0)

Hence it follows that the QLE coincides with the MLE (only approximately when my # my).

Example 3 (Link with GMM estimation). The Generalised Method of Moments (GMM) method

developed by Hansen (1982) is based on moment conditions of the form
Eg,(6) =0,
iff @ = 0o, where g,(0) : R? — R™ with m > d and
9:(0) = z€(0),
and z¢ s an m-dimensional vector of instruments belonging to Fy_1. Let

9.(0)=n"") g.(6),
t=1

be an empirical estimator of Eg,(0). The GMM estimator minimises §;(0)§’7l§n(0), where S

1 a positive definite weight matriz. The first-order conditions give the EF
- -1
> 2 (0)S g,0) =0,
t=1

where

~ 9a.(6 ~ LY
Q.(0) = %t;,), and ©(8) =01y Q4(0).
t=1

Thus, the GMM estimators are QLEs, and Godambe’s results imply that the optimal QLE is
always at least as efficient (in Godambe’s sense and asymptotically) as the optimal GMM. Indeed,
as mentioned in the Introduction, Christensen et al. (2016) show that in general the optimal QLE
is strictly more efficient than the optimal GMM.

A.2 Examples of weighing sequences ko

Example 4 (Selection of Koy by QLIK). In view of Example 1, several natural candidates exist for
the weighting sequence, such as: Fog o< 1, Rar o< () (for positive data) or Koy o< m2(0), among
an infinite number of other possibilities. Thus, assume we want to select the weights over a finite

set of potential weighting sequences, say {Egz)(g)} for h € {1,...,H}. The optimal weighting
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sequence is the conditional variance, up to any non zero multiplicative constant; further, the
conditional variance is solution to the quasi-likelihood (QLIK) loss function. Hence, Francq &

Zakoian (2023) propose a data-driven selection of the weights by minimizing over h the empirical

QLIK loss function defined as

oLIK, (7 (7)) = y Zn: 4E§ ©) 5
K

+log (MR (9)) ¢

where

and 6 is a first step estimator of 8.

Example 5 (Estimation of Koy by GARCH-X). As a second example, another natural estimator
of the conditional variance can be based on fitting a GARCH-type model on €, = y, — my (5),
fort = 1,...,n, where 0 isa first step consistent estimator of 0g. This leads to the simple
GARCH(1,1) estimator

Rot = O+ Qe + BRas1 (22)

or to extended GARCH-X estimators like

Fat = 0+ GeE_y + Biaa1 + 71 |y (8)] (23)
or
Fot = O+ Q| + BRags + 71 ‘mt (5) ] + o (5) . (24)

For instance, (24) allows weights proportional to the conditional mean or its square, and thus

can target the Poisson and exponential QMLEs (see also Example 1).

A.3 Examples and discussion of Assumptions A1-A8 and B1-B5

Example 6 (Discussion of Assumptions A1-A8). Assumptions A1-A8 can be made explicit
and studied for particular models, such as ARMA or GARCH. As an illustration, assume an
INGARCH model, obtained when 1 given Fy_1 follows a Poisson distribution with intensity
parameter

my = ¢o + agyi—1 + bomy_1,

with obvious notation. In this case, it is known that Assumption A1 holds true when ag+bg < 1,

and that the strictly stationary solution of the INGARCH model even admits moments al any
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order. It is easy to see that, when |b| < 1 for all @ € O, Assumption A2 holds with
Ky = sup {|al[yo| + [b[|mo(0)1} ;
0co

indeed, in this example Ky = K, but in general this variable can be time-varying in the case of
other models. Similarly, Assumption A7 can be shown to hold (although with another expression

of Ky = K). By the same token, it can be verified that Assumption A5 holds if
0 d inf 0.
ag # ond  infc >

Further, since y; admits moments of any order, Assumption A8 is always satisfied. Is is also

clear that oll the other assumptions hold true for many weighting sequences Koz.
Example 7 (Conditional mean of the weak AR(1) process). Suppose that
v =boy—1 +e, 1€Z, || <1,

where €, is strictly stationary, ergodic and satisfies By (e;) = 0 (note the notational change, by
unbolding the scalars). Then, Assumption A1l is immediately satisfied and it is clear that, with
© = [—1,1], Assumptions A2 and A4 are also satisfied. Moreover, we have

2
EY.(0) =E (éﬂ%) (0 —6o),

showing that Assumption A3 holds true. Under the assumption o7(6g) > 0 in the first part of
A5, the second part holds true. It can be verified via standard, if tedious, arguments, that a

sufficient condition for Assumption A8 to hold is

1 alﬁlgt
k3,(0) 00

at (6o) Vi
E sup (ty2 + 2= ‘
o \ K3 (0) o K3(0)

It should be noted that if, for instance, kot is of the form a + by? | with a,b > 0, and similarly

(lye—1] + y?1)> < oo0.

for a2(0y), the latter conditions may only require Ey? < oo. Finally, note that

I:E(Uf(eo)yz >

"f%t(eo) =t

Example 8 (Illustration of Assumptions B1-B5). Consider the simple case where
yt@ = j?/z@l e’

with € a strong white noise process, and j =1,2. If |0;| < 1 for j = 1,2, then Assumption B1

holds. Taking © C (—1,1), and assume for example that Koy = Koy x 1, my1(0) =0, and
mi(0) = my(0) = Oyp—1  for t>2,
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then Assumption B3 readily holds. To show this result, we note that y; = yt(l) fori < [nug], that
j oo 2 2 1
y[(izmm = >0 0} €] 11— and ‘y[(nig]—o—l—t—k ~ Ypnuol+1+k| = |02’k‘y[(m)m]+1 - y[(m)Lo]—O—l‘ for k=0,

So we can choose Kt(l) = |yo| and

Kt(2) = Z ‘9? - 03’ |6[nuo}+1—h‘ )
h=0

in Assumption B3. Assumption B4 is always satisfied and if Ee} < oo then Assumption B5
also holds. Finally note that Assumption B2 holds with
u091 (1 — ’U,())92

2 2 2

(1) o Eej «  1—=07 1—035
E{Tt (9)}—(9] 9)170]2_7 90_ U N 1—wug
1-602 1-063

Example 9 (Tllustration of Assumption B2). Assume that y1, ..., y, are independent and Gaus-

2

sian with variance o=, and mean equal to 01 when t < |nug| and to O when t > |nug|. We

have
_ [(n+1)u]

To(w) = Tu(w) =n 2 3" (5 —7),

t=1
where § =n~t Y"1 | y. Then Assumption B2 holds with 0 = uobh + (1 — ug)02. We also have

A(b1,02) =60y — 0.

A.4 Link between the weighted CUSUM and the LR statistics

Inspired by the example given by Horvath & Rice (2024), consider a sequence of independent
and Gaussian vectors Y7,..., Y, ..., Y, such that Y; ~ N(puy,X) for t < k and Y; ~ N (py, X)
for t > k, where X is a known non singular variance matrix. Let the null Hy : p; = py and
the alternative Hy : py # py. The unknown parameters of interest are k and 0 = (uy, po).
Note that, at @9 = (pq, bg) € Ho, the likelihood L, (Y1,...,Y,;00,k) does not depend on k.
With obvious notations, the standard likelihood ratio leads to reject Hy for large values of
LR = sup,<j<,, LR(k), where

Lo(Yi,...,Yn:0,k)  nk

LR(EK) =lo A _
() gLn(Yl,...,Yn,Oo,k:) 2(n —

]C) (ﬁl - ﬁO)Tzil(l/j’l - ﬁO)a

up to unimportant additive constants, noting that gy — iy = 7 (thg — 1) and g — Hy =

—%(fig — Fy). This likelihood ratio is directly related to the weighted CUSUM by

2LR = sup

+op(1).
u€(0,1) u(l —u) W)
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A.5 Examples of local breaks, misspecification and change-point estimation

Example 10 (Example of a local break). The simplest example of a local break is obtained by
assuming that yi, ..., yn are independent and Gaussian with variance o2, and that y; = yin has
mean O + 61/+/|nuo| when t < |nug| and Oy + d2/v/n — [nug| when t > [nug). Note that we
then have

[nuo | n

Z(yt_OO)NN(51702)> L

t — 0) ~ N (62,57,
LTIUOJ —1 ”_LHUOJ (y 0) (2 )

t=|nuog |+1

and

1 n
NG Z(yt —0g) ~ N (03,0%), 83 =/ugd1 + v/I — ugds.
t=1

note that, in this simple ezample, J = n=' Y} |y is the Q(M)LE of 0y (under the null §; =
82 = 0 of no local break), Ty,(u) = Ty (u) = n~/2 Ztt(:nfrl)uj (ye —7) is the usual CUSUM process,

and )
T, (u) I T, (U) = Sup —5 (yt - ?) , 0, =— (yt - y) .
ue(0,1) "0y t—1 Yoon t—1

Example 11 (Misspecification). Assume, perhaps wrongly, that mi(0) = a + by;—1 with 8 =

(a,b)’. We then have
5 1 1

Y(6) = —(yt —a — byi-1)
Then Assumptions A3* and A5* are satisfied with

Y1 ) 2
() =() =)
by = A'b, b= Kat . A= Kat /122t
() | ) ol
K2t K2t Rt
when b and A ezist and A = —J is invertible (which is for instance the case when Koy is constant
and Var(y;) > 0).
Assumption A1* is satisfied if, for instance, ko = K > 0, ||y1||lar2r < 0o and 325°  {ay, (h)}/CH) <
oo for some v > 0, where {ay(h)} denotes the sequence of the a—mizing coefficients of (y;). A
non constant weighting sequence (ko) can reduce the moment requirement. In particular, if Ko

is the volatility of an ARCH(1), or more generally kot > 1 + coy? | with positive constants c;

and ca, then only ||y1]lo+, < 00 is required.

Example 12 ( Unconditional mean of Gaussian variables). Assume that yi,...,y, are inde-

pendent and Gaussian with variance 0%, and mean equal to 61 when t < [nug] and to 0 when
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t > [nug). We have Tp,(u) = Tp(u) = n~ /2 Eiul] (yr — y) where = n=1 Y"1 w. Assumption
B2 is thus satisfied with 65 = uob1 + (1 — up)f2. We also have Tgi)(Q) = yt(i) —0 fori=1,2.
Thus A(Ql, 92) = 92 — 91.

B Technical results and proofs

Denote by X, A x , or simply X, A Px, when a sequence of random vectors X,, converges
in distribution to a random vector X of distribution Px. For a sequence of random functions
{Xn(u),u € ]0,1]} tending weakly to {X (u),u € [0,1]}, we denote X,,(-) = X (-). The follow-

ing result establishes the asymptotic distribution of the QLE.

Lemma 1 (Francq & Zakotan (2023)). Under Assumptions A1-A8, a QLE 0 of 0y, such that

. < o 0my(0) &(0)
;Tt(e) - O> Tt(a) - 60 %2t(0)7

exists’ for n large enough, and as n — oo we have 0— 0y a.s. and
~ 1 &
Jn (0 - 90) - —J”T > Y4(60) + op(1) BN (0,3 := T LT
n
t=1

with

e

If k2t(80) o< 02(0o) then the asymptotic variance of the QLE, which is equal to

s _[p 1 0mu(6) 9my(6o)) "
op o2(0y) 90 907 ’

is optimal in the sense that X — X, is semi positive definite.

a7 (680) Omy (o) 3mt(90)>
K3,(60) 00 90T )’

B.1 Proof of Theorem 1

A Taylor expansion around 6 yields

] ]

T, () == 5 Xul60) | 7Y @) | Vil - 6)
t=1

where 8 is between @ and 6y. By Lemma 1 we deduce (12). It follows from the functional
central limit theorem for stationary, ergodic martingale differences (see e.g. Theorem 18.3 of
Billingsley 1986) that

T,() = T().

Tuniqueness has been shown under the extra contraction assumption A10 of Francq & Zakoian (2023).
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It remains to show (13). Let Vi(6g) be the ball of center 6y and radius 1/k. The strong

consistency of 0 entails that

| Ru(u)] < 13- (8rt(00)—J> + sup 1%( O 0, -2 rt(e))

niz\oo’ ocvi(00) |1 = \ 08" 20"
We have,
sup  sup ["Z“:]< +(69) 0 T(H)) <lzn: sup ‘a‘r (9)_i'r (Q)H
0€Vi(80) ue(0,1) || ™ 007 (%) GgT ! T n S eviion llooT T 00T

which tends, as n — o0, to

0 0
oor 1%~ T

E  sup ‘ 20T

ACH)

rt(e)H.

by the ergodic theorem. By Fatou’s lemma, and using the continuity assumptions in A2 and
A7, the latter expectation can be made arbitrarily small by choosing k sufficiently large. Let
(up) be a deterministic sequence converging to infinity slower than n (i.e. n/u, — o). Let

Y, = 80T Y:(0p) — J. We have

1 k
2 Yy

t=1

[nu]

sup 12( 0 Y:(00) — J) < sup

sup
ue(0,1) || o0’ 1<k<un

un<k<n

nZYt

We have % Zle Y. — 0a.s. as kK — oo, hence the last term in the previous inequality converges

to 0 a.s. Moreover, by Markov inequality, for any ¢ > 0,

1 &
P sup >u) <P =YYl >0 ) < B (YL o,
1<k<un nt:l ntL

as n — oo, from which we deduce that the first convergence in (13) holds.

1 k
n Y

t=1

Now, we have

| (0) 0my(0) €(0)
sup || T (u) — Tp(u)|| < sup sup ﬁz ot ( 0) )
RO

u€(0,1) u€e(0,1) €O
()]
90 || 72:(6)

o
omt |50 )
(R )

t=1

t19
t19

Z sup

Vn = gco

/f2t
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By Assumptions A6-AT7, the first term in the right-hand side is bounded by

1 — 1
supeHKt—O< >, a.s.
ﬁ\/ﬁtzleee)'t( i vn

because the summands have finite s-th order moment by A4. The same upper bound holds
for the other two terms of the right-hand side of the previous inequality. Hence the second

convergence in (13) is established. O

B.2 Proof of Theorem 2

Since Y; = Y, is such that

[nuo] n
1
E Y EANISLT), ——— Y Y BN (I T),

n(l = uo) t=[nuo]+1

1
nug

for u < ug we have

[ny]
1 Z 1 L
\/Tiu < (Tt - mj&l) — N(O,I) 3

and thus
[nu] v 1 [nug] . wo —u
Y —Jé,ul |, — T—>/\/< JJ,u—uI),
Z © <\/1T0 1 ) \/ﬁt:%ﬁ-l t Vo o)
L
%t [Z:]HTt—>N(\/1—u0J52,(1—u0)I),
=|nug

and for u > ug we have

1 L U — Uug 1 n - 1
il Y N Jéo, Iy, — x N2 gs, hy
\/ﬁt [Z]+1 t = <m 2(“ u()) > \/ﬁt ~ t— (m 2( ) )

e =|nu
We therefore have
"= t=1
1 ] [§ Z
= — (1—UTt—’U, 'rt_u Tt
\/ﬁ t=1 t [TLU +1 ft [nU0]+l
1—
£> Tuo (u) ~ N{J(suo (u)’ u(l - u)I} ) lsuo (U) — Mﬁl - Um(s%
Viio
when u < ug, and
Th(u) =—= (1-—w)Yi+(1—u)— T, — e T,
\/ﬁ t=1 \/ﬁt [nug]+1 \/> t=[nu]+1
Ty () ~ N (T8 (0).ud — )T} bp) = (1 - )y — O
uo uo ’ ) uo = 0 1 m 9



when u > wp. It follows that, for all u € (0, 1), TIO (u)I Ty (u) /u(1 — u) follows a chi-square

distribution with d degrees of freedom and noncentrality parameter

1

T (W) JT T T6, (u),
Ty O T T8 ()

which is maximal for the optimal QLE. We conclude by noting that the noncentral chi-squared
distribution satisfies the stochastic-equal-mean order property: the larger the mean (i.e. the
noncentrality parameter) is, the larger is the cdf, at any point. Note that the noncentrality

parameter is maximal at wug. ]

B.3 Proof of Theorem 3

By standard arguments, it can be shown that A2, A4 and A7 entail

Rl

This entails that the initial values that are generally used to compute recursively m(0) and

sup
6co

o0
< ZKtpt < oo  as. (25)
t=1

F2¢(0) have no consequence on the asymptotic behavior of the QLEs. In particular (25) and the

ergodic theorem entail that, for any neighborhood V(6,) of 6, € O,

121& 1Zrt

> [|[EX(01)| —E  sup || X4(0) — X(61)] -
0cV(61)NO

> lim inf
n—oo gV 01

lim inf
n—oo eV 01

If V;,,(0) denotes the ball of center € and radius 1/m, by the dominated convergence theorem

E  sup || X(0) — X (61)]

is arbitrarily small when m is large enough. By A3*, we also have ||[EY+(61)|| > 0 when 6; # 6.
We thus have shown that for any 61 # 6, there exists a neighborhood V'(61) of 81 such that

liminf inf  [In71)  Yy( .
minf el Z (0)] >0, as
and that for any neighbourhood V() of 6

lim sup 1nf nt Z Y:(0)]| =0, as

n—oo 0€V (0

By compactness of O, the existence and consistency of the QLE then follow.
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A first order Taylor expansion, (25), and the consistency of 0 imply
1 e e 1 1 < 3
== YuO) = = YuB) +op(l) = —= > Yu(65) + T;Vn(6 — 65) +op(1),
vn t=1 vn t=1 vn t=1

where the row i of J is of the form n=! Y} | %Titw*), and 6" is such that [|@* — 65| <
Ha — 6;]|. Using the consistency of 6, for n large enough we have

n

1
I =T < = sup
" n ;e)evm(og)m@

n

.1 0
J _72801— (00)

0 0

a7 Xe(0) = S X(05)] ¢

for all m. The ergodic theorem entails that the a.s. limit as n — oo of the right-hand side
is arbitrarily small when m is large. The Bahadur representation, that is the expression of
vn (5 — 08), follows. The last result follows from (20), which comes from A1* and the CLT of
Herrndorf (1984). O

B.4 Proof of Theorem 4

By the functional CLT of Herrndorf (1984) and the Cramer-Wold device, A1* entails

(65) = W (.),
NG ; +(65) ()

where W (-) denotes a standard d-dimensional Brownian motion. The proof is therefore like that

of Theorem 1. O

B.5 Proof of Theorem 5

Let

fzt”“fr <> if u < up,
nu nu 2)n .

Lyl @) + L T 0) i u > g,

i) We start by showing that

T,(u) =

sup [T (u) — To(u)|| = op(1), (26)
u€(0,1)
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We first consider the supremum over u € (ug, 1), which is the most complicated term. We have

[reug] Mgy D
8mt Et ) 8mt (9) € (9)
sup ||Th(u < sup
uE(anl)” () = ( 4 6co \FZ K2t(0) 00 KS)(G)
o () © ) g\ 2
1 om(0) €(0) om;~(0) €7(0)
+ sup sup||— — —
u€(ug,1) €O \/ﬁtzl%u()] 00 K2t(9) 00 Kg)(e)

om"(0)  om(6)
00 00

re£”<0>|)
Ky (

7o)
|€:(0 I>
.

1 [nuo]
<— 3 sup
vn tz; 0co (

[nuo] amt
T2 3w (|mt i (6) H

i—1 9€©
[nuo]

1

\f ; 0co (

1 n
+ — sup
vn t1§: 9co (

[nuo)

1
K$D(6)  Far 9

om” () am
00

Ha”“

3 zzg(‘mt ‘Ha"” H 9>)

t=1+[nuo]

. 0)
— su )
Vn 6co

t=1+[nuo]

8mt

(2)

Koy (

By Assumptions B3-B4, the first term in the right-hand side is bounded by

1) 1 >
=0(—], a.s.
Vn = gco <\/ﬁ

using the existence of a bound for a small-order moment for supgcg |e§1)(9)\K(1). The other

terms can be handled in the same way. We similarly show that sup,e (o) [|Tn (1) — T, (u)| =
op(1). Thus (26) is established.

ii) Now we prove that
0 — 0; a.s. asn — 0. (27)

We note that 8 = argminaE@Hn_12?:1 Yt(a)H. Let Y:(8) = Y(0) if ¢ < [nu], and
Y.(0) = TEQ)(O) otherwise. For any neighborhood V(03) of 63 € O, using the fact that
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SUPgco szl () — 'I‘t(O)H < oo as., we have

I nf Y A(
o | 2 T
n
—1 _ -1
> fim |07t TulBs)| — limn, sup ZTt

t=1

> HUOE {Tﬁl)(%)} + (1 —u)E {T?)(ez)}‘ - iS:ull?QEeevsgllap HT ~ 1 (85)

where the first term in the r.h.s. is positive for 83 # 6, while the second term can be made
arbitrarily small when the neighborhood shrinks to the singleton {63} by arguments already
given. The consistency of 6 follows as in the proof of Theorem 3.

iii) Under B5 let
T T
1= ur {xV65) (xV60)) |+ (- wE {100 (109) '},
* a * a *

We will show that
1~

sup |—Sp(u) — L(u)
ue(0,1) [T

=op(1) (28)

where

L(u B {u(l — UQ)}QA,(el, 92)I*71A(91, 02) if u <wyp
{uo(l — 'LL)}2A/(91, GQ)I*_1A<01, 92) if u > ug

and, recalling that 6 depends on 6; and 02,

A01.6:) = E{100)} - E{T(00)}.

By the arguments of the proof of Theorem 1 we have, with 52 between 6 and 05,

| 1y )

Given that T, (1) = 0 in view of (26) we have, for 6 between 6 and 05,

3.~

1 < . o o~ s ., 1 0 o
T, (1) =op(1) = n ZTt(ao) +JJ5vn(0 - 6p), J, = - Z WTt(o )-
t=1 t=1

Moreover, we have
[nu]
1 0 1 0 ~k
*
=— — — - —=7
T = 2 g O+ S {508 @)

[nu]

_nuz<89T _Jg>+<1—[g]>.};.



Thus, by already given arguments

=T (u) + Ry (u)(6 — %) + op(1), (29)

where the reminder term is independent of w. We will show that, in contrast with the first
convergence in (13) of the proof of Theorem 1, we have

sup || R (u)|| = Op(1). (30)

u€(0,1)
We have, using the consistency of 5; to 65,

| Ru(w)]| < 15( 0 r<0*>—J*) L w 1%(3“9*)_3“9))
< o7 1100 eevk?eg) n 2 a1 10 T 5T T

+ {17 = .
As in the proof of Theorem 1, it can be shown that the second term in the r.h.s. converges to 0
in probability, uniformly in u € (0,1). It can also be shown that the third term converges to 0
in probability. Moreover,

[nu] [nu
1 0 1 0 (1) })
. 7§: Y, (0% — J* *E )—E<S—=0,"(6}
sup n L <89T +(65) > >~ Sup n (BOT {(%T ¢ (65)

u€(0,up) u€(0,u0) =1

B
+ HE {%Trg”(ag)} —_J*

where the first term in the r.h.s. converges to 0 in probability by already given arguments. It
can also be shown that a similar bound holds when the supremum of the 1.h.s. term is taken
over (ug,1). Thus (30) is established, from which it follows that the second term in the r.h.s. of
(29) converges to 0 in probability as n — oc.

Now we have, for u < uo,

[nu] [nuo]
LOuzu —u)— (1) *—uu—uil M g*
\/HTTL( ) (1 )[nu] ; Tt (00) ( 0 )[nuO] I [nu] t:[nzu:]_‘—l Tt (00)
—u(l - uO)M > 1{?(65) + op(1)

t=[nuo]+1
w1l = E{x(M05)} — uluo - ) B {r{(6)}
—u(l —ug)E {TIEQ)(OS)} , in probability as n — oo.

39



Thus, for u < uo,

TT%( u) —u(l —up)A(61,62), in probability as n — oo,
and we similarly show that, for u > uy,
\}ﬁTg(u) —up(l —u)A(01,02), in probability as n — oo.

Thus, (28) is not yet established but we have shown that %T%(u) — T'(u) for all u € (0,1),

where
u(l — ’U,O)A(el, 92) if u S up,

’LLQ(l — u)A(Ol, 02) if u > ug.

T(u) =

Now we have, letting Ygi) = Tgi)(%) - ET(i)(O*) fori=1,2,

[nu] [nuo]
Uy — U
sup ‘TO T(u)|| < sup E Y, M 4 0 Z Y
u€(0,up) u€(0,up) nu TLU(]] t [nu]+1

1-— Y 1). 1
+ (1 - u) n_not[zﬂ +0p(1) (31)
nuo]

The third term in the r.h.s. converges to 0 in probability as n — oo in view of the stationarity

(2)

and ergodicity of Y ;™. Moreover, by the arguments used in the proof of Theorem 1,

k
2
z E Ygl)
n
t—1

k
23y

n
t=1

sup LZYIED < sup

sup
u€(0,up) [nu] —1 1<k<kn

kn<k<n

where the last term in the r.h.s. converges to 0 a.s. and, by the Markov inequality, for any ¢+ > 0,

and ky/n — 0,

IRENT kn (1)
P [3vi]s ) <r (A < St o

as n — 0o, from which we deduce that the first term in the r.h.s. of (31) converges in probability

to 0. The second termcan be handled similarly. It follows that the Lh.s. of (31) converges in
probability to 0. We similarly show that the same convergence holds when the supremum is

taken over (ug,1). We thus have shown that

1
sup ||—=TY(u) — T'(u)|| — 0, in probability as n — ooc.

u€(0,1) \/> "

In view of equations (26), (29) and (30), we also have

1 ~
T,(u) —T(u)|| - 0, in probability as n — oco. (32)

sup

ue(0.1) || V1
Noting that the matrix I,, converges in probability to I, the convergence in (28) is established.

To conclude, it suffices to apply the argmax theorem (see Theorem 3.2.2 of Van der Vaart and

Wellner, 1996). O
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