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Granularity Shock: A Small Perturbation 
Two-Factor Model 
Maksim Osadchiy1 

 

The paper presents a small perturbation two-factor model designed to capture granularity risk, 

extending the Vasicek Asymptotic Single Risk Factor (ASRF) portfolio loss model. By applying 

the Lyapunov Central Limit Theorem, we demonstrate that, for small values of the Herfindahl-

Hirschman Index (HHI), granularity risk, conditional on market risk, is proportional to a 

standard normal random variable. Instead of studying the behavior of a heterogeneous portfolio, 

we examine the behavior of a homogeneous portfolio subjected to a small perturbation induced 

by granularity risk. We introduce the Vasicek-Herfindahl portfolio loss distribution, which 

extends the Vasicek portfolio loss distribution for heterogeneous portfolios with low HHI values. 

Utilizing the Vasicek-Herfindahl distribution, we derive closed-form granularity adjustments for 

the probability density function and cumulative distribution function of portfolio loss, as well as 

for Value at Risk (VaR) and Expected Shortfall (ES). We compare the primary results of our 

approach with established findings and validate them through Monte Carlo simulations. 

 

Keywords 
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1 Introduction 
 

The Vasicek model (Vasicek O. , 1987), which is based on the Law of Large Numbers (LLN), 

assumes perfect granularity by considering a homogeneous portfolio with equal weights for all 

exposures. However, the LLN is not suitable in the case of a heterogeneous portfolio with 

varying weights. In this case, an additional granularity risk arises, which, due to linearity of 

expectation, is represented only in the residual 𝐿 − 𝔼[𝐿|𝑌], where 𝐿 denotes the portfolio loss 

and 𝑌 represents the market shock. Gordy (2003) demonstrated that, under mild regularity 

conditions, as the number of positions in the heterogeneous portfolio increases, the portfolio loss 

converges almost surely to its conditional expectation given the common factor. Additionally, 

Gordy (2003) emphasized the importance of the Herfindahl-Hirschman Index (HHI) for studying 

granularity adjustment (GA). 

 

The foundation for further study of GA to VaR was provided by (Gouriéroux, Laurent, & 

Scailett, 2000), who calculated the first and second derivatives of VaR. 

 

(Emmer & Tasche, 2005) obtained GA to VaR for both the general case of loss distribution and 

for the case of the Vasicek model. The formula of GA to VaR for the case of the Vasicek model 

was refined by (Gordy & Lutkebohmert, 2013). 

 

(Voropaev, 2011) then moved on to studying the behavior of the portfolio loss PDF and GA to 

VaR and ES using a much simpler methodology based on the method of moments. 

 

However, despite considerable efforts, it has not yet been possible to obtain GA to VaR suitable 

for supervisory purposes. Currently, there is a “granularity gap” in the regulation of credit risk. 

On one hand, a primitive archaic approach is used that considers the sizes of loans within the 
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portfolio but ignores the correlations between these assets. On the other hand, the more advanced 

Internal Ratings-Based (IRB) approach accounts for correlations but neglects the varying sizes of 

loans in the portfolio. This paper aims to fill this gap concerning small values of HHI. The 

Vasicek-Herfindahl portfolio loss distribution introduced in our paper can be used to regulate a 

bank’s economic capital. 

 

This paper is organized as follows: In Section 2, we introduce the main subject of our study and 

provide essential information about the Vasicek model. In Section 3, we examine the behavior of 

the portfolio loss random variable when the HHI is close to zero. In Section 4, we present the 

Vasicek-Herfindahl portfolio loss distribution and investigate its properties. In Section 5, we 

calculate VaR and GA to VaR using our methodology and compare it with the results of (Emmer 

& Tasche, 2005). In Section 6, we calculate ES and GA to ES using the framework of our 

approach. In Section 7, we discuss the Vasicek's attempt at assessing the granularity effect. In 

Section 8, we review the approach of (Voropaev, 2011). In Section 9, we analyze the method 

proposed by (Emmer & Tasche, 2005). Finally, in Section 10, we summarize our findings. 

 

2 A Model Framework 
 

Consider a portfolio consisting of 𝑛 loans. The weight of loan 𝑘 is denoted as 𝑤𝑘, such that: 

 

∑𝑤𝑘

𝑛

𝑘=1

= 1 

(2.1) 

where 𝑤𝑘 ≥ 0 for each 𝑘. 

 

Let the portfolio loss be defined as: 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1
𝑛 , 𝑌) = ∑𝑤𝑘

𝑛

𝑘=1

𝑙(𝑋𝑘 , 𝑌) 

(2.2) 

where 𝑌 is a standard normal random variable representing market (systematic) risk, and the 

standard normal random variables 𝑋𝑘 represent individual (specific, idiosyncratic) risks. The 

random variables {𝑋𝑘}𝑘=1
𝑛  and 𝑌 are independent and identically distributed (i.i.d.). The term 

𝑙(𝑋𝑘 , 𝑌) denotes the loss associated with loan 𝑘, 

 

𝔼[𝑙(𝑋𝑘 , 𝑌)] = 𝑃𝐷 
(2.3) 

𝑣𝑎𝑟[𝑙(𝑋𝑘 , 𝑌)] = 𝑃𝐷(1 − 𝑃𝐷) 
(2.4) 

for each 𝑘, where 𝑃𝐷 is the probability of default. 

 

Assume that 𝑙(𝑋𝑘 , 𝑦) is equal to 1 with probability 𝑝(𝑦) (the default) and 0 otherwise, where 𝑦 is 

a realization of the random value 𝑌. The random variable 𝑙(𝑋𝑘 , 𝑌), conditional on the market 

shock 𝑌, follows a Bernoulli distribution: 

 

𝑙|𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝑌)) 
(2.5) 

The conditional mean is given by: 
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𝔼[𝑙|𝑌] = 𝑝(𝑌) 
(2.6) 

The conditional variance is expressed as: 

 

𝜎2(𝑝(𝑌)) = 𝑝(𝑌)(1 − 𝑝(𝑌)) 
(2.7) 

In the model by (Vasicek O. A., 2002) the conditional probability of loss for any loan is given 

by: 

 

𝑝(𝑌) = Φ(
Φ−1(𝑃𝐷) − √𝜌𝑌

√1 − 𝜌
) 

(2.8) 

where 𝜌 ∈ [0,1] is the asset correlation, and Φ denotes the standard normal CDF. 

 

The conditional expectation of the portfolio loss given 𝑌 is expressed as: 

 

𝑝(𝑌) = 𝔼[𝐿𝑜𝑠𝑠|𝑌] 
(2.9) 

The Vasicek CDF is given by: 

 

𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) = Φ(−𝑝
−1(𝑥)) = Φ(

√1 − 𝜌Φ−1(𝑥) − Φ−1(𝑃𝐷)

√𝜌
) 

(2.10) 

If the weights 𝑤𝑖  are the same, then according to the LLN, the random value 𝐿𝑜𝑠𝑠|𝑌 converges 

in probability to the conditional mean 𝑝(𝑌): 
 

𝐿𝑜𝑠𝑠|𝑌
𝑃
→𝑝(𝑌) 

(2.11) 

as 𝑛 → ∞ (Vasicek O. A., 2002). 

 

3 Lyapunov CLT 
 

Suppose 𝜉𝑖  is a sequence of independent random variables, each with a finite expected value 𝜇𝑖 
and variance 𝜎𝑖. Define 

𝑠𝑛
2 =∑𝜎𝑖

2

𝑛

𝑖=1

 

(3.1) 

If Lyapunov’s condition 

 

𝑙𝑖𝑚
𝑛→∞

1

𝑠𝑛
2+𝛿

∑𝔼

𝑛

𝑖=1

(|𝜉𝑖 − 𝜇𝑖|
2+𝛿) = 0 

(3.2) 

is satisfied for some 𝛿 > 0, then the sum 
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1

𝑠𝑛
∑(𝜉𝑖 − 𝜇𝑖)

𝑛

𝑖=1

𝑑
→𝒩(0,1) 

(3.3) 

converges in distribution to a standard normal variable as 𝑛 → ∞. Let us apply the Lyapunov 

CLT to our problem. We have: 

 

𝜉𝑖 = 𝑤𝑖𝑙(𝑋𝑖 , 𝑦) 
 

𝜇𝑖 = 𝑤𝑖𝑝(𝑦) 
 

𝑠𝑛 = √ℎ𝑛𝜎(𝑝(𝑦)) 
where 

ℎ𝑛 =∑𝑤𝑘
2

𝑛

𝑘=1

 

is the Herfindahl-Hirschman Index. 

In the new variables, formula (3.3) is transformed into the following form: 

 

∑ 𝑤𝑖
𝑛
𝑖=1 (𝑙(𝑋𝑖 , 𝑦) − 𝑝(𝑦))

√ℎ𝑛𝜎(𝑝(𝑦))

𝑑
→𝒩(0,1) 

(3.4) 

Taking into account equation (2.2), this formula can be expressed as: 

 
𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1

𝑛 , 𝑦) − 𝑝(𝑦)

√ℎ𝑛𝜎(𝑝(𝑦))

𝑑
→𝒩(0,1) 

(3.5) 

Thus, the portfolio loss converges in distribution to the asymptotic loss 𝐿: 

 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1
𝑛 , 𝑌)

𝑑
→𝐿(𝑍, 𝑌) = 𝑝(𝑌) + √ℎ𝜎(𝑝(𝑌))𝑍 

(3.6) 

where 𝑌, 𝑍~𝒩(0,1) are i.i.d. random variables, and 

 

ℎ = lim
𝑛→∞

ℎ𝑛 

 

The heterogeneous portfolio loss risk encompasses not only market risk but also the granularity 

risk, which is represented by the term √ℎ𝜎(𝑝(𝑌))𝑍. It is important to note that granularity risk is 

influenced by market risk. 

 

If ℎ = 0 (perfect granularity), then 𝐿(𝑍, 𝑌) = 𝑝(𝑌). Conversely, the case where ℎ = 1 indicates 

full concentration, occurring when the weight of one of the loans is 1 and the weights of all the 

others are 0. 

 

The range of the function 𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1
𝑛 , 𝑌) is the unit interval [0,1], while the range of the 

function 𝐿(𝑍, 𝑌) is ℝ. However, when ℎ = 0, the range of the function 𝐿(𝑍, 𝑌) is narrowed to 

the unit interval [0,1]. 
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3.1 Applicability of the Lyapunov CLT 
 

The applicability of our approach is constrained by the limits of the Lyapunov CLT. Let 𝛿 = 1. 

We aim to prove that: 

 

𝑙𝑖𝑚
𝑛→∞

1

𝑠𝑛3
∑𝔼[|𝜉𝑖 − 𝜇𝑖|

3]

𝑛

𝑖=1

=0 

(3.7) 

is equivalent to: 

𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖
3𝑛

𝑖=1

(∑ 𝑤𝑗2
𝑛
𝑗=1 )

3/2
= 0 

(3.8) 

Proof. 

 

We start with the expression: 

 

𝔼[|𝜉𝑖 − 𝜇𝑖|
3] = 𝑤𝑖

3𝔼[|𝑙(𝑋𝑘 , 𝑦) − 𝑝(𝑦)|
3] = 𝑤𝑖

3𝑝(𝑦)(1 − 𝑝(𝑦))((1 − 𝑝(𝑦))2 + 𝑝2(𝑦)) 
(3.9) 

Thus, we have: 

𝑙𝑖𝑚
𝑛→∞

1

𝑠𝑛3
∑𝔼

𝑛

𝑖=1

[|𝜉𝑖 − 𝜇𝑖|
3] =

𝔼[|𝑙(𝑋𝑘 , 𝑦) − 𝑝(𝑦)|
3]

𝜎3(𝑝(𝑦))
𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖
3𝑛

𝑖=1

(∑ 𝑤𝑖2
𝑛
𝑖=1 )3/2

=
(1 − 𝑝(𝑦))2 + 𝑝2(𝑦)

√𝑝(𝑦)(1 − 𝑝(𝑦))

𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖
3𝑛

𝑖=1

(∑ 𝑤𝑗2
𝑛
𝑗=1 )

3/2
 

(3.10) 

Q.E.D. 

 

To simulate the random variable 𝐿𝑜𝑠𝑠, it is necessary to use a set 𝑤𝑘 ≥ 0, 𝑘 = 1,… , 𝑛, such that: 

 

∑𝑤𝑘

𝑛

𝑘=1

= 1 

∑𝑤𝑘
2

𝑛

𝑘=1

≪ 1 

∑ 𝑤𝑘
3𝑛

𝑘=1

(∑ 𝑤𝑗
2𝑛

𝑗=1 )
3/2
≪ 1 

(3.11) 

We use the geometric progression defined as follows: 

 

𝑤𝑘 =
𝑠𝑘−1

∑ 𝑠𝑗∞
𝑗=1

= (1 − 𝑠)𝑠𝑘−2 

(3.12) 

where 0 < 𝑠 < 1. Let 
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ℎ =∑𝑤𝑘
2

∞

𝑘=1

=
1 − 𝑠

1 + 𝑠
⇒ 𝑠 =

1 − ℎ

1 + ℎ
 

(3.13) 

Now we can evaluate: 

 

∑ 𝑤𝑘
3∞

𝑘=1

(∑ 𝑤𝑗2
∞
𝑗=1 )

3/2
=

∑ 𝑠3𝑘∞
𝑘=1

(∑ 𝑠2𝑗∞
𝑗=1 )

3/2
=
(1 − 𝑠2)3/2

1 − 𝑠3
 

(3.14) 

If 𝑠 is chosen in the left neighborhood of 1, then 
∑ 𝑤𝑘

3∞
𝑘=1

(∑ 𝑤𝑗2
∞
𝑗=1 )

3/2 is close to 0. 

 

4 Vasicek-Herfindahl Distribution 
 

Let random variable 

𝑉 = 𝑝(𝑌) ⇒ 𝑉~𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌) 
(4.1) 

where 𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌) represents the Vasicek loan loss distribution. Let 

 

𝐻 = 𝑍𝜎(𝑉)√ℎ 
(4.2) 

where 

𝜎(𝑥) = √𝑥(1 − 𝑥) 
(4.3) 

The asymptotic portfolio loss risk 𝐿 is the sum of the “classical” Vasicek portfolio loss risk 𝑉 

and the granularity risk 𝐻: 

 

𝐿 = 𝑉 + 𝐻 = 𝑉 + 𝑍𝜎(𝑉)√ℎ 
(4.4) 

ℎ𝜎2(𝑉) represents the conditional variance of portfolio loss: 

 

ℎ𝜎2(𝑉) = 𝑣𝑎𝑟[𝐿|𝑉] 
(4.5) 

If ℎ ≪ 1, then the granularity risk, 𝐻 = 𝑍𝜎(𝑉)√ℎ, is considered a small perturbation. This is GA 

to the portfolio loss risk: 

 

𝐺𝐴𝐿 = 𝑍𝜎(𝑉)√ℎ 
(4.6) 

Note that 

 

𝐻 = 𝐿 − 𝔼[𝐿|𝑌] 
(4.7) 

Equation (4.4) illustrates that it is incorrect to assert that 𝔼[𝐿|𝑌] represents systematic risk while 

𝐿 − 𝔼[𝐿|𝑌] denotes specific risk. This is because the residual 𝐿 − 𝔼[𝐿|𝑌] = 𝑍𝜎(𝑝(𝑌))√ℎ is 

influenced by the market risk 𝑌. 
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The PDF of the portfolio loss 𝐿 is given by: 

 

𝑓𝐿(𝑥) = 𝑓𝑉+𝐻(𝑥) = ∫𝑓𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑓𝑉(𝑣)𝑑𝑣

1

0

= ∫𝑓𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑑𝐹𝑉(𝑣)

1

0

= ∫

𝜑 (
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)

√ℎ𝜎(𝑣)
𝑑𝐹𝑉(𝑣)

1

0

 

(4.8) 

where φ(𝑥) is the standard normal PDF. Similarly, the CDF of the portfolio loss 𝐿 is: 
 

𝐹𝐿(𝑥) = 𝐹𝑉+𝐻(𝑥) = ℙ[𝑉 + 𝐻 < 𝑥] = ∫ℙ[𝐻 < 𝑥 − 𝑣|𝑉 = 𝑣]𝑓𝑉(𝑣)𝑑𝑣

1

0

= ∫𝐹𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑓𝑉(𝑣)𝑑𝑣

1

0

= ∫Φ(
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)𝑑𝐹𝑉(𝑣)

1

0

 

(4.9) 

The PDF of the random variable H, conditional on the random variable 𝑉, is given by: 

 

𝑓𝐻|𝑉(𝑥|𝑣) =

𝜑 (
𝑥

√ℎ𝜎(𝑣)
)

√ℎ𝜎(𝑣)
 

(4.10) 

The CDF of the random variable H, conditional on the random variable 𝑉, is given by: 

 

𝐹𝐻|𝑉(𝑥|𝑣) = Φ(
𝑥

√ℎ𝜎(𝑣)
) 

(4.11) 

Now we introduce the Vasicek-Herfindahl PDF of the portfolio loss: 

 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫

𝜑 (
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)

√ℎ𝜎(𝑣)
𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

1

0

 

(4.12) 

and the Vasicek-Herfindahl CDF: 

 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

1

0

 

(4.13) 

Using integration by parts, the function can be transformed into the following form: 
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𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑Φ(
𝑣 − 𝑥

√ℎ𝜎(𝑣)
)

1

0

 

(4.14) 

4.1 Additivity of Granular Shocks 
 

Suppose that the “large” portfolio consists of 𝑁 “small” portfolios. The weight of the “small” 

portfolio 𝑖 is denoted as 𝑢𝑖, and its HHI is represented by ℎ𝑖. The loss of the “small” portfolio 𝑖 is 
given by: 

𝐿𝑖 = 𝑉 + 𝜎(𝑉)𝑍𝑖√ℎ𝑖 

 

where {𝑍𝑘}𝑘=1
𝑛  are i.i.d. random variables, and 𝑍𝑖~𝑁(0,1). The loss of the “large” portfolio can 

be calculated as: 

 

𝐿 =∑𝑢𝑖𝐿𝑖

𝑁

𝑖=1

= 𝑉 + 𝜎(𝑉)∑𝑍𝑖𝑢𝑖√ℎ𝑖

𝑁

𝑖=1

= 𝑉 + 𝜎(𝑉)𝑍√ℎ̃ 

where 

ℎ̃ =∑𝑢𝑖
2ℎ𝑖

𝑁

𝑖=1

 

 

4.2 Model Validation Using Monte Carlo Simulation 
 
The simulated CDF is given by: 

𝐹𝑠(𝑥) = ∑𝐼(𝐿𝑜𝑠𝑠𝑘 ≤ 𝑥)

𝑁

𝑘=1

 

(4.15) 

where 𝐼(𝑥) is the indicator function, 𝐿𝑜𝑠𝑠𝑘 is the 𝑘𝑡ℎ Monte Carlo simulation of the random 

variable 𝐿𝑜𝑠𝑠, and 𝑁 is the total number of simulations. 

 

The simulated PDF is: 

 

𝑓𝑠(𝑥𝑗) =
1

𝑁
∑𝐼(𝑥𝑗 ≤ 𝐿𝑜𝑠𝑠𝑘 < 𝑥𝑗+1)

𝑁

𝑘=1

 

(4.16) 

where 

𝑥𝑗 = 𝑥0 + 𝑗Δ𝑥 
(4.17) 

 

and Δ𝑥 is the bin width. 

 
The theoretical Vasicek-Herfindahl ΔCDF is given by: 

 

Δ𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) − 𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, 0) 
(4.18) 

The theoretical Vasicek-Herfindahl ΔPDF is defined as: 
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Δ𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) − 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, 0) 
(4.19) 

The simulated ΔCDF is expressed as: 

 

Δ𝐹𝑠(𝑥; ℎ) = 𝐹𝑠(𝑥; ℎ) − 𝐹𝑠(𝑥; 0) 
(4.20) 

The simulated ΔPDF is represented by: 

 

Δ𝑓𝑠(𝑥; ℎ) = 𝑓𝑠(𝑥; ℎ) − 𝑓𝑠(𝑥; 0) 
(4.21) 

The difference between the theoretical Vasicek-Herfindahl ΔCDF with the simulated ΔCDF is 

given by the equation: 

 

𝛥𝛥𝐹(𝑥) = 𝛥𝐹𝑉𝐻(𝑥) − 𝛥𝐹𝑠(𝑥) 
(4.22) 

Similarly, the difference between the theoretical Vasicek-Herfindahl ΔPDF and the simulated 

ΔPDF is represented as: 

 

𝛥𝛥𝑓(𝑥) = 𝛥𝑓𝑉𝐻(𝑥) − 𝛥𝑓𝑠(𝑥) 
(4.23) 

Figure 1 (with ℎ = 0.01) and Figure 2 (with ℎ = 0.1) illustrate the differences between the 

theoretical Vasicek-Herfindahl ΔCDF and ΔPDF and their corresponding simulated functions. 

Both figures demonstrate a decline in model quality as HHI values increase. Nevertheless, even 

with the relatively large value of ℎ = 0.1, the model still accurately represents the shapes of both 

the PDF and CDF. 

 

 
Figure 1. Theoretical Vasicek-Herfindahl ΔCDF and ΔPDF vs simulated functions (top row). Below the plots of the functions are 

the corresponding plots of the differences between theoretical and simulated functions. Number of Monte Carlo simulations: 20 

000. Parameters used: PD=0.1, ρ=0.1, h=0.01, n=20 000. 
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Figure 2. Theoretical Vasicek-Herfindahl ΔCDF and ΔPDF vs simulated functions (top row). Below the plots of the functions are 

the corresponding plots of the differences between theoretical and simulated functions. Number of Monte Carlo simulations: 20 

000. Parameters used: PD=0.1, ρ=0.1, h=0.1, n=20 000. 

 

4.3 Properties of the Vasicek-Herfindahl Distribution 
 

4.3.1 Normalization Property of the PDF 
 

The total area under the PDF curve is equal to 1: 

 

∫ 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ)𝑑𝑥
∞

−∞

= 1 

(4.24) 

Proof. 

∫ 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ)𝑑𝑥
∞

−∞

= ∫
𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

√ℎ𝜎(𝑣)
∫ φ(

𝑥 − 𝑣

√ℎ𝜎(𝑣)
)

∞

−∞

1

0

𝑑𝑣 = ∫𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

1

0

= 𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)|0
1 = 1 

(4.25) 

Q.E.D. 

 

4.3.2 Expected Loss 
 

The unconditional mean of the asymptotic loss 𝐿 is equal to the unconditional probability of 

default: 

 

𝔼[𝐿] = 𝑃𝐷 
(4.26) 

Proof. 
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𝔼[𝐿] = 𝔼 [𝑉 + 𝑍√𝑉(1 − 𝑉)ℎ] = 𝔼[𝑉] + √ℎ𝔼[𝑍]𝔼 [√𝑉(1 − 𝑉)] = 𝔼[𝑉] = 𝑃𝐷 

(4.27) 

Q.E.D. 

 

4.3.3 Variance 
 

The unconditional variance of the asymptotic loss 𝐿 is a linear function of ℎ: 

 

𝑣𝑎𝑟[𝐿] = 𝑃𝐷(1 − 𝑃𝐷)ℎ + (1 − ℎ)𝑣𝑎𝑟[𝑝(𝑌)] 
(4.28) 

where 

𝑣𝑎𝑟[𝑝(𝑌)] = 𝑣𝑎𝑟[𝔼[𝐿|𝑌]] = Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2 

(4.29) 

Proof. 

 

𝔼[𝐿2] = 𝔼 [𝑝2(𝑌) + 2𝑝(𝑌)𝑍√𝑝(𝑌)(1 − 𝑝(𝑌))ℎ + 𝑍2𝑝(𝑌)(1 − 𝑝(𝑌))ℎ]

= 𝔼[𝑝2(𝑌)] + 2√ℎ𝔼[𝑍]𝔼 [𝑝(𝑌)√𝑝(𝑌)(1 − 𝑝(𝑌))]

+ ℎ𝔼[𝑍2]𝔼[𝑝(𝑌)(1 − 𝑝(𝑌))] = 𝔼[𝑝2(𝑌)] + ℎ𝔼[𝑝(𝑌)(1 − 𝑝(𝑌))]

= (1 − ℎ)𝔼[𝑝2(𝑌)] + ℎ𝔼[𝑝(𝑌)] = (1 − ℎ)Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) + ℎ𝑃𝐷 

(4.30) 

𝑣𝑎𝑟[𝐿] = 𝔼[𝐿2] − 𝔼2[𝐿] = (1 − ℎ)Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) + ℎ𝑃𝐷 − 𝑃𝐷2 =

= (1 − ℎ)(Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2) + (1 − ℎ)𝑃𝐷2 + ℎ𝑃𝐷 − 𝑃𝐷2

= (1 − ℎ)𝑣𝑎𝑟[𝑝(𝑌)] + 𝑃𝐷(1 − 𝑃𝐷)ℎ 
(4.31) 

Q.E.D. 

 

It is straightforward to verify that the Law of Total Variance: 

 

𝑣𝑎𝑟[𝐿] = 𝔼[𝑣𝑎𝑟[𝐿|𝑌]] + 𝑣𝑎𝑟[𝔼[𝐿|𝑌]] 
(4.32) 

is valid. Indeed, 

𝔼[𝐿|𝑌] = 𝑝(𝑌) 
(4.33) 

𝑣𝑎𝑟[𝔼[𝐿|𝑌]] = 𝑣𝑎𝑟[𝑝(𝑌)] = 𝔼[𝑝2(𝑌)] − (𝔼[𝑝(𝑌)])2 = 𝔼[𝑝2(𝑌)] − 𝑃𝐷2 
(4.34) 

𝑣𝑎𝑟[𝐿|𝑌] = ℎ𝜎2(𝑌) = ℎ𝑝(𝑌)(1 − 𝑝(𝑌)) 
(4.35) 

𝔼[𝑣𝑎𝑟[𝐿|𝑌]] = ℎ𝔼[𝑝(𝑌)] − ℎ𝔼[𝑝2(𝑌)] = ℎ𝑃𝐷 − ℎ𝔼[𝑝2(𝑌)] 
(4.36) 

𝔼[𝑣𝑎𝑟[𝐿|𝑌]] + 𝑣𝑎𝑟[𝔼[𝐿|𝑌]] = ℎ𝑃𝐷 − ℎ𝔼[𝑝2(𝑌)] + 𝔼[𝑝2(𝑌)] − 𝑃𝐷2

= (1 − ℎ)𝑣𝑎𝑟[𝑝(𝑌)] + (1 − ℎ)𝑃𝐷2 + ℎ𝑃𝐷 − 𝑃𝐷2

= (1 − ℎ)𝑣𝑎𝑟[𝑝(𝑌)] + ℎ𝑃𝐷(1 − 𝑃𝐷) = 𝑣𝑎𝑟[𝐿] 



 12 

(4.37) 

4.3.4 Symmetry Property 
 

The distribution exhibits a symmetry property: 

 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 1 − 𝐹𝑉𝐻(1 − 𝑥; 1 − 𝑃𝐷, 𝜌, ℎ) 
(4.38) 

This is similar to the symmetry property presented by (Vasicek O. A., 2002) (p.4): 

 

𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) = 1 − 𝐹𝑉(1 − 𝑥; 1 − 𝑃𝐷, 𝜌) 
(4.39) 

Proof. 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

= −∫Φ(
𝑥 − 𝑣

√𝑣(1 − 𝑣)ℎ
)

1

0

𝑑𝐹𝑉(1 − 𝑣; 1 − 𝑃𝐷, 𝜌)

= ∫Φ(
𝑥 − (1 − 𝑢)

√(1 − 𝑢)𝑢ℎ
)

1

0

𝑑𝐹𝑉(𝑢; 1 − 𝑃𝐷, 𝜌) =

= 1 − ∫Φ(
(1 − 𝑥) − 𝑢

√ℎ𝜎(𝑢)
)

1

0

𝑑𝐹𝑉(𝑢; 1 − 𝑃𝐷, 𝜌) = 1 − 𝐹𝑉𝐻(1 − 𝑥; 1 − 𝑃𝐷, 𝜌) 

(4.40) 

Q.E.D. 

 

4.4 Taylor Series of CDF and PDF 
 

Let 𝑧 = ℎ𝜎2(𝑣). Taking into account that 0 < 𝑧 ≪ 1, we will expand Φ(
𝑢

√𝑧
) into a Taylor series 

at 𝑧 = 0: 

 

Φ(
𝑢

√𝑧
) = θ(𝑢) +∑ (

𝑧

2
)
𝑘 δ(2𝑘−1)(𝑢)

𝑘!

∞

𝑘=1
= θ(𝑢) +

𝑧

2
δ′(𝑢) + 𝑜(𝑧) 

(4.41) 

(see proof in Appendix). Hence, the Vasicek-Herfindahl CDF is given by: 

 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣

√ℎ𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

= 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

−∑
(ℎ/2)𝑘

𝑘!
∫ δ(2𝑘−1)(𝑥 − 𝑣)𝜎2𝑘(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑𝑣

1

0

=
∞

𝑘=1
𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

+∑
(ℎ/2)𝑘

𝑘!

∞

𝑘=1

∂2𝑘−1

∂𝑥2𝑘−1
(𝜎2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

= 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) +
ℎ

2

𝜕

𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) + 𝑜(ℎ) 
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(4.42) 

We used the Delta function property: 

 

∫ 𝛿(𝑘)(𝑥)𝑓(𝑥)𝑑𝑥
+∞

−∞

= (−1)𝑘𝑓(𝑘)(0) 

(4.43) 

The Vasicek-Herfindahl PDF is given by: 

 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) =
𝜕

𝜕𝑥
𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) =∑

(ℎ/2)𝑘

𝑘!

∞

𝑘=0

∂2𝑘

∂𝑥2𝑘
(𝜎2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

= 𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) +
ℎ

2

∂2

∂𝑥2
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) + 𝑜(ℎ) 

(4.44) 

Hence, the GA to CDF is given by: 

 

𝐺𝐴𝐶𝐷𝐹 =
ℎ

2

𝜕

𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(4.45) 

and the GA to PDF is expressed as: 

 

𝐺𝐴𝑃𝐷𝐹 =
ℎ

2

∂2

∂𝑥2
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(4.46) 

5 Value at Risk 
 

The Value at Risk 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ) is the root of the integral equation 

 

1 − 𝛼 = ∫Φ(
𝑥(𝛼, ℎ) − 𝑣

√ℎ𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(5.1) 

where 𝛼 is a confidence level. The numerical value of this root can be easily determined using 

known values of the parameters 𝑃𝐷, 𝜌, ℎ and 𝛼, for example, by utilizing MATLAB. 

𝑥(𝛼, ℎ) represents the 𝛼-quantile of 𝐿(ℎ): 

𝑥(𝛼, ℎ) = 𝑞𝛼(𝐿(ℎ)) 

where, for any random variable 𝑋, 

𝑞𝛼(𝑋) = 𝑖𝑛𝑓{𝑥 ∈ ℝ:ℙ[𝑋 ≤ 𝑥] ≥ 𝛼} 

5.1 VaR Approximation 
 

Since a closed-form solution for 𝑥(𝛼, ℎ) of the integral equation (5.1) is not available, we will 

consider expanding 𝑥(𝛼, ℎ) into a Taylor series at ℎ = 0. 
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5.1.1 First-Order Derivative of VaR with respect to h 
 

Differentiating the integral equation (5.1) with respect to ℎ yields: 

 

0 =
𝜕𝑥(𝛼, ℎ)

𝜕ℎ
∫

1

√ℎ𝜎(𝑣)
φ(
𝑣 − 𝑥(𝛼, ℎ)

√ℎ𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+
1

2
∫
𝑣 − 𝑥(𝛼, ℎ)

(√ℎ𝜎(𝑣))
3 φ(

𝑣 − 𝑥(𝛼, ℎ)

√ℎ𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(5.2) 

From equations (4.12) and (5.2), it follows that 

 

𝜕𝑥(𝛼, ℎ)

𝜕ℎ
= −

1

2𝑓𝑉𝐻(𝑥(𝛼, ℎ); 𝑃𝐷, 𝜌, ℎ)
∫
𝑣 − 𝑥(𝛼, ℎ)

(√ℎ𝜎(𝑣))
3 φ(

𝑣 − 𝑥(𝛼, ℎ)

√ℎ𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(5.3) 

It follows from equations (4.4) and (5.3) that 

 
𝜕𝑥(𝛼, ℎ)

𝜕𝜀
=
1

𝜀
𝔼[𝐻|𝐿 = 𝑥(𝛼, ℎ)] 

(5.4) 

where 𝜀 = √ℎ. This result is consistent with Lemma 1 (Gouriéroux, Laurent, & Scailett, 2000), 

with notation differences. 

Let 𝑧 = ℎ𝜎2(𝑣). We expand −
𝑢𝜑(𝑢/√𝑧)

(√𝑧)
3  into a Taylor series at 𝑧 = 0: 

 

−
𝑢φ(𝑢/√𝑧)

𝑧3/2
=∑

δ(2𝑘+1)(𝑢)

𝑘!

∞

𝑘=0
(𝑧/2)𝑘 = δ′(𝑢) +

𝑧

2
δ′′′(𝑢) + 𝑜(𝑧) 

(5.5) 

It follows from equations (5.3), (5.5), as well as the property of the Delta function 

 

∫ 𝛿(𝑘)(𝑥)𝑓(𝑥)𝑑𝑥
+∞

−∞

= (−1)𝑘𝑓(𝑘)(0) 

(5.6) 

that: 

−∫
𝑣 − 𝑥(𝛼, ℎ)

(√ℎ𝜎(𝑣))
3 φ(

𝑣 − 𝑥(𝛼, ℎ)

√ℎ𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

=∑
(ℎ/2)𝑘

𝑘!
∫ δ(2𝑘+1)(𝑣 − 𝑥(𝛼, ℎ))

1

0

𝜎2(𝑘+1)(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
∞

𝑘=0

= −∑
(ℎ/2)𝑘

𝑘!

∂2𝑘+1

∂𝑥2𝑘+1
(𝜎2(𝑘+1)(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

∞

𝑘=0
|
𝑥=𝑥(𝛼,ℎ)

 

(5.7) 

It follows from equations (4.44) and (5.7) that 
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𝜕𝑥(𝛼, ℎ)

𝜕ℎ
= −

∑
(ℎ/2)𝑘

𝑘!
∂2𝑘+1

∂𝑥2𝑘+1
(𝜎2(𝑘+1)(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

∞
𝑘=0

2∑
(ℎ/2)𝑘

𝑘!
∞
𝑘=0

∂2𝑘

∂𝑥2𝑘
(𝜎2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

|

𝑥=𝑥(𝛼,ℎ)

 

(5.8) 

which leads to 

 

𝜕𝑥(𝛼, ℎ)

𝜕ℎ
|
ℎ=0

= −

𝜕
𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

2𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

 

(5.9) 

where the 𝛼-quantile of 𝐿(ℎ = 0) 
 

𝑥(𝛼) = 𝑞𝛼(𝐿(ℎ = 0)) = 𝑉𝑎𝑅𝛼(𝐿(ℎ = 0)) = Φ(
√𝜌Φ−1(1 − 𝛼) + Φ−1(𝑃𝐷)

√1− 𝜌
) 

(5.10) 

is the root of the equation 

 

1 − 𝛼 = 𝐹𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 
(5.11) 

It follows from equations (5.9) and 𝜎2(𝑥) = 𝑥(1 − 𝑥) that: 

 

𝜕𝑥(𝛼, ℎ)

𝜕ℎ
|
ℎ=0

= −
1

2
(1 − 2𝑥 + 𝑥(1 − 𝑥)

𝜕

𝜕𝑥
𝑙𝑛(𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))|

𝑥=𝑥(𝛼)
 

(5.12) 

Since the Vasicek PDF is given by: 

 

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) = √
1− 𝜌

𝜌
𝑒𝑥𝑝 {−

1

2𝜌
(√1 − 𝜌Φ−1(𝑥) − Φ−1(𝑃𝐷))

2
+
1

2
(Φ−1(𝑥))

2
} 

(5.13) 

it follows that: 

𝜕𝑙𝑛𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
=
(2𝜌 − 1)Φ−1(𝑥) + √1 − 𝜌Φ−1(𝑃𝐷)

𝜌𝜑(Φ−1(𝑥))
 

(5.14) 

From equations (2.10), (5.11) and (5.14), we have: 

 

𝜕𝑙𝑛𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
=
Φ−1(𝑥(𝛼)) − √

1 − 𝜌
𝜌 Φ−1(1 − 𝛼)

𝜑(Φ−1(𝑥))
 

(5.15) 

It follows from equations (5.12) and (5.15) that: 
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𝜕𝑥(𝛼, ℎ)

𝜕ℎ
|
ℎ=0

= −
1

2

(

 
 
1 − 2𝑥(𝛼) +

𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) − √

1− 𝜌

𝜌
Φ−1(1 − 𝛼))

)

 
 

 

(5.16) 

Hence, the GA to VaR is: 

 

𝐺𝐴𝑉𝑎𝑅 = −
ℎ

2

(

 
 
1 − 2𝑥(𝛼) +

𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) − √

1 − 𝜌

𝜌
Φ−1(1 − 𝛼))

)

 
 

 

(5.17) 

Based on the approach outlined by (Gouriéroux, Laurent, & Scailett, 2000), (Emmer & Tasche, 

2005) (Remark 2.3) with a correction (Gordy & Marrone, 2012) (minus before √
1−𝜌

𝜌
 instead of 

plus) derived the same formula with precision up to notation (𝑞1−𝛼(𝑋) = −Φ
−1(1 − 𝛼), 

Φ(
𝑐−√𝜌𝑞1−𝛼(𝑋)

√1−𝜌
) = 𝑥(𝛼)). 

 

 
Figure 3. Comparison of the dependence on 𝜌 of the simulated function 

𝑥(𝛼,ℎ)−𝑥(𝛼)

ℎ
 (red line) and of the theoretical function 

𝜕𝑥(𝛼,ℎ)

𝜕ℎ
|
ℎ=0

 (blue line). Number of Monte Carlo simulations: 20 000. The parameters used: 𝑃𝐷 = 0.1, 𝑛 = 15 000, ℎ = 0.01, 

𝛼 = 0.01. 

6 Expected Shortfall 
 

The Expected Shortfall is defined as: 

 

𝐸𝑆𝛼(𝐿) = 𝔼[𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)] =
1

𝛼
∫ 𝑉𝑎𝑅𝛾

𝛼

0

(𝐿)𝑑𝛾 

(6.1) 

Let us expand 𝑉𝑎𝑅𝛾(𝐿(ℎ)) into a Taylor series at ℎ = 0: 
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𝑉𝑎𝑅𝛾(𝐿(ℎ)) = 𝑉𝑎𝑅𝛾(𝐿(ℎ = 0)) + ℎ
𝜕𝑉𝑎𝑅𝛾(𝐿(ℎ))

𝜕ℎ
|
ℎ=0

+ 𝑜(ℎ) 

(6.2) 

where 𝑉𝑎𝑅𝛾(𝐿(ℎ = 0)) = 𝑥(𝛾) is the root of equation: 

 

1 − 𝛾 = 𝐹𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌) 
(6.3) 

After differentiating (6.3) with respect to 𝛾, we obtained: 

 

−1 =
𝑑𝑥(𝛾)

𝑑𝛾

𝜕𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
|
𝑥=𝑥(𝛾)

=
𝑑𝑥(𝛾)

𝑑𝛾
𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌) 

(6.4) 

Hence, 
𝑑𝑥(𝛾)

𝑑𝛾
= −

1

𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)
 

(6.5) 

By the chain rule, the formula (5.9) 

 

𝜕𝑥(𝛾, ℎ)

𝜕ℎ
|
ℎ=0

= −

𝜕
𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

2𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛾)

 

(6.6) 

is transformed into the following form: 

 

𝜕𝑥(𝛾, ℎ)

𝜕ℎ
|
ℎ=0

=
1

2

𝑑𝑥(𝛾)

𝑑𝛾
(
𝜕

𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)))|

𝑥=𝑥(𝛾)

=
1

2

𝜕

𝜕𝛾
(𝜎2(𝑥(𝛾))𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)) 

(6.7) 

Hence, 

 

∫
𝜕𝑥(𝛾, ℎ)

𝜕ℎ
|
ℎ=0

𝛼

0

𝑑𝛾 =
1

2
𝜎2(𝑥(𝛾))𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)|

𝛾=0

𝛾=𝛼

=
1

2
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(6.8) 

It follows from equations (6.1) and (6.8) that 

 

𝜕𝐸𝑆𝛼(𝐿(ℎ))

𝜕ℎ
|
ℎ=0

=
1

2𝛼
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(6.9) 

𝐸𝑆𝛼(𝐿(ℎ)) = 𝐸𝑆𝛼(𝐿(0)) +
ℎ

2𝛼
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) + 𝑜(ℎ) 

(6.10) 

𝐸𝑆𝛼(𝐿(ℎ)) − 𝐸𝑆𝛼(𝐿(0))

ℎ
≈
1

2𝛼
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(6.11) 
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Hence, the GA to ES is 

 

𝐺𝐴𝐸𝑆 =
ℎ

2𝛼
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(6.12) 

For Monte Carlo simulations of conditional expectation, we use the formula 

 

𝐸𝑆𝛼(𝐿) = 𝔼[𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)] =
∑ 𝐿𝑘𝐼(𝐿𝑘 > 𝑉𝑎𝑅𝛼(𝐿))
𝑁
𝑘=1

∑ 𝐼(𝐿𝑘 > 𝑉𝑎𝑅𝛼(𝐿))
𝑁
𝑘=1

 

(6.13) 

 
Figure 4. Comparison of the dependence on 𝛼 of the simulated function 

𝐸𝑆𝛼(𝐿(ℎ))−𝐸𝑆𝛼(𝐿(0))

ℎ
 (green line) and of the theoretical 

function 
𝜕𝐸𝑆𝛼(𝐿(ℎ))

𝜕ℎ
|
ℎ=0

 (red line). Number of Monte Carlo simulations: 25 000. The parameters used: PD=0.1, 𝜌 = 0.1, n=25 

000, h=0.01. 

7 Vasicek's Attempt 
 

From formula (10) (Vasicek O. A., 2002) (p. 8), after obvious transformations, the formula 

 

𝑣𝑎𝑟[𝐿] = ℎΦ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 1) + (1 − ℎ)Φ2(Φ

−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2 
(7.1) 

follows for the unconditional variance, taking into account: 

 

𝑎 = 1 

𝑏 = Φ−1(𝑃𝐷) 
𝐻 = 𝑇 

Φ2(𝑥, 𝑥; 1) = Φ(𝑥) 
 

However, the following formula from (Vasicek O. A., 2002) is erroneous: 

 

𝑣𝑎𝑟[𝐿] ≈ (𝜌 + (1 − 𝜌)ℎ)𝜑2(Φ−1(𝑃𝐷)) 
(7.2) 

Let’s demonstrate how this error occurred. 
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Vasicek used the tetrachoric expansion of the bivariate normal CDF: 

 

Φ2(𝑥, 𝑥; 𝜌) ≈ Φ
2(𝑥) + 𝜌𝜑2(𝑥) 

(7.3) 

Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) ≈ 𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷)) 

(7.4) 

Applying this expansion to the case 𝜌 = 1 yields the incorrect result: 

 

Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 1) ≈ 𝑃𝐷2 + 𝜑2(Φ−1(𝑃𝐷)) 

(7.5) 

whereas, in fact, 

 

Φ2(Φ
−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌)

𝜌→1−
→   𝑃𝐷 

(7.6) 

As a result, Vasicek arrived at the incorrect approximation: 

 

𝑣𝑎𝑟[𝐿] ≈ ℎ (𝑃𝐷2 + 𝜑2(Φ−1(𝑃𝐷))) + (1 − ℎ) (𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷))) − 𝑃𝐷2

= (𝜌 + (1 − 𝜌)ℎ)𝜑2(Φ−1(𝑃𝐷)) 
(7.7) 

instead of the correct approximation: 

 

𝑣𝑎𝑟[𝐿] ≈ ℎ𝑃𝐷 + (1 − ℎ)(𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷))) − 𝑃𝐷2

= ℎ𝑃𝐷(1 − 𝑃𝐷) + (1 − ℎ)𝜌𝜑2(Φ−1(𝑃𝐷)) 
(7.8) 

Furthermore, on page 8, Vasicek presented equation (12): 

 

ℙ[𝐿 ≤ 𝑥] = 𝐹𝑉(𝑥; 𝑝, 𝜌 + ℎ(1 − 𝜌)) 
(7.9) 

without proper justification. The fallacy of this formula is demonstrated in Figure 5, where the 

function 

 

𝑑𝐹𝑉(𝑥) =
𝐹𝑉(𝑥; 𝑝, 𝜌 + ℎ(1 − 𝜌)) − 𝐹𝑉(𝑥; 𝑝, 𝜌)

ℎ
 

(7.10) 

is compared to the corresponding simulated function 

 

𝑑𝐹𝑠(𝑥) =
𝑓𝑠(𝑥; 𝑝, 𝜌, ℎ) − 𝑓𝑠(𝑥; 𝑝, 𝜌, 0)

ℎ
 

(7.11) 

as well as the function  

 

𝑑𝐹𝑉𝐻(𝑥) =
𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, ℎ) − 𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, 0)

ℎ
=
𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, ℎ) − 𝐹𝑉(𝑥; 𝑝, 𝜌)

ℎ
 

(7.12) 
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Figure 5. Comparison of 𝑑𝐹𝑉(𝑥) (red line) with the corresponding simulated function (green line) and with 𝑑𝐹𝑉𝐻(𝑥) (blue line). 

Number of Monte Carlo simulations: 20 000. The parameters used: 𝑃𝐷 = 0.1, 𝜌 = 0.1, 𝑛 = 20 000, ℎ = 0.01. 

 

The poor quality of Vasicek's attempt to assess the granularity effect is evident in Figure 5. 

 

8 Approach of (Voropaev, 2011) 
 

Based on the information obtained in our paper about the behavior of the portfolio loss 

distribution near zero of the HHI, let us consider the approach of (Voropaev, 2011). 

 

Transformation of variables 𝑣 = 𝑥 − 𝑢 allows us to write the Vasicek-Herfindahl function PDF 

(4.12) in the form of formula (3.1) of (Voropaev, 2011): 

 

𝑓∗(𝑥) = ∫ 𝑔(𝑢|𝑥 − 𝑢)𝑓(𝑥 − 𝑢)

∞

−∞

𝑑𝑢 

(8.1) 

where 

𝑔(𝑢|𝑥) =

𝜑(
𝑢

√ℎ𝜎(𝑥)
)

√ℎ𝜎(𝑥)
𝜃(𝑥)𝜃(1 − 𝑥) 

(8.2) 

 

𝑓∗(𝑥) = 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) 
𝑓(𝑥) = 𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) 

(8.3) 

By expanding the integrand into a Taylor series at 𝑢 = 𝑥, we obtain 

 

𝑔(𝑢|𝑥 − 𝑢)𝑓(𝑥 − 𝑢) =∑ (−1)𝑘
𝑢𝑘

𝑘!

∞

𝑘=0

𝜕𝑘

𝜕𝑥𝑘
(𝑔(𝑢|𝑥)𝑓(𝑥)) 

(8.4) 

𝑓∗(𝑥) =∑ (−1)𝑘
1

𝑘!

∞

𝑘=0

𝑑𝑘

𝑑𝑥𝑘
(𝑓(𝑥)𝑚𝑘(𝑥)) 

(8.5) 



 21 

where 𝑚𝑘(𝑥) is the 𝑘𝑡ℎ moment of distribution 𝐻 conditional on 𝑉: 

 

𝑚𝑘(𝑥) = ∫ 𝑢𝑘𝑔(𝑢|𝑥)

∞

−∞

𝑑𝑢 

(8.6) 

Since 𝑔(𝑢|𝑥) was unknown to Voropaev, he was unable to clarify the meaning of these 

moments, which renders his work unsuitable for practical applications. We will go further and 

show that his approach leads to the same results as our method. 

 

It follows from equations (8.2) and (8.6) that 

𝑚𝑘(𝑥) = 𝜃(𝑥)𝜃(1 − 𝑥) ∫ 𝑢
𝑘

𝜑 (
𝑢

√ℎ𝜎(𝑥)
)

√ℎ𝜎(𝑥)

∞

−∞

𝑑𝑢 

(8.7) 

Since 
𝜑(

𝑢

√ℎ𝜎(𝑥)
)

√ℎ𝜎(𝑥)
 is the even function of 𝑢, odd moments are equal to zero. Hence, 

 

𝑓∗(𝑥) =∑
1

(2𝑘)!

∞

𝑘=0

𝑑2𝑘

𝑑𝑥2𝑘
(𝑓(𝑥)𝑚2𝑘(𝑥)) 

(8.8) 

Since 

∫ 𝑢2𝑘𝑒𝑥𝑝(−𝑎𝑢2)

∞

−∞

𝑑𝑢 = √
𝜋

𝑎

(2𝑘 − 1)‼

(2𝑎)𝑘
 

(8.9) 

then 

𝑚2𝑘(𝑥) = 𝜃(𝑥)𝜃(1 − 𝑥) ∫ 𝑢
2𝑘

𝜑 (
𝑢

√ℎ𝜎(𝑥)
)

√ℎ𝜎(𝑥)

∞

−∞

𝑑𝑢 = 𝜃(𝑥)𝜃(1 − 𝑥)(ℎ𝜎2(𝑥))
𝑘
(2𝑘 − 1)‼ 

(8.10) 

Hence, by employing Voropaev’s approach, we derive the equation: 

 

𝑓∗(𝑥) =∑
(2𝑘 − 1)‼

(2𝑘)!
ℎ𝑘

∞

𝑘=0

𝜕2𝑘

𝜕𝑥2𝑘
(𝜎2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(8.11) 

In contrast, our approach leads to the formula (4.44). Since 

 

(2𝑘 − 1)‼

(2𝑘)!
=
1

𝑘!
(
1

2
)
𝑘

 

(8.12) 

both equalities coincide, leading to the result: 

 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝑓
∗(𝑥) 

(8.13) 
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9 Approach of (Emmer & Tasche, 2005) 
 

The approach proposed by (Emmer & Tasche, 2005) is based on the decomposition: 

 

𝐿 = 𝔼[𝐿|𝑌] + 𝑐(𝐿 − 𝔼[𝐿|𝑌]) 
 

where 𝑐 = 1, along with the expansion of 𝑉𝑎𝑅𝛼(𝐿) = 𝑥(𝛼, ℎ, 𝑐) into a Taylor series at 𝑐 = 0. 

However, the convergence of this series when 𝑐 = 1 has not been proven. 

 

The right-hand side of equation (5.9) 

 

𝜕𝑥(𝛼, ℎ)

𝜕ℎ
|
ℎ=0

= −

𝜕
𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

2𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

= −
1

ℎ

𝜕
𝜕𝑥
(ℎ𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

2𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

= −
1

ℎ

𝜕
𝜕𝑥
(𝑣𝑎𝑟[𝐿|𝑋 = 𝑥]𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

2𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

 

 

coincides, up to a factor of ℎ/2, with the right-hand side of equation (7) from (Emmer & Tasche, 

2005): 

 

𝜕2𝑥(𝛼, ℎ, 𝑐)

𝜕𝑐2
|
𝑐=0

= −

𝜕
𝜕𝑥
(𝑣𝑎𝑟[𝐿|𝑋 = 𝑥]𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

 

(9.1) 

Hence 

𝜕𝑥(𝛼, ℎ, 1)

𝜕ℎ
|
ℎ=0

=
ℎ

2

𝜕2𝑥(𝛼, ℎ, 𝑐)

𝜕𝑐2
|
𝑐=0

 

(9.2) 

Let us prove that this equality holds true. Since 

 

𝐿 = 𝔼[𝐿|𝑌] + 𝑐(𝐿 − 𝔼[𝐿|𝑌]) 
and 

𝐿 − 𝔼[𝐿|𝑌] = 𝑍𝜎(𝑝(𝑌))√ℎ 
(9.3) 

we introduce the random variable 

 

�̃� = 𝔼[�̃�|𝑌] + 𝑏𝑍𝜎(𝑝(𝑌)) 
(9.4) 

where 𝑏 = 𝑐√ℎ. If 𝑐 = 1, �̃� = 𝐿. Given 𝑏 = 𝑐√ℎ, we need to prove that 

 

𝜕𝑥(𝛼, 𝑐2ℎ)

𝜕ℎ
|
ℎ=0

=
1

2

𝜕2𝑥(𝛼, 𝑏2)

𝜕𝑏2
|
𝑏=0

=
ℎ

2

𝜕2𝑥(𝛼, 𝑐2ℎ)

𝜕𝑐2
|
𝑐=0

 

(9.5) 
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For the random variable �̃� 

 

1 − 𝛼 = ∫Φ(
𝑥(𝛼, 𝑏2) − 𝑣

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(9.6) 

Let us differentiate this equation with respect to the variable 𝑏: 

 

0 =
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
∫

1

𝑏𝜎(𝑣)
φ(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+ ∫(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏2𝜎(𝑣)
)φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(9.7) 

Hence, 

1

𝑏

𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
=

∫ (−
𝑣 − 𝑥(𝛼, 𝑏2)

(𝑏𝜎(𝑣))
3 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)
𝑏𝜎(𝑣)

)
1

0
𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

∫
1

𝑏𝜎(𝑣)
φ (
𝑣 − 𝑥(𝛼, 𝑏2)
𝑏𝜎(𝑣)

)
1

0
𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

 

(9.8) 

It follows from formulas (12.3) and (12.4) that: 

 

1

𝑏

𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏 𝑏→0+
→   

∫ 𝛿′(𝑣 − 𝑥(𝛼, 𝑏2))
1

0
𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

∫ 𝛿(𝑣 − 𝑥(𝛼, 𝑏2))
1

0
𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

= −

𝜕(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))
𝜕𝑥

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

 

(9.9) 

Hence, 

𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
|
𝑏=0

= 0 

(9.10) 

which, for a fixed value of ℎ, is equivalent to 

 

𝜕𝑥(𝛼, 𝑐2ℎ)

𝜕𝑐
|
𝑐=0

= 0 

(9.11) 

This corresponds to equation (5) in (Emmer & Tasche, 2005). Denote 

 

𝑤(𝛼) = −

𝜕(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))
𝜕𝑥

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)
|

𝑥=𝑥(𝛼)

 

(9.12) 

Let us differentiate equation (9.7) with respect to the variable 𝑏: 
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𝜕2𝑥(𝛼, 𝑏2)

𝜕𝑏2
∫

1

𝑏𝜎(𝑣)
φ(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
∫ (−

1

𝑏2𝜎(𝑣)
)φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− (
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
)

2

∫(
1

𝑏𝜎(𝑣)
)
2

(−
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
∫

1

𝑏𝜎(𝑣)
(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏2𝜎(𝑣)
)(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

−
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
∫(−

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏2𝜎(𝑣)
) (
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)φ (

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏2𝜎(𝑣)
)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+
𝜕𝑥(𝛼, 𝑏2)

𝜕𝑏
∫φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

(−2
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏3𝜎(𝑣)
)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− ∫(−
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏2𝜎(𝑣)
)

2

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+ ∫φ(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

(−2
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏3𝜎(𝑣)
)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) = 0 

(9.13) 

 

To use formulas (12.3) - (12.6), we transform (9.13) to the equality 
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𝜕2𝑥(𝛼, 𝑏2)

𝜕𝑏2
∫

1

𝑏𝜎(𝑣)
φ(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− 𝑤(𝛼)∫
1

𝑏𝜎(𝑣)
φ(
𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− (𝑏𝑤(𝛼))
2
∫(−

𝑣 − 𝑥(𝛼, 𝑏2)

(𝑏𝜎(𝑣))
3 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+ 𝑏2𝑤(𝛼)∫(
(𝑣 − 𝑥(𝛼, 𝑏2))

2

(𝑏𝜎(𝑣))
5 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− 𝑏3𝑤(𝛼)∫(−
(𝑣 − 𝑥(𝛼, 𝑏2))

3

(𝑏𝜎(𝑣))
7 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+ 2𝑏𝑤(𝛼)∫(−
𝑣 − 𝑥(𝛼, 𝑏2)

(𝑏𝜎(𝑣))
3 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

− 𝑏2∫(−
(𝑣 − 𝑥(𝛼, 𝑏2))

3

(𝑏𝜎(𝑣))
7 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝜎4(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

+ 2∫(−
𝑣 − 𝑥(𝛼, 𝑏2)

(𝑏𝜎(𝑣))
3 )φ(

𝑣 − 𝑥(𝛼, 𝑏2)

𝑏𝜎(𝑣)
)

1

0

𝜎2(𝑣)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) = 0 

(9.14) 

Hence, 

 

𝜕2𝑥(𝛼, 𝑏2)

𝜕𝑏2
𝑓𝑉(𝑥(𝛼, 𝑏

2); 𝑃𝐷, 𝜌) + (𝑏𝑤(𝛼))
2 𝜕𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
|
𝑥=𝑥(𝛼)

+ 𝑏2𝑤(𝛼)
𝜕2(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥2
|
𝑥=𝑥(𝛼)

+ 𝑏3𝑤(𝛼)
𝜕3(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥3
|
𝑥=𝑥(𝛼)

+ 3𝑏𝑤(𝛼)
𝜕𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
|
𝑥=𝑥(𝛼)

− 2𝑏𝑤(𝛼)
𝜕(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥
|
𝑥=𝑥(𝛼)

+ 𝑏2
𝜕3(𝜎4(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥3
|
𝑥=𝑥(𝛼)

+
𝜕(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥
|
𝑥=𝑥(𝛼)

= 0 

(9.15) 

 

Finally, 

𝜕2𝑥(𝛼, 𝑏2)

𝜕𝑏2
|
𝑏=0

= −
1

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

𝜕𝑥
|
𝑥=𝑥(𝛼)

 

(9.16) 

Q.E.D. 
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10 Conclusion 
 

The approach by (Emmer & Tasche, 2005) is based on the decomposition: 

 

𝐿𝑜𝑠𝑠 = 𝔼[𝐿𝑜𝑠𝑠|𝑌] + 𝑐(𝐿𝑜𝑠𝑠 − 𝔼[𝐿𝑜𝑠𝑠|𝑌]) 
 

where 𝑐 = 1, and is built upon the method proposed by (Gouriéroux, Laurent, & Scailett, 2000) 

to calculate the derivatives of VaR. As a result, (Emmer & Tasche, 2005) obtained GA for VaR. 

 

Our approach exploits the fact that, for small values of HHI, granularity risk is merely a small 

perturbation. We use the approximation: 

 

𝐿𝑜𝑠𝑠 − 𝔼[𝐿𝑜𝑠𝑠|𝑌] ≈ 𝑍𝜎(𝑝(𝑌))√ℎ 

 

which is obtained using the Lyapunov CLT. The random value 𝑍𝜎(𝑝(𝑌))√ℎ is the GA to the 

random value 𝐿𝑜𝑠𝑠. Consequently, in addition to the first factor, the market shock 𝑌, a second 

factor, the granularity shock 𝑍𝜎(𝑝(𝑌))√ℎ, is added to the model. Rather than studying the 

behavior of a heterogeneous portfolio, we focus on the behavior of a homogeneous portfolio 

subjected to a granularity shock. 

 

The expansion of VaR into a Taylor series up to the first order of HHI yields the same result 

using both approaches. However, the approach proposed by (Emmer & Tasche, 2005) is 

specifically designed to expand VaR and ES, while our approach is more general and, in 

particular, allows us to obtain PDF and CDF of portfolio loss, taking into account the granularity 

effect. 

 

We see that the HHI is a crucial factor for modeling the granularity effect and can be utilized to 

regulate a bank’s economic capital. 

 

The GA to VaR is given by: 

 

𝐺𝐴𝑉𝑎𝑅 = −
ℎ

2

(

 
 
1 − 2𝑥(𝛼) +

𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) − √

1 − 𝜌

𝜌
Φ−1(1 − 𝛼))

)

 
 

 

where 

𝑥(𝛼) = 𝑉𝑎𝑅𝛼(𝐿𝑜𝑠𝑠(ℎ = 0)) = Φ(
√𝜌Φ−1(1 − 𝛼) + Φ−1(𝑃𝐷)

√1− 𝜌
) 

 

The formula for 𝐺𝐴𝑉𝑎𝑅  is quite complex and lacks clarity. The IRB approach uses the formula 

 

𝑉𝑎𝑅𝛼(𝐿𝑜𝑠𝑠(ℎ = 0)) = 𝐹𝑉
−1(1 − 𝛼;𝑃𝐷, 𝜌) 

 

We recommend adopting a more transparent and intuitively clear formula for supervisory 

applications: 

 

𝑉𝑎𝑅𝛼(𝐿𝑜𝑠𝑠(ℎ)) = 𝐹𝑉𝐻
−1(1 − 𝛼; 𝑃𝐷, 𝜌, ℎ) 

where 
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𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑Φ(
𝑣 − 𝑥

√ℎ𝜎(𝑣)
)

1

0

 

11 Appendix 1 
 

For the function Φ(𝑢/√𝑧), the heat conduction equation 

 

Φ𝑧(𝑢/√𝑧) =
1

2
Φ𝑢𝑢(𝑢/√𝑧) 

 

is valid. The generalized heat equation 

 

∂𝑘

∂𝑧𝑘
Φ(𝑢/√𝑧) =

1

2𝑘
∂2𝑘

∂𝑢2𝑘
Φ(𝑢/√𝑧) 

 

can be proved by induction: 

 

∂𝑘+1

∂𝑧𝑘+1
Φ(𝑢/√𝑧) =

1

2𝑘
∂

∂𝑧

∂2𝑘

∂𝑢2𝑘
Φ(𝑢/√𝑧) =

1

2𝑘
∂2𝑘

∂𝑢2𝑘
∂

∂𝑧
Φ(𝑢/√𝑧) =

1

2𝑘+1
∂2(𝑘+1)

∂𝑢2(𝑘+1)
Φ(𝑢/√𝑧) 

 

Given the formulas (12.1) and (12.2), we get 

 

𝑙𝑖𝑚
𝑧→0+

∂𝑘

∂𝑧𝑘
Φ(𝑢/√𝑧) = 𝑙𝑖𝑚

ℎ→0+

1

2𝑘
∂2𝑘

∂𝑢2𝑘
Φ(𝑢/√𝑧) =

δ(2𝑘−1)(𝑢)

2𝑘
 

 

Now, we can expand function Φ(𝑢/√𝑧) into a Taylor series at 𝑧 = 0: 

 

Φ(𝑢/√𝑧) = θ(𝑢) +∑
(𝑧/2)𝑘

𝑘!
δ(2𝑘−1)(𝑢)

∞

𝑘=1
= θ(𝑢) +

𝑧

2
δ′(𝑢) + 𝑜(𝑧) 

 

12 Appendix 2 
 
The Dirac delta function is the weak derivative of the Heaviside step function: 

 
δ(𝑥) = θ′(𝑥) 

(12.1) 

Consecutive differentiations of the limit representation of the Heaviside step function 

 

Φ(𝑥/ε)
𝜀→0+
→   θ(𝑥) 

(12.2) 

with respect to 𝑥 yields: 

 
1

𝜀
φ (
𝑥

𝜀
)
𝜀→0+
→   𝛿(𝑥) 

(12.3) 

−
𝑥

𝜀3
φ(
𝑥

𝜀
)
𝜀→0+
→   𝛿′(𝑥) 
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(12.4) 

𝑥2

𝜀5
φ(
𝑥

𝜀
)
𝜀→0+
→   𝛿′′(𝑥) +

1

𝜀2
𝛿(𝑥) 

(12.5) 

−
𝑥3

𝜀7
φ(
𝑥

𝜀
)
𝜀→0+
→   𝛿′′′(𝑥) +

3

𝜀2
𝛿′(𝑥) 

(12.6) 
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