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Visualization of Correlation Tables by Positive/Negative 
Threshold for Coefficients Significance 

Abstract 

This work introduces a novel approach to the visualization of correlation tables, guided by 
positive and negative significance thresholds of correlation coefficients. Traditional meth-
ods for visualizing correlation matrices often rely on heuristic color schemes, which lack a 
robust analytical foundation. To address this limitation, we propose a method that con-
structs and analyzes an ordered sequence of so called momentums, separating positive and 
negative correlations based on their significance. By leveraging mathematical principles 
of an optimal solutions, this approach enhances the clarity and interpretability of correla-
tion patterns. 
Keywords:correlation, classification, coefficient, defining, sequence 

1. Intoduction 

We establish a visualization algorithm that identifies significance levels for posi-
tive and negative correlations, enabling clear differentiation of meaningful pat-
terns within the matrix. The key feature of the method is the defining sequence, 
constructed by pairing ordered correlation coefficients with their statistical mo-
mentums and analyzing its single-peaked property. Theoretical justification for 
this property is provided via the Basic Visualization Theorem, which demon-
strates that the local maximum of the defining sequence corresponds to the 
global maximum of a specific function defined over all subsets of the correlation 
matrix. 

The proposed method draws inspiration from Mullats (1971) foundational 
work on single-peaked sequences but adapts the defining sequence in reverse 
order for the purposes of visualization. The approach offers a systematic, 
mathematically supported framework for representing correlation tables, with 
mirrored extensions for negative correlations to ensure comprehensive analysis. 

The visualization of correlation tables is a fundamental yet highly nuanced 
task in data analysis and statistical exploration. A correlation table represents a 
matrix of correlation coefficients, each ranging from 1  to 1 , capturing the 
linear relationships between pairs of variables in a dataset. The conventional 
approach to visualizing these tables involves mapping numerical values onto a 
color palette. For instance, negative correlations are often depicted with shades 
of lighgt blue that gradually grow to strong blue as the magnitude of the negative 
correlation decreases, while positive correlations might be represented by a gra-
dient transitioning from light pink to deep red or pink for higher positive correla-
tions. The strength of the correlation is emphasized through the intensity of the 
color, creating a vivid heatmap-style representation. 

While such visualizations are visually appealing and heuristic, they often lack 
analytical depth and rigor. These methods provide a quick and intuitive way to 
identify patterns but fall short of delivering a comprehensive or objective under-
standing of the data. For researchers aiming to uncover the intricacies of a sys-
tem, such heuristic approaches can be unsatisfactory. This is because they priori-
tize subjective interpretations and aesthetic considerations over the statistical 
robustness and objectivity required to address complex research questions. 
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1.1. The Need for a Rigorous Approach 

For those aiming to combine the intuitive appeal of visualization with strict sta-
tistical analysis, more advanced methods are required. Such methods must bal-
ance clarity with analytical depth, allowing researchers to derive meaningful 
insights from complex datasets. Achieving this balance often necessitates em-
ploying the entire arsenal of statistical tools, including both classical and modern 
approaches to data analysis. However, this endeavor can be resource-intensive, 
demanding significant effort and time, especially when decisions need to be 
made swiftly based on the analysis. 

Statistical methods are traditionally designed for scenarios where the underly-
ing numerical distributions are well-understood. However, this assumption is not 
always realistic. In many practical applications, the distribution of the data is 
unknown, adding layers of complexity to the analysis. This uncertainty can com-
promise the reliability of the results and, in some cases, lead to conclusions that 
contradict intuitive understandings of the system under study. 

1.2. Simplicity as a Strength 

In situations where the complexity of statistical methods outweighs their utility, 
it may be prudent to adopt simpler visualization techniques. The simplicity of 
these methods can sometimes offset the disadvantages of forgoing more sophisti-
cated approaches. By providing a straightforward and transparent representation 
of the data, simple visualizations can serve as a practical alternative, particularly 
when the goal is to communicate insights effectively rather than conduct an 
exhaustive analysis. 

The simplicity of data visualization does not necessarily equate to a lack of 
rigor. By grounding visualization techniques in a solid mathematical framework, 
it is possible to maximize the quality of the visualization while retaining its in-
terpretability. For example, optimization techniques can be used to enhance the 
clarity and informativeness of visualizations, ensuring that they are both accessi-
ble and analytically meaningful. 

1.3.  A Proposed Method for Visualizing Correlation Tables 

In this study, we propose a novel method for visualizing correlation tables that 
balances simplicity with mathematical rigor. Our approach is rooted in the opti-
mization of visualization quality metrics, ensuring that the resulting visualiza-
tions are not only aesthetically pleasing but also analytically robust. This method 
addresses the limitations of traditional heuristic approaches, providing research-
ers with a tool that is both intuitive and grounded in a strict mathematical foun-
dation. 

By focusing on the maximization of visualization quality functions, our 
method ensures that the patterns and relationships within the data are represented 
as clearly as possible. This approach bridges the gap between intuitive visualiza-
tion and rigorous statistical analysis, offering a practical solution for researchers 
navigating the challenges of modern data analysis. 
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1.4. Supporting Literature and References 

Several studies and tools have explored the visualization of correlation matrices, 
emphasizing both heuristic and mathematically rigorous approaches: 

 Heatmap Visualization Techniques: The use of heatmaps for correlation 
matrices is discussed in depth in [Davila et al., 2023; Pleil et al., 2011; 
Henderson and Velleman, 1981.], where the effectiveness of color gradi-
ents in representing relationships is evaluated. 

 Challenges of Unknown Distributions: Research on the implications of 
unknown data distributions can be found in [Wendy & Liu, 2018; Johns-
tone and Titterington (2009], highlighting the limitations of traditional 
statistical methods in such scenarios. 

 Optimization in Data Visualization: The mathematical foundations of 
optimizing visualization quality are explored in [Midway, 2020; Sun et 
al., 2023], providing a basis for the proposed method. 

1.5.  Practical Applications of Simple Visualization 

Case studies demonstrating the utility of simple visualization techniques in 
various fields are presented in [Schwabish, 2021; Mullat, 2023; Jöreskog, 1978], 
reinforcing the value of simplicity in data communication.  

By integrating insights from these studies, we aim to contribute a practical 
and theoretically sound method for visualizing correlation tables, catering to the 
needs of both intuitive understanding and rigorous analysis. 

2. Explanation of Our Simple Method for Visualizing the  
Correlation Matrix 

In presenting the core principles of our simple method for visualizing correlation 
matrices, we aim to minimize the use of complex mathematical notations and 
instead articulate the method in a more accessible verbal form. This approach is 
intended to make the mathematical underpinnings of the visualization algorithm 
comprehensible without compromising the rigor necessary for proving its main 
theorem, which is provided in a clear verbal explanation. 

Let us begin by defining the structure of a correlation matrix. A correlation 

table is represented as a matrix j,ir , where 1r1 j,i  , with n,1i   and 

n,1j  . The matrix is a square in shape, consisting of nn  elements, where 

each cell is identified by the row index i  and the column index j . The diagonal 

elements of the correlation matrix are equal to 1, representing the perfect self-
correlation of each variable. To simplify indexing, we introduce a single cell 

number k , calculated as jn)1i(k  . 
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For our purposes, we propose a different perspective on the correlation ma-
trix: instead of treating it as a block structure, we transform it into a linear list of 

values kr . Additionally, we separate positive correlations from negative correla-

tions, enabling independent visualization for each. This separation allows us to 
treat positive and negative correlations distinctly, ensuring clarity and precision 
in the visualization process. 

2.1. Algorithm for Finding Correlation Significance Levels 

To effectively visualize the correlation matrix, we introduce an algorithm for 
determining significance levels for both positive and negative correlations. These 
significance levels serve as thresholds that filter which correlations are included 
in the final visualization. 

Defining Positive and Negative Significance Levels 

The algorithm distinguishes between two significance levels: 

• Positive significance level  sp : A positive value in the range 

1sp0  . 

• Negative significance level  sn : A negative value in the range 

0sn1  . 

These thresholds allow us to separately assess the significance of positive and 
negative correlations. 

Visualization of Positive Correlations 

Positive correlations that meet or exceed the positive significance level 

 sprk   are visualized using a designated color scheme. Cells that fall be-

low this threshold are excluded from the visualization pattern, ensuring that 
only significant positive correlations are highlighted. 

Visualization of Negative Correlations 

Negative correlations are handled similarly but with a focus on values that 
are equal to or more negative than the negative significance level 

 snrk  . These correlations are visualized using a different color scheme, 

distinct from the one used for positive correlations. 

Exclusion of Non-Significant Cells 

Cells that do not meet either the positive or negative significance criteria are 
excluded from the visualization. This exclusion reduces visual clutter and en-
sures that the resulting matrix highlights only the most meaningful correla-
tions. 



Coefficients Significance 5 
 

 
Color Coding for Enhanced Clarity 

To facilitate intuitive interpretation, the visualization employs two separate color 
palettes: one for positive correlations and another for negative correlations. For 
instance, positive correlations might be represented with warm tones (e.g., 
shades of red or pink), while negative correlations could use cool tones (e.g., 
shades of blue). The intensity of the color reflects the strength of the correlation, 
with higher absolute values corresponding to deeper or more saturated colors. 

2.2. The Value of Significance-Based Visualization 

The introduction of significance levels addresses a common challenge in visual-
izing correlation matrices: the overwhelming amount of information that can 
obscure meaningful patterns. By focusing on significant correlations, the visuali-
zation becomes more interpretable, enabling researchers to quickly identify key 
relationships. Furthermore, the separation of positive and negative correlations 
into distinct visual channels ensures that contrasting patterns are not conflated, 
providing a clearer overall picture. 

Our approach not only simplifies the visualization process but also provides a 
mathematical basis for determining what is deemed significant. This balance of 
simplicity and rigor makes the method accessible to a broad audience, from re-
searchers conducting exploratory data analysis to practitioners seeking to com-
municate findings effectively. 

In future work, we aim to extend this framework by incorporating additional 
metrics for correlation strength and significance, as well as exploring alternative 
visualization techniques that may enhance interpretability in specific applica-
tions. 

This extended version emphasizes clarity, expands on key concepts, and pro-
vides a structured explanation of the algorithm and its value. If youd like, I can 
further refine it or help you locate relevant references for supporting claims. 
Finally, having assembled all the necessary tools and concepts for explaining our 
algorithm, we will now outline its main provisions. 

2.3.  Main Procedure 

Let us begin by considering the set of all positive correlation coefficients in 

our correlation matrix, denoted as kr . Arrange these coefficients in descending 

order, which we will denote as kr


. Without loss of generality, we assume that 

the ordered sequence satisfies ...rrr 321 


 

The core idea of our algorithm is to use this descending sequence, 

...rrr 321 


, together with the sequence 3,... 2, 1,k  , to construct a 

new sequence. Specifically, we pair each coefficient kr


 with its corresponding 

index k and compute the products ...3r,2r,1r 321 


. This results in a 

sequence of values krk 


, which we refer to as the defining sequence. The 

indicators krk 


 are also called in statistic as moments. 
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The defining sequence exhibits a characteristic behavior: its values either in-

crease or decrease as one progresses along the sequence. Such sequences are 
common in numerical datasets and exhibit the properties of -single-peak se-
quences, which are characterized by having exactly one local maximum when 
traversed from left to right. 

2.4. The Basic Visualization Theorem 
As the title of this section suggests, the reader might expect long and intricate 

mathematical constructions, culminating in the formulation of a theorem or 
proposition. However, this is not the case. We aim to convince the reader of the 
validity of our statements without resorting to exhaustive mathematical analysis. 
Instead, we will present the theorem on the defining sequence in the form of a 
proposition that “Local Maximum in the Defining Sequence also Corresponds to 
the Global Maximum of a Particular Function Defined Over the System of All 
Subsets of the Defining Sequence.” 

Preliminary Construction 
Let us begin with the following setup. Consider a set W  consisting of cells in 
the correlation matrix that contain positive correlation coefficients. From this set 
W , we can derive the collection of all possible subsets H , where WH  . 

For any subset H , we restrict our attention to the correlation coefficients kr  

corresponding to the cells within H . We then scale these coefficients propor-
tionally to the size of the subset H , also referred to as the cardinality of H , 

denoted H . Specifically, if a cell j,ik rr   belongs to H , we define the 

scaled value as: Hr)H,k( k   (also known as statistcal moments). 

Next, based on this scaled set of correlation moments )H,k( , we define a 

function )H(F  as the minimum value )H,k(  of over all k  in H : 

)H,k(min)H(F k  . 

This function )H(F  evaluates the scaled minimum of correlation moments 

over any subset H  of W . When considering the function )H(F , the scaling 

by H  ensures that the global maximum of )H(F  aligns with the subset of 

W  that corresponds to this local maximum in the defining sequence. This is 
because the defining sequence captures the interplay between the correlation 
coefficients and their relative positions, ensuring that the subset maximizing 

)H(F  is precisely the one associated with the peak of the defining sequence. 

This reasoning confirms that the local maximum of the defining sequence is 
not merely a numerical artifact but has a direct and meaningful correspondence 

to the global maximum of the function )H(F . 
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Theorem 

The local maximum (or peak) of the defining sequence constructed from 
positive correlation coefficients coincides with the global maximum of the func-

tion )H(F  over all possible subsets H  of the set W . 

Main Outline of the Proof 

Contrary to the claim that a global maximum of function )H(F  is achieved 

at the defining sequence peak for some index 
k , assume there exists a subset 

'H  of correlation cells in the correlation matrix such that the function )'H(F  

attains a value greater than the local maximum )H(F *
, *)H(F)'H(F  , 

where  *k21
* r,...,r,r H


 . 

If we combine the set 
H , which corresponds to the peak correlation coeffi-

cient at 
k , with the cells in 'H , the resulting combined set 'HH   can be 

extended to some subset  'k21 r,...,r,r H
~ 
 , where 

*k'k  . The set 

'HH   lies within the subset H
~

, H
~

'HH   . 

On this extended subset H
~

, the function )H
~

(F  would allegedly satisfy the 

inequality )H(F)H
~

(F  , owing to the monotonicity of our statistical mo-

ments’ definition. This inequality implies that the defining sequence would have 

at least one additional local maximum greater than *)H(F .  

Such a scenario violates the single-peakedness property of the defining se-
quence. Thus, the initial assumption is invalid, and the theorem holds.  

This reasoning builds on the ideas originally presented by Mullat (1971) in 
his work “On a Maximum Principle for Certain Functions of Sets”, where he 
established the fundamental properties of single-peaked sequences. However, it 
is important to note that the defining sequence discussed here is in reverse order 
compared to the sequence analyzed in Mullat’s proof. For further details, see 
Mullat’s original article from 1971. 

Note on Negative Correlations 

The same reasoning applies to negative correlations with appropriate modifi-
cations. Specifically, the signs of the inequalities are reversed, and the minimum 

used to define )H(F  is replaced by a maximum. Therefore, all conclusions 

regarding the positive significance levels of correlations are mirrored for the 
negative significance levels in our correlation matrix. 
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3. Visualization Aspects and Illustration 

We have now reached the stage where we introduce the thoughtful (and techni-
cally inclined) reader to the mechanics of the proposed method for visualizing 
correlation coefficients—or any other interrelated elements that may need to  
be analyzed to support decision-making. While we assume the reader has some 
familiarity with data analysis in Microsoft Excel, which is highly convenient  
for both computation and visualization, the proposed method is accessible 
through macro from http://www.datalaundering.com/download/joreskog.xls 
(Excel spreadsheet) even to those who lack deep knowledge of Excel. A layman-
friendly procedure is provided to simplify understanding without requiring im-
mersion in technical complexities. 

3.1. Layman's Procedure for Visualizing a Set of Numerical Values 

Consider a given set of numerical values representing parameters or similar 
quantities for analysis. For example, take the set of 10 numbers: 

0.01 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1, . 

Step 1: Arrange the data 

Enter these numbers as a row in Microsoft Excel. Beneath this row, enter  

another row containing sequential indices: 10 9, 8, 7, 6, 4,5, 3, 2, 1, . 

Step 2: Compute the products or moments 

In a third row, compute the product of these values in the first row with their 
corresponding indices in the second row: 

(11, 0.812, 0.643, 0.494, 0.365, 0.256, 0.167, 0.098, 0.049, 0.0110). 
This results in the following sequence of products (often referred to as statis-
tical moments): (1, 1.62, 1.92, 1.96, 1.80, 1.50, 1.12, 0.72, 0.36, 010). 

Step 3: Identify the local maximum 

In this sequence, the local maximum occurs at the 4th number, 96.1 , as you 
progress from left to right. This value represents the level of significance (sp) 
that is of primary interest. 

Step 4: Visualize the results 

To incorporate this significance level into a visualization, color the first four 
numbers of the sequence (1, 1.62, 1.92, 1.96, 1.80, 1.50, 1.12, 0.72, 0.36, 010), in 
pink, leaving the remaining numbers uncolored. 

Table 1 
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This table illustrates the fundamental steps without requiring detailed famili-

arity with Excel functions. The remaining task is purely technical—how to 
automate the procedure within Microsoft Excel. 

3.2. Illustration of the Visualization Procedure on Real Data 

For the thoughtful reader, this section addresses the applicability and effi-
ciency of the proposed method in real-world scenarios involving correlation 
coefficient analysis. To this end, we identified a noteworthy article in the public 
domain (Jöreskog, 1978) titled “Structural Analysis of Covariance and Correla-
tion Matrices”, which contains a correlation table well-suited for our purposes. It 
is not necessary to delve into the detailed analysis of the table presented in Jöre-
skogs article. Instead, we will focus on visualizing the data using our method, 
supplemented by a few explanatory comments. 

It is evident that visualizing the matrix using these significance thresholds 
partially aligns with the diagonalization of the correlation matrix. This diagonali-
zation, in turn, reflects the classification of the 24  parameters under analysis 
based on their linear dependence on one another. Through this visualization 
method, the correlation table is effectively divided into four parameter groups, as 
follows (with group numbers borrowed from Jöreskogs article): 

• Group No.1: 01, 02, 03, 04, 23; • Group No.2: 05, 06, 07, 08, 09, 22; 
• Group No.3: 10, 11, 12, 13, 24; • Group No.4: 14, 15, 16, 17, 18, 19, 20, 21 

This diagonalization technique for analyzing relationships between parame-
ters is a distinct aspect of data multivariate analysis and classification (Ishii, et 
al., 2021; Mirkin, 2011; Frey and Võhandu, 1966), or as demonstrated in 
Braverman Readings, 2017. 

Tables visualization using macro from: 
http://www.datalaundering.com/download/joreskog.xls 

Table 2 
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Table 3 

The table above and 
the one to the right 
both correspond pre-
cisely to the 24×24 
correlation matrix 
derived from the 
correlation coeffi-
cients in Jöreskogs 
article. The cells are 
color-coded as fol-
lows: pink for positive 
correlation coef-
ficients   the posi-
tive significance 
threshold (sp=+0.671) 
, blue for negative 
correlation coef-
ficients   the negative 
significance threshold 
(sn=0.412), and un-
colored for insignifi-
cant values. 

 

4.  Concuding Remarks 

In conclusion, it is important to emphasize that the application of the described 

method in fields such as data analysis and data visualization should not be nar-

rowly confined to correlation matrices. While correlation matrices provide a 

convenient and illustrative example, the method is versatile and can be applied to 

any numerical data reflecting systems of measurements, statistical indicators, or 

data sets presented in various forms, such as time series, sequences, or other 

arrangements. 

Moreover, the method can extend to analyzing deviations from the signifi-

cance levels of indicators in any direction. This includes exploring variations, 

moments, and other types of statistical deviations, limited only by the creativity 

and expertise of the researcher. Such flexibility allows for an expansive range of 

applications, as the method is not constrained by predefined structures or for-

mats. 

The key takeaway is that, although the method is demonstrated here using a 

correlation table as an example, it is fundamentally general in nature. This 

broader applicability was the primary motivation behind presenting this meth-

odological approach, offering a valuable tool for thoughtful readers seeking 

robust and adaptable techniques for data analysis. 
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Appendix 

Excel Macro (Ctrl-s) – Short Description 

http://www.datalaundering.com/download/joreskog.xls  
(Visualization Implementation in Microsoft Excel 2000) 

This macro combines several functionalities, primarily for analyzing stock data, 
various data tables, correlation matrices, and more. Two rows at the top of the 
spreadsheet must remain available for macro messages and significance 
thresholds. Below is an analysis of its structure and operation. 

How to Download and Implement the Macro 

1. In any spreadsheet (new or existing), go to the Functions  
section and then the Macros subsection. 

2. Create a dummy macro and copy the source code into it. 

3. Edit the dummy macro so that the first line reads: vba (copy)  
Sub Significant() 

4. Assign the letter “s” to the macro properties, enabling the macro  
to work with the Ctrl-s shortcut. 

5. Ensure the macro is applied to the spreadsheet range containing  
the indicators to be visualized. 

Overview of Key Features 

1. Selection Processing 
• Operates on a user-selected range of cells. 
• Differentiates between positive and negative numbers, 

 processing them separately. 

2. Shell Sort Implementation 
• Uses the Shell Sort algorithm to sort numbers in the  

selected range. 
• Sorts positive numbers in descending order and negative  

numbers in ascending order. 

3. Significance Analysis (Ctrl-s) 
• Identifies “significant levels” for positive and negative  

numbers based on their sorted values. 
• Applies conditional formatting to indicate significance. 

4. Conditional Formatting 
• Positive and negative cells are formatted differently  

(e.g., bold fonts, colored backgrounds). 
• Provides visual cues to distinguish significant positive  

and negative indicators. 

5. Error Handling 
• Includes error checks for various conditions, such as: 
• Selection of only one cell. 
• Fewer than two positive or negative numbers. 
• Presence of non-numeric values in the selection. 
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6. Output 

• Outputs significant positive and negative levels to specific cells. 
• Transfers the formatting of the first “significant” positive  

and negative cells to designated positions. 

Strengths 

1. Robust Sorting Algorithm 
• Efficiently handles moderate-sized data ranges with  

a gap-based Shell Sort implementation. 

2. Dynamic Range Handling 
• Adapts dynamically to the user-selected range. 

3. Enhanced Usability 
• Provides clear, user-friendly outputs, including visual  

formatting and indication of significant values. 

4. Error Handling 
• Prevents crashes due to common issues, such as non-numeric  

inputs or insufficient data. 

Literature Cited 

Davila F., Paz F., Moquillaza A. (2023). Usage and Application of Heatmap Visualiza-
tions on Usability User Testing: A Systematic Literature Review. In: Marcus, A., 
Rosenzweig, E., Soares, M.M. (eds) Design, User Experience, and Usability. HCII 
2023. Lecture Notes in Computer Science, vol 14032. Springer, Cham. 
https://doi.org/10.1007/978-3-031-35702-2_1. 

Frey, T. and Võhandu, L.K. (1966). Uus Meetod Klassifikatsiooniühikute Püstitatimiseks, 
Eesti NSV Akadeemia Toimetised, xV Kõide, Bioloogiline Seeria, Nr. 4, 565-576 
(Estonian), http://www.datalaundering.com/download/Frey-Vyhandu-RG.pdf (Eng-
lish version) 

Henderson, H.V. and Velleman, P.F. (1981). Building multiple regression models interac-
tively for statistical analysis and data visualization. Biometrics, 37, 391 411. 

Ishii Aki, Yata Kazuyoshi, Aoshima Makoto (2021). Geometric classifiers for high-
dimensional noisy data, Journal of Multivariate Analysis 188 (2022) 104850, 
https://doi.org/10.1016/j.jmva.2021.104850. 

Johnstone Iain M. and Titterington D. Michael (2009). Statistical challenges of high-
dimensional data, Published: https://doi.org/10.1098/rsta.2009.0159. 

Jöreskog Karl G. (1978). Structural Analysis of Covariance and Correlation Matrices, 
Psychometrica, vol. 43, No.4, pp.443-477. 

Midway Stephen R. (2020). Principles of Effective Data Visualization, Patterns (N Y). 
Nov 11;1(9):100141, https://pmc.ncbi.nlm.nih.gov/articles/PMC7733875/ . 

Midway Stephen R. (2020). Principles of Effective Data Visualization, ScienceDirect, 
Patterns, Volume 1, Issue 9, 11 December 2020, 100141. Principles of Effective Data 
Visualization - ScienceDirect. 

Mirkin B.G. (2011). Core Concepts in Data Analysis: Summarization, Correlation, Visu-
alization, Department of Computer Science and Information Systems, Birkbeck, Uni-
versity of London, Malet Street, London WC1E 7Hx UK, Textbook, 426pp, 
https://link.springer.com/book/10.1007/978-0-85729-287-2 . 



Coefficients Significance 13 
 

 
Mullat J.E. a) (2022). Case Study of Fuel Consumption by Vehicles Utilizing the Postu-

lates of Bounded Rationality, Private Publishing Platform, Monotone Phenomerna of 
Issues Behind Baragaining Games and Data Analysis, pp.172-191, 
http://www.datalaundering.com/download/RG-Case-Vehicle-Study.pdf; b) (1971). On 
a Maximum Principle for Certain Functions of Sets, in “Notes on Data Processing and 
Functional Analysis”, Proceedings of the Tallinn Polytechnic Institute Series A, No. 
313, Tallinn Polytechnic Institute, pp. 37–44, (in Russian), 
http://www.datalaundering.com/download/RG-193-201-Modular.pdf, (English). 

Pleil Joachim D., Stiegel Matthew A., Madden Michael C., Sobus Jon R. (2011). Heat 
map visualization of complex environmental and biomarker measurements. Chemos-
phere, Volume 84, Issue 5, Pages 716-723. 
https://doi.org/10.1016/j.chemosphere.2011.03.017. 

Rozonoer Lev, Mirkin Boris, Muchnik Ilya (2017). Key Ideas from Inception to Current 
State: International Conference Commemorating the 40th Anniversary of Emmanuil 
Bravermans Decease, Boston, MA, USA, April 28-30, 2017, Invited Talks 

Schwabish Jonathan (2021). The Practice of Visual Data Communication: What Works, 
SageJournals, Volume 22, Issue 3, https://doi.org/10.1177/15291006211057899. 

Sun Guodao, Zhu Zihao, Zhang Gefei, xu Chaoqing, Wang Yunchao, Zhu Sujia 
(2023)."Application of Mathematical Optimization in Data Visualization and Visual 
Analytics: A Survey," in IEEE Transactions on Big Data, vol. 9, no. 4, pp. 1018-1037, 
https://ieeexplore.ieee.org/document/10081451. 

Wendy K., Cho Tam, Liu Yan Y. (2018). Sampling from complicated and unknown 
distributions: Monte Carlo and Markov Chain Monte Carlo methods for redistricting, 
Physica A: Statistical Mechanics and its Applications, Volume 506, 15 September 
2018, Pages 170-178. https://doi.org/10.1016/j.physa.2018.03.096 . 


