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Abstract 

The collective goal of achieving net-zero emissions in the coming decades has sparked considerable 

debate in recent years. The nature of the energy transition in fossil fuel-dependent economies 

suggests the presence of both implicit and explicit gaps in country-level commitments to the 

transition. Utilizing data from 1996 to 2019 from the BRICS+ bloc, this study investigates the 

heterogeneous effects of key economic and environmental factors on energy transition across the 

distribution of energy transition levels using a smoothed quantile instrumental variable regression 

model with common correlated effects (CCE) adjustments. The analysis incorporates 

macroeconomic, environmental and governance variables, while addressing endogeneity through 

instrumental variables, such as fossil fuel reserves and temperature anomalies. The results reveal 

significant heterogeneity in the relationships across quantiles. Specifically, CO2 emissions exhibit a 

consistently negative impact on energy transition, with the effect fluctuating across the distribution. 

GDP and population growth negatively influence energy transition, with stronger effects at higher 

quantiles, indicating structural constraints in high-transition countries. Notably, the heterogeneity 

of inflation effects, though insignificant, suggests dynamic economic pressures at varying energy 

transition levels. These findings underline the importance of targeted, quantile-specific policy 

interventions to accelerate energy transition, emphasizing decarbonization and market reforms. 

The CCE adjustments ensure robustness by accounting for cross-sectional dependence, and 

sensitivity analyses confirm the validity of the results. This study contributes to the growing 

literature on sustainable energy by providing novel insights into the distributional dynamics of 

energy transition drivers. 

Keywords: Energy transition analysis, CO2 emissions policies, instrumental variables, common 

correlated effects, quantile regression 

JEL codes: O13; Q43; C26. 

 

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction 

The global transition towards a low-carbon future has emerged as one of the important pathways 

for countries to revolutionize existing energy systems, restructure economies towards sustainable 

economic development, and contribute to reducing global warming levels to 1.5oC (IEA, 2023). 

Although these outcomes reflect long-term transformations across economies, they resonate with 

myriad short-to-medium term implications, including recurrent cost changes to different energy 

technologies, changes to global energy market dynamics, and shifts in investment away from fossil 

fuels to renewable energy resources (Gerasimchuk et al., 2019). These evolving dynamics present 

enormous opportunities for the new BRICS bloc (also termed BRICS+), which together wield vast 

energy resource potential to cooperate in building a more robust and resilient clean energy future 

(Kaur et al., 2023; Kazelko & Semeghini, 2024; Wen et al., 2024).  

Navigating the energy transition in BRICS+ countries require setting ambitious plans and targets 

given the historical fossil fuel energy dominance of the bloc for decades. This evolving trend 

warrants further long-term structural changes across economic sectors and energy systems (IEA, 

2023; IRENA, 2024). Available data show that the energy transition curve (share of renewable energy 

consumption (RE) to the share of fossil fuel consumption (NRE)) of BRICS+ countries reflect a mildly 

significant progress in the transformation of energy systems (see Fig. 1). While the energy transition 

movement of member countries such as the UAE, Brazil, China, South Africa, Indonesia and India 

shows an uneven transformation from 1996 to 2019, that of Iran, and Russia indicates a relatively 

smoothed-out transformation. The historical energy transition curve of the latter countries shows 

lackluster additions to renewable energy compared to fossil fuels. Similar to Iran, Russia is 

considered to have attached low priority to the transition away from fossil fuels, adding only 0.5% of 

renewable energy to its energy mix below the 2.5% target in 2020 (Godzinska & Pastukhova, 2022). 

By contrast, China and India have made significant strides in the global renewable energy market in 

recent years. For instance, China ranks among the leading countries in terms of the use of clean 

energy technologies, accounting for 50% of wind capacity additions, 60% of global EV sales, and 45% 

of global solar PV capacity additions (IEA, 2023). 

Before its recent expansion, the bloc began showing signs of becoming a major political and 

economic power (Wen et al., 2024), thereby changing the dynamics of the existing global geopolitics 

(Godzinska & Pastukhova, 2022). BRICS posted an average GDP growth rate of 6.6% in 2021, 

surpassing both the EU and the US, which recorded GDP growth rates of 6.01% and 5.95%, 

respectively, according to data from the World Bank.  China and India, the two fastest-growing 

economies of the bloc, recorded GDP growth rates of 8.45% and 9.05%, respectively, in 2021. 

Additionally, the inclusion of new members in the bloc increased its share of the global population 

to 45%, indicating a 4-percentage point increase in population growth prior to expansion. While 

these high-performing macroeconomic indicators tailwind the bloc’s anticipated dominance in the 

global economy, this raises concerns about the accompanying rise in carbon emission growth and 

the changing dynamics of the bloc’s energy transition process. According to the IEA (2023), China is 

the largest producer and consumer of fossil fuels, contributing to approximately one-third of global 

CO2 emissions. Fig. 2 shows that China’s CO2 emissions began to rise rapidly, close to the turn of the 

21st century, and have since continued on a positive trajectory due to ongoing rapid urbanization and 

industrialization. Similarly, the CO2 emission paths of Egypt, UAE, Russia, and Iran mimic those of 

China, albeit in relative terms, emissions growth occurs at a diminishing rate (see Fig. 2).  To this end, 

although investments in RE have been rising over the past decade, carbon dioxide emissions have 

continued to rise (see Fig. 3). The rise of RE and non-RE public investments in Brazil is accompanied 



by inverted V-shaped per capita CO2 emissions. Likewise, the rise in public investment in RE over the 

past decade is not reflected in the decline of per capita CO2 emissions in China, India, and South 

Africa as these countries are faced with rising per capita CO2 emissions.  

In line with the urgency of global energy transition in recent decades, various scholars have studied 

the determinants of energy transition using quantitative approaches (Akarsu & Gümüşoğlu, 2019; 

Akintande et al., 2020; J. Li et al., 2020; Taghizadeh-Hesary & Rasoulinezhad, 2020). In this vein, the 

majority of studies have explored specific aspects or dimensions of energy transition, such as 

renewable energy consumption (or fossil fuel energy consumption) of economies (Ackah & Kizys, 

2015; Akarsu & Gümüşoğlu, 2019; Akintande et al., 2020; Sadorsky, 2009), while others use the World 

Economic Forum (WEF) energy transition index, clean energy production index, sustainable energy 

development index, and green quality of energy mix index, among others as proxies for energy 

transition (Kuc-Czarnecka et al., 2021; Lau et al., 2023; Zambrano-Monserrate, 2024). Furthermore, 

some studies have examined the relationship between energy transition and macroeconomic 

variables including trade openness, population size, economic growth, energy prices, globalization, 

and economic complexity (Majumder et al., 2023; Owjimehr & Samadi, 2022; Wen et al., 2024).  

There is vast literature on the determinants of the energy transition pattern of countries; however, 

evidence on the impact of several macroeconomic variables on energy transition in countries 

remains inconclusive. Regarding the energy transition-growth nexus, there is a lack of consensus, as 

some studies indicate a U-shaped relationship (Akarsu & Gümüşoğlu, 2019; Damette & Marques, 

2019; Ergun & Rivas, 2023). Considering the energy-transition-CO2 nexus, the literature demonstrates 

the heterogenous effects of CO2 emissions on energy transition (Lau et al., 2023; Zambrano-

Monserrate, 2024).  The literature is replete with studies that examine the relationship between 

energy transition and population growth; however, the effect is mixed (Akintande et al., 2020; 

Owjimehr & Samadi, 2022; Taghizadeh-Hesary & Rasoulinezhad, 2020). Studies investigating the 

relationship between energy transition and exchange rate have found heterogenous effects (Deka 

et al., 2023; Shah et al., 2022).  While these studies have been carried out mostly in developed 

economies, there is a dearth of literature on the factors that determine energy transition patterns 

in emerging economies, specifically, the new BRICS bloc. More importantly, the recent expansion of 

the BRICS bloc presents several dynamics that shape the bloc’s energy future in terms of clean 

energy trade and investment (Kazelko & Semeghini, 2024), thus influencing the significance of this 

study.  

This study contributes to the literature in several ways. For instance, this study models the 

influencing factors of energy transition drawn from the novel theoretical model of Taghizadeh-

Hesary and Rasoulinezhad (2020) for the BRICS+ economic bloc from 1996-2019. Unlike their study, 

this study incorporates covariates, such as ecological footprint, inflation rate, real oil price and 

political stability. In addition, we employ a smoothed (CCE) IV-QR model as an ideal econometric 

technique. The smoothed (CCE) IV-QR framework accounts for unobserved heterogeneity, 

heterogeneous covariate effects, and deals with cross-sectional dependence and endogeneity 

issues which are useful in obtaining unbiased and consistent estimates.  

The remainder of this paper is organized as follows. Section 2 reviews the existing literature. 

Section 3 discusses the theoretical model used in the study, explores the methodology, and outlines 

the data description and model specifications. Section 4 presents a detailed analysis of the results 

obtained. Finally, Section 5 concludes the paper, summarizing the main findings of the study.  



 

Fig. 1 Energy Transition in Selected BRICS+ countries, 1996-2019 

Source: Authors’ construct based on data from World Bank and BP’s Statistical Review 2019 

 

 

Fig. 2 Carbon dioxide Emissions in BRICS+ Countries, 1960-2019 

Source: Authors’ construct based on World Bank data 
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Fig. 3 CO2 emissions and public energy investments in selected BRICS+ Countries, 2010-2020 

Source: Authors’ construct based on IRENA Public Investment Data 
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2.0 Literature Review 

An assessment of the broad literature on energy transition shows an increase in studies examining 

the drivers of energy transition (Ergun & Rivas, 2023; Lau et al., 2023; Zambrano-Monserrate, 2024). 

A combination of factors, including, but not limited to, specific individual and multi-country contexts 

and multi-year horizons, have informed the use of different methodological approaches to 

investigate the relationship between several macroeconomic variables and energy transition. Most 

studies have used causality and cointegration tests to examine these relationships (Damette & 

Marques, 2019; Dissanayake et al., 2023; Hwang & Sánchez Díez, 2024; J. Li et al., 2020; Shah et al., 

2022). Moreover, some studies have used system GMM techniques to analyse these relationships, 

however, such an approach requires larger panels to ensure robust results. Studies that use quantile 

regression techniques woefully ignore the presence of reverse causality between regressors and 

the outcome variable resulting in biased results (Adebayo et al., 2024; Afshan et al., 2022). Akin to 

the rigor required in studies capturing these effects, the smoothed (CCE) instrumental variables (IV) 

quantile regression framework is considered a suitable approach; however, to the best of our 

knowledge, no study has employed this approach in analyzing the energy transition dynamics in the 

new BRICS bloc.  

According to Garcia-Casals et al. (2019), energy transition, as reflected in renewable energy 

consumption and energy efficiency coupled with deep electrification of end-uses, has the potential 

to boost global GDP in the long run. The results were obtained by employing the E3ME macro-

econometric modelling of energy transition for IRENA member states from 2018 to 2050. 

Specifically, the authors find that a 90% reduction in energy-related carbon dioxide emissions could 

result in a maximum 1.5% increase in GDP in 2031, but eventually decline to 1% by 2051. This indicates 

a diminishing return on GDP from the energy transition. Investigating energy transitions in the EU 

and Switzerland from 1990 to 2018, Muco et al. (2021) confirmed the above results, noting that, an 

increase in energy use associated with economic growth tends to reduce energy efficiency and 

increase production costs, thus diminishing GDP growth.  

Combining cointegration and causality tests in examining the relationship between energy 

transition index and CO2 emissions in 26 OECD countries from 1970-2015, Zambrano-Monserrate 

(2024) found that clean energy production reduces CO2 emissions in both the short-run and long-

run. Additionally, bidirectional causality exists between the energy transition indicator and CO2 

emissions. Likewise, Taghizadeh-Hesary and Rasoulinezhad (2020) discovered that economic 

growth positively impacts energy transition, whereas CO2 emissions have an inverse relationship 

with energy transition. The authors capture the energy transition measure as the ratio of renewable 

energy consumption to non-renewable energy consumption. In addition, in both sub-sample groups 

(i.e., high- and upper-middle-income, and low and lower-middle-income groups) an increase in 

population lowers the energy transition process. Again, the rate of ET acceleration was higher for 

high and upper-middle-income economies because of the greater relative income surplus that aids 

high-level green financing in these economies, thus facilitating the demand for RE. This result was 

achieved through a generalized method of moments (GMM) estimation using data on 45 Asian 

economies over the period 1993–2018. However, the exchange rate was found to be insignificant in 

the ET process, whereas population growth showed a positive association with renewable energy 

consumption.  

Similarly, Rasoulinezhad et al. (2020) assessed the impact of geopolitical risk on ET in Russia using 

an ARDL bounds testing method over the period 1993–2018 and found a long-run negative impact 



of economic growth, population growth, and inflation rate on energy transition in Russia, while 

CO2 emissions, geopolitical risk, exchange rate and financial openness have positive impacts on 

energy transition movement in the country. Furthermore, the results indicate that in the short run, 

the relationship between energy transition improvement and economic growth, CO2 emissions, 

population growth, and inflation rate is negative, while geopolitical risk, exchange rate and financial 

openness are the only variables that accelerate energy transition in the country. 

Hwang and Sánchez Díez (2024) analyzed the impact of renewable energy transition on green 

economic growth using panel data of 14 Latin American economies form 2003–2020. The results 

indicate that renewable energy transition propels economic growth and also confirms 

heterogeneity in the effects established due to geographical location, fossil fuel dependence and 

mineral resource dependence. Additionally, the authors analyzed the mediating effects between 

renewable energy and green economic growth. They concluded that capital investment, 

dependence on hydropower electricity production, residential electricity consumption per capita, 

human capital, and formal job creation play mediatory roles in the renewable energy transition and 

green growth nexus. Amid these dynamics, they also find a negative spatial spillover effect of the 

renewable energy transition in Latin America.  

Akintade et al. (2020) used Bayesian Model Averaging (BMA) procedures to examine the 

determinants of renewable energy consumption from 1996–2016 in the five most populous African 

economies. They found a positive nexus between population growth, urban population, energy 

demand/use and electricity power demand, and energy transition. Despite incorporating thirty-four 

covariates into the model, in the final analysis, they found that GDP growth, oil-producing status, 

land surface area, political stability, corruption control, rule of law, oil demand, school enrolment 

(tertiary), agriculture, urban population, and government effectiveness drive renewable energy 

consumption. Subsequently, by exploring RE demand dynamics in Africa, Ackah & Kizys (2015) found 

that RE demand in oil-rich African countries is significantly affected by real income per capita, carbon 

emissions per capita, and RE prices. The result is consistent in all three models (a random effects 

model, a fixed effects model and a dynamic panel data model) estimated with data covering 1985–

2010. To estimate RE demand, the authors used metric tonnes equivalent of RE sources, including 

the sum of hydro, geothermal, wind, solar, industrial waste, municipal waste, biomass, biofuels, and 

charcoal.  A positive association was found for real income per capita, implying the availability of 

sufficient funds to support renewable energy adoption. They also found a negative association 

between CO2 emissions and RE demand and attributed this to a decline in biomass, which is a 

component of RE following an increase in carbon dioxide emissions.  

Chen et al. (2020) explored the relationship between renewable energy consumption and economic 

growth using a sample of 103 countries from 1995–2015. The authors adopted a panel threshold 

model for the analysis. The results show differing effects: beyond a predetermined threshold level, 

renewable energy consumption has a positive effect on economic growth in developing economies 

and non-OECD countries. Below a determined threshold level, the effect of renewable energy 

consumption on economic growth becomes negative. For developed economies, the authors find 

no significant effect between renewable energy consumption and economic growth, whereas the 

result is positively significant for OECD countries.  

Yu and Guo (2023) investigated the driving factors of green energy transition in China using quarterly 

time-series data from 2000–2020. The authors employed a bootstrap autoregressive distributed lag 

(BARDL) to examine the relationships between economic policy uncertainty, technological 



innovation, ecological governance, and economic growth. Affirming a long run association between 

the variables, the authors found that economic policy uncertainty and economic growth inhibit the 

progress of the green energy transition, while technological innovation and environmental 

governance play a pivotal role in promoting the green energy transition in China.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.0 Methodology 

This section is divided into two parts. The first part discusses the theoretical model of the study while 

the second part details the data and variables used as well as the empirical model and strategy of 

the study. 

3.1 Theoretical Model  

Based on the theoretical framework developed by Taghizadeh-Hesary and Rasoulinezhad (2020), 

we examine a basic two-sector model comprising the industry sector and household/residential 

sector. We further assume that the demand for energy sources—both renewable and non-

renewable—originates from these two sectors, and that electricity generated from these energy 

sources within the economy is entirely consumed by them. We adopt the energy transition definition 

of Edenhofer et al. (2012) as the structural shift in existing energy systems towards modern energy. 

Consequently, the energy transition process within the economy reflects a mix of renewable and 

non-renewable energy sources. The energy inputs utilized by the industrial sector represent the 

proportion of renewable and non-renewable energy sources employed in the production process. 

Similarly, a household’s demand for or consumption of energy resources reflects a combination of 

energy goods derived from both renewable and non-renewable sources. Thus, households derive 

utility from consuming a diverse bundle of goods sourced from renewable and non-renewable 

energy sources.  

3.1.1 Industry Sector  

Pokrovski (2003) proposed an extension of the conventional neoclassical growth model to include 

consumed energy, referred to as productive energy (ET). The way productive energy enters the 

production function is not only by adding to the cost of production but also by enhancing the value 

generated during the production process (Lee et al., 2008; Lee & Chang, 2007; Pokrovski, 2003).  

We illustrate the industry’s output with a basic Cobb-Douglas production function at a constant 

returns to scale (CRS) while introducing productive energy, in this case, which is the share of RE 

consumption to non-RE consumption into the function given by: 

𝑌𝑡
𝐼 =  𝐹(𝐴𝑡, 𝐾𝑡, 𝐿𝑡 , 𝐸𝑇𝑡) =  𝐴𝑡(𝐾𝑡

𝛼𝐿𝑡
𝛽(𝐸𝑇𝑡

𝐼)1−𝛼−𝛽), 0 < 𝛼 < 1, 0 < 𝛽 < 1          (1) 

Where 𝑌𝐼 is the total output of industry, 𝐴 represents exogenous total factor productivity,  𝐾 

denotes the capital input,  𝐿 denotes the labor input, 𝐸𝑇𝐼 denotes energy inputs used in industrial 

production, which depicts the energy transition (share of renewables to non-renewables) in the 

industrial sector, 𝛼 is the elasticity of production of capital,  𝛽 is the elasticity of production of labor, 

and the elasticity of production of energy inputs is equal to 1 − 𝛼 − 𝛽. is the total output of industry. 

Furthermore, following Edenhofer et al.’s (2012) definition of energy transition, the economy’s 

energy transition is given by: 

𝐸𝑇𝑡 =  
𝑅𝐸𝐶𝑡

𝑁𝑅𝐸𝐶𝑡
                                                                   (2) 

Where 𝑅𝐸𝐶𝑡 is the renewable energy consumption and 𝑁𝑅𝐸𝐶𝑡 is the non-renewable energy 

consumption in the industry.  

The industry sector faces a cost function as follows: 

𝐶𝑡 = 𝑟𝑡𝐾𝑡 +  𝑤𝑡𝐿𝑡 + 𝑒𝑡(𝑃𝑡
𝐸 + 𝑇𝑡)𝐸𝑇𝑡

𝐼                            (3) 



Where 𝐶𝑡 is the industry’s cost of production,  𝑟 denotes the interest rate of capital, 𝐾 denotes the 

capital input,  𝑤 denotes the wage rate, 𝐿 denotes the labor input, 𝑒 denotes the exchange rate, 𝑃𝐸  

denotes energy price and 𝑇 denotes the environmental costs associated with transporting energy 

resources (we use CO2 emissions as a proxy).  

Accordingly, firms maximize their profits as follows: 

𝑀𝑎𝑥 𝜋𝑡 =  𝑃𝑡
𝑌𝑌𝑡 − 𝑟𝑡𝐾𝑡 − 𝑤𝑡𝐿𝑡 − 𝑒𝑡(𝑃𝑡

𝐸 + 𝑇𝑡)𝐸𝑇𝑡
𝐼                      (4) 

Where 𝜋  is the industry sector’s profit, 𝑃𝑌 is the price of the final products, 𝑟 denotes the interest 

rate of capital, 𝑤 denotes the wage rate, 𝑒 denotes the exchange rate, 𝑃𝐸  denotes energy price and 

𝑇 denotes the transportation environmental cost of energy resources. 

By substituting Eq.1 into Eq.4 and solving the first differential with respect to 𝐸𝑇, the resulting 

equation becomes: 

𝜕𝜋𝑡

𝜕𝐸𝑇𝑡
𝐼 = (1 − 𝛼 − 𝛽)

𝑃𝑡
𝑌𝑌𝑡

𝐼

𝐸𝑇𝑡
𝐼 − 𝑒𝑡(𝑃𝑡

𝐸 + 𝑇𝑡) = 0                 (5) 

  Making 𝐸𝑇𝐼 the subject in Eq.5, the industry’s energy transition becomes: 

𝐸𝑇𝑡
𝐼 = (1 − 𝛼 − 𝛽)

𝑃𝑡
𝑌𝑌𝑡

𝐼

𝑒𝑡(𝑃𝑡
𝐸+𝑇𝑡)

                             (6) 

From Eq.6, it is evident that, the industry’s energy transition is a function of the elasticities of 

production of labour and capital, the price of final industry products, real output of industry, energy 

price, exchange rate and energy transportation environmental costs.  

3.1.2 Household Sector 

Let 𝐶𝑡 and 𝐸𝑇𝑡
𝐻  be the time-varying indices of household consumption of non-energy goods and 

energy goods respectively. Generally, household derives utility from the consumption of both non-

energy and energy goods. The household energy demand is represented by the following utility 

function: 

𝑈𝑡 = (𝐶𝑡, 𝐸𝑇𝑡
𝐻) =

1

1−𝜌
(𝐶𝑡)1−𝜌 +

1

1−𝜏
(𝐸𝑇𝑡

𝐻)1−𝜏                (7) 

Households maximize their utility subject to a budget constraint given by: 

𝑌𝑡
𝐻 = 𝑃𝑡

𝐶𝐶𝑡 + 𝑒𝑡(𝑃𝑡
𝑒 + 𝑇𝑡)𝐸𝑇𝑡

𝐻                            (8) 

Where 𝑌𝐻  is the total income of households, 𝑃𝐶represents the price of non-energy goods, 

𝑃𝐸represents the price of energy goods, which is determined by energy price, 𝑒 represents the 

exchange rate and 𝑇 represents the transportation environmental cost of energy goods.  

To maximize the utility of households, the household’s Lagrange function is set up as follows: 

𝐿 = 𝑈(𝐶𝑡, 𝐸𝑇𝑡
𝐻) − 𝜑{𝑃𝑡

𝐶𝐶𝑡 + 𝑒𝑡(𝑃𝑡
𝐸 + 𝑇𝑡)𝐸𝑇𝑡

𝐻 − 𝑌𝑡
𝐻}             (9) 

The first-order differential with respect to 𝐸𝑇𝐻, 𝐶, and 𝜑 are given as follows: 

𝜕𝐿

𝜕𝐸𝑇𝑡
𝐻 = 𝑈𝛪(𝐸𝑇𝑡

𝐻) − 𝜑{𝑒𝑡(𝑃𝑡
𝐸 + 𝑇𝑡)} = 0        (10) 

𝜕𝐿

𝜕𝐶𝑡
= 𝑈𝛪(𝐶𝑡) − 𝜑(𝑃𝑡

𝐶) = 0 ⇒  𝜑 =
𝑈𝛪(𝐶𝑡)

𝑃𝑡
𝐶                        (11) 



𝜕𝐿

𝜕𝜑
= 𝑌𝑡

𝐻 = 𝑃𝑡
𝐶 + 𝑒𝑡(𝑃𝑡

𝐸 + 𝑇𝑡)𝐸𝑇𝑡
𝐻                 (12) 

Substituting 𝜑 from Eq. 11 into Eq. 10 and solving for 𝐸𝑇𝑡
𝐻, the household’s energy transition 

becomes a function of electricity tariff, exchange rate, transportation environmental costs of energy 

and the income level of households as expressed in eq. 13 below. 

𝐸𝑇𝑡
𝐻 = 𝑓(𝑃𝑡

𝐸 , 𝑒𝑡, 𝑇𝑡, 𝑌𝑡
𝐻)                            (13) 

The total energy demand of the economy is given by: 

𝐸𝑇𝑡 = 𝐸𝑇𝑡
𝐼 + 𝐸𝑇𝑡

𝐻                               (14) 

From Eq.14, the total energy demand of the economy is expressed below 

𝐸𝑇𝑡 = 𝑓(𝑃𝑡
𝐸 , 𝑃𝑡

𝑌, 𝑒𝑡, 𝑇𝑡, 𝑌𝑡)                               (15) 

Where 𝑃𝐸  denotes electricity tariff, 𝑃𝑌denotes the price of final industry products, 𝑒 denotes the 

exchange rate, 𝑇 represents environmental costs associated with transportation of energy, and 𝑌 is 

the total GDP of the economy which constitutes the total industrial output, (𝑌𝐼) and the income 

level of households (𝑌𝐻). 

3.2 Data and Variables of the Study 

This study utilized an annual panel dataset from 1996–2019. The data were obtained from multiple 

sources including the World Bank’s World Development Indicators (WDI) and BP’s Statistical Review 

2017-2019, the Global Footprint Network (GFN), Energy Institute Statistical Review, Worldometer 

and Berkeley Earth. Due to the recent expansion of BRICS (now referred to as BRICS+), which 

includes five additional countries, the study focused data on full members of the bloc as at January 

2025: Brazil, Russia, India, China, South Africa, Egypt, Ethiopia, Iran, UAE and Indonesia. Based on 

the theoretical model, this study posits that energy transition—defined as the ratio of renewable 

energy consumption to non-renewable energy consumption—is the dependent variable. Similarly, 

the independent variables include exchange rate, GDP, real oil prices (used as a proxy for energy 

prices), and CO2 emissions. The study incorporates control variables such as population growth rate, 

political stability and ecological footprint.  

Regarding the proxy for energy prices, real oil price is an appropriate proxy due to its significant role 

in shaping global energy markets. As a dominant energy source, oil price influences other energy 

markets and is associated with electricity prices and energy consumption (Alola et al., 2023). 

Additionally, using real oil price ensures that energy price changes are consistent over time. Kilian 

(2009) stressed that oil price shocks are key drivers of energy price volatility, amplifying their 

suitability as a proxy. In the context of BRICS+ countries, where fossil fuels play a critical role, real 

oil prices capture volatility and trends in energy costs, making them particularly suitable for this 

study.  

 

 

 

 

 



Table 1. Definition of Variables 

Variables Log 
Transformation 
of the variables  

Definition Database 

Energy transition 
(et) 

let %𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠.

%𝐹𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙  𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠.
 

WDI / BP 

CO2 Emissions 
(co2_e) 

lco2 Metric tons per capita WDI 

Population growth 
(pop) 

lpop Annual percentage growth rate of 
population 

WDI 

Exchange rate (ex) lex Official exchange rate (LCU per US$, 
period average) 

WDI 

GDP  lgdp Annual percentage growth rate of 
GDP 

WDI 

Inflation rate (infl) linfl Consumer prices (annual %) WDI 

Ecological 
footprint (eco_fp) 

leco_fp Global Footprint Network GFN 

Political Stability 
(pol_stab) 

lpol_stab estimates WDI 

Real Oil Price 
(r_oil_px) 

lr_oil_px $ per barrel EISR 

Fossil fuel reserves 
(foss_res) 

lfoss_res Proved oil reserves (thousand million 
barrels) 

EISR 
/Worldometer 

Temperature 
anomalies (temp) 

ltemp Degree celsius BE 

Notes: WDI   World Development Indicators 

 BP  BP Statistical Review 

 GFN  Global Footprint Network 

 EISR  Energy Institute Statistical Review 

 BE  Berkley Earth 

 

 

 

 

 

 

 

 

 



3.3 Econometric Model Specification 

Based on the variables for the study and the theoretical foundation underpinning their selection, 

the multivariate econometric specification can be written as: 

𝑒𝑡𝑖𝑡 = 𝛾 + 𝛿𝑐𝑜2𝑖𝑡 + 𝜔𝑝𝑜𝑝𝑖𝑡 + 𝜑𝑒𝑥𝑖𝑡 + 𝜌𝑔𝑑𝑝𝑖𝑡 + 𝜎𝑖𝑛𝑓𝑙𝑖𝑡 + 𝛼𝑟_𝑜𝑖𝑙_𝑝𝑥𝑖𝑡 + 𝛽𝑝𝑜𝑙_𝑠𝑡𝑎𝑏𝑖𝑡 +
𝜋𝑒𝑐𝑜_𝑓𝑝𝑖𝑡  + 𝜀𝑖𝑡           (16) 

We adopt a log-transform of the model due to the non-normality of the data. The log-transform of 

the model is expressed in Eq.17 as follows: 

𝑙𝑒𝑡𝑖𝑡 = 𝛾 + 𝛿𝑙𝑐𝑜2𝑖𝑡 + 𝜔𝑙𝑝𝑜𝑝𝑖𝑡 + 𝜑𝑙𝑒𝑥𝑖𝑡 + 𝜌𝑙𝑔𝑑𝑝𝑖𝑡 + 𝜎𝑙𝑖𝑛𝑓𝑙𝑖𝑡 + 𝛼𝑙𝑟_𝑜𝑖𝑙_𝑝𝑥𝑖𝑡 + 𝛽𝑝𝑜𝑙_𝑠𝑡𝑎𝑏𝑖𝑡 +
𝜋𝑙𝑒𝑐𝑜_𝑓𝑝𝑖𝑡 + 𝜀𝑖𝑡           (17) 

Where 𝛾 is the intercept term, 𝜔, 𝜑, 𝜌, 𝜎, 𝛼, 𝛽, 𝜋 are the slope coefficients and 𝜀 is the error term. 

Additionally, 𝑖 represents the cross-section of countries and 𝑡 represents the time period. 

3.3.1 Smoothed (common correlated effects) Instrumental Variable Quantile Regression Model 

Introduced by Koenker and Bassett (1978), the standard quantile regression model estimates the 

effects of a given set of covariates at the conditional quantiles of the dependent variable 

(Fitzenberger & Wilke, 2015). Canay (2011) argues that the ability to account for unobserved 

heterogeneity and the varying effects of covariates is one of the many powerful features of the 

quantile regression model. However, the standard quantile regression model does not address 

issues of endogeneity and cross-sectional dependence associated with panel data. Against this 

backdrop, the IV-QR model proposed by Chernozhukov and Hansen (2006) which utilizes an inverse 

quantile regression estimator (IQR) have been widely adopted to deal with endogeneity issues of 

the standard QR model. Despite its advantages, the IV-QR quantile regression model has other 

limitations including its inability to account for cross-sectional dependence and the fact that it does 

not yield smooth estimators as there are jumps in the path of the estimator (Fernandes et al., 2021), 

given the quantile objective function to be minimized. The objective function of the (unsmoothed) 

IV-QR model faces complications in solving for high-order approximations of the sampling 

distribution of the objective function (Kaplan & Sun, 2017). In resolving these two limitations, we 

take a step further to adopt a smoothed instrumental variables quantile regression approach 

proposed by Kaplan and Sun (2017), and adjust the model with common correlated effects following 

Harding and Lamarche (2014) approach. The common correlated effects adjustment of the 

smoothed IV-QR model is based on cross-sectional averages of the dependent and independent 

variables following an adjustment of Pesaran (2006) model.  

With the exception of the static (CCE) IV-QR model developed by Harding and Lamarche (2014), 

recent literature have predominantly focused on dynamic (CCE) QR panel models with lagged 

dependent variables and interactive effects (Galvao, 2011; Harding et al., 2020; Zheng et al., 2024). 

These models have been shown to provide consistent estimates where the panel timeseries and 

cross-sectional units are large (T, N → ∞).  A necessary condition for the consistency of parameters 

among such models is that the number of cross-sectional averages must be greater or equal to the 

number of unobserved common factors.  However, Kapetanios et al. (2011) posited that for short 

panels where the number of unobserved common factors is less or equal to the number of 

dependent and independent variables combined, there is known improvement of the static CCE 

estimator and tests on the model.  

We specify the model akin to Harding and Lamarche (2014) as follows: 



𝑦𝑖𝑡 = 𝛼′𝑑𝑖𝑡 + 𝛽′𝑥𝑖𝑡 + 𝛾𝑖
′𝑓𝑡 + 𝑢𝑖𝑡 ,    𝑖 = 1, … … , 𝑁; 𝑡 = 1, … … . , 𝑇          (18) 

𝑑𝑖𝑡 =  𝜋′1𝑤𝑖𝑡 + 𝜋′2𝑥𝑖𝑡 + 𝜋′3𝑓𝑖𝑡 + 𝜋′4𝛾𝑖 + 𝜋′5𝛾𝑖𝑓𝑡 + 𝑣𝑖𝑡       (19) 

Where 𝑦𝑖𝑡 is the outcome variable of interest for subject 𝑖 at time 𝑡, 𝑑 is a vector of 𝑘1 endogenous 

variables, 𝑥 is a vector of 𝑘2 exogenous independent variables, 𝑓𝑡  is the vector of r unobserved 

common time-varying factors, 𝛾 is an 𝑟 × 1 vector of country-specific factor loadings. Both 𝛾𝑖  and 𝑓𝑡   

are latent variables, the parameter of interest is 𝛼 and 𝑢 is the disturbance term. In the second 

equation 𝑑 is correlated with a vector of 𝑚 ≥ 𝑘1 instruments 𝑤, the exogenous variables 𝑥, and the 

latent variables 𝛾 and 𝑓. We assume that the variable 𝑣 is stochastically dependent on 𝑢.  

We rewrite Eq. (18) in a matrix form for convenience as follows: 

𝑦 = 𝐷𝛼 + 𝑋𝛽 + 𝐹𝛾 + 𝑢       (20) 

where 𝑦 is an 𝑁𝑇 × 1 vector, 𝐷 is an 𝑁𝑇 × 𝑘1  matrix, 𝑋 is an 𝑁𝑇 × 𝑘2 matrix, and 𝐹 is an 𝑁𝑇 × 𝑟 

matrix. From the above, the IV estimator for 𝛼 can be obtained in two steps form: 

𝑦(𝛼) = 𝑦 − 𝐷𝛼 = 𝑋𝛽 + 𝐹𝛾 + 𝑊𝜓 + 𝜀       (21) 

Where 𝑊 is a matrix of instruments, and the latent term 𝐹 is approximated by cross-sectional 

averages of dependent and independent variables. 

We then substitute Eq. (19) into Eq. (18) and sum over the cross-sectional dimension of the model 

to obtain Eq. (22) below: 

𝑧𝑡̅(𝜏) = 𝐶1𝑤̅𝑡 + 𝐶2(𝜏)𝑥̅𝑡 + (𝐶3̅ + 𝐶4̅𝛾̅′)𝑓𝑡 + 𝐶5̅𝛾̅       (22) 

Where 𝑧𝑡̅(𝜏) is the cross-sectional average of 𝑧𝑖𝑡(𝜏) = (𝑦𝑖𝑡, 𝑑′𝑖𝑡)′, and 𝐶1 = (𝛼′𝜋′
1, 𝜋′

1)′, 𝐶2(𝜏) =

(𝛼′𝜋′
2 + 𝛽(𝜏)′)′, 𝜋′

1)′, 𝐶3̅ = 𝑁−1 ∑ ((𝜋′
3𝑖𝛼

𝑁
𝑖=1 )′, 𝜋′

3𝑖)′, 𝐶4 = (𝛼′𝜋4 + 1, 𝜋4)′, 𝛾̅ = 𝑁−1 ∑ 𝛾𝑖
𝑁
𝑖=1  and 

𝐶5 = (𝛼′𝜋5, 𝛼′𝜋5). 

Now, to estimate the quantile regression model with cross-sectional averages and endogenous 

covariates, we specify the objective function as follows: 

𝑄𝑖𝑡(𝛼, 𝜏, 𝛽, 𝛿, 𝜆) = 𝜌𝜏(𝑦𝑖𝑡 − 𝑑̃′
𝑖𝑡𝛼 − 𝑥′

𝑖𝑡𝛽 − 𝑓′𝑡(𝜏)𝛿 − 𝛷̂′𝑖𝑡(𝜏)𝜆)     (23) 

Where 𝜌𝜏(𝜔) = 𝜔(𝜏 − 𝐺 (−
𝜇

ℎ
) (𝜔 ≤ 0)) is the standard loss function, 𝐺(∗) is a smoothing function 

and ℎ is the smoothing parameter or bandwidth (Kaplan & Sun, 2017). From Eq. (24), we note that 

unknown common factors are approximated by the term 𝑓𝑡(𝜏) = 𝜓(𝜏; 𝑧𝑡̅, 𝑤̅𝑡, 𝑥̅𝑡, 1), which is a known 

parametric function of cross-sectional averages of the endogenous and exogenous variables. Hence 

𝑓′𝑡(𝜏) in Eq. (25) is a vector that includes an intercept and the cross-sectional variables 𝑧̅̂(𝜏)𝑡, 𝑤̅𝑡 and 

𝑥̅𝑡. 𝑑̃′
𝑖𝑡 = (𝑑′

𝑖𝑡, 𝑑̅′
𝑡)′. Then, we instrument the vector 𝑑̌𝑖𝑡 by the vector of instruments 𝑤̃′

𝑖𝑡 =

(𝑤′
𝑖𝑡, 𝑤̅′

𝑡)′. Therefore, 𝑓𝑡(𝜏) is defined as 𝜓(𝜏; 𝑦̅𝑡 , 𝑥̅𝑡, 1). The second term 𝛷𝑖𝑡(𝜏) =

𝛷(𝜏; 𝑤𝑖𝑡, 𝑥𝑖𝑡 , 𝑓𝑖𝑡, 𝜆𝑖) is a vector of transformations of instruments.  

We minimize the objective function above as follows: 

{𝛽̂(𝜏, 𝛼), 𝛿(𝜏, 𝛼), 𝜆̂(𝜏, 𝛼)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽,𝜆,𝛿 ∑ ∑ 𝑄𝑖𝑡(𝛼, 𝜏, 𝛽, 𝛿, 𝜆)𝑁
𝑖=1

𝑇
𝑡=1     (24) 

Then we solve for the coefficient of the endogenous regressor, by finding the value of 𝛼. 



3.4 Empirical Strategy 

Given potential reverse causality between energy transition and CO2 emissions which may lead to 

endogeneity problems and likely bias our results, we employed a smoothed (CCE) instrumental 

variables quantile regression approach (CCE IV-QR) to resolve these problems.  

Since the instrumental variables quantile regression method is robust to heterogeneity, we estimate 

the 𝜏𝑡ℎ quantile of the dependent variable (et), ranging from the 10th to 80th quantile, as a linear 

function of the endogenous variable (𝑐𝑜2𝑖𝑡), a vector of covariates including control variables (𝑋𝑖𝑡), 

a vector of unobserved common time-varying factors (𝑓𝑡), a vector of country-specific factor 

loadings (𝛾𝑖) and error term (𝜇𝑖𝑡).  

 𝑄𝑒𝑡𝜏 = 𝛼𝜏𝑐𝑜2𝑖𝑡 + 𝛽𝑋𝑖𝑡 + 𝛾𝑖𝑓𝑡 + 𝜇𝑖𝑡         (25) 

We further assume 𝑒𝑡𝑖𝑡to be predicted by the following equation, given that 𝑐𝑜2𝑖𝑡  is correlated 

with the error term (𝜇𝑖𝑡) based on eq.19.  

𝑐𝑜2𝑖𝑡 = 𝜋1𝑤𝑖𝑡 + 𝜋2𝑥𝑖𝑡 + 𝜋3𝑓𝑖𝑡 + 𝜋4𝛾𝑖 + 𝜋5𝛾𝑖𝑓𝑡 + 𝑣𝑖𝑡      (26) 

Where 𝑤𝑖𝑡 is a vector of instruments for 𝑐𝑜2𝑖𝑡, both 𝛾𝑖  and 𝑓𝑡   are latent variables and 𝑣𝑖𝑡  is the 

disturbance term. 

We then substitute Eq.26 into Eq.25 to obtain cross-sectional averages as in Eq.22 and estimate the 

quantile objective function as follows:  

𝑄𝑖𝑡(𝛼, 𝜏, 𝛽, 𝛿, 𝜆) = 𝜌𝜏(𝑒𝑡𝑖𝑡 − 𝛼𝜏𝑐𝑜2𝑖𝑡 − 𝛽𝜏𝑋𝑖𝑡 − 𝛿𝑓𝑡(𝜏) − 𝜆𝜙𝑖𝑡(𝜏))     (27) 

From the above, we minimize the quantile objective function by including a smoothing function as 

follows: 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ 𝜌𝜏(𝑒𝑡𝑖𝑡 − 𝛼𝜏𝑐𝑜2𝑖𝑡 − 𝛽𝜏𝑋𝑖𝑡 − 𝛿𝑓𝑡(𝜏) − 𝜆𝜙𝑖𝑡(𝜏))𝑁
𝑖=1

𝑇
𝑖=1 , 𝜌𝜏(𝜔) ≡ [𝜏 − 𝐺 (−

𝜇

ℎ
)]  (28) 

Where (∗) is the quantile loss function, 𝐺(∗)  is the smoothing function, and then we solve for the 

coefficient of 𝛼𝜏through the minimization problem. 

With regards to our model, we selected fossil fuel reserves and temperature anomalies as our 

instruments as they both correlate with the endogenous variable (CO2 emissions). To ensure 

robustness of our instruments, we use the correlation matrix in Table 2, as well as diagnostic tests 

from our smoothed (CCE) IV-QR model to verify the strength and exogeneity of both instruments. 

Fossil fuel reserves are a critical determinant of CO₂ emissions, as they represent the potential for 

future carbon release upon combustion. Russel (2016) highlights that the potential CO₂ emissions 

from existing fossil fuel reserves far exceed the carbon budget necessary to limit global warming, 

underscoring their direct impact on emissions. Additionally, Mazza and Canuto (2024) model the 

association between fossil fuel reserve depletion and future CO₂ concentrations, demonstrating the 

direct connection between exploitation of fossil fuel reserve and CO₂ emissions. Likewise, 

temperature anomalies serve as a theoretically sound and empirically relevant instrument for CO2 

emissions in our analysis. Temperature anomalies represent a direct and measurable outcome of 

cumulative CO2 emissions, which happen to be the primary driver of anthropogenic climate change. 

Temperature anomalies are exogenous to short-term country-level energy transition efforts, as they 

occur due to long-term historical emissions. Studies that have successfully employed climatic 



variables like temperature anomalies as instruments in similar contexts include Burke et al. (2015) 

and Dell et al. (2012).  

Moreover, given that our data is unbalanced, we employed varied forms of linear interpolation, 

based on the structure of variables to fill missing values. Interpolation was selected because it 

preserves the temporal structure of the data and minimizes disruptions to underlying trends 

(Knutsen, 2012). This method is particularly suited for variables which exhibit gradual and continuous 

changes over time. Furthermore, linear interpolation avoids the introduction of spurious variability 

or bias, as it relies only on existing observations within the series. Additionally, to ensure the 

robustness of our results, we conducted sensitivity analyses, including comparisons with non-

interpolated dataset, which excluded missing years. The results confirmed that interpolation did not 

significantly influence the conclusions of our analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.0 Empirical Results  

This section presents the descriptive statistics, diagnostic tests, empirical findings and a thorough 

discussion of results. 

4.1 Descriptive Statistics 

Table 2 presents the descriptive statistics for the variables and the pairwise correlation matrix. 

Among the variables, energy transition (et), exchange rate (ex), carbon dioxide emissions (co2), 

population growth (pop), real oil price (r_oil_px), inflation rate (infl), and ecological footprint 

(eco_fp) are all positively skewed, with real oil price exhibiting a long right-tailed distribution, as 

indicated by the kurtosis value. In contrast, economic growth (gdp) and political stability (pol_stab) 

are negatively skewed, suggesting that the distribution of the data is more peaked than a normal 

distribution. According to the correlation matrix, the exchange rate, carbon dioxide, population 

growth rate, inflation rate, and real oil price all exhibit a negative correlation with energy transition, 

and carbon dioxide emissions showing a particularly strong negative association. Conversely, GDP 

and ecological footprint show a weak positive association with energy transition.  

Table 2. Descriptive Statistics 

Variable Obs Min Max Mean Std. Dev. Skewness Kurtosis 

         

et 223 0.001 29.699 2.158 6.303 3.174 11.595 

ex 240 1.005 4.20E+04 2384.071 6299.992 3.741 19.386 

co2_e 240 0.048 30.523 6.099 6.938 1.801 5.75 

pop 240 -0.460 18.128 1.751 2.195 4.743 31.308 

r_oil_px 240 -6.03E+04 5.68E+07 1.76E+06 5.90E+06 5.252 38.558 

gdp 240 -13.127 1.42E+01 4.778 3.852 -0.622 4.753 

infl 240 -16.267 85.746 9.008 10.244 3.387 23.028 

pol_stab 210 -2.095 0.995 -0.645 0.706 0.513 2.849 

eco_fp 240 2.89E+07 4.81E+09 7.00E+08 1.04E+09 2.631 9.555 

foss_res 240 0.428 158.400 40.355 49.517 1.015 2.438 

temp 240 -0.126 2.432 0.978 0.469 0.579 3.658 

Pairwise Correlation Matrix 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) et 1.000           
(2) ex -0.121 1.000          
(3) co2_e -0.298 -0.067 1.000         
(4) pop 0.158 -0.062 0.392 1.000        
(5) r_oil_px -0.092 0.657 -0.102 -0.065 1.000       
(6) gdp 0.239 -0.186 -0.145 0.005 -0.030 1.000      
(7) infl -0.015 0.252 -0.063 -0.042 -0.009 -0.228 1.000     
(8) pol_stab -0.342 -0.238 0.679 0.314 -0.073 -0.123 -0.399 1.000    
(9) eco_fp -0.189 -0.144 -0.077 -0.283 -0.093 0.296 -0.186 0.013 1.000   
(10) foss_res -0.281 0.378 0.658 0.083 0.081 -0.250 0.266 0.185 -0.113 1.000  
(11) temp -0.071 0.250 0.284 -0.073 0.169 -0.106 -0.021 -0.004 0.052 0.444 1.000 

 



 

4.1.1 Cross-Sectional Dependence Test 

The cross-sectional dependence (CD) test is an important diagnostic tool for panel data analysis. 

Given that our dataset has a limited number of cross-section units (N) and time periods (T) (i.e., N, T 

< 30) (Thombs, 2022), with more time series units than cross-section units, we employed the Breusch 

and Pagan (1980) LM cross-sectional dependence test. As shown in Table 3, we obtained a CD 

statistic of 227.251 with a p-value below the 1% significance level, leading us to reject the null 

hypothesis that there is no cross-sectional dependence. Therefore, we conclude that there is strong 

cross-sectional dependence within the panel of countries.  

Table 3. Breusch-Pagan LM Test of Independence 

Cross-Sectional Dependence   Statistic                             p-value 

Model      227.251    0.000*** 

*** p<0.01, ** p<0.05, * p<0.10 

4.1.2 Panel Unit Root Test  

Following the conclusions drawn from the cross-sectional dependence test, a panel unit root test 

was necessary to assess the suitability of the model for estimation (Tugcu, 2018). This crucial 

diagnostic test identifies the presence of stationarity or non-stationarity in both covariates and 

dependent variables. We employed a second-generation panel unit root test, specifically Pesaran 

Cross-Sectional Augmented Dickey-Fuller (PESCADF) test to determine the stationarity of the 

variables (Pesaran, 2003, 2007). The results presented in Table 4 indicate that the test without trend 

display lr_oil_px, lgdp and linfl stationary at levels whereas the test with trend shows same pattern 

(lr_oil_px, lgdp and linfl) of stationary variables. Based on the p-values of these variables, we could 

not reject the null hypothesis of no unit root at 1% significance level. However, when expressed as 

first difference, all variables exhibit stationarity, with and without a trend term implying that the 

data series are integrated of mixed order I(0) and I(1). 

Table 4. Pesaran’s cross-sectional augmented Dickey Fuller (Pescadf) test 

 
Variable 

Constant 

 T-bar                    p-value 

Constant & Trend 

T-bar                  p-value 

let 
lex            
lpop 
lr_oil_px 
lgdp 
lco2 
linfl 
lpol_stab 
leco_fp 
∆let 
∆lex            
∆lpop 
∆lr_oil_px 
∆lgdp 
∆lco2 

-0.755 
-2.106 
-1.649 
-2.610*** 
-2.843*** 
-1.491 
-2.687*** 
-1.565 
-1.995 
-3.520*** 
-3.083*** 
-3.627*** 
-4.041*** 
-4.115*** 
-3.487*** 

0.999 
0.130 
0.641 
0.003 
0.000 
0.810 
0.001 
0.737 
0.222 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

-1.127 
-2.171 
-2.456 
-2.953*** 
-3.200*** 
-1.648 
-3.471*** 
-2.179 
-2.134 
-3.806*** 
-4.163*** 
-3.886*** 
-4.056*** 
-4.028*** 
-3.581*** 

1.000 
0.682 
0.309 
0.014 
0.001 
0.988 
0.000 
0.671 
0.725 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 



∆linfl 
∆lpol_stab 
∆leco_fp 

-4.210*** 
-3.121*** 
-3.312*** 

0.000 
0.000 
0.000 
  

-4.161*** 
-4.472*** 
-3.231*** 

0.000 
0.000 
0.001 

*** p<0.01, ** p<0.05, * p<0.10 

Source: Authors’ Computation 

4.1.4 Panel Cointegration Test 

Table 5 presents the results of the Pedroni test for co-integration. As a residual-based test, the 

Pedroni test for cointegration better explains cointegration relationships (Gutierrez, 2003). Pedroni 

test for cointegration tests the null hypothesis of no cointegration and allows for heterogeneity in 

the long-run covariance matrix and slope coefficients. As presented in Table 5, we find that the 

modified Philips-Perron test, Philips Perron test and the Augmented Dickey-Fuller test, all have 

probability values less than 1% significance level, indicating that we reject the null hypothesis of no 

cointegration. To confirm the results, we showed that in appendix Table 12, the Westerlund 

cointegration test and Kao test presented p-values less than 1% significance level. This indicates the 

presence of cointegration between variables in the model. 

Table 5. Pedroni Cointegration Test 

Modified Phillips-Perron t 4.124*** 0.000 

Phillips-Perron t 2.848*** 0.002 

Augmented Dickey-fuller t 3.015*** 0.001 

*** p<0.01, ** p<0.05, * p<0.10 

4.1.5 Smoothed (CCE) Instrumental Variable Quantile Estimation 

After performing the preliminary tests, the smoothed IV-QR estimation proposed by Kaplan and Sun 

(2017), and which we adjust to include cross-sectional averages is estimated as in Harding and 

Lamarche (2014) to obtain a static (CCE) IV-QR model. The CCE IV-QR approach utilizes cross-

sectional averages of the variables to capture the shared unobserved effects across cross-sectional 

units (Eibinger et al., 2024). The inclusion of cross-sectional averages, as a requirement for panel 

estimations based on a common correlated effects (CCE) approach allow for inferences that not 

only deal with cross-sectional dependence in panels but remains robust to variables with mixed 

orders of integration and cointegration (Kapetanios et al., 2011). The CCE approach can be utilized in 

panels with small sample sizes, providing robust and reliable inferences (Eibinger et al., 2024; 

Kapetanios et al., 2011).  We present robustness checks by comparing the results of Kaplan and Sun 

(2017) smoothed estimating equations (SEE), Chernozhukov and Hansen (2006) inverse quantile 

regression (IQR) estimator and results from instrumental variable two-stage least squares (2SLS) 

model to indicate reliability of our results. Full results for the quantiles are reported to provide a 

comprehensive representation of the heterogeneous effects of the independent variables across 

the energy transition distribution. We complement these results with visual presentations of the 

distribution while comparing results for the smooth estimating equations estimator and inverse 

quantile estimator (see appendix Fig. 4). 

Based on the empirical findings presented in Table 6, we observe that the smoothed estimating 

equations estimator displays variables exhibiting heterogeneity across quantiles. The results 

indicate a significantly strong negative relationship between lco2 and let across all quantiles of the 

energy transition distribution at 1% significance level. This relationship suggests that higher levels of 

CO2 emissions are associated with lower progress in energy transition, reflecting the detrimental 



impact of carbon-intensive economies on clean energy adoption. Notably, this effect fluctuates 

across the distribution from -1.710% at the 10th quantile to -1.450% at the 80th quantile. The effect 

declines from the 10th quantile to the 40th quantile and rises from the 50th to the 70th quantiles before 

declining sharply at the 80th quantile. Similarly, the estimated coefficient of lex indicates a consistent 

negatively significant association across the distribution (0.10 – 0.80). This relationship suggests that 

exchange rate fluctuations are associated with declining energy transition progress. The results 

demonstrate heterogeneity across the distribution, indicating that a 1% increase in the exchange rate 

leads to a 0.151% decline in energy transition at the 10th quantile, slightly rising at the 40th quantile, 

and declining through to the 80th quantile (0.079% respectively).  

With regards to the relationship between economic growth (lgdp) and energy transition (let), we 

find a significant negative effect across the distribution. This suggests that a 1% increase in GDP yields 

a 0.150% decrease in energy transition at the 10th quantile, and then declines slightly at the 40th 

quantile (-0.160%). The effect rises sharply to 0.191% decrease at the 50th quantile to the 70th quantile, 

and again slows down to 0.188% decrease at the 80th quantile. The relationship between population 

growth rate (lpop) and energy transition reflects a negative effect across the distribution, albeit the 

results exhibit statistical significance at the 80th quantile only. The results suggest that a 1% increase 

in lpop leads to a 0.184% decrease in energy transition among countries with lower energy transition 

levels (10th quantile). This negative effect increases to -0.100% at the 50th quantile, and sees a further 

rise to -0.240% in countries at advanced-energy transition levels (80th quantile). Furthermore, the 

results reflect a statistically insignificant effect between real oil prices and energy transition across 

the quantile distribution. Despite this, we find a modest but increasing positive effect throughout 

the distribution, indicating that a 1% rise in real oil price yields a 0.002% increase in energy transition 

in countries with lower energy transition levels and gradually increases to 0.030% in countries with 

high energy transition levels. For the relationship between inflation rate and energy transition, we 

find an insignificant but fluctuating effect across the lower end and extreme upper end of the 

distribution. At lower quantiles (10th quantile), the effect is negative (-0.019%), turns positive 

afterwards (0.009% at 20th quantile) and becomes negative (-0.014% at 30th quantile). Beyond the 

30th quantile, the effect turns positive, increasing through to the 70th quantile. However, at the 80th 

quantile, the effect turns negative (-0.048%). Likewise, the results reflect a statistically insignificant 

but modest positive effect between political stability and energy transition across the quantile 

distribution, increasing from 0.040% at the 10th quantile to 0.072% at the 80th quantile. Between 

ecological footprint and energy transition, we find a positively significant effect across the 

distribution, albeit this effect diminishes in countries with moderate and advanced-energy transition 

levels. This suggests that a 1% increase in ecological footprint yields a 0.665% increase in energy 

transition at the 10th quantile, 0.577% increase at the 50th quantile, and 0.299% increase at the 80th 

quantile.  

 

 

 

 

 

 



Table 6. Smoothed (CCE) IV-Quantile Regression Model 

                      SEE Estimator 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES q10 q20 q30 q40 q50 q60 q70 q80 

                  

lco2 -1.710*** -1.667*** -1.638*** -1.641*** -1.656*** -1.654*** -1.647*** -1.450*** 

 (0.099) (0.098) (0.063) (0.036) (0.038) (0.042) (0.116) (0.153) 

lex -0.151** -0.138** -0.133*** -0.135*** -0.110** -0.046 -0.089 -0.079** 

 (0.064) (0.054) (0.032) (0.032) (0.048) (0.039) (0.059) (0.038) 

lgdp -0.150* -0.167* -0.190*** -0.160*** -0.191** -0.229*** -0.233* -0.188* 

 (0.083) (0.090) (0.059) (0.062) (0.081) (0.077) (0.136) (0.105) 

lpop -0.184 -0.097 -0.093 -0.109 -0.100 -0.083 -0.200 -0.240** 

 (0.146) (0.140) (0.094) (0.085) (0.098) (0.082) (0.196) (0.119) 

lr_oil_px 0.002 0.004 0.004 0.003 0.003 0.007 0.015 0.030 

 (0.009) (0.016) (0.010) (0.011) (0.014) (0.016) (0.045) (0.030) 

linfl -0.019 0.009 -0.014 0.037 0.046 0.048 0.007 -0.048 

 (0.058) (0.071) (0.062) (0.061) (0.065) (0.063) (0.192) (0.139) 

leco_fp 0.665*** 0.636*** 0.642*** 0.589*** 0.577*** 0.560*** 0.493*** 0.229 

 (0.072) (0.077) (0.049) (0.061) (0.069) (0.065) (0.146) (0.166) 

lpol_stab 0.040 0.031 0.032 0.048 0.065 0.089 0.122 0.072 

 (0.145) (0.124) (0.086) (0.098) (0.100) (0.098) (0.115) (0.074) 

let_mean -0.052 0.157 0.306 0.396 0.449 0.452 0.734 0.315 

 (0.777) (0.754) (0.541) (0.594) (0.643) (0.631) (1.323) (0.631) 
lr_oil_px_ 
mean 0.032 0.057 0.047 0.067* 0.069 0.061 0.047 -0.017 

 (0.039) (0.041) (0.037) (0.040) (0.049) (0.052) (0.114) (0.056) 

linfl_mean 0.019 -0.104 -0.088 -0.251 -0.245 -0.219 -0.084 0.172 

 (0.171) (0.222) (0.236) (0.248) (0.273) (0.289) (0.399) (0.271) 
lpol_stab_ 
mean 0.144 0.152 0.095 0.123 0.031 -0.144 -0.171 -0.321 

 (0.166) (0.204) (0.186) (0.225) (0.297) (0.322) (0.577) (0.340) 

Constant 
-
13.683*** -12.745*** -12.256*** 

-
10.837*** -10.382*** -9.935*** -7.669* -3.176 

 (1.274) (1.406) (1.431) (1.597) (2.002) (2.091) (4.006) (3.055) 

         

Obs 240 240 240 240 240 240 240 240 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.10 

From the IQR estimator in Table 9, we check the robustness of our SEE estimator and observe that 

overall, the IQR estimator displays similar effects to the SEE estimator, however, there is differences 

in coefficient values of the variables. This underlying difference is because both estimators 

approximate the original moment condition in different ways. The latter (SEE) uses kernel approach 

to approximate the original estimation equation. For the relationship between lco2 and let, the 

results indicate a significantly strong negative relationship across all quantiles of the energy 

transition distribution at 1% significance level. This relationship suggests that higher levels of CO2 



emissions are associated with lower progress in energy transition, reflecting the detrimental impact 

of carbon-intensive economies on clean energy adoption. Notably, this effect fluctuates across the 

distribution from -1.703% at the 10th quantile, declines at the 20th quantile, rises at the 30th and 40th 

quantiles and declines to -1.637% at the 50th quantile. It then rises at the 60th quantile and falls at the 

70th quantile through to the 80th quantile (-1.461%). This means that for countries at lower-and-mid-

transitions, the results indicate a mixed effect of CO2 emissions. Subsequently, the percent decline 

in CO2 emissions at the higher quantiles shows that the effect of CO2 emissions is minimal in 

countries at advanced stages of the energy transition. Similarly, the estimated coefficient of lex 

indicates a fluctuation in the magnitude of the negative effect across the distribution (0.10 – 0.80). 

While this relationship suggests that exchange rate fluctuations are associated with declining 

energy transition progress, there is heterogeneity in the specific effects across the distribution.  

With regards to the relationship between economic growth (lgdp) and energy transition (let), we 

find a significant negative effect across the distribution. This suggests that a 1% increase in GDP yields 

a 0.132% decrease in energy transition at the 10th quantile, and then declines to 0.168% and 0.164% at 

the 40th and 50th quantiles. The effect, then rises again through to 0.229% decrease at the 80th 

quantile. The relationship between population growth rate (lpop) and energy transition reflects a 

negative effect across the distribution, albeit the results exhibit statistical significance at the 80th 

quantile only. This means that a 1% increase in lpop leads to a 0.186% decrease in energy transition 

among countries with lower energy transition levels (10th quantile). This negative effect decreases 

initially across the 20th and 30th quantiles, and increases from the 40th and 50th quantiles. The effect 

declines at the 60th quantile and sees a further rise to -0.181% in countries at advanced-energy 

transition levels (80th quantile). Between ecological footprint and energy transition, we find a 

positively significant effect across the distribution, albeit this effect diminishes in countries with 

moderate to advanced-energy transition levels. This suggests that a 1% increase in ecological 

footprint yields a 0.687% increase in energy transition at the 10th quantile, 0.528% increase at the 50th 

quantile, and 0.220% increase at the 80th quantile.  

In addition, as a robustness check, the IV two-stage least squares regression model in Table 9 yields 

similar results to the smoothed (CCE) IV-QR model at the median (50th quantile). The findings 

indicate a strong negative relationship between carbon dioxide emissions (lc02) and energy 

transition. Specifically, a 1% increase in lco2 results in a 1.672% decline in energy transition. We find a 

significant negative association between exchange rate and energy transition at 1% significance 

level. This suggests that a 1% increase in the exchange rate leads to an approximate 0.105% decrease 

in energy transition. The results indicate a strong negative effect of population growth on energy 

transition, with a 1% increase in population growth resulting in a 0.145% decrease in energy transition. 

Intuitively, a rising population signifies an increasing demand for energy sources. Additionally, the 

findings reveal a negative effect of economic growth (-0.210%) on energy transition, a -0.034% effect 

of inflation rate on energy transition and a 0.008% effect of real oil price on energy transition. 

Regarding ecological footprint, the results indicate that a 1% increase in ecological footprint 

corresponds to a 0.544% increase in the energy transition. 

From Appendix Table 12, the post-estimation test of endogenous effects displays four hypotheses 

being tested. For the test of the null hypothesis of no effect, the Kolmogorov-Smirnoff statistic is 

48.331 which is greater than the critical value of 2.47. Thus, at a 95% confidence level, we reject the 

null hypothesis and conclude that the specified endogenous variable (lco2) has some effect on 

energy transition. For the test of the null hypothesis of constant effect, the Kolmogorov-Smirnoff 



statistic is 2.293 which is greater than the critical value of 2.245. Thus, we reject the null hypothesis 

at a 95% confidence level and conclude that the effects of CO2 emissions on energy transition varies 

across the estimated quantiles. Regarding the test of the null hypothesis of dominance, the statistic 

of 26.495 is greater than 2.259. Hence, we reject the null hypothesis and conclude that the effects 

of CO2 emissions are not strictly positive across the estimated quantiles. For the test of the null 

hypothesis of exogeneity, the Kolmogorov-Smirnoff statistic is 3.319 which is greater than the critical 

value of 2.187. Thus, we reject the null hypothesis and conclude that lco2 is endogenous. 

From Appendix Table 13, the post-estimation results of the Pesaran cross-sectional dependence test 

justifies the inclusion of cross-sectional averages in our model as the CD-statistic (-0.775) displays an 

insignificant result with a p-value of 0.4387 which is greater than 1% significance level. We reject the 

null hypothesis of strong cross-sectional dependence within our model. Cross-sectional averages 

were included to address potential unobserved common factors that could introduce bias. Although 

the averages (let_mean, lr_oil_px_mean, linfl_mean, and lpol_stab_mean) were statistically 

insignificant, we retained them for the robustness of our results. 

4.1.6 Robustness Checks 

Table 7.  Instrumental Variable Quantile Regression (IQR Estimator) 

      IQR Estimator 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES q10 q20 q30 q40 q50 q60 q70 q80 

                  

lco2 -1.703*** -1.625*** -1.636*** -1.646*** -1.637*** -1.655*** -1.629*** -1.461*** 

 (0.089) (0.074) (0.065) (0.034) (0.036) (0.042) (0.071) (0.175) 

lex -0.172*** -0.143*** -0.132*** -0.140*** -0.111** -0.038 -0.032 -0.059* 

 (0.055) (0.036) (0.033) (0.032) (0.050) (0.041) (0.035) (0.034) 

lgdp -0.132** -0.189*** -0.222*** -0.168*** -0.164* -0.251*** -0.252** -0.229 

 (0.061) (0.054) (0.053) (0.061) (0.085) (0.078) (0.108) (0.147) 

lpop -0.186 -0.075 -0.060 -0.104 -0.133 -0.077 -0.119 -0.181* 

 (0.119) (0.103) (0.097) (0.086) (0.115) (0.078) (0.101) (0.107) 

lr_oil_px -0.002 -0.000 0.004 -0.003 0.001 -0.000 0.013 0.020 

 (0.008) (0.009) (0.010) (0.011) (0.013) (0.015) (0.023) (0.024) 

linfl 0.005 -0.014 -0.035 0.048 0.076 0.040 0.065 -0.008 

 (0.053) (0.068) (0.060) (0.057) (0.062) (0.061) (0.093) (0.142) 

leco_fp 0.687*** 0.700*** 0.681*** 0.571*** 0.528*** 0.560*** 0.470*** 0.220 

 (0.056) (0.045) (0.046) (0.061) (0.082) (0.066) (0.104) (0.191) 

lpol_stab 0.063 0.041 0.030 0.055 0.083 0.097 0.097 0.084 

 (0.118) (0.098) (0.087) (0.098) (0.133) (0.105) (0.106) (0.096) 

let_mean 0.022 0.095 0.193 0.322 0.174 0.460 0.435 0.336 

 (0.660) (0.517) (0.530) (0.560) (0.645) (0.614) (0.573) (0.575) 
lr_oil_px_
mean 0.019 0.016 0.034 0.079** 0.053 0.081* 0.018 -0.017 

 (0.033) (0.032) (0.035) (0.039) (0.055) (0.049) (0.067) (0.055) 

linfl_mean -0.001 -0.009 -0.051 -0.244 -0.208 -0.165 0.034 0.253 

 (0.160) (0.208) (0.229) (0.238) (0.278) (0.291) (0.279) (0.290) 
lpol_stab_
mean 0.055 0.098 0.068 0.139 0.038 -0.046 -0.363 -0.237 



 (0.147) (0.187) (0.189) (0.223) (0.272) (0.305) (0.398) (0.310) 

Constant -13.698*** -13.780*** -13.153*** -10.674*** -9.962*** -10.166*** -8.079*** -3.171 

 (1.155) (1.295) (1.424) (1.557) (2.097) (1.991) (2.627) (3.544) 

         

Obs 240 240 240 240 240 240 240 240 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.10 

Table 8. Instrumental Variable 2 Stage Least Squares Estimation 

Instrumental Variable (2SLS) Estimation Results  

   Robust     

let Coefficient   std. err. z P>z 
[95% 
conf. interval] 

       

lco2 -1.671*** 0.032 -51.490 0.000 -1.735 -1.608 

lex -0.105*** 0.024 -4.290 0.000 -0.153 -0.057 

lgdp -0.210*** 0.052 -4.020 0.000 -0.313 -0.108 

Lpop -0.192*** 0.069 -2.800 0.005 -0.326 -0.057 

lr_oil_px 0.008 0.016 0.520 0.605 -0.023 0.039 

linfl -0.034 0.056 -0.610 0.545 -0.144 0.076 

leco_fp 0.545*** 0.043 12.540 0.000 0.459 0.630 

lpol_stab 0.082 0.064 1.280 0.199 -0.043 0.207 

let_mean 0.641 0.485 1.320 0.186 -0.309 1.592 

lr_oil_px_mean 0.065 0.042 1.540 0.124 -0.018 0.147 

linfl_mean -0.019 0.215 -0.090 0.930 -0.441 0.403 

lpol_stab_mean 0.005 0.204 0.020 0.981 -0.395 0.405 

_cons -9.441*** 1.456 -6.480 0.000 -12.295 -6.587 

 *** p<0.01, ** p<0.05, * p<0.10 

4.1.6 Discussion 

CO2 emissions and energy transition: The results indicate a consistently significant negative 

relationship between CO2 emissions (lco2) and energy transition (let). This highlights the role of 

carbon emissions as a deterrent to progress in energy transition. The varying effect across 

quantiles—ranging from -1.710% at the 10th quantile to -1.450% at the 80th quantile, with marginal 

increases from -1.641% at the 40th quantile to -1.656% at the 50th quantile—indicates that the impact 

of CO2 emissions is not uniform across the distribution of energy transition progress. The negative 

relationship suggests that higher carbon emissions are associated with lower levels of energy 

transition progress. However, the observed amplification and subsequent marginal rise across 

quantiles imply that the marginal effect of CO2 emissions differs depending on a country's energy 

transition status. At lower quantiles (10th quantile), countries at the early stages of energy transition 

face significant challenges in reducing carbon emissions, as their energy systems are heavily reliant 

on fossil fuels.  

This is consistent with the results of Lau et al. (2023), Taghizadeh-Hesary and Rasoulinezhad (2020), 

and Zambrano-Monserrate (2024), who find that countries with high carbon emissions typically 

exhibit slower adoption of renewable energy technologies due to structural reliance on carbon-

intensive infrastructure. The marginal rise in the negative effect between the 40th and 50th 



quantiles may indicate that, mid-transition countries after sometime experience difficulties in 

reducing carbon emissions due to technological, institutional, or financial constraints. This aligns 

with Grubert and Hastings‐Simon (2022), who posit that mid-transition countries experience 

bottlenecks, such as the cost of replacing fossil-fuel-based infrastructure and limited public support 

for transition policies. At higher quantiles (80th quantile), the declining negative effect suggests 

that countries with advanced energy transition programs may have decoupled CO2 emissions from 

economic activity through greater reliance on renewables and energy efficiency measures. This 

finding diverges from Friedrichs and Inderwildi (2013), who argue that even high-transition countries 

struggle to mitigate carbon emissions entirely due to economic and industrial pressures. The 

observed fluctuation in the 40th and 50th quantiles may reflect heterogeneity in institutional capacity 

or policy implementation across countries.  

The results have critical implications for policymakers aiming to accelerate energy transition while 

addressing carbon emissions. Low-transition countries require international assistance in the form 

of technology transfers, green financing, and capacity-building programs to overcome structural 

reliance on fossil fuels. Policies must focus on reducing CO2 emissions while promoting affordable 

and accessible renewable energy options. The Paris Agreement provides a framework for 

encouraging such efforts through nationally determined contributions (NDCs). High-transition 

countries must prioritize policies that address residual CO2 emissions, such as carbon capture and 

storage (CCS) and advanced energy efficiency measures.  

Exchange rate and energy transition: The results reveal a significant negative relationship between 

the exchange rate (lex) and energy transition (let). This effect declines in magnitude as we move up 

the quantile distribution, from -0.151% at the 10th quantile to -0.079% at the 80th quantile. However, 

there are fluctuations at the 40th quantile and 70th quantiles, though the effects of these marginal 

increases are greater at the lower quantile than at the higher quantile. Overall, the diminishing 

negative impact suggests that the role of exchange rate fluctuations is more pronounced in 

countries at the lower stages of energy transition compared to those at higher stages. At lower 

quantiles (10th Quantile), the exchange rate has a stronger negative impact in countries with low 

levels of energy transition. This is likely because countries at early stages of energy transition often 

rely on imports of renewable energy technology, infrastructure, and expertise, making them more 

vulnerable to exchange rate volatility. A depreciation of the domestic currency increases the cost of 

importing these critical inputs, slowing the energy transition process. 

This finding aligns with Yazdanie et al. (2024) who emphasize that exchange rate fluctuations 

significantly affect the scale and timing of renewable energy investments in developing economies 

due to high import dependency. At higher quantiles (80th Quantile), the negative impact of 

exchange rate fluctuations declines in countries more advanced in energy transition levels. These 

countries often have a stronger domestic renewable energy industry or have diversified their energy 

mix, reducing their reliance on imported technology. The marginal rise at the 70th quantile may 

indicate that advanced countries may also face negative repercussions of exchange rate 

fluctuations. The findings align with Hong et al. (2024), who find that exchange rate effects remain 

significant even in advanced economies. Meanwhile the declining effect at the 80th quantile may 

suggest that structural factors, such as energy self-sufficiency and economic resilience, may mitigate 

this vulnerability. Cherni and Jouini (2017) posit that currency depreciation adversely affects 

renewable energy investments in emerging economies, a finding that supports the stronger impact 

at lower quantiles in this study. Similarly, Li et al. (2023) note that volatile exchange rates deter long-



term renewable energy infrastructure projects due to increased costs and uncertainty. However, 

the diminishing effect at higher quantiles (80th quantile) observed here contrasts with Deka et al. 

(2023), who argue that exchange rate volatility can have persistent negative effects across all stages 

of renewable energy development. This difference could be attributed to the inclusion of cross-

sectional dependence adjustments in this study, which account for structural factors that mitigate 

exchange rate sensitivity.  

The results underscore the need for exchange rate stabilization and support mechanisms to 

facilitate energy transition. For low-transition countries (lower quantiles), policies aimed at 

stabilizing exchange rates, such as targeted monetary interventions or hedging mechanisms, can 

reduce the cost of renewable energy imports. International financial support, such as concessional 

loans or grants, could shield developing countries from exchange rate risks when procuring 

renewable energy technology. On the other hand, advanced-transition countries (higher quantiles) 

should focus on fostering domestic renewable energy industries to reduce reliance on imports, 

thereby insulating themselves from exchange rate fluctuations. For instance, countries like Germany 

and Denmark, which lead in renewable energy adoption, have robust local industries producing 

renewable energy technologies, reducing their exposure to currency volatility. 

GDP and energy transition: The results demonstrate a negative relationship between GDP and 

energy transition across all quantiles, suggesting that higher levels of GDP are associated with 

slower rates of energy transition. This finding may be reflective of structural challenges in high-GDP 

economies, where significant reliance on fossil fuels has created institutional and infrastructural 

inertia. This aligns with York and McGee (2017) study which argue that economically advanced 

countries face barriers in achieving energy transitions due to their embedded dependence on 

carbon-intensive energy systems. However, the findings contrast with research on low-income 

countries, such as Bhattacharya et al. (2016), which shows that rising GDP in developing countries 

supports energy transition by enabling investments in renewable energy technologies. The growing 

magnitude of the negative effect—from -0.150% at the 10th quantile to -0.229% at the 60th 

quantile—indicates that this relationship strengthens as energy transition levels increase. At lower 

levels of energy transition, the weaker negative relationship suggests that GDP has a less restrictive 

effect, potentially because low-transition countries are at earlier stages of adopting renewable 

energy, where initial efforts are relatively straightforward and less costly.  

This pattern aligns with Fowlie and Meeks (2021), who find that low-transition countries benefit from 

low-hanging fruit opportunities such as improving energy efficiency or utilizing small-scale 

renewable projects. As countries progress toward higher levels of energy transition, the negative 

effect of GDP intensifies. This may reflect that high-GDP countries with advanced infrastructure rely 

heavily on fossil fuels, making transitions increasingly complex as more ambitious goals are pursued. 

Additionally, initial renewable energy investments (e.g., solar and wind) are relatively inexpensive, 

but scaling up to cover larger portions of energy demand becomes progressively harder. This finding 

corresponds to Jenkins et al. (2018), who highlight the challenges of decarbonizing high-income 

economies due to structural barriers.  

This result may reflect possible trade-offs in policy and economic priorities where economies with 

higher GDP typically have higher energy demand, making it harder to meet this demand solely with 

renewable energy sources. High-GDP countries often prioritize maintaining economic growth, which 

may temporarily conflict with energy transition goals. This is in line with Grossman and Krueger's 

(1995) growth-environment dilemma. However, as countries approach advanced stages (70th and 



80th quantile) of the transition we see declines in GDP effect on energy transition. This is in line with 

Sadorsky (2009), who suggests that high-GDP economies can accelerate energy transition by 

leveraging greater financial capacity to fund advanced green technologies. The results may also 

reflect the economies of scale that advanced economies may enjoy in reaching higher levels of 

energy transition which can help them have some respite from the negative effect of increasing GDP 

growth on the transition. Policymakers in advanced economies need to address entrenched barriers 

by incentivizing innovation through providing subsidies for green technologies that address large-

scale energy needs. Countries should reform policies to align economic growth strategies with 

energy transition goals. International cooperation to share best practices and technologies may help 

high-GDP countries overcome barriers to transition. For instance, Peters et al. (2020) argue that 

collaborative renewable energy projects in developed countries can accelerate the global transition. 

Population growth and energy transition: The results indicate a consistent negative relationship 

between population (lpop) and energy transition (let). This suggests that population growth or 

density is negatively associated with progress toward energy transition. A larger population often 

increases energy demand, particularly in developing economies where traditional energy sources 

(e.g., coal, oil) dominate. This dependence creates pressure on governments to prioritize meeting 

energy needs over transitioning to renewable sources, consistent with the energy access vs. energy 

sustainability trade-off discussed by Smil (2017). This finding aligns with Taghizadeh-Hesary and 

Rasoulinezhad (2020), who argue that higher population growth increases reliance on non-

renewable energy, especially in economies that lack adequate investment in renewable 

infrastructure. Similarly, York et al. (2003) emphasize that larger populations are often associated 

with higher CO2 emissions, which correlates with delayed energy transition. The effect of lpop on 

let shows significant heterogeneity across the energy transition distribution. At lower quantiles 

(10th quantile), the negative effect of population is strongest (-0.184%) at the lower end of the 

energy transition spectrum. This suggests that in countries with low levels of energy transition, 

population growth is a significant barrier to progress. These countries often have limited financial 

resources to invest in renewable energy and a greater dependence on traditional energy sources to 

meet basic energy needs.  

These results are consistent with Hanif et al. (2019), who note that population growth in developing 

economies exacerbates delays in energy transitions due to competing priorities such as energy 

access and poverty reduction. However, this effect eases from the 20th quantile and picks up again 

only at the 40th quantile (-0.109%) and falls to -100% and -0.083% at the 50th and 60th quantiles, 

indicating that in countries with moderate levels of energy transition, the population’s impact on 

energy transition is mixed. These countries are likely benefiting from investments in renewable 

energy technologies which help reduce the energy burden from population growth and enhanced 

policies for energy efficiency in populous regions. This partly aligns with Jones et al. (2015), who 

found that even middle-income countries with moderate energy transitions still face population-

related constraints due to urbanization-driven energy demands. Likewise, the findings diverge from 

the studies of Akintande et al. (2020) as well as Owjimehr and Samadi (2022), who identified a 

positive association between population size and renewable energy consumption. At higher 

quantiles (70th and 80th quantiles), the negative relationship strengthens again (-0.200% and -0.220% 

respectively), reflecting renewed challenges for high-transition countries. These challenges may 

include overburdened Infrastructure and diminishing returns. This pattern mirrors results from York 

and Rosa (2003) study, which showed that larger populations place disproportionate pressure on 

environmental systems, even in countries with advanced green energy policies. The findings reveal 



a non-linear relationship between population and energy transition, with the strongest negative 

effects observed at the tails of the energy transition distribution. This reflects the dual nature of 

population as both a driver of energy demand and a constraint on renewable energy deployment. 

At lower quantiles, countries with low energy transition levels are caught in a cycle of high 

population growth, increasing energy demand, and insufficient investment in renewables. At higher 

quantiles, population pressures in high-transition countries reflect the limits of existing 

infrastructure to meet large-scale demand sustainably.  

The results suggest that population dynamics play a critical role in shaping energy transition 

outcomes, necessitating tailored policy approaches. For low-transition countries, policies should 

prioritize balancing energy access with investments in renewables to ensure population growth 

does not exacerbate dependence on fossil fuels. Studies like Liddle and Lung (2010) recommend 

expanding distributed renewable energy systems (e.g., solar home systems) in rural and rapidly 

growing regions. For high-transition countries, Investments in advanced grid systems and large-

scale renewable installations are essential to meet the demands of large populations. Additionally, 

Peters et al. (2020) highlights that encouraging sustainable consumption patterns can help mitigate 

the strain of population growth. 

Ecological footprint and energy transition: The results indicate a consistently significant positive 

relationship between ecological footprint (leco_fp) and energy transition (let). This suggests that 

countries with a higher ecological footprint are more likely to engage in energy transition. However, 

the declining effect across quantiles—from 0.665% at the 10th quantile to 0.229% at the 80th 

quantile—indicates that the marginal impact of ecological footprint on energy transition weakens 

as countries achieve higher levels of energy transition. For countries with low energy transition 

levels, a high ecological footprint could serve as a wake-up call, motivating policy actions and public 

demand for transitioning to renewable energy. For countries already progressing in energy 

transition, the diminishing effect might reflect diminishing returns or saturation, where additional 

pressure from ecological footprint has a smaller impact due to established energy transition 

systems. The declining effect across quantiles may reflect different country-specific dynamics, such 

as levels of economic development, institutional capacity, or public awareness. A high ecological 

footprint is often associated with excessive resource exploitation and environmental degradation, 

which can drive policy reforms to promote clean energy. Countries in this group may also face 

international pressure, such as climate agreements or trade penalties linked to environmental 

performance, motivating stronger action.  

This result aligns with York and Rosa (2003), who find that countries with larger ecological footprints 

tend to adopt more stringent environmental policies in response to higher environmental stress. On 

the other hand, high-transition countries (80th Quantile) which have advanced energy transition 

programs in place may already have implemented robust policies that address the ecological 

footprint, leaving limited room for additional impact. The declining effect may also indicate that 

energy transition becomes more complex or costly at higher levels, as countries approach 

technological or policy frontiers. This finding differs from Knight and Schor (2014), who demonstrate 

that the ecological footprint consistently motivates sustainable development across all stages of 

transition. The observed decline in the marginal effect may indicate heterogeneity in institutional 

readiness or resource constraints.  

Policymakers in these countries should leverage the environmental urgency reflected by a high 

ecological footprint to prioritize investments in renewable energy infrastructure and incentives. 



International collaborations, such as technology transfer agreements, can further enhance the 

effectiveness of such initiatives. For countries at advanced stages of energy transition, marginal 

gains may require breakthroughs in storage technologies, smart grids, and energy efficiency 

improvements, which go beyond conventional renewable adoption. Wiedmann et al. (2020) 

emphasize the need for high-transition countries to adopt a systemic approach to energy transition, 

focusing on long-term sustainability beyond just reducing ecological footprint. 

Inflation and energy transition: The results reveal a heterogenous but insignificant relationship 

between inflation (linfl) and energy transition (let). This reflects a negative relationship at 10th 

quantile (-0.019%) and then turns positive at the 20th quantile (0.009%) and thereafter turns negative 

at 30th quantile (-0.014%). Subsequently, from the 40th to the 70th quantile, the results remain 

positive until the 80th quantile where it turns negative (-0.048%). With negative effects at lower and 

upper quantiles and positive effects at intermediate quantiles, the results reflect the dynamic nature 

of inflation's impact, contingent upon the stage of energy transition development. At the 10th 

quantile, the negative relationship may stem from inflation-induced investment constraints in 

countries with low energy transition levels. In contrast, the positive effects observed between the 

20th and 70th quantiles suggest that moderate inflation may stimulate energy transition through 

enhanced liquidity and reduced real interest rates. However, the return to a negative relationship at 

the 80th quantile indicates that inflation may hinder further progress in countries with advanced 

energy transition levels, potentially due to rising maintenance costs or crowding out of green 

investments.  

These findings align with studies highlighting the dual role of inflation in energy transition. Sadorsky 

(2010) emphasize the negative effects of inflation on energy investments, particularly in low-

transition countries. Similarly, Omri et al. (2015) along with Ibrahim and Law (2016) demonstrate that 

inflation's impact is heterogeneous, depending on institutional quality and economic structure. The 

positive effects observed at intermediate quantiles are consistent with Baek (2016) coupled with 

that of Bildirici and Kayıkçı (2013), who argue that mild inflation can promote green investments 

under conducive macroeconomic conditions. These findings underscore the importance of tailored 

inflation management policies to support energy transition. For low-transition countries, stabilizing 

inflation is critical to fostering green investments. In contrast, intermediate-transition countries may 

benefit from leveraging mild inflation, while advanced-transition countries should prioritize 

controlling inflation to sustain progress 

 

 

 

 

 

 

 

 



5.0 Conclusion   

Energy transition has become a pressing issue in recent years.  The current study presents a 

comprehensive and nuanced investigation into the factors driving energy transition. The study 

makes valuable contributions to the sustainable energy transition literature and enhances our 

understanding of the complex nature of the energy transition dynamics of the expanding BRICS 

bloc.  Utilizing annual data from 1996 to 2019, the study analyzes the energy transition dynamics of 

the 10 full members of BRICS. The study employs the smoothed (CCE) IV-QR regression framework 

to empirically examine the heterogeneous relationships between energy transition and key 

macroeconomic, environmental, and governance variables. We uncover significant insights that 

contribute to the broader understanding of factors influencing sustainable energy transitions.  

Our findings highlight the multifaceted role of economic, environmental, and structural factors. For 

instance, the negative relationship between CO₂ emissions and energy transition, which fluctuates 

across the distribution, underscores the heterogeneity in the impact of CO₂ emissions on energy 

transition. Similarly, the heterogeneous impact of inflation and GDP on energy transition reflects the 

varying capacities of countries at different stages of transition to respond to macroeconomic 

challenges. While inflation adversely affects low-transition countries, moderate inflation appears to 

stimulate progress in intermediate-transition economies, aligning with prior evidence on the 

liquidity-enhancing effects of controlled inflation. Similarly, the positive but declining impact of 

ecological footprint suggests that environmental pressures initially drive energy transition efforts 

but become less pronounced as countries achieve higher levels of transition. Our methodological 

approach accounts for cross-sectional dependence and unobserved heterogeneity, ensuring robust 

and reliable results. By incorporating cross-sectional averages and addressing potential endogeneity 

through appropriate instruments, such as fossil fuel reserves and temperature anomalies, we 

provide an empirically grounded framework that aligns with the realities of interconnected global 

energy systems. Robustness checks from the inverse quantile regression framework and IV two-

stage least squares model further validate the robustness of our findings. Sensitivity analyses for 

the reduced data also confirms the appropriateness of the interpolated data and methodological 

adjustments. 

The policy implications of this research are profound. Governments and international organizations 

must prioritize tailored interventions that consider the stage-specific challenges of energy 

transition. Policies aimed at reducing CO₂ emissions, stabilizing inflation, and leveraging moderate 

energy pricing are critical for fostering sustainable energy systems. Additionally, targeted support 

for low-transition countries is essential to overcome structural barriers and accelerate their progress 

toward clean energy adoption. This study contributes to the growing body of literature on energy 

transition by offering a granular understanding of the drivers and barriers across the distribution of 

energy transition levels. By situating our findings within existing research, we reconcile varying 

perspectives and provide actionable insights for policymakers and researchers. Future research 

could extend this framework by exploring the role of emerging technologies, geopolitical dynamics, 

and global energy markets in shaping the trajectory of energy transitions. With regards to 

methodological rigor, novel methodological approaches such as the dynamic (CCE) IV-QR 

framework can be explored to compare and expand the findings of this study. Furthermore, a 

comparison between the BRICS+ bloc and other developed economic blocs such as the EU would 

add valuable contributions to the literature. 



In conclusion, our findings emphasize the complex interplay of economic, environmental, and 

institutional factors in driving energy transitions, highlighting the need for coordinated, context-

specific strategies to achieve global sustainability goals. These insights serve as a foundation for 

advancing both academic discourse and practical policymaking in the critical quest for a sustainable 

energy future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices  

Table 9. Smooth (CCE) IV-QR Model with reduced data (non-interpolated data) 

 Smooth Estimator IQR Estimator 

  (1) (2) (3) (4) (5) (6) 

VARIABLES q20 q50 q80 q20 q50 q80 

              

lco2 -1.607*** -1.639*** -1.499*** -1.599*** -1.638*** -1.423*** 

 (0.064) (0.043) (0.204) (0.069) (0.046) (0.172) 

lex -0.136*** -0.134*** -0.079* -0.147*** -0.128*** -0.080** 

 (0.031) (0.037) (0.042) (0.032) (0.039) (0.040) 

lgdp -0.226*** -0.218*** -0.278** -0.221*** -0.217** -0.202 

 (0.055) (0.083) (0.140) (0.052) (0.087) (0.131) 

lpop -0.012 -0.059 -0.126 -0.006 -0.091 -0.139 

 (0.104) (0.113) (0.138) (0.100) (0.117) (0.126) 

lr_oil_px 0.007 0.019 0.037 0.004 0.013 0.035 

 (0.011) (0.015) (0.033) (0.011) (0.016) (0.031) 

linfl -0.037 -0.019 -0.287 0.004 0.008 -0.270 

 (0.073) (0.071) (0.209) (0.093) (0.070) (0.209) 

leco_fp 0.690*** 0.580*** 0.246 0.728*** 0.572*** 0.160 

 (0.048) (0.100) (0.201) (0.049) (0.104) (0.163) 

lpol_stab 0.073 0.155 0.057 0.063 0.155 0.023 

 (0.137) (0.224) (0.062) (0.134) (0.227) (0.044) 

let_mean 0.254 0.235 0.463 0.140 0.119 0.377 

 (0.246) (0.404) (0.484) (0.247) (0.398) (0.441) 

lr_oil_px_mean 0.040 0.032 -0.001 0.019 0.013 -0.001 

 (0.041) (0.061) (0.070) (0.040) (0.063) (0.064) 

linfl_mean -0.138 0.006 0.297 -0.110 0.136 0.255 

 (0.248) (0.379) (0.348) (0.244) (0.395) (0.290) 

lpol_stab_mean 0.071 -0.137 -0.329 0.052 -0.275 -0.174 

 (0.209) (0.337) (0.395) (0.226) (0.353) (0.347) 

Constant -13.286*** -10.939*** -3.068 -14.131*** -11.044*** -1.651 

 (1.061) (2.408) (3.441) (1.095) (2.591) (2.844) 

       

Observations 193 193 193 193 193 193 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.10 

Note: intermediate quantiles are omitted as they show similar trends  

 

 

 

 

 



Table 10. Pesaran’s CD-Test for Cross-sectional Dependence 

Variable CD-test 
p-

value 
average 
joint T mean ρ mean abs(ρ) 

      

residual 7.718*** 0.000 24.000 0.230 0.560 

***p<0.01, **p<0.05, *p<0.10 

Table 11. Tests for Cointegration 

 Statistic P-value 

Kao test   

Modified Dickey-Fuller t 5.148*** 0.000 

Dickey-Fuller t 9.939*** 0.000 

Augmented Dickey-Fuller t 5.495*** 0.000 

Unadjusted modified Dickey-Fuller t 6.615*** 0.000 

Unadjusted Dickey-Fuller t 8.325*** 0.000 

Westerlund test   

Variance ratio 2.176*** 0.015 

***p<0.01, **p<0.05, *p<0.10 

Fig. 4 Coefficient plot for endogenous variable (lco2) 

 

 

 

 



Table 12. Tests for endogenous effects 

Null hypothesis KS-Statistic 95% critical values 

No effect 48.331 2.470 
Constant 
effect 2.293 2.245 

Dominance 26.495 2.259 

Exogeneity 3.319 2.817 

Note: If the KS statistic < critical value, there is 

insufficient evidence to reject the null 

hypothesis. (KS = Kolmogorov–Smirnov) 

 

Table 13. Post-Estimation Pesaran’s CD Test 

Variable CD-test p-value 
average 
joint T mean ρ 

mean 
abs(ρ) 

      

Res -0.775 0.438 24.00 -0.02 0.29 

***p<0.01, **p<0.05, *p<0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

Ackah, I., & Kizys, R. (2015). Green growth in oil producing African countries: A panel data analysis 

of renewable energy demand. Renewable and Sustainable Energy Reviews, 50, 1157–1166. 

https://doi.org/10.1016/j.rser.2015.05.030 

Adebayo, T. S., Saeed Meo, M., & Özkan, O. (2024). Scrutinizing the impact of energy transition on 

GHG emissions in G7 countries via a novel green quality of energy mix index. Renewable 

Energy, 226, 120384. https://doi.org/10.1016/j.renene.2024.120384 

Afshan, S., Ozturk, I., & Yaqoob, T. (2022). Facilitating renewable energy transition, ecological 

innovations and stringent environmental policies to improve ecological sustainability: 

Evidence from MM-QR method. Renewable Energy, 196, 151–160. 

https://doi.org/10.1016/j.renene.2022.06.125 

Akarsu, G., & Gümüşoğlu, N. K. (2019). What are the Main Determinants of Renewable Energy 

Consumption? A Panel Threshold Regression Approach. Anadolu Üniversitesi Sosyal Bilimler 

Dergisi, 19(2), Article 2. https://doi.org/10.18037/ausbd.566663 

Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F., & Olanrewaju, B. T. (2020). Modeling the 

determinants of renewable energy consumption: Evidence from the five most populous 

nations in Africa. Energy, 206, 117992. https://doi.org/10.1016/j.energy.2020.117992 

Alola, A. A., Özkan, O., & Usman, O. (2023). Examining crude oil price outlook amidst substitute 

energy price and household energy expenditure in the USA: A novel nonparametric 

multivariate QQR approach. Energy Economics, 120, 106613. 

https://doi.org/10.1016/j.eneco.2023.106613 

Baek, J. (2016). A new look at the FDI–income–energy–environment nexus: Dynamic panel data 

analysis of ASEAN. Energy Policy, 91, 22–27. https://doi.org/10.1016/j.enpol.2015.12.045 



Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable 

energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 

162, 733–741. https://doi.org/10.1016/j.apenergy.2015.10.104 

Bildirici, M. E., & Kayıkçı, F. (2013). Effects of oil production on economic growth in Eurasian 

countries: Panel ARDL approach. Energy, 49(C), 156–161. 

Breusch, T. S., & Pagan, A. (1980). The Lagrange Multiplier Test and its Applications to Model 

Specification in Econometrics. The Review of Economic Studies, 47(1), 239–253. 

Burke, M., Hsiang, S. M., & Miguel, E. (2015). Climate and Conflict. Annual Review of Economics, 7(1), 

577–617. https://doi.org/10.1146/annurev-economics-080614-115430 

Canay, I. A. (2011). A simple approach to quantile regression for panel data. The Econometrics 

Journal, 14(3), 368–386. https://doi.org/10.1111/j.1368-423X.2011.00349.x 

Chen, C., Pinar, M., & Stengos, T. (2020). Renewable energy consumption and economic growth 

nexus: Evidence from a threshold model. Energy Policy, 139, 111295. 

https://doi.org/10.1016/j.enpol.2020.111295 

Cherni, A., & Jouini, S. E. (2017). An ARDL approach to the CO2 emissions, renewable energy and 

economic growth nexus: Tunisian evidence. International Journal of Hydrogen Energy, 

42(48), 29056–29066. https://doi.org/10.1016/j.ijhydene.2017.08.072 

Chernozhukov, V., & Hansen, C. (2006). Instrumental quantile regression inference for structural 

and treatment effect models. Journal of Econometrics, 132(2), 491–525. 

https://doi.org/10.1016/j.jeconom.2005.02.009 

Damette, O., & Marques, A. C. (2019). Renewable energy drivers: A panel cointegration approach. 

Applied Economics, 51(26), 2793–2806. https://doi.org/10.1080/00036846.2018.1558359 

Deka, A., Cavusoglu, B., Dube, S., Rukani, S., & Kadir, M. O. (2023). Examining the effect of 

renewable energy on exchange rate in the emerging economies with dynamic ARDL 



bounds test approach. Renewable Energy Focus, 44, 237–243. 

https://doi.org/10.1016/j.ref.2023.01.003 

Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature Shocks and Economic Growth: Evidence 

from the Last Half Century. American Economic Journal: Macroeconomics, 4(3), 66–95. 

https://doi.org/10.1257/mac.4.3.66 

Dissanayake, H., Perera, N., Abeykoon, S., Samson, D., Jayathilaka, R., Jayasinghe, M., & Yapa, S. 

(2023). Nexus between carbon emissions, energy consumption, and economic growth: 

Evidence from global economies. PLOS ONE, 18(6), e0287579. 

https://doi.org/10.1371/journal.pone.0287579 

Edenhofer, O., Madruga, R. P., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., 

Eickemeier, P., Hansen, G., Schlömer, S., & Stechow, C. von. (2012). Renewable energy 

sources and climate change mitigation: Special report of the Intergovernmental Panel on 

Climate Change. Choice Reviews Online, 49(11), 49-6309-49–6309. 

https://doi.org/10.5860/CHOICE.49-6309 

Eibinger, T., Deixelberger, B., & Manner, H. (2024). Panel data in environmental economics: 

Econometric issues and applications to IPAT models. Journal of Environmental Economics 

and Management, 125, 102941. https://doi.org/10.1016/j.jeem.2024.102941 

Ergun, S. J., & Rivas, M. F. (2023). Does higher income lead to more renewable energy 

consumption? Evidence from emerging-Asian countries. Heliyon, 9(1), e13049. 

https://doi.org/10.1016/j.heliyon.2023.e13049 

Fernandes, M., Guerre, E., & Horta, E. (2021). Smoothing Quantile Regressions. Journal of Business 

& Economic Statistics, 39(1), 338–357. https://doi.org/10.1080/07350015.2019.1660177 

Fitzenberger, B., & Wilke, R. A. (2015). Quantile Regression Methods. In Emerging Trends in the 

Social and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable Resource. Wiley. 

https://doi.org/10.1002/9781118900772.etrds0269 



Fowlie, M., & Meeks, R. (2021). The Economics of Energy Efficiency in Developing Countries. Review 

of Environmental Economics and Policy, 15(2), 238–260. https://doi.org/10.1086/715606 

Friedrichs, J., & Inderwildi, O. R. (2013). The carbon curse: Are fuel rich countries doomed to high 

CO2 intensities? Energy Policy, 62, 1356–1365. https://doi.org/10.1016/j.enpol.2013.07.076 

Galvao, A. F. (2011). Quantile regression for dynamic panel data with fixed effects. Journal of 

Econometrics, 164(1), 142–157. https://doi.org/10.1016/j.jeconom.2011.02.016 

Garcia-Casals, X., Ferroukhi, R., & Parajuli, B. (2019). Measuring the socio-economic footprint of the 

energy transition. Energy Transitions, 3(1), 105–118. https://doi.org/10.1007/s41825-019-00018-

6 

Gerasimchuk, W. I., Kühne, K., Roth, J., Oharenko, Y., Bridle, R., & Garg, V. (2019). Beyond Fossil 

Fuels: Fiscal transition in BRICS. 

Grossman, G. M., & Krueger, A. B. (1995). Economic Growth and the Environment*. The Quarterly 

Journal of Economics, 110(2), 353–377. https://doi.org/10.2307/2118443 

Grubert, E., & Hastings‐Simon, S. (2022). Designing the mid‐transition: A review of medium‐term 

challenges for coordinated decarbonization in the United States. WIREs Climate Change, 

13(3), e768. https://doi.org/10.1002/wcc.768 

Gutierrez, L. (2003). On the power of panel cointegration tests: A Monte Carlo comparison. 

Economics Letters, 80(1), 105–111. https://doi.org/10.1016/S0165-1765(03)00066-1 

Hanif, I., Aziz, B., & Chaudhry, I. S. (2019). Carbon emissions across the spectrum of renewable and 

nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, 586–

595. https://doi.org/10.1016/j.renene.2019.05.032 

Harding, M., & Lamarche, C. (2014). Estimating and testing a quantile regression model with 

interactive effects. Journal of Econometrics, 178, 101–113. 

https://doi.org/10.1016/j.jeconom.2013.08.010 



Harding, M., Lamarche, C., & Pesaran, M. H. (2020). Common correlated effects estimation of 

heterogeneous dynamic panel quantile regression models. Journal of Applied Econometrics, 

35(3), 294–314. https://doi.org/10.1002/jae.2753 

Hong, Y., Luo, K., Xing, X., Wang, L., & Huynh, L. D. T. (2024). Exchange rate movements and the 

energy transition. Energy Economics, 136, 107701. https://doi.org/10.1016/j.eneco.2024.107701 

Hwang, Y. K., & Sánchez Díez, Á. (2024). Renewable energy transition and green growth nexus in 

Latin America. Renewable and Sustainable Energy Reviews, 198, 114431. 

https://doi.org/10.1016/j.rser.2024.114431 

Ibrahim, M. H., & Law, S. H. (2016). Institutional Quality and CO 2 Emission–Trade Relations: 

Evidence from Sub-Saharan Africa. South African Journal of Economics, 84(2), 323–340. 

IEA. (2023). World Energy Outlook 2023. World Energy Outlook 2023. 

https://iea.blob.core.windows.net/assets/ed1e4c42-5726-4269-b801-

97b3d32e117c/WorldEnergyOutlook2023.pdf 

IRENA. (2024). Geopolitics of the energy transition: Energy security. International Renewable 

Energy Agency, Abu Dhabi. 

Jenkins, J. D., Luke, M., & Thernstrom, S. (2018). Getting to Zero Carbon Emissions in the Electric 

Power Sector. Joule, 2(12), 2498–2510. https://doi.org/10.1016/j.joule.2018.11.013 

https://doi.org/10.1016/j.renene.2023.119325 

Kapetanios, G., Pesaran, M. H., & Yamagata, T. (2011). Panels with non-stationary multifactor error 

structures. Journal of Econometrics, 160(2), 326–348. 

https://doi.org/10.1016/j.jeconom.2010.10.001 

Kaplan, D. M., & Sun, Y. (2017). SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL 

VARIABLES QUANTILE REGRESSION. Econometric Theory, 33(1), 105–157. 

https://doi.org/10.1017/S0266466615000407 



Kaur, H., Singh, K., Kumar, P., & Kaur, A. (2023). Assessing the environmental sustainability 

corridor: An empirical study of Renewable energy consumption in BRICS nation. IOP 

Conference Series: Earth and Environmental Science, 1110(1), 012053. 

https://doi.org/10.1088/1755-1315/1110/1/012053 

Kazelko, A., & Semeghini, U. S. (2024). Expansion of brics: Implications for global energy markets. 

BRICS Journal of Economics, 5(1), Article 1. https://doi.org/10.3897/brics-econ.5.e117048 

Kilian, L. (2009). Oil Price Shocks, Monetary Policy and Stagflation (SSRN Scholarly Paper 1433920). 

Social Science Research Network. https://papers.ssrn.com/abstract=1433920 

Knight, K. W., & Schor, J. B. (2014). Economic Growth and Climate Change: A Cross-National 

Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries. 

Sustainability, 6(6), 1–10. 

Knutsen, C. H. (2012). Democracy and economic growth: A survey of arguments and results. 

International Area Studies Review, 15(4), 393–415. https://doi.org/10.1177/2233865912455268 

Kuc-Czarnecka, M. E., Olczyk, M., & Zinecker, M. (2021). Improvements and Spatial Dependencies in 

Energy Transition Measures. Energies, 14(13), Article 13. https://doi.org/10.3390/en14133802 

Lau, C. K., Gozgor, G., Mahalik, M. K., Patel, G., & Li, J. (2023). Introducing a new measure of energy 

transition: Green quality of energy mix and its impact on CO2 emissions. Energy Economics, 

122, 106702. https://doi.org/10.1016/j.eneco.2023.106702 

Lee, C.-C., & Chang, C.-P. (2007). The impact of energy consumption on economic growth: Evidence 

from linear and nonlinear models in Taiwan. Energy, 32(12), 2282–2294. 

https://doi.org/10.1016/j.energy.2006.01.017 

Lee, C.-C., Chang, C.-P., & Chen, P.-F. (2008). Energy-income causality in OECD countries revisited: 

The key role of capital stock. Energy Economics, 30(5), 2359–2373. 

https://doi.org/10.1016/j.eneco.2008.01.005 



Li, B., Zheng, S., & Majeed, M. T. (2023). Pathways for China’s sustainable energy transition: 

Examining the effects of exchange rate volatility on renewable energy investment. Energy & 

Environment, 0958305X231209417. https://doi.org/10.1177/0958305X231209417 

Li, J., Zhang, X., Ali, S., & Khan, Z. (2020). Eco-innovation and energy productivity: New 

determinants of renewable energy consumption. Journal of Environmental Management, 

271, 111028. https://doi.org/10.1016/j.jenvman.2020.111028 

Liddle, B., & Lung, S. (2010). Age-structure, urbanization, and climate change in developed 

countries: Revisiting STIRPAT for disaggregated population and consumption-related 

environmental impacts. Population and Environment, 31(5), 317–343. 

https://doi.org/10.1007/s11111-010-0101-5 

Majumder, S. C., Voumik, L. C., Rahman, M. H., Rahman, M. M., & Hossain, M. N. (2023). A Quantile 

Regression Analysis of the Impact of Electricity Production Sources on CO2 Emission in 

South Asian Countries. Strategic Planning for Energy and the Environment, 307–330. 

https://doi.org/10.13052/spee1048-5236.4223 

Mazza, D., & Canuto, E. (2024). Depletion of fossil fuel reserves and projections of CO$_2$ 

concentration in the Earth atmosphere. Environmental Modeling & Assessment, 29(6), 1167–

1187. https://doi.org/10.1007/s10666-024-09985-7 

Omri, A., Daly, S., Rault, C., & Chaibi, A. (2015). Financial development, environmental quality, trade 

and economic growth: What causes what in MENA countries. Energy Economics, 48, 242–

252. https://doi.org/10.1016/j.eneco.2015.01.008 

Owjimehr, S., & Samadi, A. (2022). Threshold Effects of Economic Complexity and Globalization on 

the Energy Transition in the European Union. SSRN Electronic Journal. 

https://doi.org/10.2139/ssrn.4053504 

Pesaran, M. H. (2003). Estimation and Inference in Large Heterogenous Panels with Cross Section 

Dependence (SSRN Scholarly Paper 385123). https://doi.org/10.2139/ssrn.385123 



Pesaran, M. H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor 

Error Structure. Econometrica, 74(4), 967–1012. https://doi.org/10.1111/j.1468-

0262.2006.00692.x 

Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. 

Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951 

Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le 

Quéré, C., & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly 

emerging climate policies. Nature Climate Change, 10(1), 3–6. https://doi.org/10.1038/s41558-

019-0659-6 

Pokrovski, V. N. (2003). Energy in the theory of production. Energy, 28(8), 769–788. 

https://doi.org/10.1016/S0360-5442(03)00031-8 

Rasoulinezhad, E., Taghizadeh-Hesary, F., Sung, J., & Panthamit, N. (2020). Geopolitical Risk and 

Energy Transition in Russia: Evidence from ARDL Bounds Testing Method. Sustainability, 

12(7), Article 7. https://doi.org/10.3390/su12072689 

Russel, S. (2016). A recommended methodology for estimating and reporting the potential 

greenhouse gasemissions from fossil fuel reserves [Dataset]. 

https://doi.org/10.1163/9789004322714_cclc_2016-0020-005 

Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 

countries. Energy Economics, 31(3), 456–462. https://doi.org/10.1016/j.eneco.2008.12.010 

Sadorsky, P. (2010). The impact of financial development on energy consumption in emerging 

economies. Energy Policy, 38(5), 2528–2535. https://doi.org/10.1016/j.enpol.2009.12.048 

Shah, M. H., Ullah, I., Salem, S., Ashfaq, S., Rehman, A., Zeeshan, M., & Fareed, Z. (2022). Exchange 

Rate Dynamics, Energy Consumption, and Sustainable Environment in Pakistan: New 

Evidence From Nonlinear ARDL Cointegration. Frontiers in Environmental Science, 

9(814666). https://doi.org/10.3389/fenvs.2021.814666 



Smil, V. (2017). Energy Transitions: Global and National Perspectives. Bloomsbury Academic. 

Taghizadeh-Hesary, F., & Rasoulinezhad, E. (2020). Analyzing Energy Transition Patterns in Asia: 

Evidence From Countries With Different Income Levels. Frontiers in Energy Research, 8. 

https://www.frontiersin.org/articles/10.3389/fenrg.2020.00162 

Thombs, R. P. (2022). A Guide to Analyzing Large N, Large T Panel Data. Socius, 8, 

23780231221117645. https://doi.org/10.1177/23780231221117645 

Tugcu, C. T. (2018). Panel Data Analysis in the Energy-Growth Nexus (EGN). In The Economics and 

Econometrics of the Energy-Growth Nexus (pp. 255–271). Elsevier. 

https://doi.org/10.1016/B978-0-12-812746-9.00008-0 

Wen, J., Yang, F., & Xu, Y. (2024). Coal consumption and carbon emission reductions in BRICS 

countries. PLOS ONE, 19(3), e0300676. https://doi.org/10.1371/journal.pone.0300676 

Wiedmann, T., Lenzen, M., Keyßer, L. T., & Steinberger, J. K. (2020). Scientists’ warning on 

affluence. Nature Communications, 11(1), 3107. https://doi.org/10.1038/s41467-020-16941-y 

Yazdanie, M., Frimpong, P. B., Dramani, J. B., & Orehounig, K. (2024). Depreciating currency 

impacts on local-scale energy system planning: The case study of Accra, Ghana. Energy 

Strategy Reviews, 53, 101362. https://doi.org/10.1016/j.esr.2024.101362 

York, R., & McGee, J. A. (2017). Does Renewable Energy Development Decouple Economic Growth 

from CO2 Emissions? Socius, 3, 2378023116689098. 

https://doi.org/10.1177/2378023116689098 

York, R., & Rosa, E. A. (2003). Key Challenges to Ecological Modernization Theory: Institutional 

Efficacy, Case Study Evidence, Units of Analysis, and the Pace of Eco-Efficiency. Organization 

& Environment, 16(3), 273–288. https://doi.org/10.1177/1086026603256299 

Yu, Z., & Guo, X. (2023). Influencing factors of green energy transition: The role of economic policy 

uncertainty, technology innovation, and ecological governance in China. Frontiers in 

Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1058967 



Zambrano-Monserrate, M. A. (2024). Clean energy production index and CO2 emissions in OECD 

countries. Science of The Total Environment, 907, 167852. 

https://doi.org/10.1016/j.scitotenv.2023.167852 

Zheng, C., Shin, Y., & Chen, J. (2024). Dynamic Quantile Panel Data Models with Interactive Effects *. 

https://doi.org/10.2139/ssrn.4910743 

 

 

 


