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2.1. Introduction 

What is the (approximate) total cost of building, maintaining and operating a new high speed 

rail (HSR) line? Trying to answer this question is the main objective of this paper. To address 

it we will make an extensive use of the companion Chapter 4, where a database containing 

information about 166 actual HSR projects in 20 countries is analysed in detail. This database 

provides a rough guide about the typical cost structure of any HSR project and suggests 

tentative estimates for some representative unit values of those costs. This information, 

together with some additional values gathered from other sources (Levinson et al. 1997; 

ATKINS 2003; SDG 2004, De Rus and Nombela 2007), allow us to perform a simple 

simulation exercise capable not only of providing an answer to the initial question, but also of 

offering insights on the relevance of some elements in determining the total costs of a HSR 

line. 

The cost structure of a HSR project can be mainly divided into costs associated to the 

infrastructure and costs associated to the rolling stock. Infrastructure costs include 

investments in construction and maintenance of the guideways (tracks) including the sidings 

along the line, terminals and stations at the ends of the line and along the line, respectively, 

energy supplying and line signalling systems, train controlling and traffic management 

systems and equipment, etc. Construction costs are incurred prior to starting commercial 

operations (except in the case of line extensions or upgrades of the existing network). 

Maintenance costs include those related to the overhauling of infrastructure, including labour 

costs, materials, spare parts, etc. It occurs periodically, according to planned schedules 

calculated according to the assets depreciation. In general, infrastructure costs can be 

considered as fixed, since they mostly depend on the size of the infrastructure (line length, 

number of stations, etc.) instead of on traffic figures. 

Rolling stock costs include three main subcategories: acquisition, operation and maintenance. 

With regard to the first one, the price of a HSR trainset is determined by its technical 

specifications, one of whose main factors is the capacity (number of seats). However, there 

are other factors that can affect the final price, such as the contractual relationship between 

the manufacturer and the rail operator,1 the delivery and payment conditions, the specific 

                                                 

1 Some rail operators have internal departments for designing their rolling stock; others prefer contracting out. 
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internal configuration demanded by the operator, etc. With respect to the operating costs, 

these mainly include the costs of the labour (personnel) and energy consumed for the running 

of the trains; the costs of the insurance, train formation (if it is necessary), in-train passenger 

services (food, drinks, etc). These costs usually depend on the number of trains (fleet) 

operated on a particular line, which in turn, is indirectly determined by the demand. Since the 

technical requirements (for example, crew members) of the trains may differ with their size, 

sometimes it is preferable to estimate these costs as dependent of the number of seats or seats-

km. In the case of the cost of maintaining rolling stock (including again labour, materials and 

spare parts), they are also indirectly affected by the demand (through the fleet size), but 

mainly by the train usage, which can be approximated by the total distance covered every year 

by each train. 

There are other costs involved in the building and operation of a HSR project. For example, 

planning costs are associated to the technical and economic feasibility studies carried out 

before construction. These (fixed) costs, as well as those associated to the legal preparation of 

the land (expropriation or acquisition to current landowners), can be somehow included in the 

construction cost category. On the hand, there are some operating costs (general 

administration, marketing, internal training, etc.) that are fixed and cannot be easily assigned 

either to infrastructure or operations. In most projects these costs represent only a minimal 

fraction of the operating costs and, therefore, can be globally treated. Finally, it is important to 

mention here that we will not address the issue of external costs to answer the initial question 

posed in this paper. The reason is that, even in the case that could reach accurate estimates of 

these costs, the distribution of their burden over the agents involved in a HSR project is not 

always clear. This is not the case of the infrastructure and rolling stock costs, which can be 

both safely attributed to the HSR project.   

 Although the cost structure of most HSR projects corresponds to the one we have just 

described, it is also true that the exact values of each cost vary largely across projects in 

accordance to their specific characteristics. For that reason, this paper proposes a general 

approach, based on a simulation exercise in which, departing from several justifiable 

parameter values (reference case), we calculate the (net present value) of the total costs of a 

HSR line (disaggregated into the described infrastructure and rolling stock costs categories). 

Then, by changing the values of the initial parameters, ceteris paribus, we can perform 

comparative statics, which provide us with useful insights on the overall validity of our 
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exercise. The information found in the database in Chapter 4 related to the unit costs of HSR 

projects is the cornerstone of the model. 

The use of simulation techniques in applied economics has been often criticized as 

excessively naïve. Although we acknowledge this criticism, the simulation exercise 

performed in this paper will always try to remain as close as possible to reality, minimizing 

the number of simplifying assumptions while simultaneously keeping the numbers 

manageable. At the same time, the information provided in Chapter 4 will be treated with 

caution, taking into account the observed differences across projects and countries. Whenever 

possible, we will distinguish between best, medium and worst alternative scenarios and, when 

in doubt, we will opt for the most cost-favourable option, so that our final estimates can be 

seen in each case as a lower bound to the actual cost of HSR.  

Other papers on HSR make use of simulation techniques, either to make estimates about their 

social profitability (see chapter 3, for example) or to study counterfactuals that are not 

currently happening but could happen in a near future (as in chapter 4, or Ivaldi and Vibes 

2005, to study intermodal competition). They all share a basic economic model with 

simplifying assumptions where data from different sources is plugged into in order to get the 

simulation results.  

After this introduction, the structure of the paper is as follows. Section 2.2 describes the most 

relevant features of the project (building and operating for 40 years a single HSR line 

connecting two cities without intermediate stops) and its most significant operating 

characteristics. Section 2.3 describes demand projections and how supply is calculated 

accordingly. In Section 2.4 the infrastructure and rolling stock costs are simulated under 

several assumptions on demand, train capacity, speed and line length, simultaneously 

considering three alternative scenarios (best, medium, and worst) for the estimates of the unit 

costs. Finally, Section 2.5 is devoted to a complete discussion of the results and their 

implications. 

 



 

5

2.2. Project characteristics 

2.2.1. Overview and timeline 

Consider that a new high speed line is going to be built to connect two similar-sized cities, 

City O (origin) and City D (destination), separated by a distance of 500 kilometres. Most of 

the infrastructure and rolling stock used in this project will be completely new (it is not an 

upgrade of an existing conventional line), although the existing train terminals in both cities 

will require only minor refurbishment. 

The time needed for planning and technical design of a HSR line varies largely across 

projects, depending on their specific legal and administrative arrangements. In some projects, 

with favourable legislation, efficient contracting procedures and adequate political pressure, 

can take less than one year, whereas in other cases —particularly, when legal conflicts arise 

on land occupation or there are other issues of public concern —the planning period may be 

delayed up to 20 years (Flyvbjerg et al. 2004). 

Once the required technical and economic studies have been carried out, the actual 

deployment of the infrastructure and other sideworks is mainly conditioned by the 

characteristics of the terrain. In our simulation exercise, we will make the simplifying 

assumption that most of the area covered by the line is countryside flat, with only a few 

difficult segments (either mountain or density and continuously urbanised areas) which may 

require viaducts and/or tunnels.2 For that reason, and assuming that the planning and design 

stage is done with the maximum celerity, we will consider that total construction period 

(denoted as Tc) will be 5 years.3 Once built, the line starts commercial operations immediately 

and operates during 35 consecutive years, so that the project total duration is T = 40 years 

(from t = 0 to T), as depicted in Figure 2.1. 

                                                 

2 Note, as mentioned at Section 2.1, that this is a cost-reducing assumption that favours the project. A more 

difficult orography would imply a longer construction and planning period and, subsequently, higher costs. 

3 We will also consider that, on average, the same number of kilometres is built every year. In practice, however, 

projects evolve at different speeds, depending on the technical limitations, the delivery of materials and the 

official termination dates of each stage. 
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Figure 2.1. Project timeline: construction and operation period 

 

 

Setting T = 40 is a decision that responds to the estimated evolution of the HSR technology. 

While a shorter period would seem rather uneconomical (most of the infrastructure costs 

would be hardly recovered), a much longer period would be unrealistic, since the HSR 

technology is advancing so fast that in a few decades it is quite likely that the current 

equipment will be obsolete. In the real world, only a few Japanese Shinkansen lines (started in 

1964) have enjoyed such a large lifespan so far, but during this period they have been largely 

improved at least twice (Hood 2006). 

Finally, note that the construction (and planning) period involves much more than track 

building. It requires the design and building of depots, maintenance and other sites, as well as 

hiring and training of personnel, testing of the material and many other preparation issues. In 

our project, we will assume that all these tasks are adequately performed in time, that no 

major delays occur and that the line is ready for commercial use at Tc. 

2.2.2. Operational characteristics  

There are two closely related operational characteristics of the line – the average speed of the 

trains running over it and the total distance covered by them – that are very relevant from the 

point of view of construction and operation, and thus deserve a closer look. In addition, the 

ratio between line length and speed determines the travel time, which is a key factor in 

attracting demand. 
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 SPEED 

Obviously, speed is a crucial piece in the characterization of a high speed line. However, the 

technical definition of speed is not unique,4 since there are several related terms whose 

economic implications have to be separately considered. First of all is the maximum track 

speed, a technical parameter mainly related to infrastructure that, in the design stage, 

determines the radius of the curves and the gradient of the slopes. The ability of a train to 

trace closed curves without derailments or climb steep mountains or hills is inversely related 

to its speed. For that reason, a HSR line faces tougher construction restrictions and may 

require a longer length the higher the maximum track speed of the project. 

A second concept is the maximum operating speed, which is related to the technical 

characteristics of the trains and the way in which these are operated. This operating speed 

evolves with the technology and generally increases over time, only constrained by the 

maximum track speed. For example, in its early stages, the Shinkansen system’s main line 

was hardly capable of speeds of up to 220 km per hour. But in its latest specifications, these 

bullet trains have earned their name by reaching speeds close to 600 km per hour (Hood 

2006). Today, most European HSR services operate with trains capable of maximum speeds 

in the range of 280-300 km per hour.5  

Under normal operating conditions, and depending on the incidence of delays and the 

characteristics of the terrain, HSR services are usually provided at average operating speeds 

of 20-25 km per hour below their maximum operating speed, which is the optimal technical 

speed in relation to which the useful life of the rolling stock is calculated and the 

recommended maintenance plans are designed by the manufacturers. 

The final (and most widely used) speed concept is the (average) commercial speed, which is 

simply calculated by dividing the total travel time over the line length. It can be noted that this 

is not only a technical concept (determined by the operating and track speeds), but an 

economic one as well: travel time is affected by technical considerations, but also by other 

(non-technical) elements, such as the commercial schedule, the number of intermediate stops, 

                                                 

4 In Chapter 2 we argue that speed is not just a technical concept, but also an economic one, since it is related to 

the infrastructure exploitation model chosen by the rail operator. 

5 In Europe new maximum speed tests have been recently (2007) announced by the TGV in France 

(www.sncf.com/news) and for the Paris-London route. Furthermore, we do not include here the (much faster) 

magnetic levitation technology (MAGLEV), since its commercial use is still very limited. 
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the quality assured to customers,6 etc. In our simulation exercise we will use a commercial 

speed (s) of 250 km per hour and consider that it will not change during the operating lifespan 

of the project.7 

 LENGTH 

HSR projects are very diverse across the world and their lengths vary accordingly. Most 

countries start with single point-to-point lines that are later expanded by adding new corridors 

or by connecting the existing ones to larger networks. A typical example is the Madrid-Seville 

AVE (471 km), which – apart from smaller legs (such as La Sagra-Toledo, 22 km) – has been 

recently expanded with the Madrid-Lleida (481 km) line and other upcoming ones also 

departing from Madrid (De Rus and Román 2005). The same centralized structure 

corresponds to the French TGV, which started with the Paris-Lyon line (417 km) that was 

later continued (Paris-Marseille, 750 km) and connected to the high speed network (TGV 

North, TGV Atlantic, etc.). 

From the point of view of our simulation exercise we have chosen a standard distance of 500 

km between cities O and D by taking into account that with a commercial speed of 250 km 

per hour travel time would be approximately of 2 hours. This is compatible with the results in 

chapter 4 regarding the intermodal competitiveness of HSR services. They find that rail 

market share quickly decreases when travel time is below 1 hour (when road transport is 

much more attractive for passengers) and over 3 hours (since this would imply a distance that 

could be covered faster travelling by plane). In any case, since the length of the HSR line is a 

key variable that determines to a great extent the infrastructure costs, we will test alternative 

length assumptions in our simulation exercise. 

 

                                                 

6 For example, when there are punctuality commitments. In the Madrid-Seville line, in Spain, commercial speed 

is around 210 km per hour, but it can be increased on certain services to reduce delays. 

7 This final assumption is discussable (since technology improvements are likely), but it is related to the 

simplifying assumption (see below) that the fleet is homogeneous and technology does not change until T=40. 
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2.3. Demand and supply 

2.3.1. Demand estimation and distribution 

From a microeconomic point of view, individual travel demand within the O-D corridor is an 

endogenous variable that depends on the relative generalised cost faced by the passengers on 

each alternative transport mode. From a broader perspective, aggregate demand depends on 

macroeconomic (such as the population density, the distribution of personal income), or 

cultural factors (traditions and history associated to rail travel) related to that corridor. For 

those reasons, and assuming that the relevance of intermodal competition in our corridor is 

minimal, annual traffic estimates can be simply calculated by projecting a reasonable initial 

figure along the operating period of the project. 

Chapter 4 show that the initial demand figures are quite different across countries. They are 

usually large in Japan and Korea (where the high speed lines inaugurated in 2004 gained more 

than 40 million passengers in two years) and exhibit a more timid start in Europe (between 

1.5 and 5 million passengers in the first year, depending on the line). In general, chapter 3 

prove that the lowest initial demand value for 500-km HSR to be socially profitable is around 

6-7 passenger-trips. For simulation purposes we have chosen the slightly more conservative 

figure of 5 million passengers per year (Q5, that is, starting at t=5), and consider that only in 

very densely populated corridors larger figures (10, 20 million) would make sense. 

A final but relevant simplifying assumption related to the demand is the fact that we consider 

that it is completely symmetrically distributed in three dimensions: between cities O and D, 

along the day (no peak-off peak periods within the day), and along the year (no peak seasons 

within the year).8 

With respect to the annual growth rates, reflecting the ‘maturity effect’ also detected at 

Chapter4, we can consider that there is a expansion period (say, the first 5 years of operation) 

where the initial demand grows at a larger rate (g1 = 5% from t = 6 to 11), while growing at a 

lower rate (g2=3%) afterwards. 

                                                 

8 Again, these are cost-reducing assumptions, since the existence of demand asymmetries would increase the 

capacity needed on peaks periods, which would not be used in off-peak ones.  
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Table 2.1. Traffic projections with alternative initial demand assumptions 

One-way traffic estimate (passengers per day) 

Annual demand initial 

assumption Initial year 

(t = 5) 

After 20 years 

(t = 25) 

After 35 years 

(t = 40) 

Q5 = 2,500,000 pass. 3,425 6,942 10,815 

Q5 = 5,000,000 pass. 6,849 13,884 21,630 

Q5 = 10,000,000 pass. 13,699 27,767 43,261 

Q5 = 20,000,000 pass. 27,397 55,535 86,521 

 

With all these values, and departing from four alternative initial annual demand estimates 

(2.5, 5, 10 and 20 million, respectively), Table 2.1 shows the resulting one-way traffic 

projections (in terms of passengers per day) at three different points: the start of the operating 

period, 20 years later and, at the end of the project lifetime.9 The variability is large; for 

example, if the initial demand is 2.5 million passengers per year, at t = 40 it would imply a 

daily (one-way) traffic of 10,815 passengers; for 20 million, the corresponding value would 

be eight times larger (86,521). 

These differences would be even worse if, alternatively, the projections were made ignoring 

the “maturity effect”, that is, under the assumption that the demand grows at the same rate 

from t =5 to t =40 (that is, g1 = g2= 5%). Figure 2.2 shows the corresponding (faster-growing) 

projections, where the final daily demands at t=40 would range from 18,890 (starting with 2.5 

million passengers per year) to 151,124 (starting with 20 million). Since these figures seem 

less realistic, our simulation exercise will be based on the projections depicted in Table 2.1. 

                                                 

9 Daily traffic estimates are simply calculated by dividing annual demand between 365 days and between 2, 

since the O-D traffic is symmetric. 
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Figure 2.2. One-way traffic projections (under faster growth assumption) 
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Note: Vertical axis measures the number of passengers per day. Demand grows at 5% (t = 6-40). 

 

2.3.2. Defining supply: train capacity and frequency 

If demand is measured as the daily number of (one-way) passengers, the corresponding 

definition of supply is the number of seats offered everyday from O to D (or vice versa). 

Then, train capacity and frequency become the key factors that determine the supply of HSR 

services in our O-D corridor. 

 TRAIN CAPACITY 

The capacity (number of seats) of a train designed for HSR services depends on the technical 

specifications envisaged by the manufacturer and the specific internal configuration agreed 

with the prospective buyer. Nowadays, most train models can be easily adapted to project-

specific needs (legal requirements, cultural differences, passenger density, intensity of use, 

etc.) and their costs vary accordingly. In general three size groups can be identified in the 

existing manufacturers catalogues: low-capacity trains (between 200-250 seats), medium- 

capacity trains (between 300-400 seats) and high capacity trains (more than 500 seats). The 

first group includes, for example, the ALARIS and TALGO units in Spain; the second group 

includes, most models of the French TGV (including the THALYS), the Spanish AVE and 

some German ICE trains, whereas in the final group would be the TGV duplex and most of 
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the Japanese units. For our simulation exercise we have assumed an average value of q = 330 

seats. 

As mentioned above, a relevant simplifying assumption made here is that we shall consider 

that all the trains in the fleet are exactly equal and that they all operate in single composition. 

We acknowledge that is one of our less realistic assumptions, since in the real world, when 

demand grows over time the operator may respond by incorporating higher-capacity trains or 

by operating the existing ones in double composition, thus duplicating its supply. Despite it 

weakness, the assumption is necessary to keep simple the supply calculations.10 

 FREQUENCY 

There are several alternative methods to calculate the number of seats (and, given their 

capacity, the number of trains) that the operator should provide to service the daily demand. 

Our calculations about the number of daily services and their frequency (defined as the 

number of services per hour) will be based on an average load factor of 75% (l), which gives 

us the basic relationship between supply and demand that will be maintained through the 

exercise. 

In the real world, most existing HSR services are characterized by relatively high load factors 

(well above 70%), or at least larger than other equivalent rail services. This is explained by 

the fact that HSR lines are specifically designed for passenger traffic in dense traffic 

corridors, with minimal intermediate stops and a marketing focus, centred on the travel time 

and price. In our particular example – a direct service between O-D with a very regular and 

symmetric demand – the load factor must be large by definition. However, note that a load 

factor close to 100%, for example, is impractical because it would imply that all trains would 

be always fully booked and some travellers could not use them. 

Apart from our assumption of l =75%, a few other values are needed. In particular, we will 

use the average commercial speed of s = 250 km per hour (which yields a travel time of 2 

hours per direction), and the train average capacity of q = 330 seats (which implies that the 

effective occupation is 
e

q = 0.75 · 330 = 248 seats). In addition we consider that there is a 

                                                 

10 It is unclear the net effect on costs associated to dropping this assumption. On one hand, with higher-capacity 

trains, the total number of trains needed is reduced; but, on the other hand, their operating and maintenance costs 

could be larger, particularly if they are more intensively used.  
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boarding and train preparation time before each service of 15 minutes (0.25 hours) and that 

trains operate 18 hours a day (from 06:00 to 24:00).11 

Using these values and departing from our projections of the (one-way) daily demand 

(denoted by qt), the total number of daily services per direction is obtained from the ratio 

/
t e

q q . The frequency (F) is then given by: 

 
( / )

18

t e
t

q q
F = , 

in terms of number of services per hour. For example, for the reference case, if q5= 6,849 

passengers, F5= 1.54 services per hour, which in turn implies a service every 39 minutes.12 

Since the demand is symmetric and total travel time of a return trip (including boarding times) 

is 4h 30’ (τ =4.5 hours), the (minimum) number of trains (of capacity q , at speed s, and with 

a load factor of 75%) needed daily in the O-D corridor would be given by the ratio 
1/

t
F

τ
, that 

is 

 
18

t

e

q

q
τ . 

In order to face unforeseeable contingencies (delays, external damages, breakdowns, etc.) this 

minimum number is multiplied by a (exogenous) ‘contingency factor’, which we will set in 

1.5.13 Thus, the supply (in terms of the number of trains) would be finally given by: 

 (1.5)
18

t
t

e

q
RS

q
= ⋅τ , 

where RSt stands for ‘rolling stock needed at t’.  

Figure 2.3 illustrates the supply calculations results and their evolution under alternative train 

capacity assumptions. Note, for example for the reference case (with q = 330 seats) that our 

                                                 

11 A summary of all the parameter values for the reference case are provided, as a quick reference, in Table 2.2, 

below. 

12 This is a low value when compared to the real world. It corresponds to an initial demand of 5,000,000 

passengers per year. In subsequent years, when the demand grows, the frequency (Ft) would also increase, 

reaching more reasonable values of one service every 15 or less minutes.   

13 This factor is quite firm-specific and it is associated to the risk of failing to provide services vs. the cost of 

acquiring, operating and maintaining an over-sized fleet. The range of values found in the real world varies from 

1.25 to 1.6, depending on the corridor.  
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HSR service would start its operations with 11 trains, but in t=40 the figure would be 33, due 

to the increase in the projected demand. With q = 400 and q = 500 the corresponding initial 

values would be 9 and 7, whereas the final ones would be 28 and 22, respectively. These 

figures fit reasonably well with international standards, which sets the number of trains used 

for lines in the range of 300-500 km (although with intermediate stops and shorter legs) 

between 30 and 80 (around 10-15 trains per 100 km of HSR line). 

 

Figure 2.3. Number of trains needed under alternative capacity assumptions 
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In practice, actual rolling stock provision in HSR lines around the world is directly affected 

by several project-specific parameters such as the average commercial speed or the specific  

technology used in each case. Other elements, such as the seasonality of demand or the 

existence of peak periods have been ruled out from this exercise.  
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Figure 2.4. Number of trains needed under alternative speed assumptions 
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With respect to the first one, total travel time is reduced when average commercial speed is 

increased and vice versa, thus affecting the supply calculations. Figure 2.4 illustrates these 

effects by recalculating the number of trains needed under different speed assumptions. 

Obviously, the figures in the reference case (250 km/h) are the same than those in Figure 2.3 

with q = 330. However, note that if speed is reduced to an average of 200 kms/h (not an 

unrealistic assumption, nowadays) the number of trains need at t=40 would jump to 41; on the 

other hand, increasing the speed to 300 kms/h would imply that 28 trains (only five less than 

in the reference case) would be needed.   

 

Figure 2.5. Number of trains needed under alternative initial annual demand 

assumptions 
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Finally, Figure 2.5 proves the strong dependence of the supply calculations with respect to the 

demand projections. It shows the number of trains needed every year under alternative values 

for initial annual demand (as in Table 2.1, above). Note, for example, that departing from 2.5 

million passengers per year, we will only need 6 trains in the first year (and 17 at t=40). But if 

the initial demand were 20 million, then the figures would be 42 and 142. Therefore, a wrong 

demand projection could be more relevant for supply calculations than changes in train 

capacity or in average speed. 

 

2.4. Methodology of cost calculations 

2.4.1. Objectives 

The main objective of this paper is to provide an estimate of the total cost of building, 

operating and maintaining a HSR with technical characteristics and the supply and demand 

conditions described in the previous section. In order to provide a quick reference of our 

reference case, Table 2.2 summarizes the main parameter values considered in our analysis. 

 

Table 2.2. The reference case: main parameter values 

Line length (L) = 500 kms Train capacity ( q ) =330 seats 

Project timeline: t= 0 to t= 40 (T) Load factor (l) = 75% 

Construction period (Tc) = 5 years Operating hours (daily) = 18 hours  

Operation period (T−Tc) = 35 years  Average commercial speed (s) = 250 kms/h 

Initial annual demand (Q5) = 5 mill. passengers Boarding time (between services) =15 minutes 

Growth rate 1 (g1) = 5% (from t=6 to 11) Train contingency factor = 50% 

Growth rate 2 (g2) = 3% (from t=12 to 40)  

 

Although all these values can be individually modified upwards or downwards – ceteris 

paribus – to illustrate their particular effect on our costs results, we will restrict our 

comparative statics exercises only to changes in the initial demand, the train capacity, the 
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commercial speed and the line length, since these four factors summarize the most salient 

economic characteristics of any HSR line. 

As described at Section 2.1, cost calculations will be categorized into two main groups: 

infrastructure costs and rolling stock costs, respectively denoted as IC and RSC. Thus, 

formally, the total cost (TC) of our HSR project (evaluated at t=0) is just given by the net 

present value: 

 
1 (1 )

T
t t

t
t

IC RSC
TC

i=

+
=

+∑ . (2.1) 

We now describe the components of each of these costs and how each of them has been 

calculated in our particular example. 

 

2.4.2. Infrastructure costs 

Infrastructure costs (IC) can be divided into construction costs (IC
C
) and maintenance costs 

(IC
M

). Both of them are relatively independent on the volume of the traffic and instead can be 

calculated as dependent of the line length (L), just multiplying the number of kilometres by an 

average unit cost (denoted as c and m, respectively). Construction costs spread out over the 

construction period, whereas the maintenance takes place during the operating period (see 

Figure 2.1). Formally, the infrastructure costs can be denoted as 

 
1 1

( )(1 )

(1 ) (1 )

o

o

T T
C M

t t t t t
t t T

c L m L
IC IC IC

i i= = +

⋅ + ρ ⋅
= + = +

+ +∑ ∑ , (2.2) 

where we have additionally assumed that construction costs also include a surcharge (ρ = 

10%) to take into account planning costs.  

The actual values of the average costs per km (c, m) have been estimated from the values 

found in Chapter 4 database of actual HSR projects. In particular, to err on the side of 

precaution, we did not considered just one value, but three: the lowest unit cost in the 

database (named, the best scenario), the highest unit cost in the database (the worst scenario) 

and the average value in the database (medium scenario).14 

                                                 

14 Note that is equivalent to implicitly assume a probability distribution where the three cases are equally likely.   
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Table 2.3. Infrastructure costs per year (reference case) 

 Construction Maintenance 

Period t= 1 to t= 5 t= 6 to t= 40 

Line length (kms) 500 500 

Unit value (€ per km)   

Best scenario 9,000,000 12,919 

Medium scenario 18,000,000 35,624 

Worst scenario 39,000,000 71,650 

Planning cost (%) 10% -- 

Total value (€ per year)   

Best scenario 990,000,000 6,459,500 

Medium scenario 1,980,000,000 17,812,000 

Worst scenario 4,290,000,000 35,825,000 

 

Table 2.3 summarizes the results from these calculations for the reference case (where the line 

length is 500 kms). The lowest construction (maintenance) cost per km is 9 million euros 

(12,919 euros, respectively), whereas the highest is 39 million and 71,650, respectively. Note 

in Table 2.4 that total infrastructure costs are fixed costs that evolve linearly with the length of 

the corridor: for the largest case (650 kms) construction costs might reach a peak of €5,517 

million per year in the worst scenario. 

Table 2.4. Annual infrastructure costs under different line lengths (in €) 

 

 

A final element to take into account in the previous calculations is the residual value of the 

infrastructure at t = 40. This amount – once discounted to t = 0 – reduces the total cost of the 

infrastructure. In general, since there are different assets (tracks, buildings, etc.), with 

different useful lives and depreciation rates, it is quite difficult to provide an accurate value of 

L= 250 kms L= 500 kms L= 650 kms 
 

Building Maintenance Building Maintenance Building Maintenance

Best 

scenario 
495,000,000 3,229,750 990,000,000 6,459,500 1,287,000,000 8,397,350 

Medium 

scenario 
990,000,000 8,906,000 1,980,000,000 17,812,000 2,574,000,000 23,155,660 

Worst 

scenario 
2,145,000,000 17,912,500 4,290,000,000 35,825,000 5,577,000,000 46,572,500 
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this residual value. To simplify calculations we will just assume that it will be equal to 30% of 

the total construction cost for each particular scenario. Thus, for the reference case in the best 

scenario, with a total building costs of €990 x 5 years = €4,950 million, the residual value at t 

= 40 is €1,485 million. The corresponding residual values for the medium and worst scenarios 

would be €2,700 and €5,850 million, respectively. 

2.4.3. Rolling stock costs 

Rolling stock costs (RSC) are divided into three categories: acquisition (RSC
A
), operation 

(RSC
O
) and maintenance (RSC

M
) of the trains needed to run the services. With respect to the 

acquisition costs they are simply calculated by multiplying the number of trains bought every 

year (RSt – RSt-1) by the unit cost per seat (a) and their average capacity ( q ), so that their 

NPV would be 

 1

1

( )

(1 )

T
A t t

t
t

RS RS a q
RSC

i

−

=

− ⋅ ⋅
=

+∑  (2.3) 

 

In practice, the process of contracting, designing, building, delivering and testing new rolling 

stock usually lasts several years; in our example, we will make the assumption that —since 

demand projections are known well in advance— rolling stock is delivered just-in-time. This 

implies, for example, according to our supply calculations, that in 11 trains start operations at 

t = 5 in the reference case. At t = 6, since RS6 = 11, no new train is bought; however, at t = 7 

and additional unit is acquired (since RS7 = 12), and so on. 

Another simplifying assumption is related to the useful life of the rolling stock. We will 

consider that, under adequate maintenance, each trainset is economically usable for at least 40 

years (which corresponds with the average useful life in the industry nowadays). For this 

reason, no technical renewals or replacements are needed and all the new acquisitions are 

related to the growth in demand.  

With respect to the effective cost calculations, the database in the companion Chapter4 

provides three alternative acquisition unit costs in terms of euros per seat, which again we 

label as best scenario (lowest value = 30,000€ per seat), medium scenario (average value = 

50,000€ per seat), and worst scenario (highest value = 65,000€ per seat). Figure 2.6 

summarizes the evolution of total acquisition costs from t=0 to t=40 for the reference case 

(330 seats per train) under the three alternative scenarios. 
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Figure 2.6. Acquisition costs per year under alternative scenarios (in € million) 
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Obviously, the peak at t=5 corresponds to the initial acquisition of rolling stock to start 

operations; afterwards, there are minor periodical acquisitions. This pattern is mimicked in 

Figure 2.7, where we intended to test the potential existence of cost economies associated to 

train size. When the capacity of the trains increase so does their acquisition cost, but fewer 

trains are needed. Although the periodicity of the renewals can be changed (for example, a 

new train is added every three years instead of every two years), these two opposing effect 

tend to cancel each other, thus reducing the possibility of economies of vehicle size.15 

                                                 

15 Wei and Hansen (2005) discuss this idea for the case of aircrafts. Their results also suggest that there are no 

large cost reductions associated to larger vehicle sizes.  
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Figure 2.7. Acquisition costs per year under alternative train capacities (in € million) 
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Note that in the previous figures we have just considered the gross acquisition cost. If we 

assume that the average useful life of each rolling stock unit is 40 years and that its value is 

reduced 1/40 every year (linear depreciation), at t = 40 there will be some residual values that 

—once discounted to t = 0— should be reduced from the acquisition costs. These residual 

values depend on the year each particular unit is bought. For example, in the reference case, 

the residual value at t = 40 of the 11 trainset units acquired at t =5 will be 5/40 of their 

acquisition cost; the additional unit bought at t =7 will be worth 7/40 of its initial cost, and so 

on.16 By adding the residual values of all the units bought from t =5 to t =40 we finally get the 

total residual values (at t = 40) of the rolling stock under each possible scenario: in the best 

one, it would be €149,242,500; in the medium scenario, €248,737,500, and in the worst 

scenario €323,358,750.    

 

On the other hand, the operation and maintenance costs of the rolling stock are heavily 

dependent on the volume of traffic along the line which, indirectly, can be measured through 

the number of trains. In the case of the operation costs (RS
O
), its main determinants are labour 

and energy. The number of technical crew members per train depends on its technical 

specifications and is usually set in transport regulations. On the contrary, there are no 

                                                 

16 Note for example, that a rolling stock unit bought at t = 40 has a residual value of 40/40 (that is, 100%). 
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minimum standards on cabin attendants and auxiliary personnel, and their number depends on 

the level of service offered to passengers. Energy consumption is calculated in accordance to 

the technical specification of the rolling stock.  

For these reasons, in our simulation exercise we have used the expression: 

 
5 (1 )

T
O o t

t
t

r RS q
RSC

i=

⋅ ⋅
=

+∑ , (2.4) 

where ro is the annual unit operation cost per seat (and q  the average train capacity). Once 

more, the actual value of ro is obtained from the database in Chapter 4, which provides us 

with three alternative estimates: best scenario (ro = €40,000 per seat), medium scenario (ro = 

€53,000 per seat), and worst scenario (ro = €65,000 per seat). The evolution of total operation 

costs from t=0 to t=40 for the reference case is given in Figure 2.8. 

 

Figure 2.8. Operation costs per year under alternative scenarios (in € million) 
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Figure 2.9. Operation costs per year under alternative train capacities (in € million) 
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Interestingly, when the train size is increased (up to 400 and 500 seats), there are no clear cost 

advantages, as illustrated in Figure 2.9 (drawn for the medium scenario, only). In some years 

it is cheaper to operate larger sized trains, whereas in other years they are too expensive. It is 

important to recall here our simplifying assumption that all trains are equal in size, which is 

somehow unrealistic. 

Finally, the maintenance costs of the rolling stock are not only related to traffic (measured 

through the number of trains) but also to train intensity usage. Thus, a better estimate of the 

NPV of this cost would be given by 

 
5 (1 )

T
M m t t

t
t

r D RS
RSC

i=

⋅ ⋅
=

+∑ , (2.5) 

where rm is the unit maintenance cost per train and kilometre, and Dt is the average distance 

travelled by each train.17 According to Campos et al. (2007), rm can be estimated around 

2€/km for trains running around 0.5 million kilometres per year. For Chapter 4, our reference 

case, this value yields a total maintenance cost of 20,202,020 euros at t = 5 and 63,798,448 

euros at t = 40. Note that, as depicted in Figure 2.10, larger-size trains are cheaper to 

maintain, since the average distance they travel is lower. 

                                                 

17 This average distance has been calculated dividing the total distance covered by all trains every year (number 

of total annual services multiplied by line length) between the number of trains. 
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Figure 2.10. Maintenance costs per year under alternative train capacities (in € 

million) 
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2.5. Conclusions 

By collecting together all the formulae and calculations in the previous sections, our estimate 

of the total cost (at t=0) of building, operating and maintaining a HSR line would be obtained 

from expression (2.1): 
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that is, 
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Although it jus provides a lower bound to the actual cost, this expression summarizes the 

critical factors that must be taken into account when analyzing the costs of HSR lines. These 

include the line length (L), the number of trains needed to respond to the demand (RS), train 

capacity ( q ), average distance (D) and the corresponding unit costs (c, m, a, ro, rm).  

Table 2.5 summarizes the numerical estimates of this total cost considering a discount rate (i) 

of 5% under alternative assumptions on initial demand, train capacity, commercial speed and 
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line length. We also considered three scenarios regarding the unit costs obtained from the 

database in Chapter 4: the ‘All the best’ scenario always uses the lowest value of the unit 

costs in each case; the ‘All the medium’ scenario always uses the average value of the unit 

costs in each case; the ‘All the worst’ scenario always uses the highest value of the unit costs 

in each case. The implicit assumption behind these compound-scenarios is that there exist a 

perfect positive correlation between all the unit costs: if a country has a large construction 

cost, then its operating cost will be also large, and vice versa. In practice, this is not always 

the case, since in several projects it is observed that the correlation could be even negative. 

 

Table 2.5. Total costs (at t=0) of a HSR line under alternative assumptions (in euros) 

 All the best 

scenario 

All the medium 

Scenario 

All the worst 

scenario 

 Initial demand assumptions    

2,500,000 pass. 6,000,067,777 10,785,250,118 21,065,618,421 

5,000,000 pass. 7,730,285,037 13,029,676,448 23,777,416,675 

10,000,000 pass. 11,187,484,570 17,513,729,139 29,194,942,065 

20,000,000 pass. 18,108,860,949 26,491,173,260 40,041,479,687 

 Train capacity assumptions    

330 seats 7,730,285,037 13,029,676,448 23,777,416675 

400 seats 7,648,681,646 12,945,753,435 23,691,415,005 

500 seats 7,626,652,900 12,940,793,841 23,701,794,353 

 Commercial speed assumptions    

200 kms/h 8,390,219,242 13,913,020,245 24,863,968,621 

250 kms/h 7,730,285,037 13,029,676,448 23,777,416,675 

300 kms/h 7,277,305,302 12,423,499,186 23,031,845,523 

 Line length assumptions    

250 kms 4,080,508,403 6,803,021,727 12,243,154,507 

500 kms 7,730,285,037 13,029,676,448 23,777,416,675 

650 kms 9,909,604,536 16,751,534,490 30,680,581,170 

Note: Results in bold correspond to the reference case. 

According to Table 2.5, the total cost of a 40-year HSR project lies between €7.7 and €23.7 

billion in the reference case, depending on the scenario (best and worse, respectively). On 

average the NPV is 13.0 billion, which implies an average estimate of  €25-30 million per 

kilometre. 



 

26

Table 2.5 also shows that when the initial demand is halved with respect to the reference case 

(that is, only 2.5 million passengers per year), the total cost is reduced (on average) just a 

20%, but if demand is duplicated (10 million passengers) total cost can increase up to 31%. 

Similarly, it is interesting to note that neither the increase in train capacity nor the commercial 

speed have a large impact reducing the total costs of the project. Their effects on the supply 

tend to cancel out. On the contrary, changes in the length of the line are critical: shorter 

(larger) lines are dramatically cheaper (more expensive) to build and operate when compared 

to the reference case.   

This final result is explained by the fact that most of the costs of the projects are fixed. This is 

confirmed in Figures 2.11 to 2.14, where the NPV cost distribution between fixed and 

variable cost (under different assumptions) is displayed.  

 

Figure 2.11. NPV cost distribution depending on initial demand 
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Figure 2.12. NPV cost distribution depending on commercial speed 

 

 

 

Figure 2.13. NPV cost distribution depending on train capacity 
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Figure 2.14. NPV cost distribution depending on line length 

 

 


