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Abstract

In a trade model incorporating within-firm productivity differences in intermedi-
ate products, we show that specialization in the production of intermediate products
enabled by decreased trade costs can reduce firm-level emissions. Using firm-level
data from China (1998-2012), we provide supporting evidence in the context of do-
mestic trade. Increased domestic trade integration, associated with the expansion
of China’s railway network, reduces emissions of sulfur dioxide, carbon dioxide, and
other pollutants. Counterfactual analysis indicates that without the 1.88% (1,203-
kilometer) railway expansion in 2005—–the year in the middle of our sample period,
as an example—national SO2 emissions would have been 0.43% higher.
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1 Introduction

Concerned individuals and economists are interested in the environmental consequences

of economic activities, including those related to trade. One key area of debate is whether

policies—–such as the Carbon Border Adjustment Mechanism adopted by the European

Union—–should be used to alter trade flows based on emissions of the underlying prod-

ucts. Economic theory suggests that the impact of trade on pollution or emissions can be

decomposed into the scale effect, technique effect, and composition effect (Grossman and

Krueger, 1993). The first two refer to the tendency of pollution to increase with the scale

of production and the tendency for it to decrease as better technology is adopted dur-

ing economic development. The composition effect at the industry level is ambiguous, as

trade-induced specialization can make a country’s industry composition dirtier or cleaner.

Focusing on the composition effect, Copeland and Taylor (1994) point out that lax

regulations can induce polluting industries to relocate across countries, creating a “pollu-

tion haven”. Industry-level empirical tests of the pollution haven hypothesis (PHH) have

yielded mixed results in general (Antweiler et al., 2001; Cole and Elliott, 2003; Levin-

son, 2009). More recently, firm-level studies suggest three reasons why trade may reduce

emissions: the reallocation of production to more productive and cleaner firms (Holladay,

2016), export market-induced adoption of cleaner technology (Shapiro and Walker, 2018),

and better access to imported emission-intensive inputs (Cherniwchan et al., 2017; Cherni-

wchan, 2017). However, whether and how trade-induced within-firm adjustments affect

pollution remains largely unexplored.

In this paper, we propose that within-firm product composition is a channel through

which trade can reduce emissions in production.1 In the stylized model we develop, to

satisfy local demand for a non-tradable final good, firms in each of the two locations pro-

duce the final product from intermediate products using Leontief technology. They can
1Because our empirical work focuses on emissions, an important form of pollution, we will use the term

‘emission’ in the remainder of the paper to maintain consistency in the discussion, even though our theory
applies to pollution in general.
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produce intermediate products by combining an emission-intensive input (dirty input)

and an emission-light input (clean input), or purchase it from firms in the other location.

Crucially, there exist productivity differences in the production of intermediate products

both within firms and across locations. A firm will choose to source intermediate products

externally if purchased intermediate products are cheaper than those produced in-house.

As is typical in Ricardian models, when trade costs drop, multi-product firms concen-

trate their production on intermediate products in which they have a greater productivity

advantage.

We demonstrate that post trade integration, adjustments in within-firm product

composition can lower total emissions of a firm under two conditions. First, firms in the

location where the relative price of the emission-intensive input is cheaper must also have

higher productivity in producing intermediate products using the input intensively. This is

a substantial assumption underpinning our theory, as it requires that a firm’s productivity

advantage in an intermediate product coincides with the location-specific cost advantage

in the input used intensively in producing the intermediate product. We argue this is

plausible because the input cost advantage of a location can enable firms to gain a long-

term productivity advantage through learning by doing or accumulating local knowledge

about production. In subsection 4.3, we present supportive evidence that productivity

advantage and input cost advantage are positively correlated in the data.

Second, the within-firm productivity gap between discontinued and retained prod-

ucts must be sufficiently large. This large difference in productivity ensures that for a firm,

the reduction in emissions associated with outsourcing the least efficient intermediate prod-

ucts outweighs the increase in emissions from processing the most efficient intermediate

products for firms in other locations. In contrast to the pollution haven hypothesis, our

model suggests that when both conditions are satisfied in both locations, emissions can

drop in both locations.

Using detailed firm-level data from China, we test the theory in the context of

domestic trade. Following the approach of Donaldson and Hornbeck (2016), we examine
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domestic trade integration—measured by market access (MA)—which is driven by the

expansion of the railway network. We find that increases in MA are negatively correlated

with emissions in a sample of Chinese manufacturing firms from 1998 to 2012. To address

the endogeneity of railway construction, we follow Faber (2014) and Banerjee et al. (2020)

to construct artificial transportation networks based on geographic and historical factors,

and use the corresponding counterfactual MA indices as the instrumental variables for the

actual MA index in two-stage least-squares (2SLS) regressions.

We obtain three main empirical results. First, an increase in MA leads to significant

reduction in firm-level emissions of sulfur dioxide (SO2), carbon dioxide (CO2), dust,

and chemical oxygen demand (COD). Most of the drop in emissions can be attributed

to a decrease in emission intensity. In terms of explanatory power, after controlling for

firm fixed effects, year fixed effects, and city characteristics, 46.92% and 39.10% of the

interquartile range of firm-level SO2 emissions and emission intensity, respectively, can be

explained by the interquartile range of MA. Additionally, city-level emissions of SO2 also

decrease following an increase in MA. We carry out a simple counterfactual calculation and

find that had the length of China’s railway not expanded by 1.88% or 1,204 kilometers in

2005—–the year in the middle of our sample period, as an example—–national emissions

of SO2 would have been 0.43% higher that year.

Second, consistent with our model, an increase in MA prompts firms to drop inter-

mediate products with low productivity and increase the output of remaining intermediate

products. Such a reduction in product scope is accompanied by a reduction in emissions,

which supports the mechanism of emission reduction in our theory.

Third, we find no evidence that firm-level emissions rise in cities with lax environ-

mental regulations or ample local coal supplies, providing no support for the PHH. Our

results remain robust when accounting for other emission-related or infrastructure-related

policies, such as the four-trillion yuan stimulus in 2009 and trade liberalization associated

with China’s admission to the World Trade Organization (WTO) in 2001.

The current study proposes that trade-induced adjustments in within-firm prod-
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uct composition could reduce overall emissions from firms, thus enriching the literature

on trade and pollution.2 Existing studies largely focus on two types of adjustments:

industry-level and firm-level. Examining industry-level adjustments in production, a large

branch of literature yields mixed evidence on the PHH (Antweiler et al., 2001; Cole and

Elliott, 2003; Levinson, 2009; Managi et al., 2009; Brunel, 2017).3 The relationship be-

tween trade and the environment varies with the pollutants studied and the countries

examined.4 A second branch of literature, which emphasizes heterogeneity in firm-level

adjustments to trade-often in the spirit of Melitz (2003)-offers additional insights about

the complex relationship between trade and pollution. Trade can reduce emissions by

reallocating production towards firms with high productivity (Martin, 2012; Kreickemeier

and Richter, 2014; Holladay, 2016),5 by inducing firms to invest in abatement technol-

ogy or adopt cleaner technologies (Cui et al., 2016; Shapiro and Walker, 2018; Forslid et

al., 2018; Gutiérrez and Teshima, 2018),6, and by enabling firms to import dirty inputs

(Cherniwchan et al., 2017; Cherniwchan, 2017). Relative to these studies that examine

industry-level and firm-level adjustments, we focus on within-firm adjustments in product

composition.

We are particularly related to Cherniwchan et al. (2017) and Barrows and Ollivier
2See Copeland and Taylor (2004), Cherniwchan et al. (2017), and Copeland (2020) for reviews of the

literature on trade and the environment.
3Levinson (2009) finds that the composition effect explained only 12 percent of the decline in pollution in

the US manufacturing sector from 1987 to 2001, and trade liberalization accounted for only 4 percent of this
compositional change. In Antweiler et al. (2001) and Cole and Elliott (2003), the trade-driven composition
effect is even found to increase pollution in rich countries with stringent environmental policies and decrease
it in poor countries with weaker environmental policies.

4For example, Cole and Elliott (2003) use cross-country data and find that trade increases the emis-
sions of nitrogen oxides and carbon dioxide, but reduces the chemical oxygen demand. Frankel and Rose
(2005) find that, after addressing endogeneity issues, trade can reduce countries’ sulfur dioxide emissions.
Bombardini and Li (2020) find that increased exposure to trade results in increased levels of Chinese sulfur
dioxide pollution in regions with a comparative advantage in the polluting manufacturing industry.

5Only productive firms can survive and further export (selection effect), and exporting firms expand
in scale relative to domestic firms due to increased external demand and fiercer import competition (real-
location effect). These effects will lead to a decrease in industry-level emissions if efficient firms are also
cleaner.

6This channel is consistent with Bustos (2011), who find that exporters are more likely to adopt new
technologies. However, according to Cherniwchan et al. (2017), it could be offset by reduced incentives
for abatement investment in shrinking non-exporting firms. Rodrigue et al. (2022) quantify the impact of
endogenous export and abatement decisions and find the latter has a much smaller impact on firm-level
emissions.
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(2018). Our production setup follows Cherniwchan et al. (2017) in that firms can source

intermediate products or produce them in-house. However, in our model, a firm’s product

scope and trade pattern are determined by location-specific productivity, as standard in

the Ricardian framework, whereas in Cherniwchan et al. (2017), the trade pattern is driven

by heterogeneity in firm-level productivity along the lines of Melitz (2003). Our focus on

product composition is similar to Barrows and Ollivier (2018), who investigate the role of

product mix in determining firm-level emission intensity. When facing more competition, a

firm’s product scope shrinks to its “core competency” in their model; hence, emissions will

decrease only if the core products are cleaner. In comparison, the reduction in emissions

in our model is driven by specialization according to productivity advantage, and does not

depend on the cleanliness of the firm’s core product.

Our work is also related to literature that assess the environmental impact of trans-

portation infrastructure. The literature in this area has focused on the emissions associated

with different modes of transportation (Parry et al., 2007; Chen and Whalley, 2012; Lalive

et al., 2018; Lin et al., 2021; Jia et al., 2021; Gendron-Carrier et al., 2022). A consistent

finding is that rail transit reduces air pollution, while automobile transportation and con-

gestion lead to more pollution. Distinguishing between public and private transportation,

there is evidence that the substitution of cleaner public transport for automobiles can

reduce air pollution (Bauernschuster et al., 2017; Lin et al., 2021). Relative to this branch

of literature that examines emissions generated during transportation, we focus on how

transportation infrastructure can reduce emissions at production sites.7

The rest of this paper proceeds as follows. In section 2, we develop the model to

explain the role of within-firm difference in the productivity in the production of interme-

diate inputs. We then present the empirical design and data description in section 3, and

report the empirical results regarding the effects of market access on emission in section 4.

In section 5, we conclude the paper.
7Shapiro (2016) finds that trade leads to a 5% increase in global carbon emissions, with the emissions

from production and transport each contributing to roughly half of the increase in emissions.
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2 Theory

We introduce within-firm productivity difference in the production of intermediate prod-

ucts into a Ricardian model of trade and pollution along the line of Copeland and Taylor

(1994), and study the change in firm emissions following a reduction in trade costs.

2.1 Model Setup

Consider an economy consisting of two locations. As our empirical application involves

domestic trade, for continuity in discussion we refer to the two locations as a home city

and an outside one, with the understanding that the two locations can be two countries in

other applications. Each city demands one unit of final good which is not tradable across

cities. In each city, a firm assembles the final good y using a Leontief technology with a

continuum of intermediate products xj , j ∈ [0, 1]:

y = min
j∈[0,1]

{xj}.

The firm can produce xj in house or purchase it from the other city subject to a per

unit trade cost of τ . The in-house production of xj is governed by a constant elasticity of

substitution (CES) technology:

xj = Aj [a
1−δ
j Lδ

j + b1−δ
j Dδ

j ]
1
δ , (1)

where Aj denotes the home firm’s product-specific productivity on j, and δ < 1 is the

elasticity of substitution. The parameters aj > 0 and bj > 0 are the share parameters of

the two factors of production, L the emission-light input (or the clean input) and D the

emission-intensive input (or the dirty input). For simplicity, we assume that L entails no

emission. Meanwhile the use of D will generate emission that is proportional to output,

zj = gDj , where 0 ≤ g ≤ 1 represents the emission intensity of the dirty input. Together,

aj and bj determine the cleanness of product xj , i.e. products with a higher value of bj/aj

are dirtier.
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The factor prices of L and D, denoted w and r, are exogenously given. The firm

pays an emission tax of t for each unit of emission. Based on the CES production function,

the unit cost of in-house production of xj is:

csj =
1

Aj
[ajw

1−σ + bj(r + tg)1−σ]
1

1−σ , (2)

where σ = 1/(1 − δ) > 0. From equations (1) and (2), the factor demands for labor and

dirty input to produce xj are given by:

Lj(xj) =
xj
Aj
a

1
1−σ

j [1 +
bj
aj

(
r + tg

w
)1−σ]

σ
1−σ ,

Dj(xj) =
xj
Aj
b

1
1−σ

j [1 +
aj
bj
(

w

r + tg
)1−σ]

σ
1−σ .

It follows that the corresponding input ratio can be written as:

Dj(xj)

Lj(xj)
=
bj
aj

(
w

r + tg
)σ,

which measures demand intensity for input D relative to L in the production of product

j . Note that this relative demand intensity is independent of output level and firm’s

productivity in intermediate product j. We order the intermediate products such that

bj/aj is increasing with j, that is, products with lower j are cleaner in the sense it uses

more of the clean input.

Assume that the market for the final good is perfectly competitive in both cities,

then the constant to return technologies imply that there is a representative firm in each

city. The home and outside representative firms are asymmetric in terms of productivity

(Aj), costs of labor and the dirty input (w and r), and environmental regulation (t). The

relative productivity Aj/A
∗
j varies across products, which is a crucial and new feature in

our model. If the relative productivity is constant for all j, then the productivity pattern

in our setup is reduced to that of Copeland and Taylor (1994) and Cherniwchan et al.

(2017).
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If the home firm outsources j to the outside city, then the unit cost is:

c∗j =
1 + τ

A∗
j

[aj(w
∗)1−σ + bj(r

∗ + t∗g)1−σ]
1

1−σ , (3)

where the superscript ∗ denotes variables associated with the outside city.

2.2 Trading Equilibrium

Now we analyze a trading equilibrium in which factor prices are taken as given. Define Tj

as the relative unit cost (net of trade cost) of outsourcing to local production. Combining

equations (2) and (3), the relative unit cost can be written as:

Tj ≡
Aj

A∗
j

[
(w∗)1−σ +

bj
aj
(r∗ + t∗g)1−σ

w1−σ +
bj
aj
(r + tg)1−σ

]
1

1−σ .

For each intermediate product j, the home firm outsources it to the other city if the in-

house unit cost is greater than the cost of purchasing the same product the other city,

csj > c∗j . Using the definition of Tj , this outsourcing condition can be stated as:

Tj <
1

1 + τ
,

which says that the relative unit cost advantage of the outside city dominates the trade

cost. By symmetry, the representative firm in the outside city source product j from the

home city if Tj > 1 + τ .

In the trading equilibrium, outsourcing by the home firm creates external demand

for the firm in the outside city to produce intermediate products, and vice versa. The

trade cost τ affects the range of intermediate products subject to trade in equilibrium. A

large trade cost may block all possible trade and each firm will produce all xj for (and

only for) itself. Under moderate trade costs, the trade pattern varies with factor costs and

productivities.

Given the level of cleanness (bj/aj) for a specific intermediate product j, the relative

unit cost Tj is determined by two factors, the relative cost of the dirty input ( r+tg
w / r

∗+t∗g
w∗ )

and variation in the relative productivity (Aj/A
∗
j ). The former is the main driver of trade
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pattern in the model of Copeland and Taylor (1994) and Cherniwchan et al. (2017). The

latter term, i.e. the relative productivity (Aj/A
∗
j ), is the crucial and new factor introduced

by our study.

Without additional assumption about the relative input cost and relative produc-

tivity, it is not possible to tract the pattern of specialization and trade. In order to obtain

testable prediction about the relation between trade cost, specialization and emissions, we

make the following assumption.

Assumption 1. Firms in the city where the relative price of emission-intensive input

is cheaper (more expensive, respectively) also have higher productivity in producing in-

termediate products using the input more (less, respectively) intensively. Without loss

of generality, let the foreign city be the one with lower cost of emission-intensive input.

Mathematically, the assumption is r+tg
w > r∗+t∗g

w∗ and ∂
∂j (

Aj

A∗
j
) < 0.

Under Assumption 1, both cross-city comparison of factor cost and comparison of

productivity indicate that the home firm has a comparative advantage in cleaner goods,

i.e. goods with smaller values of j. Consequently, Tj is decreasing with j and there

is a monotone trading equilibrium in which the firm in the home city will specialize in

intermediate products with smaller j values, while the firm in the other city specialize in

goods with larger j values. Subsequently, we show in Proposition 1 that firms will further

specialize after a drop in trade cost, and in Proposition 2 that firm-level emissions can

decrease under suitable conditions.

Without Assumption 1, the pattern of specialization and trade is not tractable

because the distribution of relative productivity could offset or even reverse the cost ad-

vantage. Thus, we would have no prediction about the relationship between trade costs

and emissions. We recognize that Assumption 1 is substantial, as it requires the produc-

tivity advantage and input cost advantage to overlap. We argue that this is plausible

because firms are likely to specialize in products that intensively use the locally abundant

factor. If there exists learning by doing or local knowledge about technology, then over

time, firms would develop or strengthen their productivity advantage in these products.
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Therefore, productivity advantage would coincide with the cost advantage of the locally

abundant factor. Ultimately, in subsection 4.3, we test this assumption empirically and

find supportive evidence.8

Because Assumption 1 implies that Tj is decreasing with j, there exist j0 ≤ j1 such

that Tj0 = 1+τ and Tj1 = 1
1+τ . Given the user costs of factors {w, r + tg, w∗, r∗ + tg∗} and

final demands in local and outside markets, we obtain a trading equilibrium in which both

firms outsource their inefficient intermediate products to each other. As shown Figure

1, in equilibrium, the home firm produces its productive products of j ∈ [0, j1] while

outsourcing the less productive products of j ∈ [j1, 1]. Furthermore, it also processes

products in [0, j0] over which it commands productivity advantage, to satisfy the demand

of the outside city. The production pattern for the firm in the outside city is symmetric.

There exists an interval of j ∈ [j0, j1] such that intermediates in the range are produced

in both locations as trade cost prevents trade from occurring. The product scope of the

home firm and the foreign firm are [0, j1] and [j0, 1], respectively. 9

2.3 Effects of Trade Cost Reduction on Product Composition and Emis-
sion

In this subsection, we first present a proposition regarding the effects of trade cost reduc-

tion on product composition and production volume of firms. The proposition is largely

a statement of an implicit result of Dornbusch et al. (1977) in the current setup.

Proposition 1. In the trading equilibrium, after a reduction in trade costs, all firms

narrow the product scope and specialize in their most productive products, and increase the

average output of the products that they keep.

Proof:
8Assumption 1 can be generalized by allowing ∂

∂j
(
Aj

A∗
j
) = 0 for some j, meaning that Aj/A

∗
j is weakly

monotonically decreasing.
9We ignore the trivial case that j0 and (or) j1 lie outside the interval [0, 1]. For example, when j1 > 1,

the home firm can produce all goods for itself and outsource nothing. In a more extreme case such that
j0 > 1, the home firm has an overwhelming advantage and provides all products j for both locations, and
hence there is no longer any firm in the outside city.
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Figure 1: Effects of Trade Costs on the Production Pattern of the Home Firm

In the trading equilibrium, a decline in trade cost τ results in a wider range of products

being outsourced. As illustrated in Figure 1, when τ drops to τ ′, the varieties of outsourced

intermediates expand from [j1, 1] to [j′1, 1] for the home firm, while the range of goods that

it processes for the foreign firm also expands from [0, j0] to [0, j′0]. Since Tj is decreasing

in j, it can be shown that ∂j0
∂τ < 0 and ∂j1

∂τ > 0. Therefore, the home firm’s product scope

[0, j1] is positively related with trade cost τ .

Corresponding to the changes in product scope, we then examine the average output

per variety of intermediate product. Given the final good output level y and y∗ and the

Leontief technology in the production of final good, the total intermediate output10 of the

home firm is: ∫ j1

0
ydj +

∫ j0

0
y∗dj = j1y + j0y

∗.

We define the average output of intermediate products in the home city as:

x =
j1y + j0y

∗

j1
.

10The trade costs in our benchmark model are monetary expenses. In Appendix A, we discuss the
scenario where additional products are used to cover iceberg costs.
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By symmetry, the total intermediate output and average output of intermediate

products in the outside city are:

(1− j0)y
∗ + (1− j1)y,

and

x∗ =
(1− j0)y

∗ + (1− j1)y

1− j0
.

Because a reduction in trade cost τ increases j0 and lowers j1, it follows that ∂x/∂τ <

0 and ∂x∗/∂τ < 0. Thus, average output increases in both cities after a reduction in trade

costs. ■

Next, in proving Proposition 2, we demonstrate that a decrease in domestic trade

cost can lead to reduction in firm-level emissions under two conditions.

Proposition 2. Emissions by a firm in either location decrease with a reduction in trade

costs if (i) Assumption 1 holds, and (ii) the productivity difference across intermediate

products within the firm is sufficiently large.

Proof:

Because the emission from producing xj is given by:

zj(xj) = gDj(xj) = g
xjhj
Aj

,

where hj ≡ b
1

1−σ

j [1+
aj
bj
( w
r+tg )

1−σ]
σ

1−σ is a measure of relative input price. The home firm’s

total emission can be written as:

z = g(y∗
∫ j0

0

hj
Aj
dj + y

∫ j1

0

hj
Aj
dj). (4)

The derivative of the total emission of home firm (z) with respect to trade cost τ is:

∂z

∂τ
= g[

∂j1
∂τ

yhj1
Aj1

+
∂j0
∂τ

y∗hj0
Aj0

].

A reduction in trade costs lowers emission reduction if ∂z
∂τ > 0, i.e.

∂j1
∂τ

yhj1
Aj1

> −∂j0
∂τ

y∗hj0
Aj0

. (5)
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The last line states that the emission reduction from outsourcing intermediate products

(the left hand side of the equation) is larger in magnitude than the increase in emission

associated with processing additional intermediate products for the foreign firm (the right

hand side). Rearrangement of the inequality (5) yields:

−y∗ ∂j0∂τ

y ∂j1
∂τ

<
Aj0/hj0
Aj1/hj1

. (6)

in which Aj0/hj0 and Aj1/hj1 can be regarded as the factor price-adjusted productivity.

The left hand side of (6) measures the production of intermediate products (and

emissions) acquired by the home firm from the other city subsequent to a reduction in

trade cost, relative to the intermediate products it outsources to the other city. The right

hand side is the productivity of the marginal intermediate product for which the home

firm gains production relative to the productivity of the marginal intermediate product

it loses. When the productivity gap between the two marginal varieties are large enough,

then the increase in emission associated with additional intermediate products processed

by the home firm will be smaller in magnitude than the reduction in emission associated

with the additional outsourcing enabled by a lower trade cost. In this case, net emission

of the home firm will decrease. ■

It is important to note that Proposition 2 applies for all firms, including those

specializing in emission-intensive products. In Copeland and Taylor (1994), all producers

are final good producers, and they use identical technology for producing the clean good

and dirty good. The firms must use more dirty inputs when they switch production from

clean products to dirty products. The industry-level composition effect of trade, therefore,

necessarily transfers emission from one location to another in a zero-sum framework. In

the current setup, we retain the feature of production specialization and reallocation, but

emission does not necessarily rise in the location that hosts more production of emission-

intensive goods. Whether emission rises or drop, depends on whether firms in the location

hold sufficient productivity advantage over firms in other locations. In other words, while

industry-level reallocation of production triggered by an increase in trade can still result
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in Pollution Havens, the within-firm composition effect of trade in our setup can mitigate

or even reverse the Pollution Havens effect. Because the emission reduction criterion can

apply simultaneously to firms in different locations, we have the following corollary to

Proposition 2 regarding the possibility of emission reduction in both locations.

Corollary 1. After a reduction in trade costs, both the home firm and foreign firm will

experience reduction in emission levels if the following two conditions are satisfied in both

locations. (i) Assumption 1 holds. (ii) There exists sufficiently large within-firm difference

in productivity of intermediate products.

For a detailed discussion of the conditions under which emissions are reduced in

both locations, please refer to Appendix B.

In the context of the model, an emission-based policy can be represented by a change

in t, the emission tax. When t is increased in one location, say due to the implementation

of the Carbon Border Adjustment Mechanism, the model predicts that the production of

some products (and the associated emissions) will relocate to the other location. However,

the direction of change in global emissions is ambiguous. A more detailed discussion can

be found in Appendix B.

3 Empirical Specification and Data
3.1 Regression Model

To examine the effects of domestic trade integration on emission at the firm level, we

estimate the following regression model:

ln(SO2ict) = β0 + β1 · ln(MAct) + β2 ·Xct + β3 · Zict + ψi + ωt + µict (7)

where SO2ict is the kilograms of sulfur dioxide emitted by firm i in city c in year t. We

choose Sulfur dioxide as the main measure of emission because it is commonly used in

studies of air pollution. Furthermore, SO2 is particularly important for air quality in

China because the burning of coal, the most important source of energy in the country,
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entails emission of SO2. We also use emission intensity, defined as the log of kilograms of

SO2 emission per thousand yuan of industrial value-added, as the dependent variable in

the regression. In extended analysis, we examine additional pollutants that include dust,

Chemical Oxygen Demand (COD), industrial waste gas and carbon dioxide (CO2), and

obtain similar results.

MAct is the city-level market access (MA) index that we construct by following the

method of Donaldson and Hornbeck (2016). Details about construction of the MA index

are discussed in subsection 3.2. The vector Xct contains other city-level variables. Our

theory suggested that location-specific price of dirty input and emission cost associated

with regulation are important for choice of production location. Because there is no data

on coal price at city or province level, we include in the regression the province-level

production of coal (in log, denoted as lncoal) which it is likely to be negatively correlated

with local price of coal.

We construct the measure of city-level emission regulation by following the method of

Chen et al. (2018) which exploits the pollution-reduction targets set by the 11th Five-year

Plan of China (covering the period of 2006-2010). To be specific, the central government of

China sets the cap on SO2 emission for each province at the end of the 11th Five-year plan.

We compute the city-specific target for emission reduction as the product of provincial

emission reduction target and the share of each city in the province’s total SO2 emissions

in 2005. city-level SO2 emission and emission intensity obtained from the China City

Statistical Yearbook. Because the emission targets were introduced in November 2006, we

construct the measure of strength of regulation by multiplying an indicator for years post

2006 with the ratio of city-specific target for emission reduction to emission in 2006.11

This variable is denoted as envir. regulation in the regression tables.

To capture the effects of other city-specific factors beyond the fixed effects, we in-

clude in all regressions the following variables: highway density measured as kilometers of
11The variable for strength of regulation takes the value zero for all cities prior to 2006. The values can

be positive post 2010, the year of of evaluation, because measured emission levels went up in some cities
after meeting the targets in 2010.
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highway per square kilometer (denoted as road density),12 log of GDP (denoted as lngdp),

log of GDP per capita (denoted as lngdppc), and applications for invention patents related

to environmental protection (denoted as envir. patents).

The vector of firm-level control variables, Zict, include measures of firm size (log of

output value, denoted firm size), firm age (log of years since establishment, denoted firm

age), ownership type (an indicator variable for state-owned enterprises obtained from the

dataset, denoted SOE) and capital intensity (fixed assets per worker, denoted firm lnkl).

The variables ψi, ωt, and µict represent firm fixed effects, year fixed effects, and the error

term, respectively.

3.2 Construction of the Market Access Index

Using data from the China Railway Yearbook, Chinese Research Data Services Platform

(CNRDS), and China City Statistical Yearbook, we construct a market access index based

on connectivity to freight railway for 291 cities in China from 1998 to 2016 by applying

the method of Donaldson and Hornbeck (2016). The cities have different administrative

ranks: four are municipalities directly under the central government (Beijing, Shanghai,

Tianjin, and Chongqing), fifteen hold the rank of vice-provincial cities, and the rest are

prefecture-level cities. Similar to Donaldson and Hornbeck (2016), our construction makes

use of the national railway network vector maps. We focus on railway-related MA because

railway transportation is arguably the most important factor in determining inter-city

market access. While roads accounted for a larger share of national land-based freight

turnover (64.76% in 2012 compared to 31.75% for railways), the average distance per trip

for railway freight (747.55 kilometers) far exceeded that of road transportation (186.72

kilometers). Thus, despite roads handling more freight overall, railway transportation

played an essential role in long-distance transportation and was crucial for inter-city mar-

ket access in China.

The national railway network vector maps we use are constructed by Gao and Tang
12Due to the lack of historical road network data at the city level, we use province-level road density as

a proxy to capture market access associated with roads.
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(2024). In Gao and Tang (2024), the authors draw annual vector maps of railway net-

work for freight transportation from 1998 to 2021. Using geographic information software

(ArcGIS), the printed maps from the China Railway Yearbook published by Ministry of

Railways of China or China State Railway Group Co., Ltd. are digitalized. The authors

then locate railway stations on the digital maps by using geographic coordinates published

by the CNRDS in 2016. Subsequently, city-level cities are matched to the railway station

(if present) in the city that is the closet to the city administrative center. The shortest

route between each pair of cities is obtained by applying the algorithm of Dijkstra et al.

(1959) to the railway network vector maps.13 For details about the construction of the

maps, please see the Appendix section of Gao and Tang (2024).

Following Donaldson and Hornbeck (2016), we define railway market access index

as:

MAjt =
∑
j′ ̸=j

τ−θ
jj′,tYj′,t (8)

where j and t are the indices of city and time, respectively. In the formula, we use Yj′,t,

the GDP of destination city j′, to measure the size of target markets. τ is an index of

railway transportation cost per ton of goods shipped. θ is the price elasticity of trade,

which measures the substitution between output of different cities. Following Donaldson

(2018), we set the elasticity value to 3.8.

The specification of railway transportation cost follows the method of Baum-Snow

et al. (2016). The cost is given by

τjj′,t = 1 + pt
(
djj′,t

)ρ (9)

where pt is the annual average freight rate. We obtain the average freight rate by dividing

the total revenue of railway transportation deflated with production price index by the

total freight volume in tons. The variable djj′,t is the shortest railway distance between two
13The benchmark railway network does not include high-speed railway lines, as their presence was

minimal in the the sample period of 1998 to 2012. For robustness checks, we also make annual maps of
high-speed railways network and construct market access index based on high-speed railways.
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cities calculated based on Dijkstra et al. (1959). ρ is a parameter that captures the concave

relationship between shipping cost and railway distance, which is set to 0.8 (Baum-Snow

et al., 2016).

3.3 Firm-level Data

Firm-level information in our sample is obtained from two datasets, the Annual Survey

of Industrial Firms (ASIF) and China’s Environmental Statistics Database (CESD). The

source of the former is the National Bureau of Statistics of China, and it covers private

firms that report sales greater than 5 million yuan (equivalent to around $760,000 at

current exchange rate) and all state-owned enterprises. The latter dataset is from the

Ministry of Environmental Protection of China, and it covers firms who collectively account

for 85% of emissions of key pollutants in their respective counties. Thus, the CESD

provides high-quality and comprehensive information on emission of large industrial firms

in China. The merged data is an unbalanced panel of 305,459 firm-year observations, and

the sample period is 1998-2012.14 Summary of key variables can be found in Table 1.

3.4 Visual Summary of Data

In the left (right, respectively) panel of Figure 2, we plot the time series of the mean of firm-

level emissions (emission intensity, respectively). In 1999, firms experienced a significant

reduction in emission levels. The reason, which is well documented in the literature (Hao

et al., 2001; Cai et al., 2016), is that a government policy called ‘Two Control Zones’ (TCZ)

caused a sharp drop in SO2 emissions. In response to severe acid rain and SO2 pollution in

175 cities, China’s State Council introduced the TCZ policy, which set emission reduction

targets for the years 2000 and 2010. Because we include year fixed effects and city fixed

effects in all regressions, the identification of the effect of domestic trade integration on

emissions is not affected by the TCZ policy. Between 1999 and 2012, there is no notable
14In merging the datasets, we follow the procedure of Brandt et al. (2012) and Wang et al. (2018). In

addition, we use the combination of the abbreviated firm name and province name to match firms from
the two datasets. Abnormal observations are removed by applying the procedures outlined in Feenstra et
al. (2014) and Yu (2015).

19



reduction in emission levels. Meanwhile, because the output level of firms had been rising,

the right panel shows that emission intensity had been decreasing over time.

Figure 2: Trends in Market Access and the Mean of Firm-level SO2 Emissions
Source: authors’ calculations.

We plot the prefecture-level emissions, emission intensity, and MA in Figure 3. Note

that the availability of emission data determines that the time series starts in 2003. The

left panel shows that the total emissions at the prefecture level initially rose during the

economic boom between 2003 and 2005, before experiencing fluctuations in subsequent

years. The right panel shows that as MA rises, there is a sustained reduction in emission

intensity.

Figure 3: Trends in Market Access and the Mean of Prefecture-level SO2 Emissions
Source: authors’ calculations.

Figure 4 presents maps of the levels of MA in cities in 1998 and 2012, relative to the

national average of MA in 1998. It can be seen that there is a general increase in MA in

most cities. We demonstrate the spatial pattern of MA and emissions at the city level in

2012 in four combinations in Figure 5. There are a large number of cities (coded in navy)
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in eastern and central China that report a high level of MA and a low level of emissions.

Meanwhile, a number of cities in northeastern and western China (coded in brown) report

a low level of MA and a high level of emissions.

Figure 4: The Spatial Distribution of MA in 1998 and 2012
Source: authors’ calculations. The values in the left (right, respectively) map are the ratio of MA of each
city in 1998 (2012, respectively) to the mean level of MA in 1998. The blank cities are those that are not

connected to the railway throughout the sample period or those for which data are missing.

Figure 5: The Spatial Distribution of MA and SO2 Emissions in 2012
Source: authors’ calculations. The blank cities are those that are not connected to the railway

throughout the sample period or those for which data are missing.
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4 Regression Results
4.1 Benchmark Results: Firm-level Emissions

The OLS estimate in Column (1) of Table 2 suggests a clear negative relation between

market access and SO2 emission at the firm level. A 1% change in market access is

associated with 2.062% decrease in SO2 emission, which significant in both statistical and

practical sense. When we add city-level controls and firm-level controls in Column (2),

the estimate remains statistically significant. In the third column, we replace year fixed

effects with industry-year fixed effects to account for potential effect of industry specific

policies and productivity trends. In particular, the industry-year fixed effects can capture

the technique effect which also contributes to reduction in emissions. In Columns (2) and

(3), the estimated coefficients on market access are -1.721 and -2.251 which are similar to

Column (1).

The bin scatter plots in Figure 6 demonstrates visually the correlation between

residualized emission and MA in the panel that give rise to the estimates in the OLS

regression. The residualized version of both variables is obtained from regressions of

the respective variable on all other right hand side variables in equation (7). Clearly,

conditioned on the other control variables and fixed effects, the log of MA is negatively

correlated with and log of firm-level SO2 emissions and emission intensity.15

Figure 6: Scatter Plot of Market Access and Firm-level SO2 Emissions
Source: authors’ calculations.

15There are 50 bins the scatter plots.
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Whether a city is connected to railways can be affected by endogenous factors.

Railway lines often connect cities with larger economies and better growth prospects. As

discussed in the literature on trade and pollution (Grossman and Krueger 1993; Copeland

and Taylor 1995, etc.), the relationship between emissions and economic activities is com-

plex and non-monotonic because the scale effect, composition effect, and technique effect

of trade work in different directions. On the other hand, it is known that the Chinese

government has purposely used railway lines as a tool to alleviate poverty, which implies

that some poorer cities are connected to railways intentionally. Given the complex forces

shaping the expansion of railway network, it is difficult to conjecture the direction and

magnitude of bias when OLS is used to estimate the effect of MA on emissions.

To address the endogeneity issues, we use the instrumental variable (IV) method

to identify exogenous variation in railway construction and the corresponding exogenous

change in market access. Our strategy is to construct artificial transportation networks

that are determined by exogenous factors. To span the artificial networks, we select 36

key cities that must be connected. They are the 27 provincial capitals in Mainland China

(which are either city-level cities or vice-provincial cities), four municipalities directly

under the Central Government (Beijing, Shanghai, Tianjin, and Chongqing), and five

additional key cities (Dalian, Ningbo, Qingdao, Shenzhen, and Xiamen). These five cities

hold the rank of vice-provincial cities in China but are not themselves provincial capitals.16

We construct two artificial transportation networks to link these 36 key cities. First,

we follow the strategy of Faber (2014) to use the algorithm in the ArcGIS software to

construct the least costly path between two cities. As in Fan et al. (2021), the development

cost of each pixel in ArcGIS (a 1-meter-by-1-meter area) is posited to be proportional to the

sum of the average gradient and 25 times the indicator function for presence of water body.

The ArcGIS program computes the sum of development cost of all pixels associated with

a path between two cities, and identify the least costly path which we take as the artificial
16In one of the robustness checks, we exclude these 36 key cities in regressions and examine the effects

of exogenous change in MA on emissions in the non-key cities.
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transportation path. Second, following Banerjee et al. (2020), we use the straight-line

segments between the cities as an artificial transportation network. Because the locations

of the 36 key cities are determined by historical factors, if any other city-level cities in the

sample happens to be located near the artificial transportation network, it is more likely

to be connected to the actual railway network due to exogenous geographical factors.

The left and right panels in Figure 7 correspond to the first and the second artificial

network, respectively. In both panels, the denser network illustrated with thinner lines

is the actual railway network in 2012. The artificial networks are clearly correlated with

the actual network. Based on the shortest railway distance on artificial networks and the

second lag of the city-level GDP, we compute two counterfactual market access measures

and use them as the IVs for the actual market access index.

Figure 7: Artificial Transportation Networks Predicted by Exogenous Factors
Source: authors’ calculations. Note: The blue network in the left panel and the purple network in the

right panel are the artificial transportation newtorks.

The IV regression results in Table 3 confirm the findings from the OLS regressions,

and the estimated effect of market access is slightly larger than the OLS estimate in

Column (2) of Table 2. In the first and second columns of Table 3, we use the first and

second IV individually, while both IVs are used in the third column. In the three cases,

a 1% increase in market access is estimated to lower SO2 emissions by 2.412%, 1.873%,

and 2.339%, respectively. In Column (4), we use the SO2 emission intensity as dependent

variable and employ the first IV in estimation. Because the coefficient on market access
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(-1.781) in Column (4) is equal to 0.74 times the coefficient (-2.412) in Column (1) where

total emission is the dependent variable, the decrease in emissions is largely explained by

the drop in emission intensity. In Columns (5) and (6), we repeat the IV regressions with

the second IV and both IVs, respectively. The results are similar.

In all first-stage regressions, the K-P rk LM statistic and K-P rk Wald F statistic

indicate that we do not suffer from the weak IV problem. When the model is over-

identified, the Hansen J statistics do not reject the null that the IVs are valid. Between

the two IVs, we prefer the first one as it makes use of more geographical information.

Following Angrist and Kolesár (2024), who recommend a single-variable just-identified

instrumental variables estimator, we rely on the first IV alone for identification in further

regressions.

Besides SO2, the CESD dataset also contains information on the emission of dust,

COD, and waste gas. We use the emissions of these pollutants and their intensity as

the dependent variables. From Columns (1) and (2) of Table 4, we can see that a 1%

improvement in market access is estimated to reduce the emission of dust by 2.774% and

the emission intensity by 1.818%. The estimated effects of MA on emission of COD are also

negative and significant, while in the gas regressions, the coefficients on MA are negative

but not statistically significant.

Because the CESD dataset reports information on the consumption of coal, oil and

gas, we follow the method of Liu et al. (2015) and Shan et al. (2018) to impute the emission

of CO2 at the firm level. The regression results associated with the CO2, reported in

Columns (7) and (8) in Table 4, suggest that a one percent increase in market access

reduces the emission of CO2 by 2.710% and the emission intensity by 1.465%. Therefore,

market access also contributes to reduction in the emission of greenhouse gases. Overall,

by inducing more efficient product compositions within firms, market can be a positive

force in mitigating pollution and climate change.

To assess the explanatory power of MA, we follow Korovkin and Makarin (2023) to
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compute the following statistics:

∆SO2 explained = 100 · [ln(MAp75)− ln(MAp25)] · |βSO2|
ln(SO2p75)− ln(SO2p25)

∆SO2 intensity explained = 100 ·
[ln(MAp75)− ln(MAp25)] · |βSO2 intensity|

ln(SO2 intensityp75)− ln(SO2 intensityp25)

where ln(MAp75) and ln(MAp25) are the 75th and 25th centiles of the natural logarithm of

MA, βSO2 the coefficient on market access in the SO2 regression, and so on. The statistic

in last two equations measures the fractions of SO2 and SO2 emission intensity differences

between the 25th and 75th centiles that can be explained by market access difference

between the 25th and 75th centiles. Based on results in Columns (1) and (4) of Table 3,

we obtain that ∆SO2 explained = 46.92% and ∆SO2 intensity explained = 30.10%.

Details about the calculation can be found in Table C1 in Appendix C. Therefore, after

controlling for firm-level and city-level factors, market access can explain a significant

portion of variation in emission of SO2 and the emission intensity.

4.2 Aggregate Implication: city-Level Emissions and Counterfactual Anal-
ysis

As our sample covers manufacturing firms with sales above 5 million yuan, we do not

observe emission of smaller firms and firms in service industries. It is possible that these

firms increase their production and emission after they access a larger market. To allevi-

ate the concern that increase in emissions from smaller firms prevents a reduction total

emission of cities, we also run regressions of SO2 emission at the city level. In the first

and second columns of Table 5, the dependent variables are SO2 emission and emission

intensity obtained from the China City Statistical Yearbook. Following a 1% increase in

MA, emission of SO2 drops by 0.954% and the emission intensity drops by 0.946% in the

city level.

To corroborate the results, in Column (3) we run regression of the city-level average

concentration level of SO2 which is computed from the satellite data released by National

Aeronautics and Space Administration.17 The estimated coefficient on market access is
17The SO2 concentration data comes from the NASA satellite M2TMNXAER V5.12.4 and are
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also negative and significant. Note that because the unit of dependent variable in the

third column (microgram of SO2 per cubic meter) is not the same as the second column

(tons of SO2 per 10,000 yuan of GDP), sizes of the two coefficients are not comparable.

Nevertheless, the marginal effects in all three columns are practically large relative to

means of the respective dependent variables. Overall, improvement in market access is

associated with both reduction of emission at firm level and general reduction in emission

at the city level.

Based on the regression results, we carry out a counterfactual analysis to obtain a

simple quantification of the aggregate effect of MA improvement. The analysis is based

on the data from the year 2005, which sits in the middle of our sample period from

1998 to 2012. According to data from the National Bureau of Statistics of China, the

length of China’s railway expanded by 1,203 kilometers or 1.88% in 2005, bringing the

total length of railway in the country to 75,400 kilometers. For each city, we compute

the counterfactual MA index (denoted ˜MA2005,c) assuming that the 1,203 kilometers of

railway had not been completed in 2005.18 The city-level deviation from the actual MA is

computed as ˆMAc,2005 = ( ˜MA2005,c −MAc,2005)/MAc,2005, where MAc,2005 is the actual

MA for city c. We find the average of ˆMAc,2005 to be 0.0092, meaning that on average, the

counterfactual MA is 0.92% lower than the actual MA. We compute the counterfactual

aggregate difference in SO2 emissions from the firm-level data:∑
c

∑
i

ˆMAc,2005 · (−2.412) · SO2ic,2005

where −2.412 is the coefficient on MA from column (1) of Table 3, and SO2ic,2005 is the

actual emission of SO2 of firm i in city c in 2005. The counterfactual total emission of

SO2 would have been 108,825 tons higher. The difference is equivalent to 0.43% of China’s
published by the Goddard Earth Sciences Data and Information Services Center (GAS DISC). See
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary. The raw data is in monthly fre-
quency and stored in grids with units of micrograms per cubic meter. We take the mean of SO2 concen-
tration in dimensions of both ground surface area and time so as to obtain the annual indicator at the city
level.

18In the calculation of counterfactual MA, we use the same actual city-level GDP that is used in the
construction of the actual MA. Therefore, the only difference between the actual and counterfactual MA
indices is railway construction in 2005.
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total emission of SO2 in 2005, which was 25.49 million tons.19

4.3 Further Analysis: Conditions and Mechanism for Emission Reduc-
tion

After establishing the emission-reducing effects of market access in the previous two sub-

sections, we now present evidence in support of Assumption 1 and the mechanism of

emission reduction outlined in Proposition 1 and Proposition 2. Assumption 1, which

posits a positive correlation between the cost advantage of the dirty input and the pro-

ductivity advantage over intermediate products using the dirty input intensively, is crucial

for our theoretical prediction about emission reduction. To verify whether the assumption

is supported by evidence, we run the following regression

TFPjct =γ0 + γ1 · coal per capitapt + γ2 · emission intensityjct

+ γ3 · coal per capitapt · emission intensityjct + θjc + θt + νjct

where TFPjct is the productivity of product j in city c in year t, coal per capitapt the log

of tons of coal production per capita in province p (in which city c is located) in year t,

and emission intensityjct the emission intensity of product j in city c in year t.

To run the regression, we merge the China Product Output Database (CPOD) with

our main dataset. The CPOD records the number of products, five-digit product codes,

product names, and quantities of products for more than 200,000 firms annually in China

from 2000 to 2009. As detailed in the Appendix of Deng et al. (2024), the five-digit product

codes in the CPOD can be mapped into the five-digit product codes in the Central Product

Classification published by the United Nations, thus enabling the identification of products

as defined in Bernard et al. (2010). The average product scope is 1.83, with a maximum
19Alternatively, we can use the prefecture-level data to compute the counterfactual aggregate difference in

SO2 emissions calculated as
∑

c
ˆMAc,2005 · (−0.954) · SO2c,2005, where −0.954 is the regression coefficient

from column (1) of Table 5, and SO2c,2005 is the actual emission of SO2 of prefecture c in 2005. The
calculation results indicate that had China’s railway network not expanded by 1,203 kilometers in 2005,
the total emission of SO2 would have been 191,958 tons higher. The difference is equivalent to 0.43% of
China’s total emission in the year. Because prefecture-level emissions include those from the transportation
process, the counterfactual difference overstates the change in emissions from production. Thus, we favor
the counterfactual difference based on firm-level data as it is more conservative.

28



of 6.

In the firm level data available to us, if a firm is a multi-product producer, there is

no information on output and input of each product. Thus it is impossible to calculate

product-level productivity for multi-product firms. However, as long as productivity is

location specific—as posited in the Ricardian model, we can compute the mean of Total

Factor Productivity (TFP) of product j in city c for year t by using data on firms in city c

that exclusively produce product j. Subsequently, we use the city-product-year level TFP

as a proxy for the TFP of multi-product firms in producing product j in city c during year

t. The emission intensity variable emission intensityjct is computed similarly.

In the results reported in Table 6, the coefficient for the interaction term between

coal production per capita and emission intensity is positive and significant. This suggests

that in provinces with higher level of coal production (and, consequently, likely lower

coal cost), firm level productivity for emission-intensive goods are higher. The evidence

supports Assumption 1.

After verifying the viability of Assumption 1, we proceed to test in three steps

whether the mechanisms outlined in Proposition 1 and Proposition 2 are observed in the

data. First, we investigate whether there is a reduction in the product scope of firms

and an increase in output per product following an increase in market access. Because

values of product scope are positive integers, in Column (1) of Table 7, we use a two-step

IV-Poisson procedure to estimate the effects of market access on product scope. To be

specific, following Angrist (2001), in the first stage we regress ln(MA) on the artificial

ln(MA) and obtain the predicted values which are then used in the Poisson regression the

second stage. In the second stage, the standard errors are obtained from bootstrapping to

correct for the bias in the variance-covariance estimator caused by the generated regressor.

The results indicate that market access significantly lowers the product scope. Because the

mean of product scope is 1.83, the coefficient of -0.215 is large in practical sense too. When

we regress output per product at the firm-level on market access in Column (2), we find
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that market access significantly increases the average product.20 Thus, both predictions in

Proposition 1-namely the reduction in product scope and increase in output of remaining

products following an increase in market access-are supported by the data.

As our sample is reduced to 122,314 firm-year observations after merging the main

sample with the CPOD, we rerun the benchmark regressions of SO2 emission and emission

intensity with the smaller sample to verify the existence of emission-reduction effect. As

shown in Columns (3) and (4) of Table 7, the effects of market access on emission and

emission intensity remain negative and significant, and the coefficients of -3.298 and -2.957

are larger in magnitude than the benchmark 2SLS results of -2.412 and -1.781 in Columns

(1) and (4) of Table 3, respectively.

Second, we examine the key emission-reducing mechanism outlined in Proposition 2

that an increase in market access induces firms to specialize in products with high produc-

tivity. To verify whether this mechanism is present in the data, we introduce product-level

TFP and interaction between TFP and market access in regressions in Table 8. In the first

column of Table 8, the dependent variable is an indicator variable of whether a product is

discontinued by a firm in year t. The coefficients on both TFP and the interaction term be-

tween market access and TFP are negative. Thus, a high-productivity product is less likely

to be discontinued by a firm on average, and the probability of it being dropped is smaller

when the market access improves. The second column employs output per product as the

dependent variable. The results there indicate that as market access improves, output per

product increases and the increase is larger for high-productivity products. Therefore, the

results provide evidence for the mechanism for emission reduction in Proposition 2, namely

firms specialize in high-productivity products after an improvement in market access.

The third step in our mechanism analysis is to show that a productivity-driven

reduction in product scope is indeed associated with reduction in emission. In the first
20Because the quantities of products vary in their units, we use a standardized measure of average

product. Let xjict be output volume of product j by firm i in city c in year t, and µjt and σjt the mean
and standard deviation of output volume of all producers in all cities that produce product j in year t.
The standardized output measure is calculated as (xjict − µjt)/σjt
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two columns of Table 9, we regress emission and emission intensity on product scope, using

the counterfactual market access as the instrumental variable.21 Clearly, product scope is

positively related with emission and emission intensity.

In completing the third step, we test the threshold result in Proposition 2 that above

a threshold, a large dispersion in within-firm productivity is necessary for trade-induced

reduction in product scope to cause reduction in total emission. To do so, we include in the

regression an indicator for firms which report a reduction in product scope between period

t− 1 and t (denoted 1(scope reduction)), an indicator for large within-firm productivity

dispersion in period t−1 (denoted 1(productivity dispersion)), and their interaction term.

Because the theory focuses on the gap between productivity of the product produced by

the home firm and productivity of the product outsourced, we measure the within-firm

productivity dispersion as the log ratio of the highest productivity among products of

a firm and the lowest productivity. To search for the threshold for large productivity

dispersion, we follow the procedure of Hansen (2000). To be specific, we set the threshold to

each of the integer centiles of the log productivity difference, and run regressions iteratively.

Judging by the R2 in the threshold regressions, the most likely threshold value identified

by the procedure corresponds the 66th centile. In the 2SLS regression of emission and

emission intensity, as reported in Columns (3) to (4) or Table 9, the coefficients on the

interaction terms between the indicator of product scope reduction and the indicator

of large productivity dispersion are both negative and significant. Therefore, for firms

exhibiting large within-firm productivity dispersion, discontinuing products with inferior

productivity leads to a reduction in emissions.

Based on the test of mechanisms in three steps, reported in Table 7 through Table 9,

the empirical evidence supports the premise of the theory that an increase in market access

reduces emission by inducing firms to specialize in high-productivity products in their

product range.
21In the first stage, we perform a Poisson regression of product scope on the log of counterfactural MA.
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4.4 Testing the Pollution Haven Hypothesis

In our framework, if the productivity difference between the products kept and discon-

tinued by a firm following an increase in market access is small, the PHH effect may be

present. Intuitively, if the reduction in emissions associated with the change in product

composition is smaller than the increase in emissions associated with market expansion,

then total emissions can go up in one or more locations. In this case, our model sug-

gests that locations with lower emission costs or a lower price for the dirty input attract

production of products that use the dirty input more intensively. In China, there exists

substantial variation in environmental regulation and coal endowment, the biggest source

of primary energy in China. When market access improves, these two factors can lead to

the reallocation of the production of dirty products and a rise in emissions, as suggested

by the PHH.

While an index of city-level environmental regulation and province-level production

of coal are included in all previous regressions as control variables, we now interact them

with market access to test the PHH. In all regressions in Table 10, the interaction terms are

always insignificant. Therefore, there is no evidence that following an increase in market

access, locations with lax environmental regulation or access to cheap coal experience an

increase in firm-level emissions.

4.5 Robustness Results

In this subsection, we show the results remain robust when we control for other policy

changes, include market access associated with high-speed rail in the regression, and when

we use alternative measures of MA.

Firstly, we include abatement equipment in the regressions in Column (1) in Ta-

ble 11. In general, abatement technology can be an important determinant of emission.

For example, Forslid et al. (2018) demonstrate that abatement investment is effective in

reducing emission in Swedish firms. However, as shown in Column (1), in our sample we
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do not find evidence that abatement equipment has an independent effect on emissions.22

Secondly, we drop observations from the years post the 2008 global financial crisis

in Column (2). In response to global financial crisis, China rolled out a large stimulus

package with a strong emphasis on infrastructure spending and real estate in 2009 which

might have led to a higher level of emissions. The exclusion of observations after 2008

eliminates the influence of the stimulus.

Thirdly, to ensure our results are not driven by firms in the major cities whose

connectivity to railways is rendered necessary by their status, we exclude firms in the 36

major cities in Column (3). As described in Section 4.1, these key cities include the 4

municipalities directly under the central government, 27 provincial capitals, and another

5 key cities.

Fourthly, we want to account for the effects of a major policy that aims at reducing

acid rain. Because of the need to reduce the impact of SO2 pollution and acid rain,

China has implemented stricter regulation in cities prone to such pollution since 1998.23

In Column (4), we report the regression which include an indicator variable for city-year

observations subject to the regulation.

Fifthly, we control for liberalization of international trade by introducing the in-

teractions between year dummies and industry levels of output tariff, input tariff, and

export tariff in Column (5). In all columns, the coefficients on market access remain sig-

nificant, and their magnitudes are similar to those of the benchmark estimates, indicating

the robustness of our benchmark results.

In addition, we examine the potential effect of high-speed rail which is found to be

a positive force in reducing emission (Lin et al., 2021). To do so, we construct a market

access index using only data on high-speed railway. The variable is insignificant when

it is added to the benchmark regression. When we exclude the original market access
22In unreported regressions, we also run regressions of the number of pieces of emission-abatement

equipment, and its rate of change on the first lag and the second lag of market access. The coefficients are
highly insignificant, indicating that an increase in market access does not cause firms to increase installment
of abatement equipment.

23These cities are known as “double-control areas”.
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variable and include only the market access variable associated with high-speed railway ,

high-speed rail continues to have no effect on the emissions of manufacturing firms.24 The

details of the regressions are reported in Table C2 in Appendix C.

Lastly, we adjust the parameters in equations (8) and (9) and reconstruct the market

access indices. We report the regressions with alternative market access indices in Table C3

in Appendix C. The estimated effects of all alternative measures of market access on

emission are always negative and significant. Overall, the large number of checks in this

subsection provide strong evidence of the robustness of the results.

5 Conclusion

To study the effects of trade on emissions, we develop a Ricardian model of trade and emis-

sion that incorporates productivity differences in the production of intermediate products.

As trade costs decrease, the market for intermediate products becomes more integrated,

and firms further specialize in intermediate products in which they have a cost advan-

tage. We show that firm-level emission levels can drop with this specialization. This

possibility arises when trade reallocates within-firm production to intermediate products

in which they have higher productivity and when the within-firm productivity dispersion

is large. In contrast with the pollution haven hypothesis, in our model, when firms in both

cities discontinue production of low-productivity intermediates to concentrate on those in

which they enjoy a superior productivity advantage, it is possible for emissions to drop

everywhere.

In our empirical work, we examine the effects of market integration, associated

with the expansion of China’s railway network, on emissions in a large sample of Chinese

manufacturing firms from 1998 to 2012. To address the endogeneity issues of market

access, our measure of market integration, we use the potential market access predicted

by geographic and historical variables as an instrumental variable. Based on two-stage
24The sample in the regression in Column (2) is smaller because China started to operate high-speed

railway in 2008.
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least-squares regressions, we find that an increase in domestic trade integration reduces the

emission level and intensity of sulfur dioxide, carbon dioxide, dust, and chemical oxygen

demand at the firm-level. In terms of explanatory power, after controlling for firm fixed

effects, year fixed effects, and city characteristics, 46.92% and 39.10% of interquartile range

of firm-level SO2 emissions and emission intensity can be explained by the interquartile

range of MA. At the city level, we also find that trade integration reduces both the level

and intensity of emissions of sulfur dioxide. We use the data from 2005 as an example to

carry out a counterfactual analysis and find that if there had been no expansion of the

railway network in that year, national emissions of sulfur dioxide would have been 0.43%

higher.

Consistent with the predictions of our model, domestic trade integration induces

firms to specialize according to productivity advantage. Namely, they discontinue low-

productivity products and increase output per product of the remaining products. We

show this change in product composition is responsible for the observed reduction in

emission. Meanwhile, after an increase in trade integration, there is no evidence that

emission rises in cities with lax environmental regulation or with abundant local supply

of coal. Therefore, we find no evidence of pollution haven.

The product composition channel of emission reduction that we propose also applies

to international trade. Because an empirical evaluation of the product composition effect

in international trade is beyond the scope of the current study, we defer it to future work.
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Table 1: Summary Statistics

Unit Observations Mean Min Max S.D.

SO2 emissions ton 305459 148.75 0.00 2180000.00 4121.99

SO2 emission intensity ton per million yuan 297252 9.15 0.00 45690.00 182.85

market access (MA) index \ 3342 4957648.30 1456604.80 12175258.00 2171515.60

ln(MA) \ 3342 15.33 14.19 16.32 0.42

ln(MA)_geocost \ 3342 15.09 14.09 16.07 0.38

ln(MA)_straight \ 3342 15.31 14.24 16.29 0.40

environmental regulation \ 3342 0.49 0.00 13.30 1.16

raw coal output million ton 425 76.03 0.00 1061.94 138.84

highway density km per km2 425 0.63 0.02 2.39 0.47

GDP billion yuan 3342 97.85 1.61 2018.17 158.60

GDP per capita yuan per capita 3342 22716.87 1349.46 450280.25 30642.94

green patent applications count 3342 92.67 0 8232 368.35

total output billion yuan 305459 316.92 0.01 192674.44 1947.97

age year 305459 14.69 1 64 12.81

state-owned enterprises (SOE) binary 305459 0.11 0 1 0.32

capital intensity (K/L) thousand yuan per capita 305459 209.86 0.00 1989131.10 5522.29

product scope number of varieties 122314 1.83 1 6 1.20

average output index \ 232373 0.01 -0.21 18.17 1.02

Note: ln(MA)_geocost is the log of counterfactural MA that is constructed by the artifitial transportation network connected by the least costly
paths, and ln(MA)_straight is the log of counterfactural MA that is constructed by the artifitial transportation network connected by straight
lines. Environmental regulation is an index of city’s emission regulation as described in Section 3. Product scope measured by the number of
product varieties. Average output is a standardized index of firm’s output of each product variety. To eliminate the impact of different counting
units of products in the data, the original product-level output is standardized using the sample mean and standard deviation of the outputs
from all firms that produce the same product in the current year.
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Table 2: Market Access and SO2 Emissions Level (OLS)

Dependent Variable: ln(SO2)

(1) (2) (3)
ln(MA) -2.062*** -1.721** -2.251***

(0.774) (0.731) (0.744)
envir. regulation -0.005 -0.015

(0.013) (0.014)
lncoal 0.029 0.041

(0.033) (0.033)
road density -0.032 0.058

(0.158) (0.152)
lngdp -1.393*** -1.340***

(0.498) (0.464)
lngdppc 0.615 0.609

(0.423) (0.398)
envir. patents -0.017 -0.021

(0.041) (0.036)
firm size 0.220*** 0.216***

(0.015) (0.014)
firm age 0.090*** 0.071***

(0.019) (0.018)
SOE 0.182*** 0.151***

(0.055) (0.051)
firm lnkl -0.015 -0.011

(0.010) (0.010)
Dependent Variable’s Mean 8.624 8.624 8.624
Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes No
Industry-year fixed effects No No Yes
Observations 305,459 305,459 305,459
Adjusted R2 0.788 0.789 0.794

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level
and shown in parenthesis.
2) The dependent variable is the log of sulfur dioxide emission level. ln(MA) is the log of market
access index. envi regulation is an index of city’s emission regulation as described in Section 3,
lncoal is the log of province-level production of coal, roaddensity is province-level highway density
measured by highway length per area, lngdp is the log of city’s GDP and lngdppc is the log of GDP
per capita, envir.patents represents the number of patent applications related to environmental
protection within each city. firmsize is the firm size measured by the log of output value, firmage
is the firm age measured by the log of one plus years since establishment, SOE is an indicator
variable for state-owned enterprises, firmlnkl is the firm’s capital intensity measured by the log of
fixed assets per worker.
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Table 3: Market Access and SO2 Emissions (2SLS)

Panel A. Second stage

Dependent Variables: ln(SO2) ln(SO2) ln(SO2)
ln(SO2

intensity)
ln(SO2

intensity)
ln(SO2

intensity)

(1) (2) (3) (4) (5) (6)
ln(MA) -2.412*** -1.873** -2.339*** -1.781** -1.415* -1.732**

(0.798) (0.810) (0.789) (0.755) (0.781) (0.747)
envir. regulation -0.005 -0.005 -0.005 0.001 0.001 0.001

(0.013) (0.013) (0.013) (0.011) (0.011) (0.011)
lncoal 0.028 0.029 0.028 0.048 0.049 0.048

(0.033) (0.033) (0.033) (0.032) (0.032) (0.032)
Dependent Variable’s Mean 8.624 8.624 8.624 -1.075 -1.075 -1.075
Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 305,459 305,459 305,459 297,252 297,252 297,252

Panel B. First stage
Dependent Variable: ln(MA)

(1) (2) (3) (4) (5) (6)
IV 1 0.766*** 0.665*** 0.767*** 0.666***

(0.035) (0.082) (0.034) (0.083)
IV 2 0.898*** 0.136 0.900*** 0.136

(0.052) (0.102) (0.051) (0.102)
Dependent Variable’s Mean 15.410 15.410 15.410 15.402 15.402 15.402
Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
K-P rk LM statistic 47.383 51.099 51.152 47.387 51.421 51.534
K-P rk Wald F statistic 486.07 301.94 252.83 496.06 306.87 258.78
Hansen J statistic \ \ 2.431 \ \ 1.082
Observations 305,459 305,459 305,459 297,252 297,252 297,252

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and shown in
parenthesis.
2) The dependent variable in Columns (1)-(3) in Panel A is the log of sulfur dioxide emission level and that in
Columns (4)-(6) is the log of sulfur dioxide emission intensity. envi regulation is an index of city’s emission
regulation as described in Section 3, lncoal is the log of province-level production of coal.
3) The dependent variable in Panel B is the market access (MA) index. IV 1 is the counterfactural MA that
is constructed by the artifitial transportation network connected by the least costly paths, and IV 2 is the
counterfactural MA that is constructed by the artifitial transportation network connected by straight lines.

46



Ta
bl

e
4:

M
ar

ke
t

A
cc

es
s

an
d

Em
iss

io
n

of
O

th
er

Po
llu

ta
nt

s

D
ep

en
de
nt

Va
ria

bl
es
:

ln
(d
us
t)

ln
(d
u
st

in
te
n
si
ty
)

ln
(C

O
D
)

ln
(C
O
D

in
te
n
si
ty
)

ln
(g
as
)

ln
(g
a
s

in
te
n
si
ty
)

ln
(C
O

2
)

ln
(C
O

2

in
te
n
si
ty
)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

ln
(M

A
)

-2
.7
74
**
*

-1
.8
18
**

-4
.3
40
**
*

-3
.6
20
**
*

-2
.1
22

-1
.3
81

-2
.7
10
**

*
-1
.4
65

*
(0
.9
12
)

(0
.9
09
)

(1
.4
14
)

(1
.3
67
)

(1
.3
58
)

(1
.2
85
)

(0
.7
83
)

(0
.8
70

)
D
ep

en
de
nt

Va
ria

bl
e’
s
M
ea
n

7.
31
6

-2
.2
02

6.
37
0

-3
.3
63

15
.3
28

5.
71
7

5.
53
3

-3
.8
41

Fi
rm

fix
ed

eff
ec
ts

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
ar

fix
ed

eff
ec
ts

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

T
im

e-
va
ry
in
g
fir
m

co
nt
ro
ls

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

T
im

e-
va
ry
in
g
ci
ty

co
nt
ro
ls

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

T
im

e-
va
ry
in
g
pr
ov

in
ce

co
nt
ro
ls

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

K
-P

rk
LM

st
at
ist

ic
49
.4
28

50
.0
08

39
.8
47

39
.8
46

44
.0
02

44
.0
76

60
.3
30

60
.2
91

K
-P

rk
W
al
d
F
st
at
ist

ic
50
7.
63

51
1.
19

43
8.
00

44
9.
03

49
6.
92

50
5.
07

53
9.
66

53
5.
87

O
bs
er
va
tio

ns
25
0,
98
3

24
4,
99
2

31
9,
19
1

31
0,
61
4

28
1,
51
5

27
4,
15
0

17
0,
41

2
16

9,
19

1

N
ot
e:

1)
**

*
p<

0.
01

,*
*
p<

0.
05

,*
p<

0.
1.

R
ob

us
t
st
an

da
rd

er
ro
rs

ar
e
cl
us
te
re
d
at

th
e
ci
ty

le
ve
la

nd
sh
ow

n
in

pa
re
nt
he

sis
.

2)
T
he

de
pe

nd
en
t
va
ria

bl
es

in
od

d
co
lu
m
ns

ar
e
th
e
lo
gs

of
em

iss
io
n
le
ve
lo

fd
us
t,
ch
em

ic
al

ox
yg

en
de

m
an

d
(C

O
D
),
ga

s,
an

d
ca
rb
on

di
ox

id
e,

re
sp
ec
tiv

el
y.

T
he

de
pe

nd
en
t
va
ria

bl
es

in
ev
en

co
lu
m
ns

ar
e
th
e
lo
gs

of
em

iss
io
n
in
te
ns
ity

of
po

llu
ta
nt
s
co
rr
es
po

nd
in
g
to

th
e
od

d
co
lu
m
ns
.

47



Table 5: Market Access and City-level Emissions

Dependent Variables: ln(SO2) ln(SO2 intensity) ln(SO2 density)

(1) (2) (3)
ln(MA) -0.954** -0.946** -0.246**

(0.470) (0.473) (0.115)
Dependent Variable’s Mean 10.719 -4.272 2.731
Year fixed effects Yes Yes Yes
City fixed effects Yes Yes Yes
Time-varying city controls Yes Yes Yes
Time-varying province controls Yes Yes Yes
K-P rk LM statistic 62.475 62.501 59.400
K-P rk Wald F statistic 822.89 826.10 749.73
Observations 2,371 2,370 3,344

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and
shown in parenthesis.
2) The dependent variables in Columns (1) and (2) are emission level and emission intensity of sulfur
dioxide at the city level from City Statistical Yearbook. The dependent variable in Column (3) is
average concentration of sulfur dioxide that comes from NASA satellite data (M2TMNXAER V5.12.4)
in GAS DISC. The units are tons of SO2, tons of SO2 per 10,000 yuan of GDP, and microgram of
SO2 per cubic meter.
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Table 6: Test of Assumption 1

Dependent Variable: productivity

(1) (2)
coal per capita 0.026*** 0.024***

(0.005) (0.004)
coal per capita × emission intensity 0.057**

(0.022)
emission intensity -0.070***

(0.025)
Dependent Variable’s Mean 4.057 4.038
City-product fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 36,120 32,783

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the provincial
level and shown in parenthesis.
2) The dependent variable is the product-level productivity as described in Section 4.3.
coal_person is the log of raw coal output per capita at the provincial level. intensity_p repre-
sents the product emission intensity, which is measured by the average emission intensity of all
firms in sample from the same city that produce this product only.
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Table 7: Market Access and Specialization

Dependent Variables: Product scope Output/product ln(SO2)
ln(SO2

intensity)

(1) (2) (3) (4)
ln(MA) -0.215*** 0.563*** -3.298*** -2.957***

(0.054) (0.209) (0.972) (0.944)
Dependent Variable’s Mean 1.830 0.010 9.202 -0.576
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Product fixed effects No Yes No No
Time-varying firm controls Yes Yes Yes Yes
Time-varying city controls Yes Yes Yes Yes
Time-varying province controls Yes Yes Yes Yes
K-P rk LM statistic / 39.209 46.576 47.262
K-P rk Wald F statistic / 552.55 548.61 553.14
Wald statistic 178.56 / / /
Observations 122,314 232,373 122,314 119,730

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and
shown in parenthesis.
2) The dependent variable in Column (1) is firm’s product scope measured by the number of product
varieties. The dependent variable in Column (2) is a standardized index of firm’s output of each
product variety. To eliminate the impact of different counting units of products in the data, the
original product-level output is standardized using the sample mean and standard deviation of the
outputs from all firms that produce the same product in the current year. Columns (3) and (4) use
the same sample as Column (1) to perform the benchmark regressions in Table 3 that estimate the
elasticity of emission level and emission intensity of sulfur dioxide to MA.
3) The coefficients in the first column are estimated by a two-step IV-Poisson procedure that reports
Wald statistic in the first stage as product scope is a positive integer. The coefficients in Columns
(2)-(4) are estimated by the 2SLS method that reports K-P rk LM statistic and K-P rk Wald F
statistic.
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Table 8: Specialization in Efficient Products

Dependent Variables: Product exit Output/product ln(SO2)
ln(SO2

intensity)

(1) (2) (3) (4)
ln(MA) 0.219 0.650* -3.118*** -2.265**

(0.141) (0.364) (1.051) (1.030)
ln(MA)× productivity -0.031** 0.181**

(0.015) (0.074)
productivity -0.010** 0.016

(0.005) (0.018)
Dependent Variable’s Mean 0.075 0.063 8.150 -1.894
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Product fixed effects Yes Yes No No
Time-varying firm controls Yes Yes Yes Yes
Time-varying city controls Yes Yes Yes Yes
Time-varying province controls Yes Yes Yes Yes
K-P rk LM statistic 43.375 43.046 31.928 32.040
K-P rk Wald F statistic 214.16 223.87 271.33 280.87
Observations 87,589 102,224 55,933 54,901

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level
and shown in parenthesis.
2) The dependent variable in Column (1) is an indicator for firms that discountinued a product
in year t. The dependent variable in Column (2) is a standardized index of firm’s output of each
product variety. To eliminate the impact of different counting units of products in the data, the
original product-level output is standardized using the sample mean and standard deviation of the
outputs from all firms that produce the same product in the current year.
3) productivity is product-level productivity. A firm’s productivity on a certain product is measured
by the mean of TFP of all firms in sample in the same city that produce this product only. ln(MA)×
productivity is the interation term between ln(MA) and productivity.
4) Columns (3) and (4) perform the benchmark regressions in Table 3 by using sample of firms that
can be continuously observed throughout the sample period.
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Table 9: Product Scope, Productivity Dispersion and SO2 Emissions

Dependent Variables: ln(SO2)
ln(SO2

intensity)
∆ln(SO2)

∆ln(SO2

intensity)

(1) (2) (3) (4)
product scope 15.344*** 13.464**

(4.124) (5.948)
1(scope reduction) 3.363* 4.860**

(2.02) (2.476)
1(scope reduction)× 1(productivity dispersion) -3.096* -4.487**

(1.852) (2.271)
Dependent Variable’s Mean 9.202 -0.576 -0.06 -0.154
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Time-varying firm controls Yes Yes Yes Yes
Time-varying city controls Yes Yes Yes Yes
Time-varying province controls Yes Yes Yes Yes
Wald statistic 111.67 284.22 \ \
K-P rk LM statistic \ \ 20.59 20.56
K-P rk Wald F statistic \ \ 10.26 10.25
Observations 122314 119730 16228 15,897

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and shown
in parenthesis.
2) The dependent variables in Column (1) and (2) are firm’s emission level and emission intensity of sulfur
dioxide. The dependent variables in Column (3) and (4) are changes in firm’s emission level and emission
intensity from period t− 1 to t.
3) product scope is firm’s product scope measured by the number of product varieties. 1(scope reduction) is
an indicator for firms which report a reduction in product scope between period t−1 and t. In the interaction
term 1(scope reduction) × 1(productivity dispersion), 1(productivity dispersion) is an indicator for firms
with large within-firm productivity dispersion in period t− 1. productivity dispersion is measured as the log
ratio of the highest productivity among products of a firm and the lowest productivity. The optimal threshold
of productivity dispersion, as indicated by R2, is the 66th centile.
4) All regressions are estimated by the 2SLS method. The first stages of Columns (1) and (2) are Poisson
regressions that report Wald statistic. Columns (3) and (4) follow standard 2SLS procedure that reports K-P
rk LM statistic and K-P rk Wald F statistic.
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Table 10: Testing the Pollution Heaven Hypothesis

Dependent Variable: ln(SO2)

(1) (2) (3)
ln(MA) -2.222*** -2.558*** -2.322***

(0.790) (0.832) (0.815)
ln(MA)× envir. regulation -0.037 -0.050

(0.053) (0.055)
envir. regulation 0.003 -0.011 -0.001

(0.014) (0.016) (0.015)
ln(MA)× lncoal -0.026 -0.030

(0.029) (0.030)
lncoal 0.029 0.034 0.036

(0.033) (0.036) (0.036)
Dependent Variable’s Mean 8.624 8.624 8.624
Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Time-varying firm controls Yes Yes Yes
Time-varying city controls Yes Yes Yes
Time-varying province controls Yes Yes Yes
K-P rk LM statistic 60.789 52.651 63.448
K-P rk Wald F statistic 237.00 262.21 169.53
Observations 305,459 305,459 305,459

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and
shown in parenthesis.
2) The dependent variable is the log of sulfur dioxide emission level. envir.regulation is an index of
city’s emission regulation as described in Section 3, lncoal is the log of province-level production of
coal. ln(MA)× envir.regulation and ln(MA)× lncoal are the interaction term between ln(MA) and
envir.regulation and that between ln(MA) and lncoal, respectively.

53



Table 11: Robustness Checks

Dependent Variable: ln(SO2)

(1) (2) (3) (4) (5)
ln(MA) -2.830*** -2.244*** -2.739*** -2.423*** -2.406***

(0.828) (0.848) (1.018) (0.805) (0.807)
facility per worker 0.005

(0.005)
Dependent Variable’s Mean 8.559 8.459 8.988 8.624 8.624
Firm fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Time-varying firm controls Yes Yes Yes Yes Yes
Time-varying city controls Yes Yes Yes Yes Yes
Time-varying province controls Yes Yes Yes Yes Yes
double-control × year dummies No No No Yes No
Tariff reductions × year dummies No No No No Yes
K-P rk LM statistic 50.42 51.892 68.47 46.579 47.370
K-P rk Wald F statistic 469.26 544.66 261.67 430.94 488.49
Observations 249839 218008 213385 305459 305,452

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city level and
shown in parenthesis.
2) The dependent variable is the log of sulfur dioxide emission level. facility per worker in Column (1) is
the number of emission abatement equipment per worker. Column (2) excludes observations from 2009.
Column (3) excludes the firms in the 36 major cities as described in Section 4.1. Column (4) controls
the interaction between year dummies and an indicator for cities subject to the “double-control area”
regulation on acid rain and sulfur dioxide. Column (5) controls the interaction between year dummies
and industry levels of output tariff, input tariff, and export tariff.
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Appendix For Online Publication

A Discussion of Iceberg Trade Cost

In this section, we discuss the scenario where τ is an iceberg cost that is paid for with

products and revisit the two properties in the model.

Given Assumption 1, we still have ∂j0
∂τ < 0 and ∂j1

∂τ > 0. Therefore, both the home

and outside firms’ product scopes, [0, j1] and [1 − j0, 1], are positively related with the

trade cost τ . However, under the iceberg cost τ , a firm now must produce 1 + τ units of

intermediate products to deliver one unit to the other region. Given the final good output

level y and y∗, the total intermediate output of the home firm is:∫ j1

0
ydj +

∫ j0

0
(1 + τ)y∗dj = j1y + (1 + τ)j0y

∗.

The average output per variety of intermediate product in the home city is

x =
j1y + (1 + τ)j0y

∗

j1
.

By symmetry, the total intermediate output and average output of intermediate

goods in the outside city are:

(1− j0)y
∗ + (1 + τ)(1− j1)y,

and

x∗ =
(1− j0)y

∗ + (1 + τ)(1− j1)y

1− j0
.

Take the derivative of the home firm’s average output x with respect to τ :

∂x

∂τ
= y∗

j0
j1

+ (1 + τ)y∗
∂(j0/j1)

∂τ

=
1 + τ

τ

j0
j1
y∗[

τ

1 + τ
+

(∂j0/∂τ)

j0/τ
− (∂j1/∂τ)

j1/τ
]

=
1 + τ

τ

j0
j1
y∗(ε1+τ + εj0 − εj1),

55



where ε1+τ ≡ τ
1+τ , εj0 ≡ (∂j0/∂τ)

j0/τ
and εj1 ≡ (∂j1/∂τ)

j1/τ
are the elasticity of 1 + τ , j0 and j1

to τ , respectively. In the benchmark model in Section 2, the changes in product scope of

processing and self-production, εj0 < 0 and εj1 > 0, ensure that ∂x
∂τ = 1+τ

τ
j0
j1
y∗(εj0 −εj1) <

0 always holds. The intuition is that under a lower trade cost, the home firm increases the

output of some existing efficient products (from y to y + y∗) and stops producing some

less-efficient products (with also relatively low output y). The additional item ε1+τ > 0

here represents an opposing force. That is, a lower iceberg cost decreases the factory

outputs of all outsourcing products by reducing the cargo losses during transportation.

In general, after a reduction in trade costs, the condition for an increase in home firm’s

average output is ε1+τ + εj0 − εj1 < 0.

Similarly, we can derive that ∂x∗

∂τ < 0 if ε1+τ + ε1−j1 − ε1−j0 < 0, where ε1−j1 < 0

and ε1−j0 > 0 are the elasticity of 1− j1 and 1− j0 to τ , respectively.

The results in property 1 should now be summarized as, after a reduction in trade

costs, (i) all firms narrow the product scope and specialize in their most productive prod-

ucts, and (ii) increase the average output of the products that they keep if the elasticity

of product scope to trade costs is greater than the elasticity of transportation losses to

trade costs.

Given the expression of total output, the home firm’s total emission is:

z = g((1 + τ)y∗
∫ j0

0

hj
Aj
dj + y

∫ j1

0

hj
Aj
dj). (10)

Differentiated the total emission of the home firm z with respect to trade cost τ , the

derivative is:

∂z

∂τ
= g[

∂j1
∂τ

yhj1
Aj1

+
∂j0
∂τ

y∗hj0
Aj0

+ y∗
∫ j0

0

hj
Aj
dj].

A reduction in trade cost lowers emission reduction if ∂z
∂τ > 0, i.e.

∂j1
∂τ

yhj1
Aj1

+ y∗
∫ j0

0

hj
Aj
dj > −∂j0

∂τ

y∗hj0
Aj0

. (11)

As in the condition (5) in Section 2, the first item on the left side of inequality (11)

represents the emission reduction from outsourcing intermediate goods and the right side
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is the increase in emission associated with processing additional intermediate goods for the

outside city. The item y∗
∫ j0
0

hj

Aj
dj indicates a direct and mechanical effect of the decline

in iceberg costs on emission reduction. Due to the lower losses during transportation, the

home firm can reduce emissions brought by processing products for the outside city. This

effect benefits the emission reduction of all firms and supplements the results in Property

2: after a reduction in trade costs, a firm’s emission declines through a composition effect

if the within-firm productivity difference across products is sufficiently large, while the

saving effect of cargo losses always helps firms to reduce their emissions.

B Discussion about Emission Reduction in Both Cities

In this Appendix, we first outline the conditions under which emissions will decrease in

both cities. Recall that the condition for the home firm to reduce emissions is:

−y∗ ∂j0∂τ

y ∂j1
∂τ

<
Ãj0

Ãj1

. (12)

Similarly, we can write the condition as in (12) for the foreign firm, that is:

y ∂j1
∂τ

−y∗ ∂j0∂τ

<
Ã∗

j1

Ã∗
j0

. (13)

Combining (6) and (13), we obtain the condition for both firms to reduce emissions

after the drop in trade costs:

Ãj1

Ãj0︸︷︷︸
L

<
y ∂j1

∂τ

−y∗ ∂j0∂τ︸ ︷︷ ︸
M

<
Ã∗

j1

Ã∗
j0︸︷︷︸
R

. (14)

The part M in (14) represents the relative output transfer between the two cities,

and L and R represent the home and foreign firm’s (adjusted) efficiency gap between

products j0 and j1, respectively. When the first inequality holds, i.e., L < M, the home

firm decreases its emissions with lower trade costs, and so does the foreign firm if the second

inequality M < R holds. Here we show an interesting result that there is possibility of

57



joint emission reduction for both firms. As is typical in Ricardian models, after a decline

of trade costs, inter-location competition is intensified and more varieties of intermediate

goods are now produced by only one location. In Copeland and Taylor (1994), this result

of further specialization creates a composition effect that certainly transfers pollution from

the North to the South25.

The key difference here is that the emission outcome from the output transfer de-

pends not only on the cleanliness of the intermediate products, but is also affected by

within-firm productivity differences among these products. A firm may be more produc-

tive at producing dirtier products than cleaner products26, and it could achieve emission

reduction by specialization in polluting intermediate goods27. In summary, productivity

heterogeneity plays two roles in affecting our equilibrium results and comparative statics.

The inter-firm productivity differences, together with differences in factor costs, form the

firms’ cost advantages and thus shape the pattern of production specialization in inter-

mediate goods in equilibrium. The within-firm productivity differences, in comparison,

determine how firm emissions respond to such further specialization after a reduction in

domestic trade costs.

Consider a change in environmental policy that is embodied by an increase in the

emission tax t in the home city. A higher emission tax will increase the unit cost of the

home firm, thereby reducing its cost advantage in each variety j, i.e., ∂Tj

∂t < 0. As shown

in Figure B1, when t rises to t
′′ , the relative unit production cost of the foreign firm

and home firm increases from Tj to T ′′
j . As a result, the scope of varieties outsourced

by the home firm expands from [j1, 1] to [j
′′
1 , 1], while the range of locally processed

varieties drops from [0, j0] to [0, j
′′
0 ]. Both of these two forces decrease the home firm’s

total output of intermediate products, which leads to a reduction in emissions of the home
25They proved that the composition effect dominates the scale effect and technology effect.
26Again, note that the condition here for emission reduction is only about the productivity heterogeneity

within a firm, so we do not require a firm to be more efficient at producing dirty products than other firms.
27As a contrast, when ∂Aj/A

∗
j

∂j
≡ 0, there is no heterogeneity in product-specific productivity and we

can prove that only one of inequalities L < M and M < R can hold, which must lead to the outcome of
Pollution Haven.
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firm. Correspondingly, the emissions of the foreign firm increase because it now processes

more intermediate products and outsources fewer intermediate products. This result is

consistent with the Pollution Havens Hypothesis, which states that stricter environmental

regulations will promote the outward transfer of pollution emissions. If the Carbon Border

Adjustment Mechanism (CBAM) of the European Union (EU) raises the emission-related

cost of an exporting economy, our model predicts that there will be an increase in the

EU’s local emissions.

The changes in emission in the exporting economy and the EU are

−gy∗
∫ j0

j
′
0

hj
Aj
dj − gy

∫ j1

j
′
1

hj
Aj
dj

and

gy∗
∫ j0

j
′
0

h∗j
A∗

j

dj + gy

∫
j
′
1

j1 h∗j
A∗

j

dj

where the variables associated with the EU are denoted with the superscript ∗. The

global change in emissions is equal to the sum of the last two lines. Clearly, whether

global emissions increase or not depends on the productivities (Aj and A∗
j ) and factor

costs (hj and h∗j ). There is no guarantee that a policy such as the CBAM will reduce

global emissions.
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Figure B1: Effects of An Increase in Emission Tax in the Home City
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C Additional Tables

Table C1: Explanatory Power of Market Access

Variables P25 P75 P75-P25 β Change explained
A. Emission level

ln(MA) 15.087 15.714 0.627 -2.412 46.92%
ln(SO2) 7.784 11.007 3.223

B. Emission intensity
ln(MA) 15.078 15.700 0.622 -1.781 30.10%
ln(SO2 intensity) -2.169 1.511 3.680

Note: The explanatory power statistic in the last column is calculated as explained in subsection 4.1.
p25 and p75 represent the 25th and 75th centiles of the corresponding variables in the first column. The
estimates of β in Panel A and Panel B are from Columns (1) and (4) in Table 3.
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Table C2: Market Access Associated with High Speed Railway

Dependent Variable: ln(SO2)

(1) (2)
ln(MA) -2.385***

(0.796)
ln(MAHSR) -0.001 -0.002

(0.004) (0.004)
Dependent Variable’s Mean 8.624 9.155
Firm fixed effects Yes Yes
Year fixed effects Yes Yes
Time-varying firm controls Yes Yes
Time-varying city controls Yes Yes
Time-varying province controls Yes Yes
K-P rk LM statistic 49.580 46.032
K-P rk Wald F statistic 231.86 11505
Observations 305,459 98,528

Note: 1) *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are clustered at the city
level and shown in parenthesis.
2) The dependent variable is the log of sulfur dioxide emission level. ln(MAHSR) is a
market access index that is constructed based on high-speed railway network. Column (1)
uses full sample as in the benchmark regression, while Column (2) only includes observations
since 2008, which was the first time high-speed rail was opened in China.
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