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Abstract

Latent group structures in panel data models are a new and powerful approach

to deal with unobserved heterogeneity in a parsimonious way. This review, with

a special focus on grouped structure in unobservable traits, first analyzes the lim-

its and opportunities of Bonhomme and Manresa (2015a)’s Grouped Fixed Effects

(GFE) estimator, also discussing the literature it contributed to create. A rich se-

lection of models enhancing clustered heterogeneity at a slope level, starting from

Su et al. (2016a), is then presented. A short section investigates how the applied

literature has employed in practice the GFE. Finally, the GFE of Bonhomme et al.

(2022) is presented in detail together with its limits and advantages.
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1 Introduction

Correct specification of unobserved heterogeneity (UH) is crucial in panel data models. The

fixed effects (FE) approach, the most widely employed technique in empirical applications (Hsiao,

2022), directly estimates the parameters concerning unobservable individual-specific traits along

with other quantities that are usually of interest for the analyst. Another popular approach,

known as the random effects (RE) approach models the UH parameters as random variables.

Despite being popular, the RE approach assumes the absence of correlation between the unob-

servable traits and the regressors included in the model specification, which is not usually the

case in economics. The FE procedure instead could be employed even if such a correlation is

present in the data and that is why it has become the most employed tool in empirical economic

studies. In this review, we focus on fixed effects models only.

In the fixed effects panel data literature different specifications of UH - from simple to more

involved ones - are studied, according to the (assumed) form of the latent characteristics.

Let us start by defining a simple linear panel data model:

yit = xitθ + uit (1)

For i = 1, . . . , N and t = 1, . . . , T we observe N individuals for T time spans and xit gathers the

p regressors used in the analysis associated with a conformable vector of parameters of interest

θ, which is supposed to be the main object of analysis. We define uit as the idiosyncratic error:

however, let us suppose for the moment that this component of the model has a slightly more

complex shape such as:

uit = αi + εit (2)

If this is the case, the error term involves an individual-specific (time-invariant) component αi.

Controlling for this unobserved individual heterogeneity in models such as (1) is straightforward

using the so-called one-way fixed effects approach (OW-FE henceforth). At the same time, in

contexts in which the heterogeneity is supposed to be time-varying we have that a suitable

specification for the heterogeneity takes form:

uit = αi + λt + εit (3)

The additive representation for the unobservable traits is the current mainstream approach in

empirical panel data modeling (Wooldridge, 2021). Models like (1) with an additive specification

for heterogeneity such as expression 3 are usually estimated with the so-called two-way fixed

effects approach (TW-FE).

Both OW-FE and TW-FE estimations are carried out using the standard least squares

approach, based upon de-meaning procedures, which under mild assumptions gives consistent

and asymptotically normal distributed estimators of the parameters of interest (Hsiao, 2022).

Generalizations of model (1) with both time invariant and time-varying specification of

heterogeneity to well-studied nonlinear models, such as the logit or probit panel data models,

have been object of interest in econometric literature: Maximum likelihood (ML) estimation of

parameters of interest in most common nonlinear models could be carried out, but the resulting

estimator is known to suffer from the incidental parameters problem (IPP): when T is small, the

noise in the estimation of the fixed effects influences the estimation of the common parameters,
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unlike what happens in linear models. Under fixed-T asymptotics (Neyman and Scott, 1948;

Lancaster, 2000) the IPP leads to inconsistency of the MLE. Under large N,T asymptotics -

with N,T growing at the same rate (Li et al., 2003) - ML estimators are generally consistent,

but they exhibit an asymptotic bias which can be removed. A number of solutions is actually

offered to the analyst: analytically removing the bias (Hahn and Newey, 2004; Carro, 2007;

Bester and Hansen, 2009; Hahn and Kuersteiner, 2011; Bartolucci et al., 2016; Fernández-Val and

Weidner, 2016), adopting a jackknife estimator (Hahn and Newey, 2004; Dhaene and Jochmans,

2015; Fernández-Val and Weidner, 2016) or relying on conditional inference (Andersen, 1970;

Chamberlain, 1980) - which indeed works also when T is small as individual nuisance parameters

are not actually estimated - for models with OW-FE (Bartolucci and Nigro, 2010, 2012) and

generalizations to TW-FE (Charbonneau, 2017; Bartolucci et al., 2024). For details see Arellano

and Hahn (2007) and Valentini et al. (2023).

Another specification for UH that has acquired growing importance in recent studies is the

one portrayed by a factor structure. The two seminal contributions are the common correlated

effects by Pesaran (2006) and the interacted fixed effects (IFE) by Bai (2009). The latter,

originally focused on linear models only, has been extended to popular nonlinear models by

Chen et al. (2021). Models with a factor structure generally assume that unobservables in (1)

have latent characterization, such as

uit = α′iλt + εit (4)

where individual specific loadings (R× 1) and time-varying unobserved factors (R× 1) enter in

the model in a multiplicative way (the number of factors is R).

While the Pesaran (2006)’s approach is based on proxying the common factors via cross-

sectional averages of the regressors and the dependent variable, the Bai (2009)’s approach di-

rectly estimates the common factors along with the parameters of interest. Bai (2009)’s proce-

dure, based on an iterative least squares minimization which makes use of principal component

analysis for factors extraction, gives consistent and asymptotically normal distributed estima-

tors. However, despite its increasing popularity in panel data econometrics the IFE estimation

is hindered by three issues: i) the objective function is not globally convex, meaning that it

is likely to run into local minima (Moon and Weidner, 2023) ii) the reliability of the iterative

procedure crucially depends on the consistency of the parameter estimates chosen as the starting

point for the algorithm (Hsiao, 2018) iii) the number of factors should be known a priori (Bai,

2009). The latter issue has been addressed by Moon and Weidner (2015), while the generaliza-

tion of the Bai’s model to predetermined covariates is discussed in Moon and Weidner (2017).

In a nonlinear framework, estimation issues are amplified (Chen et al., 2021). Although recent

contributions - such as the introduction of the nuclear norm regularization (Moon and Weidner,

2023) for a well-behaved optimization problem - have tried to deal with the aforementioned

challenges, it is straightforward that a clear trade-off between the simplicity of the FE and the

flexibility of factor models could be found1.

The following literature review wants to explore a different topic. The idea of exploiting

latent group structures in panel data is not new, especially in statistical literature where the

presence of models assuming discrete heterogeneity is consolidated. In econometrics, Hahn and

1The Hausman test developed in Kapetanios et al. (2023) allows one to test for the correct specification
of UH between a multiplicative factor or a simpler structure .
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Moon (2010) argued that the group structure may have sound foundations in economic models

where multiplicity of Nash equilibria could be found: they consider a nonlinear panel data model

where the parameter of interest is common to individuals whereas the fixed effects have finite

support.

However, in fixed effects literature, two recent contributions ( Bonhomme and Manresa

(2015a) and Bonhomme et al. (2022), BM15 and BLM22 henceforth) have attracted attention

on the possibility of cleverly using clustering procedures in addition to fixed effects modelling for

a more precise estimation of parameters of interest: we refer to these methods as grouped fixed

effects (GFE) estimators. Since the two contributions are affine in the spirit but rather different

in the asymptotic framework, we discuss them and the literature flows that have spurred from

them in two different Sections. The choice of BM15 as a starting point of the analysis of GFE

methods and as one of the main object of the focus in this review when dealing with discrete

UH is twofold: i) the contribution has gained undoubted popularity, the estimation procedure is

convenient for applied economists and intuitive with respect to the other contributions explored

above; moreover there are a number of studies in applied microeconometrics literature that

explore the possibility of employing BM15 approach, especially in health and labor economics

literature ii) BM15 could be seen as the most relevant forerunner of the BLM22 approach, that is

the actual object of the thesis. The main differences between the BM15 and the BLM22 approach

are that the first contribution supposes that the UH is discrete, that a latent group structure is

present in the unobservable components, and that, after a proper (a priori unknown) number

of cluster is chosen and a suitable clustering procedure is applied, it is possible to consistently

estimates grouped fixed effects in a linear framework, via group membership dummies interacted

with time dimension, in a standard maximum likelihood procedure. In this way, the grouped

fixed effects approach allows the analyst to deal with the unobservable latent group structure.

BLM22 postulates instead a different goal for clustering: the main idea is that unspecified and

possibly time-varying UH could be approximated throughout grouped fixed effects. Clustering

serves here as an approximation tool. BLM22 works for both linear and nonlinear models, but,

unlike BM15, does not allow for dynamic models when time-varying heterogeneity is involved.

At the same time the econometrics literature has also focused on the pursuit of heterogeneity

in slope coefficients: the idea of clustering individuals with the goal of estimating different slope

coefficients has been exploited by the seminal contribution of Su et al. (2016a), in which the

novel C-Lasso approach has been firstly introduced. Part of the paper is also devoted to main

recent contributions to this different way of conceiving clustered latent structures in panel data:

main challenges and non-trivial issues are analyzed as well.

The paper is organized as follows: Section 2 deals with latent clustered patterns of unob-

servable heterogeneity, introduces the BM15 approach, explains the possible issues and discusses

the possible solutions appeared in the following literature, together with some of the most in-

teresting extensions of this method; Section 3 discusses the literature on heterogeneous grouped

slopes; Section 4 introduces relevant empirical studies that have employed grouped fixed effects

or procedures for estimating heterogeneous slopes; Section 5 describes the BLM22 method in

details, discusses the major limits and briefly examinates the subsequent literature. Finally,

Section 6 concludes.
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2 Latent clustered patterns of UH

In this Section the BM15 model is briefly discussed together with relevant contributions in the

literature that have tried to improve the main drawbacks.

2.1 BM15 and its literature: methodological and practical chal-

lenges

BM15 deal with the latent grouped structure by estimating grouped fixed effects and accounting

for cluster heterogeneity in the unobservables. In BM15 the object of interest is a linear panel

data model, possibly dynamic, in which the UH is supposed to be discrete and described by a

number of support points G0, that is the number of unobservable clusters in data. The number of

clusters is finite and needs to be specified by the analyst; moreover this number is not estimated

along with the other parameters but selected using a suitable Information Criterion. The model

of interest is then (in the static specification):

yit = x′itθ + αg(i)t + εit, (5)

for i = 1, . . . , N, t = 1, . . . , T, gi = 1, . . . , G0 and where the αg(i)t are the grouped fixed effects

to be estimated and each individual is classified in one of the g(i) . . . Ĝ groups. To account for

time heterogeneity, the model also includes time trajectories assumed to be cluster-specific.

The BM15 approach introduces a number of advantages. From an economic standpoint it

is completely reasonable to suppose that some economic phenomena have grouped structure in

observables and unobservables components: consider for instance the “convergence clubs” theory

for economic growth revisited by Lin and Ng (2012)2 or the relationship between democracy

and income, put forward by Acemoglu et al. (2008), and revisited - with a rich discussion in the

following literature - by BM15. Another advantage is that GFE lead to a more parsimonious

specification by shrinking the number of parameters while accounting for time heterogeneity:

as it is well-known, the estimation of standard one-way or two-way fixed effects models in large

datasets comes with the estimation of a non-negligible number of parameters. Moreover, as

discussed in BM15, the GFE estimator could represent a flexible yet valid alternative to Bai’s

IFE estimator, as it is proven to perform better in terms of bias when the underlying structure

of heterogeneity is clustered, at least in simulations.

A two-step iterative algorithm assigns cluster memberships in the first step and estimates

grouped fixed effects in the second step. In the clustering step they propose to solve the optimal

group assignment for model 5:

ĝi(θ, α) = argming∈{1,...,G}

T∑
t=1

(yit − x′itθ − αg(i)t)2,

In the second step, a standard least squares problem is solved after individuals are classified in

groups

(θ̂, α̂) = argmin(θ,α)∈Θ×AGT

N∑
i=1

T∑
t=1

(yit − x′itθ − αĝ(i)t)
2,

2In Lin and Ng (2012) application the grouped heterogeneity is present at a common parameters level.
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where Θ × AGT is the parameter space. Iteration until numerical convergence follows. The

Authors suggest two different algorithms for clustering, the first one is based on the classification

likelihood principle (Bryant and Williamson, 1978) and explores all possible classification of N

individuals in G groups: the task could be easily overwhelming for a large dataset, since the

computational burden increases with N . The second algorithm is based on the well known

k-means method (Pollard, 1981) and is suited for larger scale problems. However, this second

method crucially requires to try different starting guesses for the k-means problem. The solution

of the least squares problem does not generally pose any issue, since it relies on a standard

maximum likelihood approach with groups specific dummies interacted with time dummies.

One of the most relevant aspects on which the literature has focused after the BM15 paper -

discussed in more details below - is the research of faster algorithms or different techniques for

retrieving group memberships.

The proper number of groups is specified by the econometrician and it is not known a

priori. Following the literature on determining the number of factors in factors models (Bai and

Ng, 2002; Bai, 2009) BM15 propose an information criterion based procedure for selecting the

number of groups. Their Bayesian Information Criterion (BIC) writes:

BIC(G) =
1

NT

N∑
i

T∑
t

(yit − x′itθ̂(G) − α̂
ĝ
(G)
(i)

t
)2 + σ̂2GT +N + C

NT
ln(NT ) (6)

where σ̂2 is a consistent estimator of the variance of uit and C is the number of common

parameters. This Information Criterion has proven to perform reasonably well in simulations in

terms of suggesting the right number of groups, and that is why all the following literature tend

to suggest different information criterion more than different rules for the number of groups.

The BM15 GFE is a consistent and asymptotically normal distributed estimator. Moreover,

the GFE estimator and the infeasible least squares estimator with known population groups are

asymptotically equivalent. In order to get these results some relevant assumptions on group

structure are needed. The G population groups must be well-separated and in the limit groups

must be populated by a large number of individuals. The separation assumption fails, for

instance, when the number of groups is underidentified. Further assumptions are stated on

the difference between two α0
gt different (in g) processes, the resulting process supposed to be

a strong-mixing one. This assumption is needed to bound misclassification probabilities. As

predetermined covariates are allowed, GFE estimation could be carried out on dynamic models

In BM15 framework there is a distinction between the under- and the overidentification of

the real number of clusters, the latter being less “dangerous” than the former: the case for

Ĝ > G0 could be seen as the inclusion in the model specification of irrelevant regressors, and,

under BM15 asymptotic framework does not cause inconsistency of the common parameters θ

but results in biased estimates of grouped effects. It is mainly an efficiency problem. Under the

Ĝ < G0 scenario, the bias is present in both common parameters and grouped fixed effects and

could be seen as an omitted variable bias problem.

Another concern for the econometrician is the misclassification problem: even under the

hypothesis that G0 = Ĝ there is the possibility that, in small samples, individuals are assigned to

wrong groups. Although misclassification mainly represents a short panel problem, it could lead

to dispersion on the finite sample performances of the GFE. However, it is worth noticing that in

BM15’s apparatus of simulations the misclassification rate is not really an issue when G0 is small
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and, even in presence of high misclassification rates when G0 is increasing (G0 = 10 groups yield

to 55% misclassification rate in their experiment), wrong classification is not problematic if G0

is small with respect to the sample size N . As a final note, under fixed-T asymptotics the GFE

estimator provides valid inference on pseudo true value of the parameters only and a suitable

fixed-T estimator of its variance is needed. In Bonhomme and Manresa (2015b) a formula for an

analytical variance is provided together with an alternative bootstrap-based estimator, obtained

resampling unit-specific blocks of information (xi, yi). Under large N,T asymptotics a simple

estimator for the variance matrix, which hinges on deviations from the group-specific means, is

discussed in Bonhomme and Manresa (2015b).

2.2 Extensions to BM15

BM15 contribution has generated a rich literature that attempts to address some of its limita-

tions. In the following Sections we investigate how the literature has specifically studied grouped

fixed effects-related topics: how to select the number of groups, how to ease the computational

burden of the clustering procedure, how to extend the original BM15 framework to nonlinear

models and other miscellaneous topics.

2.2.1 Number of groups, cluster memberships and heteroskedasticity

As described above, the identification of the right number of groups is crucial for a correctly

specified model. The BIC criterion introduced in BM15 (see Equation (6)) presents good to

perfect performances in simulation, and it is known not to overidentify the number of groups

when N,T grow to infinity, since the real number of latent groups is fixed and does not vary

in N,T . Models featuring grouped heterogeneity in slopes make extensive use of Bayesian

Information Criterion for choosing the number of clusters (see below in Section 3). At the

same time, in empirical economic applications it is not always easy to reconcile an economic

meaningful number of clusters with the outcome of the application of the BIC. As an example,

consider the empirical application on the relationship between income and democracy originally

studied by Acemoglu et al. (2008) and revisited by BM153: following the BIC guidance would

lead to an unclear choice of the number of clusters and the Authors suggest the criterion of

parameter stability - evaluate the stability of the parameters of interest by varying the number

of groups - in order to find 4 groups, the choice also driven by economic intuition.

Another key issue in BM15 is the problem of misclassification. Under their asymptotic

framework the GFE estimator attains the perfect classification rate in the limit and, from a

small sample perspective, it is proven to be reliable in simulations. However, the literature has

further analyzed the cluster membership topic.

The theoretical contribution of Dzemski and Okui (2021) investigates the convergence rate

of grouped fixed effects estimator in a linear model without covariates in presence of individual

variances and potential misclassified units in the limit. The Authors managed to prove uniform

consistency of their simplified GFE in presence of a misclassification rate, assuming that it

vanishes at a sufficiently fast rate4. The possibility of misclassification in their framework is due

3See Section 4 for details.
4See Condition 4 in the paper.
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to an individual error variance large with respect to the sample size. The main limit of this

result is that - up to now - applies to a regressors-free model only.

Loyo and Boot (2024) introduces a novel approach for estimation of BM15 GFE when group-

specific variances entail information: necessary condition in the original GFE is that cluster

specific means are well-separated in order to consistently identify non-overlapping groups. Loyo

and Boot (2024) investigates the case for well-separated group variances when cluster means are

(possibly) not: hence their framework features a cluster-level heteroskedasticity. By virtue of the

novel estimation of cluster-specific variances, the Authors introduce a slightly different objective

function - called Grouped Square Root (GSR) - robust to singularities that may arise in presence

of ill-posed clustering outcomes, such as one individual in one group, leading to meaningless and

problematic cluster-variance estimation. Of course, with respect to BM15, further distributional

assumptions are required, since the GSR is basically a finite mixture model approach with cluster

heteroskedasticity. The number of groups is identified using a BIC-style information criterion.

Furthermore, under suitable assumptions, their GSR-GFE estimator is consistent and asymp-

totically normal: in this vein, the Loyo and Boot (2024)’s contribution widens the range of

application of the GFE with minimal further assumptions on group specific variances.

2.2.2 Computational issues

Classification Likelihood (CL) is the clustering algorithm initially proposed in BM15, but it

is hard to apply it in real world datasets due to the dimensions of the grouping problem and

the number of iterations required for a solution. In this spirit, k-means stands as an optimal

alternative to CL and has become the standard tool in GFE applications, even though it may

fall into local minima and requires the econometrician to evaluate different starting values.

Some contributions in literature have developed different clustering procedures w.r.t k-means

in order to ease the GFE estimation. Chetverikov and Manresa (2022) introduce a grouped fixed

effects estimator for linear models which has asymptotic properties comparable to BM15 while

being computationally straightforward to compute. The spectral GFE estimation is a three-

step process: the first step gives a preliminary estimate of the parameter(s) of interest, the

second step concerns the classification of individuals in groups, and the third step is a simple

OLS estimation with cluster-specific dummies. The clustering step is k-means-free and closely

resembles a splitting algorithm; since the preliminary estimation step basically contemplates

the computation of the eigenvalues of a potentially large matrix and the third step is embodied

anyway in the standard BM15 procedure, this novel spectral approach is computationally simple.

The spectral GFE is
√
NT -consistent, asymptotically normal and unbiased under the same set

of BM15 assumptions plus a relevant new one concerning the structure imposed on covariates,

which are supposed to exhibit a latent factor structure. Finally, Chetverikov and Manresa (2022)

suggest the use of information criteria in order to choose the right number of groups.

Mugnier (2022) introduces a three-step procedure to estimate BM15 baseline linear model

(5) which is computationally trivial and results in an estimator with desirable asymptotic prop-

erties. It relies on nuclear norm regularization (Moon and Weidner, 2015) as a first step for

a preliminary estimate of parameters of interest. Then a simple iterative clustering algorithm

(k-means-free) based upon the distance between residuals obtained in the first step carries out

the estimated number of groups. The third step is an OLS estimation with interaction between

cluster specific and time dummies. Though fast, the procedure requires the specification of two
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hyperparameters, one for the nuclear norm problem and one for the clustering process: they can

be both selected by cross validation.

Lewis et al. (2023) suggest employing a novel fuzzy clustering algorithm to estimate pa-

rameters in model (5). Their approach manages to exactly replicate results in BM15, while

being computationally way less intensive. The main idea behind the procedure is that the

BM15 problem could be rewritten as a GMM problem, for which maximization procedure are

easily available. It can be viewed as a procedure for approximating the more computationally

involved BM15 estimator. The fuzzy clustering objective function depends on a parameter m

which strictly controls how well we are approximating the GFE, the approximation improving as

m→ 1+. Lewis et al. (2023) show in simulation that their approach leads to an exact replication

of BM15 for values of m close to the limit. Moreover, the fuzzy approach exhibits a substan-

tial computational speed improvement w.r.t. standard BM15 algorithm when big datasets are

involved, at least in simulations.

2.2.3 Nonlinearities

BM15 contemplate a linear model. In order to overcome this limit, econometricians have pro-

posed extensions of the GFE idea to nonlinear models. Under the assumptions that groups are

known, Bester and Hansen (2016) study a nonlinear model with clustered structure for discrete

UH; the group memberships are supposed to be known due to some external classification, such

as information entailed in quantiles. In this vein, the Bester and Hansen (2016) framework is

different from BM15’s one due to the uncertainty on group memberships.

Mugnier (2023) studies the model:

P (Yit = yit|Xi1, . . . , Xit, g
0
i , α

0
g0i t

) = h(yit, Xitβ + α0
g0i t

) (7)

where the link function h(·) is unknown. The model (7) is the nonlinear counterpart of the

original BM15 model. As in BM15 the number of groups is unknown and the true underlying

UH is discrete. In order to carry out asymptotic analysis Mugnier (2023) further assumes

that both the number of groups and the functional form of h(·) are known. While the former

assumption seems reasonable and is usually driven by the economic nature of the data (e.g.,

Poisson distribution for count data), it is not always easy to understand how the number of

groups should be chosen according to Mugnier (2023), and, beyond heuristic arguments such as

performing a grid search on G, the issue is left open.

In order to find the nonlinear GFE estimator (NGFE), Mugnier (2023) generalizes the BM15

algorithm to nonlinear models. However, finding global minima for the NGFE problem may be

hard since different starting values for the initialization of parameters are required. The resultant

NGFE estimator is consistent and, under large N,T asymptotics, N/T → ∞, N/T b → 0 with

b > 1, exhibits an asymptotic normal distribution. Interestingly, NGFE is free of the incidental

parameter problem due to the noiseless estimation of the group specific fixed effects.

Ando and Bai (2023) - the nonlinear extension of Ando and Bai (2016)5, study a slightly

different family of nonlinear models with latent structure for heterogeneity. In their framework,

5Ando and Bai (2016) - studies a linear model where UH is supposed to follow a latent grouped
factor structure. Alike Ando and Bai (2023), the estimation is carried out optimizing a SCAD penalized
likelihood function.
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which contemplates a generic exponential family of distributions nesting most used nonlinear

models, the UH is supposed to hold a latent factor structure (close to that in Bai (2009)) where

factors own in turn a clustered pattern themselves. As an example, Ando and Bai (2023)’s

approach allows the econometrician to estimate a standard binary choice model like:

f(yit|xit, βgi , ft,gi , λi,gi) = Φ(xitβgi + f ′t,giλi,gi)
yit(1− Φ(xitβgi + f ′t,giλi,gi)

1−yit (8)

where ft,gi is an rgi × 1 vector of group-specific unobservable factors and λi,gi represents the

factor loadings. βgi refer to group specific heterogeneous slopes6

Estimation of model (8) may be challenging because the issues usually involved in estimation

of factor models for nonlinear models add to the GFE’s peculiar ones. The proposed algorithm

is k-means-based for the clustering step and relies on usual principal component analysis for

extraction of factors. Both the number of groups and factors are estimated using a tailored

BIC.

2.2.4 Other extensions

This Section considers two relevant departures from BM15 original framework: the possibility

to exploit latent clustered structure in a non-parametric context (Vogt and Linton, 2017) and

GFE applied to quantile regression models (Gu and Volgushev, 2019).

Vogt and Linton (2017) study a simple model like:

Yit = mi(Xit) + uit (9)

where mi(·) are individual unknown functions to be estimated nonparametrically. mi functions

posses an underlying grouped structure and individuals belonging to the same group share the

same regression curve. The number of groups nor the memberships are known a priori and

need to be estimated. The error term in model (9) is supposed to have an additive two-way

characterization.

Estimation of regression curves in model (9) employs Nadaraya-Watson smoother, while

the number of groups is chosen according to a threshold procedure, which could be further

refined applying k-means grouping on preliminary estimates of group memberships given by the

threshold-based procedure. As it is well known in nonparametric literature, a proper choice

for the bandwidth when employing kernel estimators is required, even though, in a following

contribution Vogt and Linton (2020) develop an estimation method for model (9) which is

bandwidth-free.

Gu and Volgushev (2019) discuss the introduction of grouped fixed effects in quantile regres-

sion models. They study the conditional τ -quantile function:

qi,τ = xitβ
τ
0 + α0i(τ) (10)

where α0i(τ) hides a cluster structure and can take i = 1, . . . , G values. G is unknown. Number

of groups and group specific parameters are estimated jointly by means of an algorithm which,

6A complete discussion of models with clustered heterogeneity in slopes is carried out in Section 3.
The Ando and Bai (2023) contribution is reviewed here for the main innovation in fixed effects structure
more than in heterogeneity slopes.
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after taking individual fixed effects as preliminary estimates, compute GFE minimizing a suitable

objective function and select the lowest BIC as a function of different G’s.

The resultant GFE quantile estimator, under usual assumptions made in the quantile re-

gression literature, holds the oracle property7 and is consistent and asymptotically normal.

Moreover, the proposed BIC selects the right number of groups with probability approaching

one.

3 The pursuit for heterogeneity in slope coefficients

The review has hitherto considered clustered heterogeneity in fixed effects only. Another popu-

lar option is to consider heterogeneity at the level of the regression parameters, allowing for the

presence of different slope parameters, one for each latent group in the dataset. This approach

is not at odds with the standard FE way of modelling unobservable traits, as long as individual

dummies can enter the model specification with no particular concerning. The seminal contri-

bution in this stream of literature is that of Su et al. (2016a), in which the novel classification

Lasso approach allows one to jointly estimate heterogeneous slope parameters and cluster mem-

berships, supposed to be unknown. However, the idea of a latent grouped structure in slopes

parameter has been studied in relevant papers before Su et al. (2016a).

Sun (2005) studies a method to detect grouped structure in the slope coefficients of a linear

panel data model. Here the (unknown) group memberships are retrieved through a multinomial

logistic regression. This approach could be seen as if the data were generated by a mixture

of distributions, each possessing its own distribution fg(xit, yit, βg) and is very close to a finite

mixture model one (MacLahlan and Peel, 2000): this is why Sun (2005) estimates the model

parameters with an Expectation Maximization algorithm.

Lin and Ng (2012) consider a simple model like:

yit = xitβg + uit (11)

in which an unknown number of groups G is supposed to exist, and a consequent number of

G slope coefficients βg needs to be estimated. Controlling for time-invariant heterogeneity in

uit with standard OW-FE is also possible in their framework. The Authors proposed two dif-

ferent clustering procedures, a pseudo-threshold method and a k-means based method. The

k-means method is quite peculiar in the homogeneous slopes framework because since the Su

et al. (2016a) contribution, the C-Lasso technique and its improvement have become the main

estimation tool. The pseudo-threshold method supposes the existence of unobservable thresh-

old(s) completely determining the group membership(s). The conditional k-means approach is

based on an iterative k-means procedure: after an initial random assignment of all individuals to

G groups, the residual sum of squares (RSS) is computed for each group and the algorithm stops

when it is not possible to minimize the SSR by moving individuals between groups. When N

is large, this operation could be computationally expensive. In addition, the number of groups

requires to be specified by the analyst. Lin and Ng (2012) propose two methods, a Bayesian

Information Criterion and a sequential application of the Pesaran and Yamagata (2008) test for

7The obtained estimates by GFE are the same that one would have by knowing the classification of
each individual a priori.
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parameter homogeneity: the latter works by sequentially splitting the dataset and consequently

doubling the number of groups until the null hypothesis of parameter homogeneity cannot be

rejected for the subsamples. Both are proven to be effective in simulations.

Sarafidis and Weber (2015) study a linear model like

yitg = xitgβg + uitg (12)

with heterogeneous slopes in a fixed T , large N framework. Unlike model (11), the heterogeneity

involves the whole structure of the model and the focal point is on correctly estimating the num-

ber of groups and membership and then running G different regressions. Cluster memberships

and number of clusters are unknown. The Authors propose a clustering algorithm similar to

the one in Lin and Ng (2012), basically a k-means based procedure, but here the focus is on

minimizing the following information criterion:

N log

(
RSS

NT

)
+ f(G)θN

where RSS is the residual sum of squares in each sub-G regression, f(G) is an unspecified

function increasing in G and θN is a sequence of constants chosen to satisfy limN→∞
θN
N = 0. In

practice f(G) = G and θN =
√
N . The procedure should be repeated for a different number of

clusters in order to choose the cardinality of G: this is possible because the information criterion

does not overfit or underfit, unlike standard BIC or AIC.

Su et al. (2016a) consider the estimation of panel data models, linear and nonlinear, in

presence of heterogeneous slopes and individual fixed effects (αi) via a classifier-Lasso (C-Lasso)

approach. The reason underlying the employ of a penalized approach is the following: the Lasso

can deal with sparsity of parameters and usually in empirical applications it does make sense to

assume that βi slope parameters, for i = 1, . . . , N , is a form of overparameterization whenever

G with G < N coefficients are enough: from this standpoint the Lasso could introduce a useful

shrinkage. A relevant aspect here is that, unlike BM15, the number of groups G does not increase

with the sample size. They consider the following optimization problem for model 11 (Penalized

Profile Likelihood - PPL - approach) :

Q(βi, µg) = QP (βi) +
λ

N

N∑
i

G∏
g

||βi − µg|| (13)

where

QP (βi) = 1/NT
∑
i

∑
t

ψ(yit, xit;βi, α(βi))

is the profile log-likelihood (Hahn and Newey, 2004), ψ(·) is the density function of yit|xit, αi, βi,
λ is a tuning parameter and µg is the vector of shrunk (clustered) slope parameters, meaning

that βi =
∑

g µgI{i ∈ Gg}. Alike to a standard Lasso estimator, that shrinks some parameters to

zero, the novel C-Lasso estimator shrinks some of the βi parameters to the µg set. Under large

N,T asymptotics, the obtained estimator has desirable properties under mild assumptions8.

8In particular the Penalized Profile Likelihood C-Lasso estimator is consistent and asymptotically
normal under the standard assumptions for dynamic nonlinear models (Hahn and Kuersteiner, 2011). It
also has the property of Classification Consistency, meaning that each individual is correctly classified in
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Equation (13) depicts a non-convex optimization problem that requires different starting points

and an iterative algorithm for the solution. However, Su et al. (2016b) discuss how the proposed

algorithm is robust to perturbation of initial values. The choice of the proper number of groups

is made by minimizing a suitable Information Criterion.

The Penalized Profile Likelihood approach could be extended to the slightly different Penal-

ized GMM approach - also introduced in the paper - when the object of interest is a dynamic

model or a model with endogeneity.9 Another interesting feature of C-Lasso approach in non-

linear models is that the Dhaene and Jochmans (2015) split panel jackknife bias correction is

feasible and proven effective in simulations.

The framework depicted in Su et al. (2016a) has attracted a wide popularity, and it has been

extended in a number of contributions. One of the main problems in the latent grouped structure

is the choice of the number of clusters. Lu and Su (2017) propose a LM type test for the choice

of the right number of groups in the Su et al. (2016a) C-Lasso procedure. It crucially hinges on

the estimation of the residuals using the post-C-Lasso estimator. The testing procedure works

by sequentially increasing the number of clusters until the null hypothesis H0(G) : G0 = Ĝ is

not rejected. So H0(1) is a test for homogeneity in slopes coefficients, H0(2) is a test for the

presence of two groups and so on. The test outperforms the BIC introduced by Su et al. (2016a)

in simulations.

Su and Ju (2018) extend the C-Lasso allowing for interacted fixed effects in a linear frame-

work: this challenge is not trivial because in addition to the number of latent clusters also the

number of factors is unknown. They consider the model:

yit = xitβg + λ′ift + εit (14)

where the factor component does not have a clustered structure. Estimation of parameters

in Equation (14) is carried out in two steps, the first one is to obtain estimates of βg using

the C-Lasso methods explained above and then estimates of the factors and factors loading

are computed using the Bai and Ng (2002)’s Principal Components method. The procedure is

called Penalized Principal Component (PPC) estimation, and it is affine - from a conceptual and

algorithmic standpoint - to the Penalized Profile Likelihood. The number of factors is chosen

to minimize an Information Criterion as well as the number of groups, the former being strictly

computed before the latter. The estimators obtained with the Penalized Principal Component

procedure are consistent, asymptotically normal and enjoy the oracle classification property

under mild assumptions. However, it is worth commenting on the effects of an over/under

estimation of either the number of groups or the number of factors R̂ . If R̂ is underspecified

but Ĝ is not, the slopes coefficients are poorly estimated; if R̂ is right but Ĝ is overspecified,

coefficients are not generally biased, but the root mean square error tends to increase; if R̂ is

overspecified but Ĝ is right there are no concerns. To sum up, the same conclusions on the effects

of the wrong choice on the number of groups formulated by BM15 apply: the overidentification

of Ĝ leads to inefficiency while the underidentification of Ĝ leads to inconsistency.

the limit for N,T and the Oracle Property, meaning that the obtained estimates are the same the one
would have by knowing the classification of each individual a priori.

9The main difference between the two approaches is that the Penalized Profile Likelihood approach
has the oracle property in all cases while the PGMM procedure does not generally hold this feature.
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Wang et al. (2018) study a model like (11) with additive individual fixed effects αi and time

effects λt. Their contribution is chiefly algorithmic since they introduce a novel approach called

Panel - CARDS (clustering algorithm in regression via data-driven segmentation), basically a

penalized likelihood approach in the spirit of Su et al. (2016a) with a different penalization

based on the within and between group difference of slope coefficients. The number of groups

is indirectly10 chosen via an Information Criterion.

One interesting feature of the Wang et al. (2018) method is that works, in a more general large

N,T framework, under the assumption that G0 is not fixed and can diverge, unlike both BM15

and Su et al. (2016a), which strictly assume fixed G0. Furthermore, under their assumptions

the slopes parameters are consistent, asymptotically normal and hold the oracle property.

Liu et al. (2020) address the estimation of both model (11) and its non-linear counterpart in a

context of penalty-free estimation, hinging instead on M-estimator models theory. Consequently,

the Authors do not introduce a C-Lasso procedure but employ an iterative k-means method as

in BM15.

Their approach has two main advantages: i) since it is based on standard M-estimation

procedure, it is a tuning parameter-free approach and this avoids possible ambiguity in the

choice, for instance, of the λ parameter in Su et al. (2016a) C-lasso ii) the consistency of the

proposed estimator is guaranteed when the number of estimated clusters is either over- or exactly

identified.

The proposed clustering algorithm is a modified version of the k-means based one in BM15

where clustered slopes instead of grouped fixed effects are estimated. After an initial random

assignment of individuals to G groups and an initial estimation of βi, i = 1 . . . G is performed,

the algorithm keeps moving individuals between groups and reassigning memberships until the

likelihood is maximized. Due to the problem of initial starting values, the procedure should be

repeated for different starting guesses. In order to find the right number of groups, the following

information criterion is proposed:

PC(G) = Ψ̂(φ̂)− ηG (15)

Ĝ = argmaxG∈GmaxPC(G) (16)

where Ψ̂ is the likelihood function, φ̂ is the vector of all nuisance and slopes parameters, η > 0

is a tuning parameter and Gmax is an upper bound. The upper bound is required because,

although the method is robust to overidentification of the number of groups, a more parsimonious

estimation is usually more desirable, even though from a practical point of view the choice of a

relatively large number of groups is implicitly suggested.

Under large N,T , rectangular array asymptotics and fixed G, the Liu et al. (2020) estimator

is consistent, asymptotically normal and achieves the perfect classification in the limit.

One limit of the Su et al. (2016a) contribution is that it does not allow for time varying group

heterogeneity in slopes, although Su and Ju (2018) discuss the introduction of interactive fixed

effects - a flexible way to control for time variation in unobservables - in the C-Lasso approach.

10The Information criterion described in Wang et al. (2018) directly suggests the value of a tuning
parameter that influences the number of groups. In practice the CARDS method estimates a number
of βi depending on an hyperparameter, and individuals with the same βi are then classified in the same
cluster. In this vein, it works the opposite way with respect to BM15 where the number of groups directly
minimizes the BIC.

14



Okui and Wang (2021) fill the gap in the literature by putting forward an estimation method

for time varying clustered slopes in presence of structural breaks. They study a model like

yit = xitβg,t + uit (17)

where slopes are group-specific and change over time for groups: the time variability is modeled

with structural breaks, meaning that the slopes change after each break for each group. Each

cluster has a number mg of breaks, but group’s membership does not change over time nor the

number of groups; the number of breaks increases with T .

Along with group memberships and heterogeneous slopes, the number and date of structural

breaks need to be estimated. The Authors propose an algorithm which is a blend of BM15’s one

adapted for heterogeneous slopes in one step and a penalized likelihood approach in another step.

In particular, in the first step, after a random assignment of individuals in groups, maximization

of a penalized likelihood is performed in order to get preliminary estimates of βg,t and time

breaks. Then the group membership is updated by minimizing a least squares problem. The

procedure is iterated up to numerical convergence.

Together with the selection of two hyperparameters for the penalized problem, a proper

number of groups is required. The choice is performed with a Bayesian Information Criterion

that closely resembles the one in BM15, extended to the presence of structural breaks

BIC(G) =
1

NT

m−1∑
j

Tj∑
Tj−1

N∑
i

(yit − xitβ̂gi,j)2 + σ̂2np(G) +N

NT
lnNT

where np(G) is the total number of parameters estimated for a given G and σ̂2 is the estimated

variance of the idiosyncratic error term. One caveat in the use of this tool lies in the fact that

the number of parameters does not directly increase with G since larger G’s could lead to fewer

structural breaks detected: despite this theoretical pitfall, the Bayesian Information Criterion

is proven to identify the right number of groups in simulations.

Under a mild set of assumptions, which closely resembles the BM15 asymptotic framework,

Okui and Wang (2021) show that their estimator is consistent, asymptotically normal distributed

and that both dates and number of the structural breaks are consistently estimated in presence

of an unknown group structure.

A powerful extension to Okui and Wang (2021) is the Lumsdaine et al. (2023)’s proposal

in which the authors study a linear model with heterogeneous slopes in presence of a single11

structural break, common for all groups, that changes the group memberships and possibly

the number of groups. In this vein, the structural break changes the behavior of both slopes

coefficients and latent patterns. In Lumsdaine et al. (2023) framework the data of the structural

break, the number of groups and the membership before and after the break are unknown and

are jointly estimated.

The parameters’ estimation is carried out by minimizing the following least squares problem

for model 17:

(ŝ, β̂g, ĝi) = argmins,β,gi

[
s−1∑
t

N∑
i

(yit − xitβgi,A)2 +

T∑
s

N∑
i

(yit − xitβgi,B )2

]
11Even though the case for multiple structural breaks is discussed as a possible extension.
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where gi,A refers to group membership before the break and gi,B refers to memberships after the

break and s is the time when the break occurs. Since the complete research in the parameter

space is unfeasible, Lumsdaine et al. (2023) offer a multistep algorithm for the purpose. The

procedure is essentially a k-means based algorithm, so no penalized likelihood is involved.

The choice of the number of them is performed with an Information Criterion: the main

challenge here is that the number of groups may change before and after the break. The

Information Criterion writes:

IC = log Q̂+ np3
ln(NT )

NT

where Q̂ = 1/NT
[∑s−1

t

∑N
i (yit − xitβgi,A)2 +

∑T
s

∑N
i (yit − xitβgi,B )2

]
and np is the total

number of parameters.

The estimator is consistent and achieves perfect classification of group membership and the

date of the structural break for large N,T asymptotics and NT−d with d > 0.

In the context of slope heterogeneity, the contribution of Miao et al. (2020) studies a panel

threshold model with unknown cluster structure in both slopes and thresholds. More precisely,

the model of interest is:

yit = xitβg + xitδgdit(γg) + αi + εit

where dit(γg) = I(qit ≤ γ), and qit is a scalar threshold variable. Cluster heterogeneity is

involved here for both slopes and threshold coefficients and individuals classified in the same

group share the same coefficients profile. The number of groups and relative membership is

unknown and is estimated along with the slope and the threshold parameters. The BM15-

like three-step iterative algorithm proposed by the Authors jointly estimates the parameters of

interest. Finally, Miao et al. (2020) developed a sequential testing procedure articulated in three

Likelihood Ratio tests in order to carry inference on threshold effects: the analyst is allowed

to test for specific values of γg, for the presence of common effects and if the hypothesis is not

rejected, to test for specific values of the common effect. Testing for the absence of threshold

effects at all could be achieved with a sup-Wald test statistic. The number of groups is selected

by means of a Bayesian Information Criterion.

4 Empirical applications

This Section discusses relevant applied contributions that use models for latent structures in

unobservables or in slopes: in particular, it focuses on studies that examine health and envi-

ronmental issues, the labour market and the presence of sorting effects in it. These fields are

analyzed since they are prominent objects of studies in microeconometrics. Finally, the BM15

application to the relationship between income and democracy (originally in Acemoglu et al.

(2008)) is analyzed together with all the subsequent new interpretations that have appeared in

the literature. Applications are selected among the most impactful in the literature.

4.1 Health and environment

Health Oberlander et al. (2017) examines the relationship between quality of diet - measured by

food production data at the country level - and social globalisation together with trade openness,

using a GFE approach (BM15 version). The idea behind this specification is that country-specific
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unobservable characteristics, such as dietary preferences, may exhibit grouped patterns. A BIC

criterion is used to select the correct number of groups: this results in G = 6 clusters (for 70

countries). It is worth noticing that dividing countries into G = 4 groups according to the

World Bank’s income classification and estimating the model with these a priori cluster fixed

effects does not minimize the objective function with respect to the GFE approach. Western and

richer countries tend to belong to the same clusters, while South American, Asian and African

countries are clustered in specific groups.

Moreover, a graphical inspection of the grouped specific time trends and the supply of

animal protein (a crucial measure of dietary health in the literature) highlights the relevance

of estimating grouped fixed effects, as the clusters show different patterns over time. The

Oberlander et al. (2017)’s results point in the direction that globalisation is associated with

a positive and significant effect on the supply of animal protein and sugar, as well as on the

average body mass index.

Janys and Siflinger (2024) investigate the effects of abortion on mental health using Swedish

data in a grouped fixed effects framework. They consider a linear model where the dependent

variable equals one if the woman has experienced mental health issues at time t: the object of

interest of the analysis is the parameter associated to the abortion event at time t. The GFE

approach allows Janys and Siflinger (2024) to estimate group-specific trajectories of affected

women over time. The number of groups is chosen according to the BIC criterion of BM15,

resulting in G = 2 groups, which in turn represent high- and low- risk women, the latter being

the largest part of the sample. Interestingly, the GFE approach does not find a significant effect

of abortion on mental health, a result that is absent from literature, which makes extensive use

of standard FE methods. The main conclusion is that, once proper controlling for latent risky

behavior with GFE, the positive association between mental status and abortion found in the

literature disappears.

Environment Grunewald et al. (2017) contribute to the literature on the ambiguous effect of

income inequality on per capita emissions: economic growth is strongly associated with increase

in polluting emissions, even though the phenomenon is not homogeneous across countries. The

Authors suggest the use of the BM15’s GFE to take into account historical divergences across

countries in terms of polluting behaviours. Moreover, inequality measures may exhibit small

time variation, causing poor performance of FEs estimators: GFE is indeed less affected by this

drawback. Grunewald et al. (2017) find that per capita income and inequality, proxied by Gini

index, have a strong positive effect on CO2 emissions in both TW-FE standard and GFE spec-

ifications, even though the latter approach leads to more precise estimates for country specific

emission-income elasticities for relevant countries such as the U.S. and India. Five clusters are

estimated using an information criterion, the main driver of the classification, according to the

authors, being the level of energy intensity across countries. Furthermore, the Environmental

Kuznets Curve hypothesis holds for both FE and GFE models.

Johar et al. (2022) studies the application of GFE to model resilience, defined in their

framework as ability to withstand financial hardship caused by natural disasters. They estimate

a linear dynamic model using financial hardship12 as dependent variable, which accounts for

grouped heterogeneity: individuals are classified into G = 3 groups according to the BM15

information criterion. Johar et al. contemplate both time invariant GFE (meaning that, unlike

12For all details on how financial hardship is measured see Johar et al. (2022).
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BM15, no interaction between time trajectories and clusters enters the model) and interaction

between cluster dummies and lagged financial hardship in the specification: this choice allows

them to interpret the latter as the measure of resilience and to study the different responses

of different individuals to disastrous events. The three clusters find a natural interpretation as

differently vulnerable parts of society.

4.2 Labour market and sorting effects

The seminal contribution of Abowd et al. (1999) investigates a novel approach for estimating

sorting effects in the labour market: the Authors are interested in whether better workers

land in high-paying firms. In order to evaluate this hypothesis, Abowd et al. (1999) study a

TW-FE based approach for estimating the correlation between firm- and worker-specific fixed

effects in a standard wage equation. The Abowd et al. (1999)’s idea could actually be seen

as a way to decompose the variability of earnings into firm and worker specific variability plus

the sorting effect, which is real when the firm- and worker-specific fixed effects’ correlation is

positive and indeed, using a large French dataset, Abowd et al. (1999) found the presence of

assortative matching. However, this estimation procedure has been recognized as biased and

bias corrections have been proposed by Andrews et al. (2008) and Kline et al. (2020).

Bonhomme et al. (2019)’s contribution (BLM19 henceforth) is tightly related to Abowd et al.

(1999)’s one, since it addresses the estimation of sorting effects in the labour market. However,

BLM19 assume discrete firm- and worker-specific latent types (so-called two-sided heterogene-

ity) and propose to apply k-means clustering to group firms according to the distribution of

wages within each firm: this feature introduces an unrestricted relationship between workers

and firms latent traits and wages, instead of the Abowd et al. (1999)’s linear one. The con-

sequent dimensionality reduction could be deciding since the datasets usually employed in this

literature include thousands of different firms (Bonhomme et al., 2023) and standard FE’s es-

timation may be cumbersome. In a second step, parameters related to worker’s mobility and

wage are estimated with a finite mixture model13, assuming that workers belong to a finite

number of classes. Moreover, BLM19 approach allows one to estimate a model that accounts

for worker-firm complementarities, that is, a model with interaction between firm and worker

heterogeneity. The BLM19 framework is also suitable for dynamic models.

The model is then evaluated using labour market data from Sweden. BLM19 identify 6 latent

types for workers and 10 clusters for firms. A strong sorting effect, measured as the correlation

between worker and firm heterogeneity, can be identified while BLM19 find little evidence of

complementarities in the Swedish labour market. However, as it is well known in the literature

(Bonhomme et al., 2023), studies on matched employer-employee datasets have not reached a

single conclusion.

Finally, Lentz et al. (2018) extend the BLM19 model - keeping latent discrete types and

a finite mixture model approach - by introducing a more precise estimation technique for the

job transition probability parameters. The Authors employ a modified Classification Likelihood

algorithm for clustering firms instead of the k-means routine. The empirical analysis is performed

on Danish labour market data and reveals strong sorting effects between workers and firms latent

13Under additional distributional assumptions, the BM15 GFE could be seen as a finite mixture model
approach (Bonhomme and Manresa, 2015b).
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types. With respect to BLM19, the number of types has increased, as the Authors estimate a

mixture model with 14 worker types and 24 firm types.

4.3 Income and democracy

The original paper by Acemoglu et al. (2008) investigates the relationship between democracy

and income with a simple linear model. Considering 150 countries every 5 years over the pe-

riod 1960-2000. Acemoglu et al. find that the strong and positive relationship between per

capita GDP and the democracy indicator disappears when controlling for additively specified

country and year fixed effects. This evidence suggests that keeping in account country-specific

unobservable historical paths over time may lead to a more precise estimation.

The BM15’s GFE, allowing one to control for hidden grouped trajectories over time, is a

suitable tool to refine estimation in the Acemoglu et al. (2008) model. They consider a subset

composed by N = 90 countries observed from 1970-2000 with a 5-years frequency (T = 7).

Countries are classified into G = 4 groups as parameters of interest are shown to be stable to

variation in the number of groups. The four clusters have full economic interpretability and

are identified as: i) high-democracy countries ii) low-democracy countries iii) early transition

to democracy countries iv) late transition to democracy countries. It is worth noting that in

a model specification with both time-varying GFE and country specific FE’s the income effect

on democracy is not statistically different from zero, consistent with Acemoglu et al. (2008)’s

findings.

The application on income and democracy has been reinvestigated with models assuming

latent clustered heterogeneity in unobservables (Loyo and Boot, 2024) or in slopes (Lu and Su,

2017; Wang et al., 2018; Okui and Wang, 2021).

Once allowing for heterogeneous slopes, Lu and Su (2017)’s testing procedure strongly re-

jects the hypothesis of homogeneous income-related parameters and finds G = 3 groups. The

estimated effects differ among clusters, with one group exhibiting a significant and positive

relationship between income and democracy, while the residual ones show the opposite effect.

However, since the clustering procedure is entirely data driven, Lu and Su (2017) perform fur-

ther analyses in order to understand the drivers of the memberships’ allocation. The Authors

estimate a multinomial logit model of cluster membership, finding that date of independence

and long-run economic growth are the key drivers of the classification.

Both Wang et al. (2018) and Okui and Wang (2021) confirm the conjecture that hetero-

geneous slopes lead to a better identification of income effects. More specifically, the Panel-

CARDS procedure of Wang et al. (2018) finds 4 groups with different effects and magnitudes

among them, while the Okui and Wang (2021) approach, allowing for structural breaks, again

suggests 4 groups. Three of these have one structural break (at group specific points in time),

while the last one does not exhibit any break and includes the countries classified by BM15 in

the “high democracy” group. Okui and Wang (2021) estimate different income effects within

clusters, too.

Finally, Loyo and Boot (2024) apply the GFE-GSR method and find different results with

respect to BM15: although the Authors gather countries in 4 groups, they suggest that, by ex-

ploiting information in cluster specific variances, the relationship between income and democracy

is positive and significant.
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5 Discretizing unobserved heterogeneity

Bonhomme et al. (2022) study grouped fixed effects in a framework where unobservable traits

have a latent grouped structure, whilst heterogeneity may have a nondiscrete, potentially very

complex and unspecified, yet subject to mild assumption, functional form.

The model in exam is:

yit|xit, β0, αit0 ∼ f(yit|x′itβ0 + αit0). (18)

where αit0 parameterizes an unspecified shape for unobservable traits - subject to assumptions

described below - and f(·) is a generic functional form. The BLM22 approach works for both

linear and nonlinear models, so f(·) may be the identity function or the CDFs which gives raise

to popular nonlinear models such as standard normal/logistic distribution.

According to the structure of heterogeneity, BLM22 has derived two different estimators,

one slightly more involved than the other: the OW-GFE estimator, which can not handle time-

varying heterogeneity, hence allowing one to estimate models with unspecified time-invariant

heterogeneity only - and the TW-GFE, which instead can take into account dynamic behaviour

of unobservable traits.

BLM22 propose to use clustering of fixed effects as a way to approximate the heterogene-

ity, whose functional form is in practice unknown. The procedure works in two steps: in a

first clustering step sample averages at individual and time-specific level are computed from

data, the k-means algorithm is applied to these sample moments and a number K and L of

groups for individual and time occasions are found. The idea underlying the first step is that

sample moments contain information on unobservable traits that can be exploited by grouping

individuals and time occasions. In the second estimation step the time and individual specific

dummies are interacted and KL grouped fixed effects are estimated in a standard ML procedure.

The aforementioned procedure is peculiar of the TW-GFE, while in the OW-GFE this routine

is identical though simplified, since it does not feature the time dimension14. Moreover, the

BLM22 GFE approach could be seen as a regularization procedure, since it intrinsically leads to

a more parsimonious estimation as the number of UH parameters is strictly smaller with respect

to standard ML-FE specification.

BLM22 differ with respect to BM15 since in the latter contribution the UH is supposed to

be discrete and completely described by an unknown number G0 of support points: here instead

the clustering approach is used as a way to approximate the heterogeneity, the goodness of the

approximation strictly related to the number of groups and to the information entailed in the

sample moments.

Assumptions In order to employ the BLM22 GFE, among the others standard ones15, two

assumptions must be met. The first one concerns the structure of the UH, the second one the

information entailed in the tool used for clustering, the sample moments.

The assumption on UH parameterizes αit0 as a smooth, Lipschitz-continuous function of

14In the OW-GFE procedure only individual specific moments are used for clustering and K fixed
effects are estimated, where K � N .

15All assumptions are listed and discussed in details in Bonhomme et al. (2022) and are standard
assumptions for a well-behaved likelihood problem. It is worth noticing that, in order to employ the
TW-GFE only, an additional assumption on i.i.d data is required, meaning that TW-GFE can not be
used when dynamic linear/nonlinear models are involved.
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latent individual and time specific traits, ξi0andλt0. The dimension of the latent types (dξi and

dλt) is required to be small, usually equal to one. This assumption is of paramount impor-

tance, since the link between the unknown heterogeneity αit0 and the latent types ξi0, λt0 is left

unrestricted and may be potentially very complex.

The second assumption imposes that moments used in the clustering procedure should be

informative on latent traits of individuals and time occasions. In the limit, the difference be-

tween moments and the unspecified UH vanishes at a parametric rate. Theoretically speaking,

the BLM22 approach also works employing moments of different order than first: this choice,

however, should be justified by the richer amount of information entailed in moments other that

the first one16.

Number of groups Since the k-means algorithm is an unsupervised clustering method, the

number of groups to be found in the data should be provided by the econometrician. Of course,

the number of groups is not known in practice and BLM22 introduced a rule in order to find

the proper number of groups. The rule writes:

Proposition 1. Number of groups:

The number of groups K and L are chosen according to

K̂ = min
K≥1
{K : Q̂(K) ≤ γV̂hi}, L̂ = min

L≥1
{L : Q̂(L) ≤ γV̂wj},

where Q(·) is the objective function of the kmeans problem, Vh and Vw are the variability of

the individual moments hi and time-specific moments wj, respectively, and γ ∈ (0, 1] is a user-

specified hyperparameter;

The rule states that the number of groups K and L is increased until the order of the

objective function of the k-means problem and the variability of moments share the same order.

Of course, when considering OW-GFE, only the K̂ = minK≥1{K : Q̂(K) ≤ γV̂hi} part is taken

into account.

The choice of the hyperparameter γ is deciding because it indirectly controls the number

of groups, and it is discussed in Subsection 5.1 below. How many groups are considered is

crucial in BLM22 framework for reasons different from those explained above for BM15’s GFE:

while in the latter setting the true number of groups is finite but unknown, and hence could be

consistently estimated, in the BLM22 framework the groups serve as an approximation device

and their number actually controls the goodness of approximation and consequently the severity

of the incidental parameters bias. The role of K (and L) is clear when analyzing the asymptotic

behavior of the GFE.

Asymptotics OW-GFE and TW-GFE present a slightly different asymptotic behavior and

are analyzed separately. Consider the OW-GFE first. It is a generally biased estimator for

both linear and nonlinear models and we can distinguish between three distinct sources of bias:

an Op(
1
T ) component refers to an incidental parameter bias that originates from the limited

number of observations used in the first step of the GFE when computing individual moments,

16For instance, Loyo and Boot (2024) suggest the use of second moments if variances are more infor-
mative than sample averages in the clustering procedure, an idea that is closely related in the spirit to
their extension of BM15 to variance-based GFE.
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an incidental parameters bias of order Op(
1
T ) is due to the noise in the estimation of grouped fixed

effects17 and an Op(K
− 2
dξi ) term, with dξi usually assumed to be 1, refers to the approximation

bias induced by the k-means discretization of the UH. In this sense, the number of groups K

controls the trade-off between the two: the larger is K, the better is the approximation, but

the number of group fixed effects estimated in the model grows consequently, worsening the

incidental parameter bias. The employment of Rule 1 asymptotically leads to a number of

groups in the order of
√
T , meaning that the leading order of the bias is Op

(
1
T

)
.

BLM22 manage to prove that the Op(1/T ) term is equal to C/T + op(1/T ) for some con-

stant C. Consequently, the OW-GFE could be bias corrected employing Dhaene and Jochmans

(2015)’s half-panel jackknife estimator. The distribution of the resulting bias-corrected OW-

GFE estimator is asymptotically normal and centered at the truth.

The asymptotics for the TW-GFE closely resembles the OW-GFE’s one, with two main

differences: i) the asymptotic behaviour accounts for interactions between individual and time-

specific cluster dummies in the model, ii) TW-GFE is characterised by a bias which is not

proven to be constant, making standard bias correction techniques unfeasible. The TW-GFE

is a generally biased estimator for both linear and nonlinear models and three different sources

of bias could be found: an Op(K
− 2
dξi + L

− 2
dλt ) and Op

(
1
N + 1

T

)
terms represent the extension

to time dimension of the bias-related Op(·) elements discussed above for OW-GFE and they

refer respectively to the k-means approximation bias and to the incidental parameter bias due

to limited time and individual occasions for the moments. A new Op(
KL
NT ) term comes instead

from the estimation of the KL group specific parameters using NT observations. Symmetrically

to OW-GFE, TW-GFE asymptotic behaviour could be simplified under a suitable choice of the

number of groups K and L following the rule 1 and the hypothesis that dξi = dλt = 1: if the

rule is applied the leading term becomes Op
(

1
N + 1

T

)
. Unlike OW-GFE, the bias around which

the distribution of the TW-GFE is centered is not proven to be constant, making the jackknife

procedure impossible to apply.

5.1 Challenges

Despite the clear asymptotic framework and building-up procedure for the BLM22 GFE, its use

in real world datasets is not clear-cut.

The most relevant aspect is how to determine the proper number of groups in order to have

an effective GFE estimation. The issue is tightly related to the choice of the hyperparameter γ,

since it directly controls the amount of clusters. One possible choice in order to find a proper

value of γ is to perform a grid search, evaluating many possible values and selecting K,L driven

by the parameters’ stability together with economic intuition. Another option is to select the

hyperparameter using cross-validation, which aims to minimizing forecasting error in linear case

or to optimize metrics derived from the confusion matrix in binary choice models.

Another key point in the GFE framework is how to account for time-varying heterogeneity in

a complete manner. The TW-GFE allows one to deal with unspecified time-varying UH, but it

lacks methods for bias correction. Under a proper choice of the number of groups, the TW-GFE

presents an asymptotic bias of the same order of the TW-FE, and this bias could be severe,

17This is the standard incidental parameters bias described in the Introduction and it hampers esti-
mation of grouped fixed effects in nonlinear models only.
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especially when T is short. BLM22 actually developed a version of the OW-GFE which can

deal with time-varying UH, which works by interacting time dummies with the cluster-specific

dummies, closely resembling what happens in the BM15 GFE. The time-varying OW-GFE is

consistent but also biased, with a bias of the order 1/T +K/N .

After applying the rule for K, the order of the bias of the time-varying OW-GFE becomes

1/T +
√
T/N , although the rate of convergence is too slow to apply conventional bias reduction

methods, meaning that unbiased GFE estimators that can manage time-varying UH are not

available in the BLM22 framework.

5.2 Linear panel regressions with two-way unobserved hetero-

geneity

The Freeman and Weidner (2023)’s contribution, object of the paragraph, is closely related to

that of BLM22, as it addresses the approximation of UH by means of a grouped structure. Their

analysis pertains to a linear model like:

yit = xitβ + h(αi, λt) + εit (19)

where h(·) is an unknown real-valued function depending on unobserved fixed effects. The singu-

lar value decomposition of the function h(αi, λt) decomposes it as an infinite sum of multiplied

factors and factor loadings.

In this vein, Freeman and Weidner developed a grouped fixed effects estimator to consis-

tently estimate parameters of interest in Equation (19). Freeman and Weidner adopt a two-way

additive specification for GFE, meaning that the set of individual- and time-cluster- specific

dummies enter the model in an additive way. The GFE estimation follows a three-step algo-

rithm: first, preliminary estimates of factors and factor loadings are computed using standard

principal components techniques. The preliminary estimates of factors serve as inputs for a

hierarchical clustering algorithm. In the final step, newly found group-specific individual and

time dummies are used to estimate additive GFE. The clustering algorithm intrinsically leads

to the formation of clusters of small size, such as 2-3 individuals per cluster: this approach

conveniently relieves the analyst of the burden of choice the proper number of groups.

Under conditions outlined in Freeman and Weidner (2023), the additive two-way GFE es-

timator is consistent but asymptotically biased. Since the grouped structure actually intro-

duces an approximation, the additive GFE has an approximation error that is of the order of

1/min(N,T ). If rectangular array asymptotics is assumed, this error reduces to an order of

1/
√
NT . To mitigate this bias, Freeman and Weidner (2023) propose a jackknife estimator in

the spirit of Dhaene and Jochmans (2015), even though it lacks any formal discussion on its

theoretical properties.

6 Conclusions

Latent grouped structure estimation in panel data is a new and flexible approach to either deal

with UH or to pursue a better model specification. Starting from the relevant contribution of

Bonhomme and Manresa (2015a), which addresses the estimation of discrete grouped fixed effects
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in linear models, the review focuses on the perks and limitations of this approach, following

the relevant literature spurred by it. Then the affine in spirit yet different in construction

contribution of Su et al. (2016a), which contemplates heterogeneity at a slopes level is discussed

together with other papers that have extended and improved the C-Lasso approach. Finally, the

Bonhomme et al. (2022)’s GFE is presented and analyzed, while its main limits are discussed.
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