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Introduction 

Existing research on predicting customer retention and churn primarily focuses on ma-
chine learning methods and big data analysis (Verhelst et al., 2021; Verbeke et al., 2012). 
These approaches often require significant computational resources and large datasets. 
Moreover, they are generally aimed at identifying factors influencing customer churn pro-
pensity (Ribeiro et al., 2023; Jain et al., 2021) or predicting individual customer behavior 
to enable targeted interventions. However, for economic modeling purposes, it is crucial 
to have accurate yet easily applicable methods for forecasting the behavior of an entire 
customer base or its large segments. For instance, this is essential for estimating the ex-
pected average total revenue per customer, known as Lifetime Value (LTV) (Gupta & 
Zeithaml, 2006). This study focuses on analyzing the behavior of large customer groups 
and the inverse of churn—retention of the active customer base, or, borrowing a term from 
biology, customer base survival. The research demonstrates that active customer base re-
tention can be accurately modeled using power functions, and their extrapolation enables 
precise survival forecasting. However, before proceeding with modeling active customer 
base retention, it is necessary to discuss practical considerations regarding the selection 
of customer activity criteria, as these directly affect the metric itself and its interpretation. 

1. Customer Activity Criteria 

The analysis and forecasting of active customer base retention largely depend on the se-
lection of criteria used to define customer activity. This section examines various ap-
proaches to determining customer activity and their impact on assessing customer base 
survival. The following classification of activity criteria is proposed: 

1. Legal criteria; 
2. Financial criteria; 
3. Service usage criteria. 

Each of these categories has its own advantages and limitations, which will be dis-
cussed in detail in the following sections. 

1.1. Legal Criteria of Activity 

Legal criteria of activity are based on the formal status of contractual relationships be-
tween a company and a subscriber. The primary indicator in this category is the presence 
of an active service agreement. However, in the context of mass-market services, sub-
scriber activity is generally weakly correlated with the existence of a valid contract. There 
is often a significant lag between the actual cessation of service usage and the formal ter-
mination of the contract. For example, many mobile network operators, including T2, im-
plement automatic contract termination after an extended period of inactivity. Under T2’s 
terms, a contract is terminated if a subscriber does not perform any chargeable actions for 
180 days while maintaining a zero or negative balance. In some industries, such as retail 
or one-time services, contractual relationships exist only within the scope of individual 
transactions, rendering this criterion unsuitable for long-term survival analysis. Conse-
quently, the application of legal criteria to analyze subscriber base retention has signifi-
cant limitations. 
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Despite its limited applicability in the telecommunications sector, legal criteria 
may be relevant in other economic sectors and legal frameworks where the formal status 
of a contract is more closely linked to actual service usage. 

1.2. Financial Criteria of Activity 

Financial criteria of activity are based on various aspects of financial interaction between 
a subscriber and a telecom operator, including revenue generation, subscriber payments, 
account balance status, and service-related costs. Using financial indicators as activity cri-
teria has several clear advantages. Primarily, they directly reflect the economic value of a 
subscriber to the company, which is particularly important for economic modeling. 

However, despite this advantage, financial criteria for assessing subscriber base 
retention come with significant limitations. One key factor affecting the reliability of fi-
nancial criteria is their dependence on the company’s accounting policies. Revenue recog-
nition timing may vary significantly depending on the organization's established rules. 
For example, in the case of an upfront payment for an annual service plan, revenue can 
either be recorded as a lump sum or distributed over the entire paid period, leading to 
vastly different interpretations of subscriber activity. Such advance payments can either 
create an illusion of continuous activity even if the subscriber stops using the services after 
a few months or, conversely, indicate a complete lack of activity beyond the initial prepaid 
month. Neither scenario provides an accurate representation of actual subscriber behav-
ior, making these data unsuitable for forecasting. This issue is particularly relevant in the 
context of marketing campaigns and special offers that incentivize long-term prepay-
ments. A separate concern is the issue of remaining account balances for inactive sub-
scribers. If a subscriber ceases using the service but still has funds in their account, the 
gradual deduction of these funds as revenue may create a misleading impression of ongo-
ing activity. Such phenomena can lead to systematic distortions in the analysis of sub-
scriber base retention. 

Balance top-ups, as a potential activity criterion, have the advantage of being in-
dependent of the company’s accounting policies. However, they are not necessarily syn-
chronized with actual service usage: a subscriber may deposit a large sum and then not 
use the services for an extended period, which would also lead to misinterpretations of 
their activity. 

Using cost-related indicators as an activity criterion presents the same challenges 
as using revenue, further complicated by the intricacies of cost accounting and allocation. 
Moreover, costs are typically associated with service usage, which is more effectively 
measured directly (this will be further discussed in the next chapter on actual service usage 
criteria). 

Given these considerations, it can be concluded that while financial indicators are 
essential for the economic evaluation of a subscriber base, their use as activity criteria 
requires an extremely cautious approach. These limitations may result in significant dis-
tortions in the analysis and forecasting of subscriber retention dynamics. To mitigate such 
issues, a thorough analysis of the company’s accounting policies should be conducted be-
fore applying financial criteria. Additionally, when interpreting financial activity indica-
tors, it is crucial to consider the business model and service delivery specifics. Although 
financial criteria are valuable for assessing the overall economic efficiency of a subscriber 
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base, they cannot be regarded as a universal or sufficient tool for analyzing subscriber re-
tention. Nonetheless, financial criteria can be effective for specific, narrowly focused tasks 
(e.g., analyzing the payment compliance of subscribers under fixed monthly fee plans). 

1.3. Criteria for Actual Service Usage 

Criteria for actual service usage represent the most objective and direct approach to as-
sessing subscriber activity in the telecommunications industry. Unlike the legal and finan-
cial criteria discussed earlier, these indicators are based on real service consumption, en-
suring high accuracy and relevance of subscriber behavior data. The key advantage of these 
criteria lies in their independence from the company’s accounting policies and other man-
agerial factors. The use of telecom services creates a direct load on the network infrastruc-
ture, reflecting real physical processes that are recorded at the moment they occur. This 
allows for obtaining up-to-date subscriber behavior data without the time delays inherent 
in financial indicators. 

In the context of a mobile network operator, criteria for actual service usage en-
compass a wide range of services, including voice calls, data transmission, and text mes-
saging. However, not all types of network activity are appropriate for evaluating subscriber 
retention. For example, technical traffic generated by a device to maintain network con-
nectivity cannot be considered an indicator of subscriber activity (although it does indicate 
device activity). When developing a system of criteria for actual service usage, it is essen-
tial to consider the specifics of the provided services and their consumption patterns. 

Despite their obvious advantages, actual service usage criteria also have certain 
limitations. The primary drawback is the potential discrepancy between actual service us-
age and its economic value for the company. A subscriber may actively use services in-
cluded in a bundle without generating additional revenue. Conversely, a subscriber classi-
fied as inactive under these criteria may still be making regular payments, which is 
significant from a financial standpoint. For example, a subscriber may maintain a positive 
balance and regularly pay for services but not use them for various reasons. This situation 
can arise when a subscriber owns multiple SIM cards from different operators or retains a 
number solely for registration on online platforms. To address this limitation, one ap-
proach is to analyze the actual difference between “paying” and “service-using” subscrib-
ers and incorporate it into modeling. Another approach is to adopt a combined criteria 
that integrates both actual service usage and financial data. 

The choice of a specific criterion or combination of criteria should be made con-
sidering the business model, analysis objectives, and characteristics of the subscriber base 
under study. There is no universal solution suitable for all cases; each company must de-
velop its own approach to defining and measuring subscriber retention. In this study, we 
use two specially designed subscriber activity criteria: 

1. Criterion A – considers only certain actual service consumption by the subscriber. 
2. Criterion B – a combined approach that includes both actual service consumption 

and financial indicators of subscriber activity. 

2. Conformity of Retention Dynamics to Power Functions 

In the context of the telecommunications business, subscriber base retention, or survival, 
refers to the continued use of a company’s services by a subscriber. The retention metric 
represents the proportion of active subscribers, according to the selected criterion, out of 



5 

the initially connected cohort. Mathematically, retention for each period can be expressed 
using the following formula: 

𝑅𝑖 =
𝐴𝑖(𝑇, 𝑐)

𝐺𝑇

(1) 

where: 

 𝑅𝑖 – retention in the 𝑖-th period; 
 𝐴𝑖(𝑇, 𝑐) – the number of active subscribers (according to the activity criterion 𝑐) in 

period 𝑖 from the cohort onboarded in period 𝑇; 
 𝐺𝑇 – the number of activations in period 𝑇; 
 𝑖 ∈ [1; +∞] – the period for retention calculation; 
 𝑇 – a fixed initial period (usually the connection period); 
 𝑐 – the subscriber activity criterion (see Chapter 1). 

The calculation and analysis of retention dynamics constitute cohort analysis 
(Fader & Hardie, 2009; Zhang & Chang, 2021) and serve two primary objectives: diagnos-
ing the current state and providing a foundation for building predictive models. To identify 
patterns in subscriber behavior, it is advisable to examine retention dynamics over ex-
tended time intervals. In this study, we analyzed the retention dynamics of subscribers 
who joined the T2 network in November 2015, tracking their activity based on Criterion B 
over a period of 105 months (8.5 years) until July 2024 (Figure 1). 

 
Figure 1. B-Retention of Subscribers Who Joined T2 in November 2015 

Source: Developed by the authors based on T2 subscriber activity data. 

Note: The figure represents a graphical depiction of a time series of discrete retention values 
for each observation month. For better visualization, the discrete time series is displayed as a 
continuous line in this and subsequent figures. The vertical axis ranges from 0 to 1 (0% to 
100%). To prevent disclosure of the company's actual data, numerical labels have been re-
moved from this and all following figures. Data on active subscribers for February 2017 is 
missing, which appears as a gap in the graph. 

A visual analysis of the graph reveals a monotonous and smooth retention trend, 
suggesting the hypothesis that it can be approximated using a relatively simple mathe-
matical function. 

To test this hypothesis, four types of functions were considered: 

 Power function: 𝑎𝑥𝑏; 
 Exponential function: 𝑎𝑒𝑏𝑥; 
 Logarithmic function: 𝑎𝑙𝑛(𝑥) + 𝑏; 
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 Linear function: 𝑎𝑥 + 𝑏. 

For simplicity, the parameters of the nonlinear functions were estimated after lin-
earization using logarithmic transformation. Thus, the parameters were determined using 
the least squares method (LSM) for the following transformed functions: 

 ln(𝑦) = ln(𝑎) + 𝑏 ln(𝑥) + 𝜀; 
 ln(𝑦) = ln(𝑎) + 𝑏𝑥 + 𝜀; 
 𝑦 = 𝑎𝑙𝑛(𝑥) + 𝑏 + 𝜀; 
 𝑦 = 𝑎𝑥 + 𝑏 + 𝜀. 

This approach does not provide entirely accurate parameter estimates for the 
power and exponential approximations, as it assumes multiplicative residuals for the orig-
inal expressions 𝑎𝑥𝑏 and 𝑎𝑒𝑏𝑥. Nevertheless, we consider it an acceptable method for an 
initial hypothesis assessment and selection of the most suitable function. 

The approximation results are presented in Figure 2 and Table 1. 

 
Figure 2. Approximation of the B-Retention Curve Using Different Functions 

Source: Developed by the authors based on T2 subscriber activity data. 

Analysis of the results shows that the power function provides the best approxi-
mation of the retention curve, with a coefficient of determination (R²) = 0.985. 

Table 1. Approximation of Retention Using Different Functions 

Function type Function R² 

Power y = 1,595x−0.529 0,985 

Logarithmic y = −0,187ln(x) + 0,951 0,940 

Exponential y = 0,509e−0.015x 0,869 

Linear y = −0,005x + 0,507 0,606 

Source: Compiled by the authors based on T2 subscriber activity data. 

To verify the obtained results, we performed an approximation of actual retention 
based on Criterion A for various subscriber groups who joined the company’s network in 
different periods and through different sales channels. The results are presented in Figure 
3 and Table 2. 
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Figure 3. Approximation of A-Retention Curves Using a Power Function for Different 

Sales Channels and Activation Periods 

Source: Developed by the authors based on T2 subscriber activity data. 

Analysis of Table 2 confirms the high stability of power function approximation 
results. In all examined cases R² exceeds 0.96, indicating a strong fit between the model 
and empirical data, regardless of the sales channel or subscriber activation period. 
Table 2. Power Function Approximation for Different Sales Channels and Activation Pe-

riods 

Sales channel Activation month Function R² 

1 

Apr’23 y = 0,943 x−0.304 0,991 

May’23 y = 0,959 x−0.308 0,991 

Jun’23 y = 0,967 x−0.296 0,987 

2 

Apr’23 y = 0,814 x−0.594 0,997 

May’23 y = 0,769 x−0.686 0,972 

Jun’23 y = 0,790 x−0.591 0,981 

3 

Apr’23 y = 0,824 x−0.376 0,988 

May’23 y = 0,767 x−0.421 0,967 

Jun’23 y = 0,807 x−0.387 0,972 

4 

Apr’23 y = 0,881 x−0.455 0,987 

May’23 y = 0,935 x−0.421 0,994 

Jun’23 y = 0,956 x−0.382 0,986 

Source: Compiled by the authors based on T2 subscriber activity data. 

The obtained results allow us to formulate the following observations and hypoth-
eses: 

1. The high accuracy of retention approximation using a power function across dif-
ferent activity criteria, subscriber base segments, and time periods may indicate 
the existence of a fundamental pattern in subscriber retention that follows a power 
law. 
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2. Variations in the parameters of the approximating power function for different 
subscriber groups may exclusively reflect the influence of initial conditions (sales 
channel, activation period) on the long-term retention dynamics. 

3. The preservation of retention curve shapes, despite the influence of numerous var-
ying factors (service quality, retention activities, competitive acquisition efforts), 
suggests the possibility of a dynamic equilibrium within the competitive market. 
This equilibrium may exist between companies’ efforts to retain subscribers and 
the factors contributing to churn. 

4. Power functions are widely observed in describing patterns across multiple fields, 
including physics, astronomy, biology, geology, sociology, linguistics, psychology, 
and economics (Andriani & McKelvey, 2007). In M. Newman’s research (Newman, 
2005), power laws are examined in disciplines such as physics, biology, and eco-
nomics, including their manifestations in Pareto distribution and Zipf’s law. In 
economics and finance, power functions describe key phenomena such as income 
and wealth distribution, company sizes, stock market returns, trading volumes, and 
international trade metrics (Gabaix, 2009). The predominance of power-law de-
pendencies in subscriber retention raises fundamental questions about the under-
lying processes governing subscriber behavior. For instance, J. Staddon’s study 
(Staddon, 1978) attempts to justify the emergence of power-law dependencies in 
the behavior of living organisms in response to various stimuli. 

The high effectiveness of power function approximation for subscriber retention 
opens up opportunities for forecasting subscriber base dynamics. The following chapters 
will explore the practical applications of these findings for building predictive models and 
discuss the limitations of the proposed approach. 

3. Extrapolation of Retention and Its Use for Forecasting 

The high accuracy of retention curve approximation using power functions, as demon-
strated in Chapter 2, presents opportunities for their use in forecasting. Extrapolation al-
lows for the estimation of subscriber base retention over long time intervals without wait-
ing for actual data. This is particularly important for economic modeling and evaluating 
the effectiveness of subscriber acquisition strategies. Subscriber retention forecasting 
plays a key role in calculating critical economic indicators such as Customer Lifetime (ex-
pected subscriber lifespan) and Customer Lifetime Value (LTV) (Kumar, 2014). These met-
rics are essential for comparing against Subscriber Acquisition Cost (SAC) and, conse-
quently, for making informed decisions about launching, continuing, or discontinuing 
campaigns and mechanisms for expanding the subscriber base (Krstevski & Mancheski, 
2016). 

To evaluate the effectiveness of power function extrapolation in retention fore-
casting, the following analysis was conducted: 

1. Data on subscriber retention according to Criterion A was used for subscribers who 
joined in April 2023, covering a 12-month period. 

2. Power function approximations were built using nonlinear regression with additive 
residuals (see Appendix A), applying an increasing number of actual retention val-
ues from the first months (ranging from 2 to 11 months). 
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3. Retention forecasts were generated by extrapolating each approximating function 
up to the 12th month. This resulted in model-based retention estimates for the 
entire 12-month period, with each model using a different amount of actual data. 

4. The coefficient of determination (R2) was calculated for each model based on 12 
months of data, serving as both a measure of fit to actual retention and an indirect 
indicator of forecast quality. 

5. A graph was constructed to illustrate the relationship between R2 values and the 
amount of actual data used for model construction. 

The analysis results are presented in Figures 4 and 5 and Table 3. 

 
Figure 4. Comparison of Actual A-Retention with Different Forecasts Based on Power 

Function Extrapolation Using Varying Amounts of Actual Data 

Source: Developed by the authors based on T2 subscriber activity data. 

A sharp increase in forecast quality is observed when the first three actual reten-
tion values are used. Beyond this point, further improvements are minimal. 

Table 3. Parameters of Approximating Functions and Forecast Errors 

Actual periods Forecast periods Function R² 

11 1 y = 0,927x−0.370 0,988 

10 2 y = 0,925x−0.367 0,987 

9 3 y = 0,922x−0.361 0,986 

8 4 y = 0,919x−0.356 0,984 

7 5 y = 0,917x−0.351 0,982 

6 6 y = 0,917x−0.351 0,981 

5 7 y = 0,916x−0.348 0,980 

4 8 y = 0,915x−0.343 0,975 

3 9 y = 0,911x−0.327 0,954 

2 10 y = 0,900x−0.241 0,575 

Source: Compiled by the authors based on T2 subscriber activity data. 
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Figure 5. Dependence of R2 on the Number of Actual Data Points Used in Models 

Source: Developed by the authors based on T2 subscriber activity data. 

The objective of this analysis was to propose a general approach for evaluating 
forecast quality, demonstrate the applicability of forecasting based on a limited set of ac-
tual data, and suggest a method for determining the optimal amount of historical data 
needed for building a forecast. The fact that using just a few actual values results in a suf-
ficiently high forecast accuracy, with only marginal improvements thereafter, holds prac-
tical significance. For instance, it is possible to use only the first three retention values to 
achieve a reasonably accurate forecast of future retention. 

It is important to note that extrapolation does not necessarily require the first few 
actual values. This method allows for assessing a "hypothetical past", meaning it can be 
used for retrospective analysis and evaluating alternative scenarios. This can be valuable 
when analyzing the effectiveness of past subscriber retention campaigns. 

In practical applications, it is often reasonable to construct forecasts using all 
available retention data at a given moment. These could include retention values of dif-
ferent subscriber cohorts activated in different months. For example, if we consider a full 
year of activations, we could use: the first-month retention for subscribers who joined in 
January, February, …, December (12 values), the second-month retention for subscribers 
who joined in January, February, …, November (11 values), and so forth. This approach 
enhances forecast stability by reducing the impact of seasonality and random fluctuations. 

The conducted research demonstrates the strong potential of using power func-
tion extrapolation for forecasting subscriber retention. However, despite its effectiveness, 
this approach has certain limitations that require careful examination. The next chapter 
will analyze these limitations, specifically discussing the long-term applicability of power 
functions for retention modeling. 

4. Limitations of Applicability 

As demonstrated in Chapter 2, power functions of the form 𝑎𝑥𝑏 provide a highly accurate 
approximation of actual subscriber base retention. Chapter 3 explored the potential use of 
these functions for forecasting. However, despite their effectiveness, it is evident that the 
high quality of forecasts based on power function extrapolation has certain limits of ap-
plicability. From a mathematical standpoint, as 𝑥 → +∞, a function of the form 𝑎𝑥𝑏 (where 
𝑎 > 0 and 𝑏 < 0) asymptotically approaches zero without crossing the x-axis: 
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This implies that forecasts based on such functions predict that retention will 
never reach zero. However, from a practical perspective, this assumption does not reflect 
reality. The retention of a subscriber group is an aggregated measure of individual sub-
scriber states, where each subscriber at any given moment can only be in one of two states: 
1 (active subscriber) or 0 (inactive subscriber). Logically, the number of active subscribers 
will continuously decrease over time until only one active subscriber remains. Once this 
last subscriber leaves, the group's overall retention will inevitably drop to zero—an event 
that a function of the form 𝑎𝑥𝑏 can never predict. 

Moreover, subscriber retention is influenced not only by factors related to custom-
ers’ willingness to use the company’s services but also by objective constraints, such as 
the physical ability to use telecom services. Subscribers are living individuals (except for 
the segment of devices with SIM cards, which also have a limited lifespan). Inevitably, a 
point will be reached when every subscriber physically can no longer continue using the 
service. 

These considerations highlight a potential limitation in the long-term applicabil-
ity of power function extrapolation for retention forecasting. For a more detailed analysis 
of this limitation, we turn to the B-retention curve and its power function approximation, 
presented in Figures 1 and 2. Closer examination of the graph’s later periods reveals that, 
despite the high overall accuracy of the approximation, as time progresses, there is a sys-
tematic overestimation of actual retention by the approximating curve. 

To better illustrate this overestimation effect, we will first construct a more pre-
cise approximation (where Figure 2 previously showed an approximation assuming multi-
plicative residuals), using nonlinear regression with additive residuals (see Appendix A). 
This will be done by using only the first three actual retention values, after which we will 
extrapolate retention over the entire period. 

 
Figure 6. Extrapolation of B-Retention Based on Initial Actual Values 

Source: Developed by the authors based on T2 subscriber activity data. 

Note: Due to the methodological specifics of Criterion B, the first four values provide a dis-
torted representation of actual subscriber activity. Therefore, for extrapolation, the actual 
values from months 5, 6, and 7 were selected. Deviations in the first few months are also ex-
plained by the specific nature of the chosen activity criterion. 

The results (Figure 6) show a growing discrepancy between the forecasted and ac-
tual retention as the subscriber cohort ages. This observation suggests the hypothesis that 
additional factors emerge over time, influencing subscriber base retention. As previously 
discussed, one such factor may be the physical age of subscribers, whose effect on telecom 
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service usage presumably increases with the duration of their presence in the subscriber 
base. 

Based on the survival curves of large mammals, including humans (Type I curve in 
Figure 7) [Deevey, 1947; Pearl & Miner, 1935], we can hypothesize the general shape of 
the subscriber retention curve while considering the age factor. 

 
Figure 7. Three Main Types of Survival Curves for Animal Populations in the Wild Ac-

cording to E. Deevey  

Source: [Hill et al., 2021] 

If we consider the subscriber retention curve as the probability of maintaining ac-
tivity, then the physical age factor should gradually modify it in accordance with a Type I 
survival curve (Figure 7). As a result, the general shape of the subscriber retention curve 
may take on an S-shaped form, consisting of two distinct phases separated by an interval 
of uncertain duration (Figure 8). The first phase reflects retention dynamics influenced by 
service quality and customer loyalty. The second phase demonstrates the impact of other 
objective physical factors. 

 
Figure 8. General Shape of the S-Shaped Subscriber Retention Curve 

Source: Developed by the authors. 

It is possible that this S-shaped curve, with its deceleration and acceleration 
phases, represents a universal survival pattern applicable not only to telecom subscribers 
but also to biological organisms. If comparable starting points of observation were aligned, 
all three types of survival curves might be variations of this generalized curve, with differ-
ences arising due to the positioning of deceleration and acceleration zones and the life 
stage most emphasized in analysis. 

Studying the long-term effects of age and other demographic factors on subscriber 
base retention presents a promising direction for future research. Such an analysis could 

0  12    24   36  48   60    72 84 96  108

Re
te

nt
io

n 
ra

te

Month



13 

contribute to the development of more accurate long-term forecasting models and help 
define the overall shape of the subscriber retention curve throughout the entire subscriber 
lifecycle. However, as demonstrated earlier, for short- and medium-term forecasting, this 
factor can be reasonably neglected. 

Conclusion 

This study proposes a classification of subscriber activity criteria and discusses their prac-
tical applications. Combined indicators of actual service usage, sometimes in conjunction 
with financial indicators, appear to be the most universal approach for modeling sub-
scriber base retention. 

It has been demonstrated that subscriber retention dynamics follow a power law, 
specifically curves of the form 𝑎𝑥𝑏 (𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 and 𝑏 < 0). This finding can be utilized 
for forecasting subscriber retention through simple extrapolation, using only three to four 
actual data points in our case. The ability to construct simple and accurate forecasts based 
solely on initial retention values has significant applications in economic modeling and in 
assessing the total expected impact of subscriber acquisition, including key metrics such 
as average subscriber lifetime and LTV (Customer Lifetime Value). 

At the same time, long-term forecasts based on power function extrapolation have 
limitations, which are presumably linked to the growing influence of additional factors 
over time, such as subscriber age. It can be hypothesized that the general shape of the 
retention function should be a combination of different patterns, where the initial part of 
the curve follows a power law, while the later stages deviate from this form. 

This study leaves several key questions open, each of which requires further in-
vestigation: 

1. Why does subscriber retention follow power functions so precisely? 
2. Why does retention (and, correspondingly, churn) appear so uniform and seem-

ingly dependent only on initial conditions? Could this be a manifestation of a dy-
namic equilibrium among competitive market forces? 

3. What could be the general long-term shape of the subscriber retention curve? 
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Appendix A. Estimation of Nonlinear Regression Parameters for a Power 
Function with Additive Residuals Using the Least Squares Method 

A nonlinear regression model for a power function with additive residuals is given by: 

𝑦𝑡 = 𝑎𝑥𝑡
𝑏 + 𝜀𝑡 ,  𝑡 = 1 ÷ 𝑇 

Considering the general equation of nonlinear regression: 𝑦 = 𝑎𝑥𝑏 + 𝜀 

Taking the natural logarithm of both sides: ln 𝑦 = ln(𝑎𝑥𝑏 + 𝜀),  

Let 𝑎𝑥𝑏 = 𝑧, then: ln 𝑦 = ln(𝑧 + 𝜀) 

Using the Maclaurin series expansion for 𝑓(𝜀) = 𝑓(0) + 𝑓′(0)𝜀 + 𝑂(𝜀2), 
where 𝑓(𝜀) = ln(z + 𝜀), we obtain: 

𝑓(𝜀) = ln(𝑧 + 𝜀) = ln(𝑧) +
1

𝑧
𝜀 + 𝑂(𝜀2) ≈ ln(𝑧) +

𝜀

𝑧
 

Since 𝑧 = 𝑎𝑥𝑏, we substitute: 

 𝑓(𝜀) ≈ ln(𝑎𝑥𝑏) +
𝜀

𝑎𝑥𝑏
= ln 𝑎 + 𝑏 ln 𝑥 +

𝜀

𝑦 − 𝜀
≈ ln 𝑎 + 𝑏 ln 𝑥 +

𝜀

𝑦
 

Thus, we obtain a linear regression model with heteroskedastic residuals: 

ln 𝑦𝑡 = ln 𝑎 + 𝑏 ln 𝑥𝑡 +
𝜀𝑡

𝑦𝑡

= 𝑎̃ + 𝑏 ln 𝑥𝑡 +
𝜀𝑡

𝑦𝑡

,  𝑡 = 1 ÷ 𝑇, 𝑎̃ = ln 𝑎 

Regression Residuals: 𝜀𝑡 = 𝑦𝑡(ln 𝑦𝑡 − 𝑎̃ − 𝑏 ln 𝑥𝑡),  𝑡 = 1 ÷ 𝑇 

Sum of Squared Regression Residuals: 

Σ(𝑎̃, 𝑏) = ∑  

𝑇

𝑡=1

𝜀𝑡
2 = ∑  

𝑇

𝑡=1

𝑦𝑡
2(ln 𝑦𝑡 − 𝑎̃ − 𝑏 ln 𝑥𝑡)2 

To find the optimal parameters, we solve the normal equations system:  
𝜕Σ(𝑎̃, 𝑏)

𝜕𝑎̃
= − ∑  

𝑇

𝑡=1

 2𝑦𝑡
2(ln 𝑦𝑡 − 𝑎̃ − 𝑏 ln 𝑥𝑡) = 0

𝜕Σ(𝑎̃, 𝑏)

𝜕𝑏
= − ∑  

𝑇

𝑡=1

 2𝑦𝑡
2(ln 𝑦𝑡 − 𝑎̃ − 𝑏 ln 𝑥𝑡) ln 𝑥𝑡 = 0

 

After simplification, we obtain a system of linear equations:  

𝑎̃ ∑  

𝑇

𝑡=1

 𝑦𝑡
2 + 𝑏 ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑥𝑡 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑦𝑡

𝑎̃ ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑥𝑡 + 𝑏 ∑  

𝑇

𝑡=1

 𝑦𝑡
2(ln 𝑥𝑡)2 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑦𝑡 ln 𝑥𝑡

 

Define the summation terms:  

𝑆1 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ,   𝑆2 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑥𝑡  ,   𝑆3 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 (ln 𝑥𝑡)2  ,   𝑆4 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑦𝑡 ,     𝑆5 = ∑  

𝑇

𝑡=1

 𝑦𝑡
2 ln 𝑦𝑡 ln 𝑥𝑡     

Then, the system of equations can be rewritten as: 
𝑎̃𝑆1 + 𝑏𝑆2 = 𝑆4 
𝑎̃𝑆2 + 𝑏𝑆3 = 𝑆5 

Solving the system of equations, we obtain the estimates for 𝑎̃ and 𝑏: 

𝑎̃ =
𝑆4𝑆3 − 𝑆5𝑆2

𝑆1𝑆3 − 𝑆2
2  ,       𝑏 =

𝑆1𝑆5 − 𝑆4𝑆2

𝑆1𝑆3 − 𝑆2
2  ,      𝑎 = 𝑒𝑎̃ 

 


