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Abstract

This paper shows that, in a R&D-based growth model in which
vertical and horizontal innovations occur simultaneously, increasing
the capital income tax leads to faster growth. For this result to hold,
the production function for both vertical and horizontal innovations
must have constant returns to scale.
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1 Introduction

The effects of capital income taxation on economic growth is an important
topic for not only economists but also policymakers. A substantial body
of literature concludes that taxing capital income is bad for growth [see,
e.g., Judd (1985); Chamley (1986); Lucas (1990); Jones, Manuelli, and Rossi
(1993); and Peretto (2003)]. However, some studies cast doubt on this view.
For example, Uhilg and Yanagawa (1996), de Hek (2006), and Chen and
Lu (2013) show that higher capital income taxes may lead to faster growth.
Conesa, Kitao, and Kruger (2009) and Hiraguchi and Shibata (2015) have
emphasized that the optimal tax rate on capital is positive. Whether a
government should tax capital income remains an open question.
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and Grant-in-Aid for Scientific Research (No. 16K03552).

†Present address: Faculty of Contemporary Business, Kyushu International Uni-
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mail@yoheitenryu.jp
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The present paper contributes to the literature on supporting positive
capital income taxation in an endogenous growth model. The analysis is
closely related to the analyses in Young (1998), Dinopoulos and Thompson
(1998), and Peretto (2003), who developed R&D-based growth models with
vertical and horizontal innovations. In fact, the model in the present paper is
the same as that of Peretto (2003), apart from vertical innovation technology.
Peretto considers that the production function for vertical innovation has
decreasing returns to scale and shows that an increase in the tax rate on
capital income induces a decline in the long-run growth rate. The present
analysis shows that the linear production function leads to an opposite result;
i.e., an increase in capital income tax has a positive effect on the growth rate.

The remainder of the present paper is organized as follows. Section 2
introduces the model. Section 3 considers the market equilibrium dynamics
and derives the main result.

2 The Model

The model draws on work by Peretto (2003). It allows individuals to allocate
time to labor supply and leisure, and consists of two types of innovation
sector: vertical innovation and horizontal innovation. A government taxes
consumption and labor, capital, and corporate incomes to provide public
goods and lump-sum transfers.

2.1 Consumption and Labor Supply

I consider the closed economy populated by identical individuals who supply
labor services and consumption loans in competitive labor and assets mar-
kets. The population at time t is represented as Lt = L0e

λt, where L0 is the
initial population and λ is the rate of population growth. The lifetime utility
is

Ut =

∫ ∞

t

e−(ρ−λ)(τ−t) log uτdτ, ρ > λ ≥ 0, (1)

where ρ is the individual discount rate. Instantaneous utility at time t is

log ut = logCt + γ log(1− lt) + µ logGt, γ, µ > 0, (2)

where Ct is a consumption index, lt is the faction of time allocated to labor
supply [so that (1− lt) is leisure], and Gt represents public goods supplied by
the government. Constant parameters, γ and µ, are the elasticity of instan-
taneous utility with respect to leisure and public goods, respectively. The
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consumption index is symmetric over a continuum of differentiated goods,

Ct =

[∫ Nt

0

(cit)
(ε−1)/ε di

]ε/(ε−1)

, ε > 1, (3)

where ε is the elasticity of differentiated product substitution, cit is the de-
mand for each differentiated good, and Nt is the number of goods (firms).
Individuals face the flow budget constraint

Ȧt = [rt(1− tA)− λ]At + (1− tL)Wtlt − (1 + tE)Et + Tt. (4)

All variables are in per capita terms. At is financial wealth, rt is the rate of
return on capital, Wt is the wage rate, and Et is consumption expenditure.
The wage rate is the numéraire, W ≡ 1. The government taxes labor income
at rate tL, capital income at rate tA, and consumption at rate tE, and pays
lump-sum transfers Tt.

Individuals maximize (1) subject to equations (2)–(4). The optimal con-
dition for the problem is obtained as follows.

Ėt

Et

= rt(1− tA)− ρ (5)

Ltlt = Lt

[
1− 1 + tE

1− tL
γEt

]
(6)

Equation (5) is a Euler equation, and equation (6) is the aggregate labor
supply.

Furthermore, at each time, individuals decide how they consume each
differentiated good to maximize (3), given the expenditure Et. Solving the
well-known static problem yields the aggregate consumption of good i,

Xit = Ltcit = LtEt
P−ε
it∫ Nt

0
P 1−ε
jt dj

, (7)

where Pit is good i’s price.

2.2 Production

The firm with a patent supplies its differentiated good exclusively with the
technology

Xit = Zθ
it(LXit

− ϕ), 0 < θ < 1, ϕ > 0, (8)

where Xit is output, LXit
is labor employment, and ϕ is a fixed management

cost. Zθ
it is labor productivity, which is a function of the firm’s accumulated

stock of innovations, Zit, with elasticity θ.
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2.3 Vertical Innovation: Corporate R&D

The firm can increase its productivity by innovation, which occurs according
to

Żit = αKtLZit
, α > 0, (9)

where Żit is the flow of innovations generated by employing LZit
units of

labor in R&D for an interval of time dt, and αK is the productivity of
labor in R&D, as determined by the exogenous parameter α and the stock
of public knowledge, Kt = Zt ≡ 1

Nt

∫ Nt

0
Zitdi. The level of public knowledge

is determined by the average productivity among each firm; thus, (9) is
rewritten as

Żit = αZtLZit
. (10)

The function is linear with respect to labor. However, Peretto (2003) assumes
the decreasing returns to scale function. This change generates the opposite
effect of capital income tax on the growth rate, as discussed later.

The present discounted value of after-tax profit for the firm that has a
patent on the differentiated good i is

Vit =

∫ ∞

t

e−
∫ τ
t rsds(1− tπ)Πiτdτ,

where tπ is the tax rate on profit, and pre-tax profit is Πit = PitXit −LXit
−

LZit
.
At any time, t, the firm chooses price to maximize the pre-tax profit

subject to the demand (7), the technology (8), and the given Zit. The optimal
price for good i is

Pit =
ε

ε− 1
Z−θ

it . (11)

Given the price, the demand for each good i is obtained as follows:

Xit =
ε− 1

ε

Zθε
it∫ Nt

0
Z

θ(ε−1)
jt dj

Et.

Substituting these into pre-tax profit yields the maximized profit

Πit =
Z

θ(ε−1)
it∫ Nt

0
Z

θ(ε−1)
jt dj

EtLt

ε
− ϕ− LZit

.

Before proceeding to the dynamic problem, I impose the following two
assumptions for analytical simplicity.

Assumption 1. Previous corporate R&D generates an external effect that
causes present R&D productivity to increase.
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All firms choose their R&D strategies without recognizing that present R&D
has a positive spillover to future R&D technology. The next assumption
guarantees that the second order condition of the R&D decision problem
discussed below is satisfied.

Assumption 2. θ(ε− 1) < 1.

Each firm chooses R&D strategies to maximize the present discounted
value of after-tax profit, into which the maximized profit is substituted, sub-
ject to the innovation technology (10) and rival firms’ strategies.

Since R&D follows constant returns to scale technology, the equilibrium
condition for finite R&D to occur is

qit =
1− tπ
αZt

, (12)

where qit is the co-state variable, which is the marginal value of productivity
Zit. Equation (12) implies that the marginal value is equal to its marginal
cost. An optimal R&D level is not yet determined. As discussed below, it is
determined by such as no arbitrage condition in the capital market.

The return to innovation must satisfy the following.

rt = (1− tπ)θ(ε− 1)
Z

θ(ε−1)−1
it∫ Nt

0
Z

θ(ε−1)
jt dj

EtLt

εqit
+

q̇it
qit

. (13)

The transversality condition is limτ→∞ e−
∫ τ
t τsdsqiτZiτ = 0.

2.4 Horizontal Innovation: Entrepreneurial R&D

The main objective of entrepreneurial R&D is the creation of new goods.
Entrepreneurs can create new goods and enter the industry by using only
labor inputs .

Ṅt = βLNt, β > 0, (14)

where β is the productivity of labor in entry, and LNt is the amount of
employment required to create Ṅt new firms for an interval of time dt. The
productivity of entrepreneurs is equal to the average productivity among
incumbent firms, 1

Nt

∫ Nt

0
Zjtdj, and incumbent firms are symmetric. This

implies that entrant firms are also symmetric with respect to productivity.
Therefore, the values for new firms are always the same as those for symmetric
incumbent firms.

Entrepreneurs may enter freely into variety-expanding R&D. They finance
the product development costs by issuing equity. The after-tax profit for
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entrepreneurs is (1− tπ)π
R&D
t dt = (1− tπ)(VtdNt −WtLNtdt). Imposing the

free entry condition on this implies

Vt =
1

β
⇔ LNt > 0. (15)

Entry is positive if the value of the firm is equal to its start-up cost. The
profit that accrues to an entrepreneur is given by the expression derived for
incumbents. Thus, the market value of a firm’s shares satisfies the arbitrage
condition: rt = (1− tπ)

Πit

Vt
+ V̇t

Vt
. Note that the second term in the right-hand

side is always zero, because Vt is constant over time. Imposing symmetry on
the pre-tax profit for production firm i, I obtain the following:

Πt = Πit = Πjt =
EtLt

εNt

− ϕ− LZt , for all j ̸= i. (16)

Substituting this and (15) into the arbitrage condition yields the rate of
return on entrepreneurial R&D

rt = (1− tπ)β

[
EtLt

εNt

− ϕ− LZt

]
. (17)

2.5 The Government

The government taxes consumption, labor income, capital income, and cor-
porate profit. These tax rates are constant over time. The government
produces public goods, hiring labor at Wt ≡ 1. The production function is
Gt = LGt , where LGt is public employment at time t. The government can-
not borrow and allocates fraction g of tax revenues to the provision of public
goods and fraction 1− g to lump-sum transfers to individuals. This satisfies
the budget constraint: tLLt + tπ

∫ Nt

0
Πitdi+ tEEtLt + tArtAtLt = LGt +TtLt.

2.6 The Labor Market

There are four sources of labor demand. First, the production sector em-
ploys

∫ Nt

0
LXit

di units of labor to produce differentiated goods. Second, in

the corporate R&D sector,
∫ Nt

0
LZit

di units of labor are employed. Third,
employment in the entrepreneurial R&D sector is LNt. Fourth, LGt units
of labor are employed to provide public goods. Equating units of labor
to the aggregate labor supply Lt gives the labor market clearing condition:
Lt =

∫ Nt

0
(LXit

+ LZit
)di+ LNt + LGt .
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3 The Market Equilibrium Dynamics

3.1 Equilibrium Values and Dynamic Equations

The assumption that firm’s productivity Zit is symmetric causes price Pit

and output Xit to be symmetric. That is, for all i, Pt = Pit =
ε

ε−1
Z−θ

t , and

Xt = Xit =
ε−1
ε

EtLt

Nt
Zθ

t . Substituting the latter into (8) yields

LXt =
ε− 1

ε

EtLt

Nt

+ ϕ. (18)

In what follows, I focus on an internal equilibrium, where both corporate
and entrepreneurial R&D occur.1 In this situation, equalization of the returns
to vertical innovation and horizontal innovation is required. In the capital
market, this is called no arbitrage condition. Since, under the homogeneous
productivity Zt, equation (13) can be rewritten as

rt = αθ(ε− 1)
EtLt

εNt

− αLZt , (19)

no arbitrage condition is as follows.

α

[
θ(ε− 1)

EtLt

εNt

− LZt

]
= (1− tπ)β

[
EtLt

εNt

− ϕ− LZt

]
. (20)

This equation holds at all moments in time and characterizes equilibrium.
Before proceeding to analysis of economic dynamics, I impose the fol-

lowing assumption. It guarantees the stability of an internal equilibrium, in
which two kinds of R&D are implemented.

Assumption 3. αθ(ε− 1) > (1− tπ)β.

Under Assumptions 1–3, the level of corporate R&D is determined so that
equation (20) can be satisfied all times. Solving (20) for LZt in the corporate
R&D sector yields

LZt =
αθ(ε− 1)− (1− tπ)β

α− (1− tπ)β

EtLt

εNt

+
(1− tπ)β

α− (1− tπ)β
ϕ. (21)

The interest rate is simultaneously determined,

rt =
α(1− tπ)β

α− (1− tπ)β

{
[1− θ(ε− 1)]

EtLt

εNt

− ϕ

}
. (22)

1In the present model, since R&D functions (9) and (14) are linear functions of labor
input, it is possible that one of the two R&Ds is not implemented. In other words, a corner
solution may occur. For the aim of this paper, however, the internal solution is assumed.
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These are illustrated as the following figure.2

Eq.(17)

Eq.(19)

rt

LZt

rt

LZt

Figure 1: Equilibrium on vertical and horizontal R&D

The after-tax rate of return to investment is indeed the rate of return to
saving since, in this economy, the only financial asset available to individuals
is ownership shares of firms (stocks). In particular, the capital market clears
when AtLt = NtVt. Using this condition, the arbitrage condition, rt =
(1− tπ)

Πt

Vt
, and equation (16), one can rewrite public employment as

LGt = g

{
tLLt + [tπ + tA(1− tπ)]

(
EtLt

εNt

− ϕ− LZt

)
Nt + tEEtLt

}
. (23)

The market equilibrium dynamics can be described by the Euler equation
and the growth rate of the number of goods per capita, nt ≡ Nt

Lt
. Using (22),

the Euler equation can be written as

Ėt

Et

=
α(1− tA)(1− tπ)β

α− (1− tπ)β

{
[1− θ(ε− 1)]

Et

εnt

− ϕ

}
− ρ.

The labor market clearing condition in the symmetric situation reads Lt =
Nt(LXt +LZt) +LNt +LGt . Using (14), (18), and (23), this can be rewritten

ṅt

nt

= β

(
1

nt

− 1

α− (1− tπ)β

{
[α(1 + θ)(ε− 1)− ε(1− tπ)β]

Et

εnt

+ αϕ

}
− LGt

)
−λ.

As shown below this system has a unique steady state that can be shown to
be saddle stable under Assumptions 2 and 3.

2If Assumption 2 is not satisfied, the interest rate is always negative.
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3.2 Steady State Analysis

Set Ėt = 0 to obtain

Et =
ε

1− θ(ε− 1)

[
α− (1− tπ)β

α(1− tA)(1− tπ)β
ρ+ ϕ

]
nt, (24)

and set ṅt = 0 to obtain

Et = − [α− (1− tπ)β]ε

α(1 + θ)(ε− 1)− ε(1− tπ)

[(
λ

β
+ LGt +

αϕ

α− (1− tπ)β

)
nt − 1

]
.

(25)
Under Assumptions 2 and 3, the slope of the Ėt = 0 line is positive, and that
of the ṅt = 0 line is negative and its intercept is positive.

The intersection in (nt, Et) space of equations (24) and (25) determines
the steady state values of consumption expenditure and the number of goods
per capita, as illustrated in Figure 2. The steady state values are represented
as n∗ and E∗.

nt

Et

E
∗

n
∗

Ėt = 0

ṅt = 0

Figure 2: The Phase Diagram on Et and nt

Figure 2 states that, in the case where the initial number of goods per capita,
n0, is relative low, specifically n0 < n∗, the number of goods per capita,
nt, and the consumption expenditure, Et, both increase toward the steady
state. In addition, one can confirm that the ratio Et

nt
gradually decreases.

The amount of the input into corporate R&D, LZt , decreases as the economy
approaches the steady state.
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The growth rate of productivity, L∗
Z , and the interest rate, r∗, in the long-

run are determined to equalize the rate of returns on two kinds of R&D.3

L∗
Z =

αθ(ε− 1)− (1− tπ)β

α− (1− tπ)β

E∗

εn∗ +
(1− tπ)β

α− (1− tπ)β
ϕ (26)

r∗ =
α(1− tπ)β

α− (1− tπ)β

{
[1− θ(ε− 1)]

E∗

εn∗ − ϕ

}
(27)

The steady state rate of return, r∗, is dependent on the consumption expen-
diture per good, E∗

n∗ . On the balanced growth path, however, consumption
expenditure, Et, is constant

4 and, hence, r∗ is determined to satisfy the con-
dition that the after-tax interest rate is equal to the discount rate:

(1− tA)r
∗ = ρ. (28)

From this condition, one can confirm that the vales of E∗

n∗ and L∗
Z are de-

termined irrespective of the labor market equilibrium. This means that the
growth rate of productivity is independent of the population Lt and, specif-
ically, that there is no scale effect in the present model.5

These three equations (26)–(28) yield the following important result of
this paper.

Proposition 1. Capital income tax has a positive effect on the growth rate
of productivity, L∗

Z.

Proof. See Appendix B.

The intuition of the proposition is as follows. The introduction of and/or
increase in capital income tax leads to a higher rate of return on R&D [see
equation (28)]. The higher rate of return stimulates the consumption ex-
penditure per good [see equation (27)], which increases the growth rate of
productivity [see equation (26)]. By contrast, in Peretto (2003), a rise in
the consumption expenditure per good is relatively low, with the result that
firms must reduce the number of employees for the higher rate of return to
hold. This leads to a decline in the productivity growth.

Effects of other fiscal variables on the productivity growth are the same
as those obtained in Peretto (2003). Corporate income tax has a positive

3In the present model, the growth rate of productivity is given as Żt

Zt
= αLZt

, which de-
pends on the labor employment in corporate R&D. Thus, one can express the productivity
growth as LZt .

4See the Euler equation (5).
5The labor market equilibrium is achieved by the adjustment of the number of firms

per capita, n∗.
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effect on productivity growth, but labor income and consumption taxes have
no effect.6

The growth rate of an individual’s utility is derived as follows.7

u̇t

ut

= θ
Żt

Zt

+

(
1

ε− 1
+ µ

)
λ.

One can confirm that the growth rate of an individual’s utility is independent
of the population scale and increases as capital income taxes increase.

6See Appendix C for the proof of this.
7See Appendix D for a detailed derivation.
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Appendix

A Sign of α(1 + θ)(ε− 1)− ε(1− tπ)β

In this section, it is confirmed that the expression α(1+θ)(ε−1)−ε(1− tπ)β
is positive. This expression can be rewritten as follows.

α(1 + θ)(ε− 1)− ε(1− tπ)β

= α(1 + θ)(ε− 1)− (1− tπ)β + (1− tπ)β − ε(1− tπ)β

= αθ(ε− 1)− (1− tπ)β + α(ε− 1)− (ε− 1)(1− tπ)β

= αθ(ε− 1)− (1− tπ)β + (ε− 1)[α− (1− tπ)β]

The sum of the first two terms is positive, due to Assumption 3, and the
expression in square brackets of third term is also positive under Assumptions
2 and 3. Therefore, α(1 + θ)(ε− 1)− ε(1− tπ)β is positive.

B Proof of Proposition 1

I investigate how capital income tax affects the growth rate of productivity,
L∗
Z . The interest rate in the steady state can be written as

r∗ =
ρ

1− tA
.

Differentiating this with respect to tA yields

∂r∗

∂tA
=

ρ

(1− tA)2
> 0.

Thus, capital income tax increases the rate of return on R&D. The interest
rate affects the consumption expenditure per good, E∗

n∗ . To investigate this
effect, I rearrange equation (27) as follows.

E∗

n∗ =
ε

1− θ(ε− 1)

[
α− (1− tπ)β

α(1− tπ)β
r∗ + ϕ

]
. (29)

Differentiating this with respect to r∗ yields

d (E∗/n∗)

dr∗
=

ε

1− θ(ε− 1)

[
α− (1− tπ)β

α(1− tπ)β

]
> 0.

This implies that the consumption expenditure per good is increasing along
with the interest rate. Differentiating equation (26) with respect to E∗

n∗ , one

13



can easily confirm that the growth rate of productivity, L∗
Z , is an increasing

function of the consumption expenditure per good.

dL∗
Z

d (E∗/n∗)
=

αθ(ε− 1)− (1− tπ)β

α− (1− tπ)β

1

ε
> 0.

Therefore, the capital income tax has a positive effect on the growth rate of
productivity, (dL∗

Z/dtA) > 0.

C Effects of Corporate Income, Labor Income,

and Consumption Taxes

Firstly, I investigate how corporate income tax affects the growth rate of
productivity, L∗

Z . There are two effects of the tax on L∗
Z : a direct effect and

an indirect effect. The indirect effect is through a change in the consumption
expenditure per good. Since this tax has no effect on the interest rate, I
differentiate (29) with respect to tπ, which yields

d (E∗/n∗)

dtπ
=

ε

1− θ(ε− 1)

α2β

{α(1− tπ)β}2
r∗ > 0.

Thus, corporate income tax increases the consumption expenditure per good.
Considering the indirect effect, I differentiate (26) with respect to tπ.

∂L∗
Z

∂tπ
=

αβ

{α− (1− tπ)β}2

[
{1− θ(ε− 1)} E

∗

εn∗ − ϕ

]

+
αθ(ε− 1)− (1− tπ)β

{α− (1− tπ)β}ε
∂ (E∗/n∗)

∂tπ
> 0.

Therefore, the corporate income tax has a positive effect on the growth rate
of productivity.

Secondly, it is clear that labor income tax and consumption tax have no
effect on the growth rate of productivity, L∗

Z , because equations (26)–(28)
are independent of these tax parameters.

D Derivation of the Growth Rate of an Indi-

vidual’s Utility

In the symmetric case, the equilibrium consumption index can be written as
follows.

Ct =

[∫ Nt

0

(ct)
(ε−1)/εdi

]ε/(ε−1)

=
[
Nt(ct)

(ε−1)/ε
]ε/(ε−1)

= N
ε/(ε−1)
t ct,
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where ct = cit = cjt, for all j ̸= i. Using the aggregate consumption of each
differentiated good, obtained in equation (7), and the production function,
(8), one can rearrange this expression:

Ct =
N

ε/(ε−1)
t

Lt

Xt =
N

ε/(ε−1)
t

Lt

Zθ
t (LXt − ϕ).

In the steady state, the labor employment in the production sector is constant
and, thus,

Ct =
N

ε/(ε−1)
t

Lt

Zθ
t (L

∗
X − ϕ). (30)

Substituting (18) into this, I obtain

Ct =
N

ε/(ε−1)
t

Lt

Zθ
t

(
ε− 1

ε

E∗

n∗ + ϕ− ϕ

)
=

N
ε/(ε−1)
t

Lt

Zθ
t

(
ε− 1

ε

)
E∗

n∗ .

Differentiating this with respect to t yields

Ċt =
N

ε/(ε−1)
t

Lt

Zθ
t

(
ε− 1

ε

)
E∗

n∗

[
ε

ε− 1

Ṅt

Nt

− L̇t

Lt

+ θ
Żt

Zt

]
. (31)

The growth rate of the consumption index is, therefore,

Ċt

Ct

=
ε

ε− 1

Ṅt

Nt

− L̇t

Lt

+ θ
Żt

Zt

.

Now, I consider the relationship between the growth rates of Nt and Lt.
The definition of the number of firms per capita is nt ≡ Nt

Lt
. Differentiating

this with respect to t yields

ṅt

nt

=
Ṅt

Nt

− L̇t

Lt

.

In the steady state, ṅt is zero, which means that the growth rate of the
number of goods is equal to that of the population, Ṅt

Nt
= L̇t

Lt
= λ. Hence,

Ċt

Ct

= θ
Żt

Zt

+
1

ε− 1
λ, (32)

where the growth rate of productivity is

Żt

Zt

= αL∗
Z = α

[
αθ(ε− 1)− (1− tπ)β

α− (1− tπ)β

E∗

εn∗ +
(1− tπ)β

α− (1− tπ)β
ϕ

]
. (33)
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I derive the growth rate of an individual’s utility. The instantaneous
utility function is defined as

log ut = logCt + γ log(1− lt) + µ logGt, γ, µ > 0.

Firstly, Ct is the consumption index; its long-run growth rate is calculated
in equation (32). Secondly, the fraction of time allocated to labor supply is
represented as lt; its optimal value is obtained in equation (6). The time-
dependent variable for this is only the consumption expenditure, Et. This
variable converges to E∗ in the long-run, which implies that lt is constant in
the long-run,

l∗ = 1− 1 + tE
1− tL

γE∗.

Thus, the growth rate of the fraction of time allocated to labor supply is
zero. Thirdly, Gt represents public goods supplied by the government. The
production function is Gt = LGt . The steady state value of LGt is

LGt = g

{
tLLt + [tπ + tA(1− tπ)]

(
E∗

εn∗ − ϕ− L∗
Z

)
n∗Lt + tEE

∗Lt

}
.

The growth rate of public goods is, therefore,

Ġt

Gt

=
L̇Gt

LGt

=
gL̇t

{
tL + [tπ + tA(1− tπ)]

(
E∗

εn∗ − ϕ− L∗
Z

)
n∗ + tEE

∗}
gLt

{
tL + [tπ + tA(1− tπ)]

(
E∗

εn∗ − ϕ− L∗
Z

)
n∗ + tEE∗

}
= λ.

Combining these results yields the growth rate of an individual’s utility.

u̇t

ut

=
Ċt

Ct

+ µ
Ġt

Gt

= θ
Żt

Zt

+

(
1

ε− 1
+ µ

)
λ.

This is not affected by the population scale but is endogenously determined
by parameters such as preference and fiscal variables.
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