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Abstract

In economic decision-making, the binary factor model is widely employed

to characterize decision processes and capture individuals’exposures to various

factors. This paper reveals that when the binary response is factorized, ad-

ditional factors emerge, including an augmented time-invariant item that can

lead to overestimation of the individual effect. These findings explain why the

principal component method often produces misleading estimates when applied

to binary data. To address this issue, we develop an adjusted principal com-

ponent (APC) method, which modifies the eigenvalue ratio test to determine

factor numbers, estimates factors in the transformed model, and recovers es-

timates for the original binary model. It avoids parametric error distribution

specifications and initial value selection, overcoming limitations of existing iter-

ative methods. Extensive Monte Carlo experiments confirm APC’s robustness.

We then apply APC to analyze dividend initiation factors using S&P 500 data

(1998-2016), demonstrating its practical effectiveness.
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Corresponding author: Peng Wang, E-mail address: pwang@ust.hk, Xi Wang, E-mail address:
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1 Introduction

Panel data analysis has been increasingly popular in recent decades due to its

ability to leverage rich information across time periods for a large number of individ-

uals, thereby mitigating potential endogeneity issues. Among the various panel data

models, the linear factor model, Yit = λ′ift + εit, plays an important role in account-

ing for individuals’heterogenous responses to common factors. In earlier literature,

researchers often relied on observed proxy variables, such as factor returns and ag-

gregate market shocks, to represent these common factors. However, as Ludivigson

and Ng (2009) highlighted, the proxy method can produce biased estimates when

certain factors are missing or subject to measurement errors. In addition, a limited

set of observed variables is typically insuffi cient to fully capture the information set

of common factors, particularly for predictive purposes.

To address these challenges, a growing body of literature in high-dimensional

analysis treats both factors and factor loadings as unobserved. Bai and Ng (2002)

introduced information criteria, such as AIC and BIC, to determine the number of

factors. Bai (2003) further developed the inferential theory for the principal compo-

nents estimator in the context of linear factor models. Subsequent work by Onatski

(2010) utilized differenced eigenvalues to construct an edge distribution estimator for

determining the number of factors. To avoid the need for overly cautious choices of

penalty functions or tuning parameters, Ahn and Horenstein (2013) proposed using

the ratio of eigenvalues to estimate the number of factors. Additionally, Bai and Li

(2016) introduced a quasi-likelihood estimation method tailored for dynamic factor

models. These advancements have significantly enhanced the robustness and flexibil-

ity of factor model estimation in high-dimensional settings.

Discrete outcomes are commonplace in empirical research. For instance, firms

make decisions on whether to initiate dividends, split stocks, or choose particular

capital structures, as explored in studies such as Bates et al. (2009), Baker et al.

(2009), and Grahm et al. (2015). These phenomena call for the use of binary re-

sponse models to characterize economic relationships. Similarly, ordered response

models are often required for issues such as bond credit ratings for companies, as ex-

amined by Badoer and Demiroglu (2018), and creditworthiness assessments by rating
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agencies, as discussed in Baker and Mansi (2002). Traditionally, scholars have em-

ployed methods such as probit (oprobit), logit (ologit), or OLS regressions to analyze

binary or ordered data, using observed proxy variables to substitute for unobserved

influencing factors. In recent years, the literature on factor analysis has emphasized

that latent factor models are more effective for characterizing panel datasets, mon-

itoring economic activities, and improving forecasting accuracy. As a result, binary

and ordered factor models have become increasingly appealing to practitioners and

warrant significant academic attention.

Despite significant progress in the research on linear factor models, the estimation

of binary and ordered factor models remains an ongoing challenge. Kolenikov and An-

geles (2009) and Perez et al. (2015) specified tetrachoric or polychoric correlations and

introduced multi-step estimation strategies. Ng (2015) estimated polychoric correla-

tions and extended principal component analysis but acknowledged that determining

the number of factors to control for is irregular and challenging, which compromises

the consistent estimation of factors. Boneva and Linton (2017) proposed a common

correlated effects maximum likelihood estimator by specifying the error distribution

and estimating unobserved factors as averages of regressors. However, their method

relies on strong assumptions about the error distribution and factors, limiting its

applicability. To relax restrictions on unobserved factors, Wang (2022) treated both

factors and factor loadings as fixed effects and proposed a maximum likelihood es-

timation method. Nevertheless, potential misspecification and lack of identification

make his estimator sensitive to the parametric specification of the error distribution

and the initial values of factors, potentially leading to inconsistent estimates.

Vermunt and Magidson (2005) argued that ordinary linear regression for binary

data is attractive to applied researchers. However, directly applying traditional prin-

cipal component analysis to binary data can lead to issues due to the underlying

nonlinearity and latent factor structure inherent in binary factor models. To over-

come the limitations of existing methods, we employ a transformation to provide an

interpretation for the irregular number of factors encountered by Ng (2015). Subse-

quently, we develop an adjusted method to robustly determine the number of factors

and estimate the factors for the binary factor model. The main contributions of this

paper are as follows.
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The primary insight is to distinguish between the binary factor model and the

transformed factor model. The transformed factor model is an expanded version of

the binary factor model and accounts for a larger number of factors than the binary

factor model. A naive application of principal component analysis to the original

binary data, without considering the expanded factor space, will yield inconsistent

estimates.

Practically, this paper provides a guideline for implementing the principal com-

ponent method for binary data. Specifically, we discover the underlying reason for

the frequent underestimation of the number of factors in binary data. Based on

this theoretical insight, we extend the eigenvalue ratio test to robustly determine the

number of factors for the transformed factor model and propose an adjusted principal

component estimation procedure for both binary and ordered factor models.

Unlike existing maximum likelihood methods, our adjusted principal component

method does not impose parametric restrictions on the error distribution or rely

on iterative algorithms. Importantly, the adjusted principal component estimator

is robust to the error distribution and does not require initial estimates of factors.

From an applied perspective, these advantages are crucial for practitioners to avoid

misleading estimates caused by misspecification and arbitrary choices of initial values.

Additionally, our estimation algorithm is straightforward to implement and highly

tractable.

The rest of this paper is organized as follows. Section 2 focuses on binary factor

models, both with and without a time-invariant factor, and compares them with

transformed factor models. Based on these theoretical findings, Section 3 proposes

the adjusted principal component method, which involves multiple steps: robustly

determining the number of factors, estimating the factors for the transformed factor

model, and then recovering the factors in the original binary factor model. Section

4 extends the adjusted principal component method to the ordered factor model.

Section 5 presents the asymptotic properties of the adjusted principal component

estimator. Section 6 conducts Monte Carlo experiments to validate the method.

Section 7 applies the adjusted principal component estimator to an empirical example

of dividend initiation using S&P 500 data, demonstrating its performance. Section 8

concludes the paper.
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2 Binary Factor Models

Throughout this paper, Pε(·) and pε(·) denote the cumulative distribution function
and the density function of ε respectively. Additionally, diag(v1, · · · , vr) represents a
diagonal matrix with elements v1, · · · , vr.
In many empirical studies, applied researchers are particularly interested in es-

timating and predicting outcomes using binary factor models, where the dependent

variable is binary. For example, what factors influence a firm’s decision to initiate

dividends or engage in corporate acquisitions? These questions motivate our focus

on binary factor models. In this context, we consider the following two scenarios.

Case I. Binary factor model without individual effects

Consider the following binary response model for N individuals over T periods,

Yit = 1{λ∗′i f ∗t − εit > 0}, i = 1, . . . , N, t = 1, . . . , T, (1)

where Yit is the observed dummy outcome, 1 {·} is the indicator function, f ∗t =

(f ∗1t, · · · , f ∗r∗t)′ and λ∗i = (λ∗1t, · · · , λ∗r∗t)′ are r∗ × 1 vectors of latent time-varying

factors and latent factor loadings, εit is the error term. Denote Y ∗it = λ∗′i f
∗
t − εit. In

the present setup, there is no time-invariant factor. The number of common factors

in Y ∗it is r = r∗. As in most studies of binary response models, εit is assumed to be

independent of f ∗t and λ
∗
i . It follows that

E(Yit|λ∗i , f ∗t ) = Pε(λ
∗′
i f
∗
t ).

Define the transformation t(λ∗′i f
∗
t ) to be an s-th order Taylor expansion of Pε(λ∗′i f

∗
t )

around µi, a certain value of λ∗′i f
∗
t , e.g., µi = 1

T

∑T
t=1 λ

∗′
i f
∗
t
1. We have,

t(λ∗′i f
∗
t ) = [Pε(µi)− pε(µi)µi +

1

2
p′ε(µi)µ

2
i + · · ·+ (−1)s

s!
p(s−1)
ε (µi)µ

s
i ] + [pε(µi)− µi

× p′ε(µi) + · · ·+ (−1)s−1

(s− 1)!
p(s−1)
ε (µi)µ

s−1
i ]λ∗′i f

∗
t + · · ·+ 1

s!
p(s−1)
ε (µi) (λ∗′i f

∗
t )
s
.

(2)

1Here µi is a single value for easy analysis. In general, µi can take multiple values.
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Then, we obtain the following representation

E(Yit|λ∗i , f ∗t ) = t(λ∗′i f
∗
t ) + ωit, (3)

where ωit = Pε(λ
∗′
i f
∗
t ) − t(λ∗′i f

∗
t ) is the approximation error. Observe that t(λ∗′i f

∗
t )

has a product form, then we shall write t(λ∗′i f
∗
t ) = Λ′iFt with Ft and Λi being R × 1

vectors of common factors and factor loadings. Let Ft = (1, F ∗′t )′ and F ∗t be the

R∗ × 1 of time-varying factors of t(λ∗′i f
∗
t ) with the corresponding factor loadings Λ∗i .

For example, if s = 2, F ∗t = (f ∗1t, · · · , f ∗r∗t, f ∗21t , f
∗
1tf
∗
2t, · · · , f ∗2r∗t)′ and Λ∗i = ((pε(µi) −

µip
′
ε(µi))λ

∗
1i, · · · , (pε(µi)−µip′ε(µi))λ∗r∗i,

p′ε(µi)
2
λ∗21i , p

′
ε(µi)λ

∗
1iλ
∗
2i, · · · ,

p′ε(µi)
2
λ∗2r∗i)

′ withR∗ =

r∗(r∗+3)
2

. Based on (3), (1) can be written as

Yit = Λ′iFt + νit. (4)

In the transformed factor model (4), the error term consists of the approximation

error and the deviation of Yit from E(Yit|λ∗i , f ∗t ), i.e., νit = ηit + ωit where ηit =

Yit−E(Yit|λ∗i , f ∗t ). The transformation demonstrates that applying the principal com-

ponents method to data generated by (1) is equivalent to conducting factor analysis

based on the regression specification (4).

Without loss of generality, the following discussion uses s = 1 as an example

to illustrate the distinction between the transformed factor model and the original

binary factor model:

Yit = Pε(µi)− pε(µi)µi + pε(µi)λ
∗′
i f
∗
t + νit, (5)

where Ft = (1, f ∗′t )′ is an R×1 vector of factors and Λi = (Pε(µi)−pε(µi)µi, pε(µi)λ∗′i )′

is an R × 1 vector of factor loadings with R = r∗ + 1. Notably, an additional time-

invariant factor emerges in the transformed factor model, even though no such factor

exists in Y ∗it in the original binary factor model. This observation has an important

implication to applied researchers. If the common component λ∗′i f
∗
t moves around µi

such that the moments of Yit − t(λ∗′i f ∗t ) exist up to the eighth order, it is possible to

apply principal component analysis to the binary data using an adjusted number of

factors. Specifically, the number of factors specified should be R > r∗; otherwise, the
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principal component analysis would yield biased estimates. If one applies Bai and

Ng (2002)’s or Ahn and Horenstein (2013)’s methods to binary response data, the

estimator will indicate the number of factors in the transformed factor model, i.e., R,

rather than the number of factors in the original binary factor model r∗.

Case II. Binary factor model with individual effect

From the above analysis, applying the principal components method to binary

response data can yield consistent estimates of Ft if the number of factors R >

r∗ is correctly specified. Consider another popular binary factor specification that

incorporates both unobserved time-invariant individual effects and latent time-varying

factors.

Yit = 1{α∗i + λ∗′i f
∗
t − εit > 0}, (6)

where f ∗t and λ
∗
i are r

∗ × 1 vectors of latent time-varying factors and factor loadings

with E(f ∗t ) = 0. Here α∗i can be viewed as the factor loading for a time-invariant

factor. Note that if E(f ∗t ) = c 6= 0, one can normalize latent time-varying factors

and the unobserved individual effect to f̃ ∗t = f ∗t − c and α̃∗i = α∗i + λ∗′i c. Clearly,

the resulting model Yit = 1{α̃∗i + λ∗′i f̃
∗
t − εit > 0} reverts to the setup of (6). Let

ft = (1, f ∗′t )′ be the vector of common factors and λi = (α∗i , λ
∗′
i )′ be the vector of

latent factor loadings in Y ∗it = α∗i + λ∗′i f
∗
t − εit. The number of common factors in Y ∗it

is denoted by r = r∗ + 1.

Following (3), we use an s-th order Taylor expansion around µi to approximate

the cumulative distribution function of εit to obtain

E(Yit|α∗i , λ∗i , f ∗t ) = Pε(α
∗
i + λ∗′i f

∗
t ) = t(α∗i + λ∗′i‘ f

∗
t ) + ωit.

The transformation results in a representation in product form t(α∗i + λ∗′i f
∗
t ) = Λ′iFt,

where Ft = (1, F ∗′t )′, and F ∗t is the R
∗ × 1 vector of time-varying factors with fac-

tor loadings Λ∗i . If s = 2, then F ∗t = (f ∗1t, · · · , f ∗r∗t, f ∗21t , f
∗
1tf
∗
2t, · · · , f ∗2r∗t)′ and Λ∗i =

((pε(µi) + (αi− µi)p′ε(µi))λ∗1i, · · · , (pε(µi) + (αi− µi)p′ε(µi))λ∗r∗i,
p′ε(µi)

2
λ∗21i , p

′
ε(µi)λ

∗
1iλ
∗
2i,

· · · , p
′
ε(µi)

2
λ∗2r∗i)

′. Once the transformation is applied, (6) can be represented as

Yit = Λ′iFt + νit, (7)
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where the composite error νit = ηit +ωit with ηit = Yit−Pε(α∗i +λ∗′i f
∗
t ). Applying the

principal components method to the data generated by (6) is equivalent to the factor

analysis based on the regression specification (7).

Consider the case s = 1 for a comparison with (5). According to (7),

Yit = Pε(µi) + pε(µi)(αi − µi) + pε(µi)λ
∗′
i f
∗
t + νit. (8)

Under the transformation, Ft = (1, f ∗′t )′ is an R × 1 vector of common factors and

Λi = (Pε(µi) + pε(µi)(αi − µi), pε(µi)λ∗′i )′ is an R × 1 vector of factor loadings with

R = r∗ + 1. Unlike model (1), the transformation does not generate an additional

time-invariant factor as both model (6) and (8) already include it. Despite Ft = ft and

R = r∗+ 1 in the transformed factor model, determining the number of factors in (8)

poses a challenge for implementing the principal components method. In particular,

the generated term, associated with the time-invariant factor by the transformation,

complicates the estimation of the number of factors using existing methods such as

Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013). For example, Ahn

and Horenstein (2013)’s approach relies on the ratio of adjacent eigenvalues of the

outer-product of the data (i.e., their ER criterion) or the ratio of residual variances

from recursive factor-based predictive regressions (i.e., their GR criterion). However,

in (8), the variation of the individual effect relative to that of the product associated

with time-varying factors is likely to be much larger than in (6) due to the additional

term Pε(µi)− pε(µi)µi introduced by the transformation. As a result, the number of
factors may be underestimated to be one, i.e., R̂ = 1.

In general, the transformed factor model not only expands the factor space that

may include high order terms of time-varying factors and arisen time-invariant factor,

but also may exaggerate the explanatory power of the unobserved individual fixed

effects in the total variation of Yit, such that the eigenvalue corresponding to the

time-invariant factor dominates those of time-varying factors (f ∗t ). Once the number

of factors is misspecified, the principal components method yield misleading results

when applied to binary response data.

Remark 1 Ng (2015) estimates common factors from categorical data but does not

explain overestimation or underestimation of the number of factors. Here we provide
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a theoretical explanation for the irregularity stemming from the expanded factor space.

It serves as the basis of our estimation strategy.

3 Adjusted Principal Components Estimation

When a time-invariant factor is dominant in determining the variation in the

binary response data Yit, standard criteria may lead to misleading estimates for the

number of factors. For example, Monte Carlo simulations in Section 6 demonstrate

that Ahn and Horenstein’s (2013) criteria tend to underestimate the true number of

factors in the transformed factor model. In addition, the transformed factor model

may contain the high order terms of time-varying factors up to an unknown order.

All these motivate us to develop a robust procedure to estimate common factors for

the data of binary response consistently. Our adjusted principal components (APC)

estimation algorithm is described below.

Step 1: Determine the number of common factors R in the transformed factor

model.

For linear factor models, Bai and Ng (2002) estimated the number of factors by

minimizing the PC or IC criterion function. Onatski (2010) estimated the number of

factors using the differenced eigenvalues. In the finite sample, these estimates could be

sensitive to the threshold value specified in the penalty function. In subsequent work,

Ahn and Horenstein (2013) proposed the eigenvalue ratio and growth ratio criteria

to determine the number of factors that are free of any penalty terms. However, in

the case of a dominant time-invariant factor, the eigenvalue or growth ratio test yield

misleading estimates for the number of factors in the binary response data.

Stack Yit into an N × T matrix Y and let uNT,k be the k-th largest eigenvalue of

Y′Y/ (NT ). Define the criterion functions

BER(r̃) =
uNT,r̃
uNT,r̃+1

and BGR(r̃) =
ln[V (r̃ − 1)/V (r̃)]

ln[V (r̃)/V (r̃ + 1)]
,

where V (r̃) =
∑T

m=r̃+1 uNT,m is the sample mean of the squared residuals from re-

gressing Yit on the first r̃ principal components of Y′Y/ (NT ). The terms BER and
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BGR refer to “binary eigenvalue ratio”and “binary growth ratio”respectively. Then,

we propose the adjusted eigenvalue ratio test for R, the number of common factors

in Yit. The estimators are defined as

R̂BER = arg max
2≤r̃≤Rmax

BER(r̃) and R̂BGR = arg max
2≤r̃≤Rmax

BGR(r̃). (9)

Note that (9) differs from Ahn and Horenstein (2013)’s ER or GR method in that

(9) searches for maxima of BER(r̃) and BGR(r̃) over {2, · · · , Rmax} rather than the
traditional {1, 2, · · · , Rmax}, so the possible dominant influence from the augmented

time-invariant factor is ruled out. This adjustment is crucial for determining the

number of factors and thus providing factor estimates.

Step 2: Estimate the common factors Ft in the transformed factor model

Once a consistent estimate of R is available, we estimate the common factors

in the transformed factor model using principal components method with R̂BER(or

R̂BGR) factors. Hereafter the BER criterion is adopted for easy notations. (Λi, Ft)

can be estimated by the solution to the minimizing the following criterion function

SNT (Λ̃i, F̃t) =
1

NT

N∑
i=1

T∑
t=1

(
Yit − Λ̃′iF̃t

)2

,

where Λ̃i and F̃t are R̂BER×1 vectors of parameters subject to F̃′F̃
/
T = IR̂BER with

F̃ = (F̃1, ..., F̃T )′ and Λ̃′Λ̃ being diagonal with distinct entries with Λ̃ = (Λ̃1, ..., Λ̃N)′.

Concentrating out Λ̃, the estimator for common factors in the transformed factor

model is

F̂BER = arg max
F̃∈F

tr(F̃′(Y′Y)F̃), (10)

where F̂BER = (F̂BER,1, · · · , F̂BER,T )′ and F = {F̃ : F̃′F̃
/
T = IR̂BER}. Subse-

quently, the estimator for factor loadings in the transformed factor model is

Λ̂BER = F̂′BERY
/
T. (11)
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It is well known that F =(F1, ..., FT )′ is identified up to a rotation. Namely, there

exists an invertible R̂BER × R̂BER matrix H such that F̂BER is an estimator of FH

and Λ̂BER is an estimator of ΛH′−1.

Step 3: Determine the order of expansion s in the transformation.

Based on Step 1, it is straightforward to estimate the number of time-varying

factors in the transformed factor model by

R̂∗BER = R̂BER − 1 and R̂∗BGR = R̂BGR − 1.

Although the order of expansion to the distribution function of εit is unknown to

researchers, we have shown that the time-varying factors in (4) or (7) are polynomial

functions of the factors in (1) or (6). This finding allows us to determine s (≤ R̂∗BER)

by regressing each of time-varying factor on the s̃-th power of other factors sequentially

for s̃ = R̂∗BER, R̂
∗
BER − 1, · · · , 2.

Specifically, For R̃ = 1, · · · , R̂BER,

F̂BER,R̃t = F̂ s̃′
BER,R̃−t

γR̃,s̃ + vt (12)

where F̂BER,R̃t is the R̃-th argument of F̂BER,t and F̂ s̃
BER,R̃−t

denotes a (R̂BER −

1)×1 vector of
(
F̂BER,1t

)s̃
, · · · ,

(
F̂BER,(R̃−1)t

)s̃
,
(
F̂BER,(R̃+1)t

)s̃
, · · · ,

(
F̂BER,R̂BERt

)s̃
.

Apparently we shall conduct a F -test or observe R2 to examine whether F̂BER,R̃t is a

linear combination of s̃-th power of other factors. Let γ̂R̃,s̃ be the least square estimate

from the regression specification (12). We repeat the above procedure in sequence for

s̃ = R̂∗BER, R̂
∗
BER− 1, · · · , 2. The estimate of s, ŝ, is the maximum of s̃ such that γR̃,s̃

for some R̃ significantly differs from zero.

For example, if R̂BER = 3, then we regress F̂BER,1t on (F̂ 2
BER,2t, F̂

2
BER,3t), F̂BER,2t

on (F̂ 2
BER,1t,

F̂ 2
BER,3t) and F̂BER,3t on (F̂ 2

BER,1t, F̂
2
BER,2t) respectively

2. If any slope coeffi cient esti-

mate is statistically significant, ŝ = 2; otherwise, ŝ = 1.

2One of F̂BER,1t, F̂BER,2t and F̂BER,3t is the estimate of the time invariant factor.
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Step 4: Estimate the common factor ft in the binary factor model.

The estimates of factors and factor loadings in the transformed factor model will

be useful for forecast. In the meantime, researchers may be interested in learning

about the economic factors that influence the individual’s decision. Therefore, our

ultimate goal is estimation of ft.

Our analysis indicates that F ∗t consists of f
∗
t and its high order terms. Denote

F̂BER,t = (F̂BER,1t, F̂
∗
BER,t) where F̂BER,1t is the estimate of the time invariant factor

and F̂ ∗BER,t is the estimate of F
∗
t . In practice, it is tractable to determine F̂BER,1t since

it has very small sample variance. Once F̂ ∗BER,t is recognized, regress each estimated

factor, F̂ ∗
BER,R̃∗t

, on high order terms of other factors up to ŝ, i.e.

F̂ ∗
BER,R̃∗t

= F̂
∗(ŝ)′
ŝ,R̃∗−t

δR̃∗ + vt

where F̂BER,R̃∗t is the R̃
∗th argument of F̂ ∗BER,t, and F̂

∗(ŝ)
R̃∗−t

denotes a vector that

includes higher order terms of other factors up to the ŝ-th order. For example, if ŝ = 2

and R̂∗BER = 2, then we regress F̂ ∗BER,1t on
(
F̂ ∗BER,2t

)2

and F̂ ∗BER,2t on
(
F̂ ∗BER,1t

)2

.

F̂ ∗
BER,R̃∗t

is classified as the generated factor by the transformation if the least square

estimate δ̂R̃∗ is significantly different from zero.

According to the above rule, we determine r and obtain the matrix Sf which

selects the r̂× 1 subvector from a R̂BER× 1 vector. Subsequently, f̂t, the estimate of

ft, has the following representation,

f̂t = Sf F̂BER,t.

For example, if the last R̂BER − r̂ elements of F̂BER,t is a linear combination of some

order terms of the rest elements, then Sf =


1 0 · · · · · · 0

0 1 · · · · · · 0
...

...
...

0 · · · 1 · · · 0


r̂×R̂BER

.
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Remark 2 In contrast with Wang’s (2022) maximum likelihood estimation of non-

linear factor models, our estimation is free of the error’s distribution, and avoid the

inconsistency caused by arbitrary choices of initial values.

Remark 3 Although the target is the common factor in the binary factor model, our

estimation strategy starts from the transformed factor model rather than the original

model, which is different from the factor analysis in the linear model.

Remark 4 Ng (2015) suggested removing individual effects using the overtime de-

mean method. However, it does not make sense to apply the demean approach to

higher order terms.

4 Extension: Ordered Factor Models

This section extends the proposed APC method to ordered response data. We

consider a classical ordered factor model with K responses,

Yit =



1, if Y ∗it < a1

...
...

k, ak−1 ≤ Y ∗it < ak
...

...

K , Y ∗it ≥ aK−1

, (13)

where the latent outcome is Y ∗it = λ∗′i f
∗
t − εit with λ∗i and f ∗t defined as before.

{a1 < · · · < aK−1} is the sequence of threshold values for a given positive integer
K ≥ 2.

Provided that εit is independent of λ∗i and f
∗
t , we obtain the following condition,

E(Yit|λ∗i , f ∗t ) = 1− Pε(λ∗′i f ∗t − a1) + · · ·+ k · [Pε(λ∗′i f ∗t − ak−1)− Pε(λ∗′i f ∗t − ak)] + · · ·

+K · Pε(λ∗′i f ∗t − aK−1)

= 1 +

K∑
k=1

Pε(λ
∗′
i f
∗
t − ak) = t(λ∗′i f

∗
t ) + ωit. (14)

13



The transformation t(λ∗′i f
∗
t ) is an s-th order expansion of Pε(λ∗′i f

∗
t −ak) around λ∗′i f ∗t =

µi. Similar to the binary factor model, the transformation has a product form i.e.,

t(λ∗′i f
∗
t ) = Λ′iFt where Λi and Ft are R× 1 vectors of factors and factor loadings. For

example, when K = 3 and s = 2, Λi = (1 +Pε(µi− a1) +Pε(µi− a2)− (pε(µi− a1) +

pε(µi−a2))µi+
1
2
(p′ε(µi−a1)+p′ε(µi−a2))µ2

i , (pε(µi−a1)+pε(µi−a2))λ∗′i ,
1
2
(p′ε(µi−a1)

+p′ε(µi−a2))λ∗21i , (p
′
ε(µi−a1)+p′ε(µi−a2))λ∗1iλ

∗
2i, · · · , 1

2
(p′ε(µi−a1)+p′ε(µi−a2))λ∗2r∗i)

′

and Ft = (1, f ∗1t, · · · , f ∗r∗t, f ∗21t , f
∗
1tf
∗
2t, · · · , f ∗2r∗t)′ with R = 1 + r∗(r∗+3)

2
.

Based on (14), (13) is transformed to be

Yit = Λ′iFt + νit. (15)

where νit = ηit+ωit with ηit = Yit−E(Yit|λ∗i , f ∗t ). It seems to make sense to apply the

traditional eigenvalue ratio test, but just like the case for binary data, the expansion

give rise to high order terms of the true time-varying factors, and additional time-

invariant items in (14) may exaggerate the explanatory power of the time-invariant

factor to the extent that it dominates other factors. Once the dominant factor arises,

the ER or GR test tends to underestimate of the number of factors. This motives us

to use the adjusted principle components estimation.

The estimation algorithm for the categorical data factor model follows the same

procedure as in the binary factor model. First, we determine the number of factors

in (15) according to

R̂OER = arg max
2≤r̃≤Rmax

uNT,r̃
uNT,r̃+1

and R̂OGR = arg max
2≤r̃≤Rmax

ln[V (r̃ − 1)/V (r̃)]

ln[V (r̃)/V (r̃ + 1)]
,

where uNT,r̃ and V (r̃) are defined as before. The domain of r̃ is {2, · · · , Rmax} in
order to avoid the dominant influence of the time invariant factor. Next, we apply

the principal components method by controlling for R̂OER factors. The estimator for

the factors in the transformed factor model F = (F1, · · · , FT ) is

F̂OER = arg max
F̃

tr(F̃′(Y′Y)F̃),

14



where F̃ is a T × R̂OER matrix subject to F̃′F̃
/
T = IR̂OER . The estimator for the

factor loadings Λ = (Λ1, · · · ,ΛN) is

Λ̂OER = F̂′OERY′
/
T.

Third, determine the order of expansion (s) by sequentially regressing each factor on

certain higher order terms of other factors. For R̃ = 1, · · · , R̂OER, run the regression

F̂OER,R̃t = F̂ s̃′
OER,R̃−t

γR̃,s̃ + vt,

where F̂OER,R̃t denotes the R̃th argument of F̂OER,t and F̂
s̃′
OER,R̃−t

is a (R̂OER− 1)× 1

vector of
(
F̂OER,1t

)s̃
, · · · ,

(
F̂OER,(R̃−1)t

)s̃
,
(
F̂OER,(R̃+1)t

)s̃
, · · · ,

(
F̂OER,R̂BERt

)s̃
. One

can obtain a sequence of coeffi cient estimates γ̂R̃,s̃ for s̃ = R̂∗OER, R̂
∗
OER − 1, · · · , 2.

Then the order of expansion is determined by the maximum of s̃ such that γR̃,s̃

significantly differs from zero for some R̃. Decompose F̂OER,t = (F̂OER,1t, F̂
∗
OER,t)

where F̂ ∗OER,t is the estimate of F
∗
t . Subsequently, regress each estimated factor,

F̂ ∗
OER,R̃∗t

, on high order terms of other factors up to ŝ, i.e.

F̂ ∗
OER,R̃∗t

= F̂
∗(ŝ)′
ŝ,R̃∗−t

δR̃∗ + vt

where F̂ ∗
OER,R̃∗t

is the R̃∗th argument of F̂ ∗OER,t and F̂
∗(ŝ)
R̃∗−t

is a vector composed of

second order up to ŝ order terms of other factors. If the least square estimate δ̂R̃∗

is significantly different from zero, F̂ ∗
OER,R̃∗t

does not belong to the class of factors

in the original model. The selection rule determines the selection matrix Sf which

selects the r̂×1 subvector from a R̂OER×1 vector. It follows that the APC estimator

of f is

f̂t = Sf F̂OER,t.
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5 Asymptotic Properties

This section will develop the asymptotic theory for our proposed APC estimator.

Following Ahn and Horenstein (2013)’s Theorem 1, we establish the consistency of

R̂BER. As Bai (2003) has pointed out, the asymptotic distribution of the factor esti-

mator is not affected by the estimated number of factors if it is consistent. Likewise,

the consistent estimate of s does not influence the asymptotic distribution of f̂t, which

is essentially the subvector of F̂BER,t. Hence, the asymptotic distribution of F̂BER is

derived under the premise that R and s are treated as known.

Assumption 1. εit is independent of (λ∗i , f
∗
t ), and the common density function of

εit, pε(µi), is s-order continuously differentiable.

Assumption 2. E ‖Ft‖4 ≤ M and E ‖Λi‖4 ≤ M for a positive number M and all

(i, t). There exists positive definite matrix ΣΛ and ΣF such that 1
T

∑T
t=1 FtF

′
t

p→ ΣF

and 1
N

∑N
i=1 ΛiΛ

′
i

p→ ΣΛ.

Assumption 3. (i)

E(νit) = 0 and E(|νit|8) ≤M ;

(ii) Let γst = E[N−1
∑N

i=1 νisνit]. Assume that |γtt| ≤ M and
∑T

s=1 |γst| ≤ M for all

t uniformly in T ;

(iii) Let σij,ts = E(νitνjs). ∑
j

|σij,tt| ≤M

for all (i, t) and
1

NT

∑
i

∑
j

∑
s

∑
t

|σij,ts| ≤M

uniformly in N and T .

(iv) For all (s, t),

E

∣∣∣∣∣N1/2

N∑
i=1

[νisνit − E(νisνit)]

∣∣∣∣∣
4

≤M.
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Assumption 4.

E

 1

T

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
i=1

Λiνit

∥∥∥∥∥
2
 ≤M and E

 1

N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

Ftνit

∥∥∥∥∥
2
 ≤M.

Assumption 5. The eigenvalues of the matrix ΣΛ · ΣF are distinct with a finite R.

Assumption 1 is a standard smoothness condition made for the expansion in the

transformation. In Assumption 2, moment restrictions are imposed on Ft and Λi to

ensure the nontrivial contribution of each factor in the transformed factor model. This

assumption implies a higher order moment requirement on the factor in the binary

factor model if s ≥ 2. Assumption 3 (i) sets E(νit) = 0, otherwise one can redefine the

error term to be ν̃it = νit−E(νit) and E(νit) is absorbed into the time-invariant factor.

Assumption 3 (ii)-(iv) are high-level conditions to restrict the dependence of νit over

time and across individuals. Despite the same format as Bai (2003), Assumption 3

has a distinct implication since the composite error νit consists of two components.

One is ηit that represents the distance between Yit and the propensity score similar

to the error term in the linear factor model. The other component ωit characterizes

the discrepancy between the propensity score and the transformation. In light of

the expansion, ωit is the Lagrange remainder of the form 1
(s+1)!

p
(s)
ε (µ̄it) (λ∗′i f

∗
t − µi)

s+1

where µ̄it lies between λ∗′i f
∗
t and µi. Hence Assumption 3 (ii)-(iv) not only require the

weak dependence of ηit, but also restrict the dynamic properties of f ∗t . This restriction

is not strong due to the existence of p(s)
ε (µ̄it). Assumption 4 allows for weak correlation

of Ft and νit. In the linear factor model, the error term may be independent of factors

and factor loadings, however, νit is not because the remainder ωit contains λ∗′i f
∗
t up

to (s + 1)-th order. The s-th order derivative of pε(·) which is nested in ωit plays
an important role as the weight to automatically "eliminate" the influence of outlier

factor observations to guarantee the weak correlation. The idea that utilizes the

weight to tackle outlier observations is also applied by Dong et al. (2021) to the

context of sieve time series model. Ours differs from their strategy in that the former

gives rise to the weight automatically in the process of transformation, whereas the

latter constructs the weight manually. In the APC estimation, the determination
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of the common factors in the first step ensures that Assumption 4 holds naturally.

Assumption 5 helps to identify Ft up to a rotation H. It is similar to the familiar

positive definiteness condition and rules out any collinearity among Ft. This explains

why the same factors in the transformation (2) are merged.

For the asymptotic theory, stack Yit into a T × N matrix Y, and let UNT =

diag(uNT,1, · · · , uNT,R) where uNT,1 > · · · > uNT,R are the R largest eigenvalues of
1
NT

YY′. The next theorem shows the consistency of F̂BER.

Theorem 1 Suppose Assumption 1-5 hold, then (i) plimT,N→∞
F̂′BERF

T
= Q. In par-

ticular, Q = U1/2Υ′Σ
−1/2
Λ is invertible, where U = diag(u1, · · · , uR) is a diagonal ma-

trix with u1 > · · · > uR > 0 as the eigenvalues of Σ
1/2
Λ ΣFΣ

1/2
Λ , and Υ is the correspond-

ing eigenvector matrix such that Υ′Υ = IR. (ii) 1
T

∥∥∥F̂BER − FH
∥∥∥2

= Op

(
1

min{N,T}

)
,

where H =
(

Λ′Λ
N

) (
F′F̂BER

T

)
U−1
NT .

Theorem 1 (i) shows that F̂′BERF

T
has a unique probability limit. It implies that

the spaces spanned by F̂BER and F are asymptotically the same. In light of infinite

dimension, Theorem 1 (ii) provides the average norm consistency of F̂BER. There are

two sources of nonlinearity in the binary factor model. One comes from the limited

dependent variable, the other is the factor form in the latent outcome. Maximum

likelihood estimation (MLE) has been widely applied in traditional studies of models

with limited dependent variable. Nevertheless, it may fail to consistently estimate the

binary factor model due to the identification issue. As a result, the MLE estimates

are sensitive to the choice of initial values in practice. In addition, the maximum

likelihood estimation relies on the correct specification of the distribution of the error

term εit. To address such issues, especially the nonlinear problem, this paper employs

the transformation (expansion) for the nonlinear model and applies the principal

components analysis for the transformed model after adjusting the number of factors.

It is notable that adjustment of the number of factors is crucial for our consistent

estimation of the factors. In addition, the (estimated) factor in Theorem 1 is for the

transformed factor model but not for the original binary factor model, although the

latter is a subvector of the former.
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Assumption 6. (i)

E

∥∥∥∥∥ 1√
NT

T∑
s=1

N∑
i=1

Fs[νisνit − E(νisνit)]

∥∥∥∥∥
2

≤M

for any t;

(ii)

E

∥∥∥∥∥ 1√
NT

T∑
t=1

N∑
i=1

FtΛ
′
iνit]

∥∥∥∥∥
2

≤M ;

(iii) For any t,

1√
N

N∑
i=1

Λiνit
d→ N(0,Ωt),

where Ωt = plimN→∞
1
N

∑N
i=1

∑N
j=1 ΛiΛ

′
jνitνjt. For any i,

1√
T

T∑
t=1

Ftνit
d→ N(0,Ωi),

where Ωi = plimT→∞
1
T

∑T
s=1

∑T
t=1 FsFtνisνit.

Assumption 6 (i)-(ii) are suffi cient but not necessary moment conditions for deriv-

ing the limiting distribution. Assumption 6 (iii) holds by the central limit theorem for

mixing processes or martingale difference processes under various circumstances. In

contrast with the traditional condition that E (Λiνit) = 0 and E (Ftνit) = 0, Assump-

tion 6 (iii) only requires that asymptotic bias is negligible, that is, 1√
N

∑N
i=1 Λiνit =

op(1) and 1√
T

∑T
t=1 Ftνit = op(1). The next theorem provides the limiting distribution

for the APC estimator.

Theorem 2 Suppose Assumptions 1-6 hold. (i) If
√
N
T
→ 0, then for each t,

√
T (F̂BER,t−H′Ft) = U−1

NT

(
F̂′BERF

T

)
1√
N

N∑
i=1

Λiνit+op(1)
d→ N(0,U−1HΩtH

′U−1).
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(ii) If
√
T
N
→ 0, then for each i,

√
N(Λ̂BER,i −H−1Λi) = U−1

NT

(
F̂′BERF

T

)(
Λ′Λ

N

)
1√
T

N∑
i=1

Ftνit + op(1)

d→ N(0, (H′)−1Ωi(H)−1).

Theorem 2 provides the limiting distributions for F̂BER,t and Λ̂BER,i, the estimated

factors and factor loadings in the transformed factor model. The covariance matrix

of F̂BER,t can be estimated by its sample analogue:

Π̂t = U−1
NT

1

N

N∑
i=1

Λ̂BER,iΛ̂
′
BER,iν̂

2
itU
−1
NT ,

where UNT is the diagonal matrix consisting of R eigenvalues of Y′Y/ (NT ) and

ν̂it = Yit − Λ̂′BER,iF̂BER,t. To derive the limiting distribution for f̂t, we employ the

fact that f̂t is a subvector of F̂BER,t. With slight abuse of notations, replace R̂BER

and r̂ in Sf with the true value RBER and r. Write Hs = SfHS ′f . We obtain

√
N(f̂t−H′sft) = SfU

−1
NT

(
F̂′BERF

T

)
1√
N

N∑
i=1

Λiνit+op(1)
d→ N(0, SfU

−1HΩtH
′U−1S ′f ).

In practice, applied researchers are usually interested in estimating the propensity

score, Pε(λ∗′i f
∗
t ), since it indicates the probability of individual i’s action at time

period t. In this case, we recommend controlling a larger number of factors (R̃ >>

R) for the principal components analysis, and then employ the resulting estimates

Λ̃′BER,iF̃BER,t for Λ̃′iF̃t to consistently estimate Pε(λ
∗′
i f
∗
t ). We summarize the the

limiting distribution of the propensity score estimator in the following theorem.

Theorem 3 Suppose Assumption 1-6 hold and δ2
NTE

[
maxλ∗′i f∗t

(
Λ̃′iF̃t − Pε(λ∗′i f ∗t )

)2
]
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= o(1) with δNT = min{
√
N,
√
T} and R̃δ−1

NT → 0. Then,

(
1

N
W

(1)
it +

1

T
W

(2)
it

)−1/2 (
Λ̃′BER,iF̃BER,t − Pε(λ∗′i f ∗t )

)
d→ N(0, 1).

In particular,W (1)
it = Λ̃′iΣ

−1

Λ̃
Ω̃tΣ

−1

Λ̃
Λ̃i andW

(2)
it = F̃ ′tΣ

−1

F̃
Ω̃iΣ

−1

F̃
F̃t where ΣΛ̃ = plimN→∞

1
N

∑N
i=1 ΛiΛ

′
i, Ω̃t = plimN→∞

1
N

∑N
i=1

∑N
j=1 Λ̃iΛ̃

′
j ν̃itν̃jt, ΣF̃ = plimT→∞

1
N

∑T
t=1 F̃tF̃

′
t

and Ω̃i = plimT→∞
1
T

∑T
s=1

∑T
t=1 F̃sF̃tν̃isν̃it with ν̃it defined analogous to vit.

6 Monte Carlo Simulations

This section carries out a set of experiments to provide numerical evidence for

the findings in Section 2 and verifies the robust performance of the proposed APC

estimator. We consider the following data generating processes for binary outcomes.

DGP I: Yit = 1{λ∗f ∗t − εit > 0} where εit follows the logistic distribution with mean
zero and variance one;

DGP II: Yit = 1{λ∗i f ∗t − εit > 0} where εit follows the standard normal distribution;
DGP III: Yit = 1{λ∗i f ∗t − εit > 0} where εit =

√
0.8ε1it +

√
0.2ε2it. ε1it follows a

gamma distribution with mean zero and variance one, and ε2it follows a standard

normal distribution;

DGP IV: Yit = 1{α∗i +λ∗i f
∗
t −εit > 0} where εit follows the logistic distribution with

mean zero and variance one;

DGP V: Yit = 1{α∗i + λ∗i f
∗
t − εit > 0} where εit follows the standard normal distrib-

ution;

DGP VI: Yit = 1{α∗i + λ∗i f
∗
t − εit > 0} where εit =

√
0.8ε1it +

√
0.2ε2it. ε1it follows

a gamma distribution with mean zero and variance one, and ε2it follows a standard

normal distribution.

DGP VII: Yit = 1{λ∗′i f ∗t − εit > 0} where εit follows the logistic distribution with
mean zero and variance one;

DGP VIII: Yit = 1{λ∗′i f ∗t − εit > 0} where εit follows the standard normal distribu-
tion;

DGP IX: Yit = 1{λ∗′i f ∗t − εit > 0} where εit =
√

0.8ε1it +
√

0.2ε2it. ε1it follows a
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gamma distribution with mean zero and variance one, and ε2it follows a standard

normal distribution.

In DGP I-VI, λ∗i and f
∗
t are i.i.d N(0, 1) for all i and t. The DGP I-III contain

no time invariant factor with r = 1, whereas DGP IV-VI have the individual effects

αi = 0.5wi with r = 2 where wi˜N(0, 1). In DGP VII-IX, λ∗i = (λ∗1i, λ
∗
2i)
′ and f ∗t =

(f ∗1t, f
∗
2t)
′ where λ∗1i, λ

∗
2i, f

∗
1t, f

∗
2t are i.i.d N(0, 1) for all i and t. The number of factors is

r = 2. We consider various error specifications including the logistic distribution, the

normal distribution, and mixture of normal and gamma distributions. The sample size

is (N, T ) ∈ {(50, 50), (100, 50), (50, 100), (100, 100)}. Each experiment is replicated
1000 times (REP = 1000).

Table 1 compares the proposed BER test with Ahn and Horenstein (2013)’s ER

test. The results from comparing BGR and GR tests are similar and are not reported

here. On one hand, the numerical results verify our theoretical conjecture that the

number of factors controlled in the principal components analysis should be the num-

ber of factors R in the transformed factor model rather than the number of factors

r in the original binary factor model. What the test determines is R instead of r.

On the other hand, according to the first two columns in each panel of Table 1, ER

method underestimates R to be one with a large probability for all DGPs, and the

probability of misjudgment substantially increases when more factors are involved,

Table 1. Coverage Rate: ER vs. BER

ER Demeaned ER BER

R̂ 1 2 3 1 2 3 1 2 3

(N, T ) = (50, 50)

DGP I 0.328 0.672 - 1.000 0.000 - 0.000 1.000 -

DGP II 0.489 0.511 - 1.000 0.000 - 0.000 1.000 -

DGP III 0.429 0.571 - 1.000 0.000 - 0.000 1.000 -

DGP IV 0.577 0.423 - 1.000 0.000 - 0.000 1.000 -

DGP V 0.673 0.327 - 1.000 0.000 - 0.000 1.000 -

DGP VI 0.597 0.403 - 1.000 0.000 - 0.000 1.000 -

DGP VII 0.820 0.001 0.179 0.006 0.9940 0.000 0.000 0.010 0.990

DGP VIII 0.919 0.000 0.081 0.014 0.986 0.000 0.000 0.014 0.986

DGP IX 0.842 0.001 0.157 0.005 0.995 0.000 0.000 0.007 0.993
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Table 1 Con’t. Coverage Rate: ER vs. BER

ER Demeaned ER BER

R̂ 1 2 3 1 2 3 1 2 3

(N, T ) = (100, 50)

DGP I 0.088 0.912 - 1.000 0.000 - 0.000 1.000 -

DGP II 0.189 0.811 - 1.000 0.000 - 0.000 1.000 -

DGP III 0.137 0.863 - 1.000 0.000 - 0.000 1.000 -

DGP IV 0.273 0.727 - 1.000 0.000 - 0.000 1.000 -

DGP V 0.404 0.596 - 1.000 0.000 - 0.000 1.000 -

DGP VI 0.301 0.699 - 1.000 0.000 - 0.000 1.000 -

DGP VII 0.423 0.000 0.577 0.000 1.000 0.000 0.000 0.000 1.000

DGP VIII 0.609 0.000 0.3910 0.0010 0.999 0.000 0.000 0.0010 0.999

DGP IX 0.483 0.000 0.517 0.0010 0.999 0.000 0.000 0.0010 0.999

(N, T ) = (50, 100)

DGP I 0.088 0.912 - 1.000 0.000 - 0.000 1.000 -

DGP II 0.181 0.819 - 1.000 0.000 - 0.000 1.000 -

DGP III 0.135 0.865 - 1.000 0.000 - 0.000 1.000 -

DGP IV 0.283 0.717 - 1.000 0.000 - 0.000 1.000 -

DGP V 0.408 0.592 - 1.000 0.000 - 0.000 1.000 -

DGP VI 0.315 0.685 - 1.000 0.000 - 0.000 1.000 -

DGP VII 0.425 0.000 0.575 0.000 1.000 0.000 0.000 0.001 0.999

DGP VIII 0.610 0.000 0.390 0.001 0.999 0.000 0.000 0.001 0.999

DGP IX 0.474 0.000 0.526 0.000 1.000 0.000 0.000 0.000 1.000

(N, T ) = (100, 100)

DGP I 0.002 0.998 - 1.000 0.000 - 0.000 1.000 -

DGP II 0.010 0.990 - 1.000 0.000 - 0.000 1.000 -

DGP III 0.004 0.996 - 1.000 0.000 - 0.000 1.000 -

DGP IV 0.028 0.972 - 1.000 0.000 - 0.000 1.000 -

DGP V 0.070 0.930 - 1.000 0.000 - 0.000 1.000 -

DGP VI 0.031 0.969 - 1.000 0.000 - 0.000 1.000 -

DGP VII 0.016 0.000 0.984 0.000 1.000 0.000 0.000 0.000 1.000

DGP VIII 0.052 0.000 0.948 0.000 1.000 0.000 0.000 0.000 1.000

DGP IX 0.030 0.000 0.970 0.000 1.000 0.000 0.000 0.000 1.000
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especially with small or moderate sample sizes. In contrast, the last two columns in

each panel illustrate that the BER method consistently estimates R and the coverage

rate increases as the sample size increases. Also, the middle two columns report the

ER test on the overtime demeaned Yit and the result verifies our conjecture that the

additional/dominant term comes from the time-invariant factor.

Next, we examine the numerical performance of the APC estimator. In all exper-

iments, the APC method works well without pre-specifying the error’s distribution.

For example, in the case where errors follow a mixture of normal and gamma dis-

tributions, the property of MLE is unknown due to the unknown density of εit, but

the APC method performs well. Unlike Bai (2003) and Wang (2022), there are two

time-varying factors in DGP VI-IX, and then it is not straightforward to compare

correlation coeffi cients among DGPs. Instead, Table 2 regresses each factor on the

estimate F̂t i.e., f ∗r,t = F̂ ′BER,tβr + error and computes the corresponding R-squared

that essentially plays the same role as the correlation coeffi cient. The large value of

R-squared verifies our theoretical conjecture that F̂t estimates an orthogonal trans-

formation of f ∗r,t.

Table 2. R-square of the APC Estimator

(N, T ) (50, 50) (100, 50) (50, 100) (100, 100)

R2
f∗1

R2
f∗2

R2
f∗1

R2
f∗2

R2
f∗1

R2
f∗2

R2
f∗1

R2
f∗2

DGP I 0.8812 - 0.9036 - 0.8844 - 0.9055 -

DGP II 0.8857 - 0.9110 - 0.8882 - 0.9125 -

DGP III 0.8847 - 0.9047 - 0.8855 - 0.9062 -

DGP IV 0.8887 - 0.9136 - 0.8922 - 0.9151 -

DGP V 0.8910 - 0.9179 - 0.8926 - 0.9192 -

DGP VI 0.8907 - 0.9125 - 0.8914 - 0.9137 -

DGP VII 0.8712 0.8716 0.9010 0.9023 0.8768 0.8753 0.9024 0.9024

DGP VIII 0.8729 0.8724 0.9053 0.9059 0.8792 0.8778 0.9081 0.9083

DGP IX 0.8736 0.8740 0.8996 0.9016 0.8781 0.8766 0.9021 0.9026

Table 3 presents the mean squared error of f̂ ∗r,t = F̂ ′BER,tβ̂r to reveal the consistency

of the APC estimator. It is easy to see that the mean squared errors in all experiments
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are low and vanish as N increases. For example, in DGP VIII, the mean squared

errors are 0.1185 and 0.1200 when (N, T ) = (50, 100) and decreases to around 0.0908

and 0.0906 if the sample size increases to (N, T ) = (100, 100). Figure 1 plots the true

factor process (solid line) along with the 95% confidence intervals (dashed line) for

f ∗t = (f ∗1t, f
∗
2t) for the first 20 time periods when (N, T ) = (100, 100). The true factors

rarely fall outside the confidence intervals.

Table 3. Mean Squared Error of the APC Estimator

(N, T ) (50, 50) (100, 50) (50, 100) (100, 100)

MSEf∗1
MSEf∗2

MSEf∗1
MSEf∗2

MSEf∗1
MSEf∗2

MSEf∗1
MSEf∗2

DGP I 0.1166 - 0.0955 - 0.1148 - 0.0941 -

DGP II 0.1120 - 0.0883 - 0.1110 - 0.0871 -

DGP III 0.1133 - 0.0947 - 0.1138 - 0.0935 -

DGP IV 0.1089 - 0.0856 - 0.1070 - 0.0845 -

DGP V 0.1067 - 0.0814 - 0.1064 - 0.0803 -

DGP VI 0.1071 - 0.0868 - 0.1077 - 0.0859 -

DGP VII 0.1237 0.1246 0.0968 0.0956 0.1211 0.1230 0.0965 0.0964

DGP VIII 0.1215 0.1234 0.0925 0.0917 0.1185 0.1200 0.0908 0.0906

DGP IX 0.1214 0.1225 0.0984 0.0962 0.1198 0.1216 0.0969 0.0963

Table 4. Mean Squared Error of the Estimated Propensity Score

(N, T ) (50, 50) (100, 50) (50, 100) (100, 100)

DGP I 0.0147 0.0111 0.0111 0.0076

DGP II 0.0151 0.0114 0.0113 0.0077

DGP III 0.0147 0.0114 0.0113 0.0080

DGP IV 0.0150 0.0118 0.0117 0.0087

DGP V 0.0150 0.0117 0.0116 0.0084

DGP VI 0.0149 0.0120 0.0120 0.0090

DGP VII 0.0209 0.0163 0.0163 0.0120

DGP VIII 0.0211 0.0163 0.0163 0.0119

DGP IX 0.0213 0.0171 0.0171 0.0131
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For the binary model, one is often interested in an individual’s propensity to take

an action. Table 4 calculates the mean squared error of the estimated propensity score

by 1
1000

∑1000
rep=1

1
NT

∑N
i=1

∑T
t=1(Λ̂′BER,iF̂BER,t − Pε(λ∗′i f ∗t ))2. The small mean squared

error numerically verifies the consistency of Λ̂′BER,iF̂BER,t. In addition, Figure 2 plots

normalized histograms of the estimated propensity score and the true normal density

(solid line) for (i, t) = (N/2, T/2). Figure 2 graphically shows that the normal density

is a good approximation of the normalized propensity score estimates.

7 Application: Determinants of Dividend Initia-

tion

Whether to pay a dividend is a common decision that companies need to make

in the routine operational management. Among investment and financing policies,

dividend decision is an important research area of corporate finance. Researchers are

often interested in identifying factors that influence firms’dividend decision.

A vast literature has considered effects of various influencing factors on a firm’s

dividend decision, such as tax, risk information asymmetry, debt, corporate gover-

nance (Miller & Scholes (1982), Gordon (1963), Black & Scholes (1974), Grullon,

Michaely & Swaminathan (2002), Kania & Bacon (2005), Jo & Pan (2009)). A com-

mon practice is to conduct an OLS regression of dividend payout, with less attention

being paid to the underlying reasons of the dividend initiation decision (i.e., positive

or zero dividend). To address this issue, Fama and French (2001) and Grinstein and

Michaely (2005) studied the importance of time varying factors in the propensity

of paying dividends. The binary regression plays a crucial role even if the dividend

payout is of interest and treated as the censored data, e.g. Forti et al. (2015), since

the propensity score lays the foundation to restrict the subpopulation that chooses to

pay dividends. Furthermore, it is well known that the factor structure in the latent

outcome is more flexible than the traditional linear structure with observed factors.

The companies are allowed to have different exposures to common factors. Such

observations motivate us to concentrate on a binary factor analysis of the dividend

decision. To deal with the misspecification caused by parametric specification of the
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error’s distribution, we apply the proposed APC method to identify determinants of

the dividend decision, and utilize the estimated factors to seek for possible influencing

factors.
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Figure 3. Rate of Dividend Initiation

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
1.5

1

0.5

0

0.5

1

1.5

factor est.
factor est.
fitted value
fitted value

Figure 4. Estimated Factors and Fitted Values

The dataset we consider is the stock dividend initiation by S&P500 firms from

1998 to 2016 on an annual frequency. We drop an observation if the firm enters the
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S&P500 database no more than 4 years. The total number of firms is 627, that is,

(N, T ) = (627, 19). In the dataset, 86.28% of firms have initiated dividends during

the past 19 years. The overall proportion of initiation is 57.15%. The initiation rate

over year is plotted in Figure 3. Overall, the rate of initiation is low from 2000 to

2004, and hit the bottom in 2002. It is called "lost period" caused by dot-com bubble

in March 2000. The rate fluctuates afterwards due to the rebound of equity market

and the financial crisis of 2008.
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Figure 5. Possible Influencing Factors

The dependent variable Yit takes one if firm i in year t issues the dividend, and

zero otherwise. The number of common factors in the transformed factor model, as

being determined by the proposed BER method, is found to be R̂ = 2. In contrast,

the traditional ER test underestimates the number of factors to be one. Next, af-

ter controlling two factors, we apply the APC method to obtain factor estimates.

Figure 4 plots the factors at the bottom panel in solid lines. The estimation result

further verifies our theoretical conjecture. One estimated factor (F̂1) characterizes

the time-invariant factor, the other (F̂2) estimates the time-varying factor. Next,

we try to match our factor estimates to a few popular observed influencing factors

in the financial literature. Fama-French factors are widely adopted in asset pricing

and portfolio management studies to describe the stock market returns. We treat

Market Risk-free Return Rate (MktRF ), Small Minus Big (SMB), and High Minus
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Low (HML)3 as possible influencing factors of the dividend initiation. Moreover,

Basse and Reddemann (2013) pointed out that managers are inclined to take the

inflationary environment into account of the dividend initiation. Hence, we include

the inflation rate (IR) as an explanatory variable. We also consider the policy un-

certainty index (PUI) and the volatility index (V IX) to control the uncertainty of

economic environment. The six observed series are plotted in Figure 5. We regress

the estimated time-varying factor on these observed factors along with a time trend

variable Y ear, i.e.,

F̂2 = β1MktRF + β2SMB + β3HML+ β4IR+ β5V IX + β6PUI + β7Y ear + error,

where all explanatory variables are normalized to have zero mean in the OLS regres-

sion.

Table 5. OLS Regression of Time-varying Factor

Coef. Coef. Coef. Coef.

MktRF -0.0016 -0.0022 -0.0038∗∗ -0.0072∗∗∗

(0.0020) (0.0023) (0.0018) (0.0021)

SMB 0.0087∗∗∗ 0.0087∗∗∗ 0.0115∗∗∗ 0.0127∗∗∗

(0.0030) (0.0031) (0.0031) (0.0031)

HML 0.0053∗∗ 0.0055∗∗∗ 0.0040 0.0036

(0.0024) (0.0024) (0.0027) (0.0024)

IR -0.0280 -0.0901∗∗∗

(0.0438) (0.0285)

VIX -0.0119∗∗ -0.0217∗∗∗

(0.0060) (0.0058)

PUI -0.0013 -0.0008

(0.0013) (0.0012)

Year -0.1754∗∗∗ -0.1772∗∗∗ -0.1765∗∗∗ -0.1867∗∗∗

(0.0070) (0.0063) (0.0071) (0.0063)

R-squared 0.9704 0.9710 0.9777 0.9823

Adj R-squared 0.9645 0.9627 0.9691 0.9735

3Fama-French factors source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_
Library/f-f_factors.html
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The regression result reported in Table 5 shows that MktRF , SMB, IR and

V IX have strong explanatory power for the estimated factors F̂2 with an R-squared

98.23%. The bottom panel Figure 4 plots the fitted value in dashed lines. It shows

that a linear combination of MktRF , SMB, IR and V IX can account for the time-

varying factor well.

8 Conclusion

Decisions and ratings are prevalent economic behaviors across various economic

fields, such as finance and international trade. To address these issues, this paper ex-

plores binary and ordered factor models, where factors and factor loadings are treated

as fixed effects to account for unobserved heterogeneous effects. We introduce an ad-

justed principal components (APC) method that eliminates the need for parametric

specifications of the error distribution or the selection of initial values for factors.

Moreover, our estimation approach is computationally straightforward and accessible

to applied researchers. Extensive Monte Carlo experiments validate our theoretical

conjectures and demonstrate the robust performance of the APC estimator across

various empirical settings. Using an example of dividend initiation among S&P 500

firms from 1998 to 2016, we illustrate the practical application of our APC procedure.

Several potential extensions for future research emerge from this work. Boneva

and Linton (2017) and Chen et al. (2021) have explored maximum likelihood esti-

mation for discrete response models and nonlinear models with interactive effects.

Unlike factor models, these approaches incorporate observed regressors and shift the

focus from prediction to estimating marginal and average effects of explanatory vari-

ables. However, the former relies on the common correlated effects method, which

imposes restrictive assumptions on the relationship between observed regressors and

unobserved factors, while the latter is sensitive to initial values due to identification

challenges. Investigating how to consistently estimate parameters of interest in binary

or general nonlinear models with interactive fixed effects remains an intriguing area

for future research. We leave this discussion for subsequent work.
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9 Appendix

Proof of Theorem 1. (i) From (10), we obtain the identity 1
NT

YY′F̂BER =

F̂BERUNT . Let ν is a T × N matrix composed of vit. In view of Y = FΛ′ + ν,

multiplying T−1 (Λ′Λ/N)1/2 F′ on both sides of the identity yields

(
Λ′Λ

N

)1/2(
F′F

T

)(
Λ′Λ

N

)(
F′F̂BER

T

)
+aNT =

(
Λ′Λ

N

)1/2
(

F′F̂BER

T

)
UNT , (16)

where

aNT =

(
Λ′Λ

N

)1/2
[

F′F

T

Λ′ν ′F̂BER

NT
+

F′νΛ

NT

F′F̂BER

T
+

F′ν

NT

ν ′F̂BER

T

]
≡

3∑
l=1

aNT,l.

By the Cauchy-Schwarz inequality under Assumption 4 and the property that

1
T

∥∥∥F̂BER − FH
∥∥∥2

= op(1) which is proven in Theorem 1 of Bai and Ng (2002), we have

aNT,1 =

(
Λ′Λ

N

)1/2
F′F

T

Λ′ν ′FH

NT
+

(
Λ′Λ

N

)1/2
F′F

T

Λ′ν ′(F̂BER − FH)

NT
= op(1)

aNT,2 =

(
Λ′Λ

N

)1/2
F′νΛ

NT

F′FH

T
+

(
Λ′Λ

N

)1/2
F′νΛ

NT

F′(F̂BER − FH)

T
= op(1)

aNT,3 =

(
Λ′Λ

N

)1/2
F′ν√
NT

ν ′FH√
NT

+

(
Λ′Λ

N

)1/2
F′ν√
NT

ν ′(F̂BER − FH)√
NT

= op(1).

After a simple calculation, (16) becomes

(Λ′Λ

N

)1/2(
F′F

T

)(
Λ′Λ

N

)1/2

+ aNT

((
Λ′Λ

N

)1/2
(

F′F̂BER

T

))−1
ΥNT = ΥNTUNT ,

(17)

where ΥNT =
(

Λ′Λ
N

)1/2
(

F′F̂BER
T

)
U
∗−1/2
NT withU∗NT being a diagonal matrix composed
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of diagonal elements of
(

F′F̂BER
T

)′ (
Λ′Λ
N

) (
F′F̂BER

T

)
. The left hand side of (17) con-

verges to Σ
1/2
Λ ΣFΣ

1/2
Λ in probability since each term is positive definite by Assumption

2. Under Assumption 5, ΥNT is uniquely determined with the probability limit Υ

which is a unique eigenvector matrix of Σ
1/2
Λ ΣFΣ

1/2
Λ . By the definition of ΥNT ,

F′F̂BER

T
=

(
Λ′Λ

N

)−1/2

ΥNTU
∗1/2
NT .

It follows that

F′F̂BER

T

p→ Σ
−1/2
Λ ΥU.

(ii) According to Theorem 1 of Bai and Ng (2002),

F̂BER,t −H′Ft = U−1
NT

(
1

T

T∑
s=1

F̂BER,sγst +
1

T

T∑
s=1

F̂BER,s

(
v′svt
N
− γst

)

+
1

T

T∑
s=1

F̂BER,sF
′
sΛ
′vt

/
N +

1

T

T∑
s=1

F̂BER,sF
′
tΛ
′vs

/
N

)

≡
4∑
l=1

bt,l. (18)

Notice that

1

T

T∑
t=1

∥∥∥F̂BER,t −H′Ft

∥∥∥2

. 1

T

T∑
t=1

4∑
l=1

‖bt,l‖2 .

In view of
∥∥U−1

NT

∥∥ = Op(1), by the Cauchy-Schwarz inequality and Assumption 3

1

T

T∑
t=1

‖bt,1‖2 . T−2

T∑
t=1

(
T−1

T∑
s=1

∥∥∥F̂BER,s∥∥∥2
)(

T−1

T∑
s=1

T∑
t=1

γ2
st

)
= Op(T

−1);

1

T

T∑
t=1

‖bt,2‖2 . 1

T

T∑
t=1

T−2

T∑
s=1

T∑
u=1

(
T∑
t=1

(
v′svt
N
− γst

)(
v′svt
N
− γst

))2
1/2
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×
[
T−2

T∑
s=1

T∑
u=1

(
F̂BER,sF̂BER,u

)2
]1/2

= Op(N
−1);

1

T

T∑
t=1

‖bt,3‖2 .
∥∥∥∥∥ 1

T

T∑
s=1

F̂ ′BER,sFs

∥∥∥∥∥
(

1

T

T∑
t=1

‖Λ′vt/N‖2

)
= Op(N

−1);

1

T

T∑
t=1

‖bt,4‖2 .
(

1

T

T∑
s=1

∥∥∥F̂BER,s∥∥∥2
)1/2 ∥∥∥∥∥ 1

T

T∑
t=1

Fs

∥∥∥∥∥
(

1

T

T∑
s=1

‖Λ′vs/N‖2

)1/2

= Op(N
−1).

It follows that 1
T

∑T
t=1

∥∥∥F̂BER,t −H′Ft

∥∥∥2

= Op(δ
−2
NT ). Consequently, the asserted

claim holds.

Proof of Theorem 2. Based on (18) and Theorem 1 under Assumption 2-4 and

Assumption 6, the following terms hold: First

bt,1 = U−1
NT

1

T

T∑
s=1

[(
F̂BER,s −H′Fs

)
γst + H′Fsγst

]
. T−1/2Op(δ

−1
NT ),

since T−1
∑T

s=1 Fsγst = Op(T
−1) by the Markov inequality and E

∥∥∥T−1
∑T

s=1 Fsγst

∥∥∥ .
O(T−1), and

∥∥∥∥∥ 1

T

T∑
s=1

(
F̂BER,s −H′Fs

)
γst

∥∥∥∥∥ ≤
(

1

T

T∑
s=1

∥∥∥F̂BER,s −H′Fs

∥∥∥2
)1/2(

1

T

T∑
s=1

γ2
st

)1/2

= T−1/2Op(δ
−1
NT ).

Next,

bt,2 = U−1
NT

1

T

T∑
s=1

[(
F̂BER,s −H′Fs

)
+ H′Fs

](v′svt
N
− γst

)
. N−1/2Op(δ

−1
NT ),

because of
∥∥∥ 1
T

∑T
s=1

(
F̂BER,s −H′Fs

)(
v′svt
N
− γst

)∥∥∥ ≤ ( 1
T

∑T
s=1

∥∥∥F̂BER,s −H′Fs

∥∥∥2
)1/2
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×
(

1
T

∑T
s=1

(
v′svt
N
− γst

)2
)1/2

= N−1/2Op(δ
−1
NT ) and 1

T

∑T
s=1 H′Fs

(
v′svt
N
− γst

)
= Op((NT )−1/2).

In addition,

bt,3 = U−1
NT

1

NT

T∑
s=1

[(
F̂BER,s −H′Fs

)
+ H′Fs

]
F ′sΛ

′vt . Op(N
−1/2)

due to
∥∥∥ 1
NT

∑T
s=1

(
F̂BER,s −H′Fs

)
F ′sΛ

′vt

∥∥∥ ≤ ( 1
T

∑T
s=1

∥∥∥F̂BER,s −H′Fs

∥∥∥2
)1/2

×
(

1
N2T

∑T
s=1 ‖F ′sΛ′vt‖

2
)1/2

= N−1/2Op(δ
−1
NT ). Finally,

bt,4 = U−1
NT

1

NT

T∑
s=1

[(
F̂BER,s −H′Fs

)
+ H′Fs

]
F ′tΛ

′vs = N−1/2Op(δ
−1
NT ),

since
∥∥∥ 1
T

∑T
s=1

(
F̂BER,s −H′Fs

)
v′sΛFt

∥∥∥ ≤ 1√
N

(
1
T

∑T
s=1

∥∥∥F̂BER,s −H′Fs

∥∥∥2
)1/2

×
(

1
T

∑T
s=1

∥∥∥v′sΛ√
N

∥∥∥)1/2

‖Ft‖ = N−1/2Op(δ
−1
NT ) and 1

NT

∑T
s=1 Fsv

′
sΛFt = Op((NT )−1/2).

Collecting all above terms, we obtain

F̂BER,t −H′Ft = U−1
NT

1

NT

T∑
s=1

F̂BER,sF
′
sΛ
′vt +Op(δ

−2
NT ).

It follows that

√
N
(
F̂BER,t −H′Ft

)
= U−1

NT

(
F̂′BERF

T

)
1√
N

N∑
i=1

Λiνit + op(1) (19)

given that
√
N
T
→ 0. Subsequently, we obtain the asserted claim by the central limit

theorem.
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(ii) By (11),

Λ̂BER,i =
1

T
F̂′BERFΛi +

1

T
F̂′BERνi

= H−1Λi +
1

T

T∑
t=1

H′Ftνit −
1

T

T∑
t=1

(F̂BER,t −H′Ft)F̂
′
BER,tH

−1Λi (20)

+
1

T

T∑
t=1

(
F̂BER,t −H′Ft

)
νit.

On the one hand,

1

T

T∑
t=1

(F̂BER,t −H′Ft)F
′
t

= U−1
NT

(
T−2

T∑
s=1

T∑
t=1

F̂BER,sF
′
tγst + T−2

T∑
s=1

T∑
t=1

F̂BER,sF
′
t

(
v′svt
N
− γst

)

+T−2

T∑
s=1

T∑
t=1

F̂BER,sF
′
sΛ
′vtF

′
t

/
N + T−2

T∑
s=1

T∑
t=1

F̂BER,sv
′
sΛFtF

′
t

/
N

)

≡
4∑
l=1

cl

where c1 = T−1/2Op(δ
−1
NT ) and c2 = c4 = N−1/2Op(δ

−1
NT ) similar to bt,1, bt,2 and bt,4.

Moreover,

c3 = U−1
NTN

−1T−2

T∑
s=1

T∑
t=1

[(
F̂BER,s −H′Fs

)
F ′sΛ

′vtF
′
t + H′FsF

′
sΛ
′vtF

′
t

]
= (NT )−1/2Op(δ

−1
NT ) +Op((NT )−1/2).

Together with Theorem 1, the third term of (20) is

1

T

T∑
t=1

(F̂BER,t−H′Ft)(F̂BER,t−H′Ft)
′H−1Λi+

1

T

T∑
t=1

(F̂BER,t−H′Ft)F
′
tΛi = Op(δ

−2
NT ).
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On the other hand, write

1

T

T∑
t=1

(
F̂BER,t −H′Ft

)
νit

= U−1
NT

1

T 2

T∑
t=1

T∑
s=1

F̂BER,sγstvit + U−1
NT

1

T 2

T∑
t=1

T∑
s=1

F̂BER,s

(
v′svt
N
− γst

)
vit

+ U−1
NT

1

NT 2

T∑
t=1

T∑
s=1

F̂BER,sF
′
sΛ
′vtvit + U−1

NT

1

NT 2

T∑
t=1

T∑
s=1

F̂BER,sF
′
tΛ
′vsvit

=

4∑
l=1

dl.

Under Assumption 1-6, it is easy to show

d1 = U−1
NT

1

T 2

T∑
t=1

T∑
s=1

(F̂BER,s −H′Fs)γstvit + U−1
NT

1

T 2

T∑
t=1

T∑
s=1

H′Fsγstvit

= T−1/2Op(δ
−1
NT );

d2 = U−1
NT

1

T 2

T∑
t=1

T∑
s=1

(F̂BER,s −H′Fs)

(
v′svt
N
− γst

)
vit + U−1

NT

1

T 2

T∑
t=1

T∑
s=1

H′Fs

(
v′svt
N
− γst

)
vit

= N−1/2Op(δ
−1
NT );

d3 = U−1
NT

1

T 2

T∑
t=1

T∑
s=1

(F̂BER,s −H′Fs)F
′
sΛ
′vtvit + U−1

NT

1

T 2

T∑
t=1

T∑
s=1

H′FsF
′
sΛ
′vtvit

= N−1/2Op(δ
−1
NT );

d4 = U−1
NT

1

T 2

T∑
t=1

T∑
s=1

(F̂BER,s −H′Fs)F
′
tΛ
′vsvit + U−1

NT

1

T 2

T∑
t=1

T∑
s=1

H′FsF
′
tΛ
′vsvit

= N−1/2Op(δ
−1
NT ).

Then, the fourth term of (20) is Op(δ
−2
NT ).
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Based on (20),

√
N(Λ̂BER,i −H−1Λi) = U−1

NT

(
F̂′BERF

T

)(
Λ′Λ

N

)
1√
T

N∑
i=1

Ftνit +Op(δ
−2
NT ) (21)

d→ N(0, (H′)−1Ωi(H)−1)

given that
√
T
N
→ 0.

Proof of Theorem 3. Write Λ̃ = (Λ̃1, · · · , Λ̃N)′, F̃ = (F̃1, · · · , F̃T )′ and F̃BER =

(F̃BER,1, · · · , F̃T )′. Let ŨNT = diag(ũNT,1, · · · , ũNT,R̃) where ũNT,1 > · · · > ũNT,R̃ are

the R̃ largest eigenvalues of 1
NT

YY′, and H̃ =
(

Λ̃′Λ̃
N

)(
F̃′F̃BER

T

)
Ũ−1
NT .

Extending proofs of Theorem 1 to R̃ → ∞ yields 1
T

∑T
t=1

∥∥∥F̃BER,t − H̃′F̃t

∥∥∥2

=

OP (R̃δ−2
NT ), 1

N

∑N
i=1

∥∥∥Λ̃BER,i − H̃−1Λ̃i

∥∥∥2

= OP (R̃δ−2
NT ). Similar to (19) and (21), one

can show that

δNT

(
F̃BER,t − H̃′F̃t

)
= Ũ−1

NT

(
F̃′BERF̃

T

)
δNT
N

N∑
i=1

Λ̃iν̃it +Op(R̃δ
−1
NT )

and

δNT (Λ̃BER,i − H̃−1Λ̃i) = Ũ−1
NT

(
F̃′BERF̃

T

)(
Λ̃′Λ̃

N

)
δNT
T

N∑
i=1

F̃tν̃it +Op(R̃δ
−1
NT ).

After a simple calculation,

Λ̃′BER,iF̃BER,t − Pε(λ∗′i f ∗t )=Λ̃′BER,iF̃BER,t − Λ̃′iF̃t + ω̃it

= Λ̃′iH̃
′−1(F̃BER,t − H̃′Ft) + F ′tH̃(Λ̃BER,i − H̃−1Λ̃i)

+Op(R̃δ
−2
NT ) + ω̃it.

where ω̃it = Λ̃′iF̃t−Pε(λ∗′i f ∗t ). Combing all above equations together with the condition

40



in Theorem 3, we obtain

δNT

(
Λ̃′BER,iF̃BER,t − Pε(λ∗′i f ∗t )

)
=
δNT
N

Λ̃′i

(
Λ̃′Λ̃

N

)−1 N∑
i=1

Λ̃iν̃it+
δNT
T
F̃ ′tH̃H̃

′
N∑
i=1

F̃tν̃it+op(1).

By the central limit theorem, we have

(
1

N
W

(1)
it +

1

T
W

(2)
it

)(
Λ̂′BER,iF̂BER,t − Pε(λ∗′i f ∗t )

)
d→ N(0, 1).
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