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The paper investigates the deployment of data analytics and machine learning to improve welding 
quality in Tecnomulipast srl, a small-to-medium sized manufacturing firm located in Puglia, Italy. 
The firm produces food machine components and more recently mechanized its laser welding process 
with the introduction of an IoT-enabled system integrating photographic control. The investment, 
underwritten by the Apulia Region under PIA (Programmi Integrati di Agevolazione) allowed 
Tecnomulipast to not only mechanize its production line but also embark upon wider digital 
transformation. This involved the creation of internal data analytics infrastructures that have the 
capability to underpin machine learning and artificial intelligence applications. This paper addresses 
a prediction of weld bead width (LC) with a dataset of 1,000 observations. Input variables are laser 
power (PL), pulse time (DI), frequency (FI), beam diameter (DF), focal position (PF), travel speed 
(VE), trajectory accuracy (TR), laser angle (AN), gas flow (FG), gas purity (PG), ambient temperature 
(TE), and penetration depth (PE). The parameters were exploited to build and validate some 
supervised machine learning algorithms like Decision Trees, Random Forest, K-Nearest Neighbors, 
Support Vector Machines, Neural Networks, and Linear Regression. The performance of the models 
was measured by MSE, RMSE, MAE, MAPE, and R². Ensemble methods like Random Forest and 
Boosting performed the highest. Feature importance analysis determined that laser power, gas flow, 
and trajectory accuracy are the key variables. This project showcases the manner in which 
Tecnomulipast has benefited from public investment to introduce digital transformation and adopt 
data-driven strategies within Industry 4.0. 
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1. Introduction  

The increasing adoption of artificial intelligence and data analytics within production operations 
represents a paradigm shift for how production efficiency and quality are tracked and optimized. 
Although big industries have driven such developments, their application within small-to-medium 
enterprises (SMEs) of traditional industries like food machinery production is sparse and 
underresearched. This research bridges that gap by examining how a Southern Italian SME, 
Tecnomulipast srl, adopted a data-driven approach for predicting and controlling weld quality within 
an IoT-enabled laser welding machine. The main research question for this research is: To what extent 
can machine learning models effectively predict weld bead width (LC) as an essential quality metric 
from real-time process information observed from a digitally transformed welding machine? Despite 
the proliferation of sensor-rich production environments, extant research is of little help for SMEs 
that seek to effectively apply machine learning models for real-time quality prediction, especially for 
highly specialized processes such as laser welding. Most research tends to target big-industry 
implementation or is restricted within lab-scale experiments. This research offers a new case study of 
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a regionally funded innovation project (via the Apulia Region’s PIA program) where a full-scale 
machine learning infrastructure was implemented and validated using 1,000 production samples. By 
comparing multiple supervised algorithms and selecting the best performing predictor, this research 
offers actionable findings into how SMEs can converge with Industry 4.0 values through extensive, 
interpretable, as well as scalable, data science techniques. 

The article continues as follows, the second section presents the analysis of the literature, the third 
section presents the data and the variables, the fourth section contains the results of the machine 
learning regressions, the fifth section shows the results of the network analysis, the sixth section 
contains the conclusions.  

2. Literature Review 

The following commentary critically examines how recent research in the machine learning and laser 
welding fields supports and enlightens the Tecnomulipast srl, a small and medium-sized enterprise 
(SME) located within the region of Apulia, Southern Italy. Tecnomulipast is part of a digital 
transformation process, investing in the deployment of an automated laser welding system fed by an 
IoT solution and analytics infrastructure. The chosen articles are theoretically and practically relevant 
to the challenges and opportunities of the company as aligned with Industry 4.0 philosophies. The 
research by Wang et al. (2025) lays a solid groundwork by responding to issues of machine learning 
model generalizability in intelligent welding systems production within automotive production. Their 
concern for domain adaptation as well as transferability is of specific relevance for Tecnomulipast, 
an SME, as it, as many SMEs, will have to adapt advanced algorithms to its unique production 
process, frequently from less of both the necessary data as well as resources compared to large 
multinational companies. Their multi-sensor data utilization as well as their concern for robustness is 
closely aligned with the company’s approach of adopting an interconnected, sensor-intensive welding 
environment. 
Ma et al. (2025) make a contribution by using an innovative hybrid strategy that integrates a 
Kolmogorov-Arnold Network (KAN) with a genetic algorithm for deep penetration laser welding 
optimization. Their two-layer approach is a balance between prediction accuracy and 
interpretability—two considerations fundamental for industrial environments where technicians need 
to trust as well as comprehend the judgments made by artificial intelligent systems. For 
Tecnomulipast, the use of interpretable models is essential given the low density of internal data 
science capabilities, as well as the necessity for actionable, transparent outputs from artificial 
intelligent systems. 
The paper by Poornima et al. (2024) proposes a hybrid DNN-HEVA model for weld quality 
prediction of duplex stainless steel butt welds. Although specific to one material, the approach—
merging deep learning with geometric analysis—is extensible to other applications, including 
Tecnomulipast production processes. Application of techniques for shape-aware modeling is of 
particular significance for their vision-based inspection system, given the prevalence of weld bead 
and joint geometrical information for quality evaluation. Din et al. (2024) break new ground for visual 
quality inspection by utilizing Vision Transformers for laser welding image classification. Their 
multi-model feature aggragation approach presents a direction for Tecnomulipast’s photographic 
process control, as it already samples images during welding processes. The attention mechanism of 
the transformer could prove crucial for enhancing defect identification, particularly for detecting 
subtle visual abnormalities that might be overlooked by standard CNNs. 
In an applied context, Maculotti et al. (2024) provide a comparison of machine learning models for 
optimizing laser welding of deep-drawing steel. Their benchmarking strategy is directly applicable to 
Tecnomulipast’s project, wherein several supervised learning models (such as Random Forest, SVM, 
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Neural Networks) were compared. The research highlights trade-offs between model interpretability, 
performance, and computational cost—considerations critical for SMEs balancing innovation with 
efficiency of operation. Hartung et al. (2023) provide a machine learning approach for weld geometric 
reconstruction as part of the overall vision for automation of quality control. Their research can be 
leveraged further for further development at Tecnomulipast, wherein inline inspection is envisioned 
as part of the digital transformation journey. Reconstructing weld geometry through sensor readings 
and regression models is a compelling option for minimizing reliance on human observation and 
enhancing consistency. 
Ying-chao et al. (2023) concentrate on real-time monitoring through emission spectroscopy in laser 
wire welding. Since Tecnomulipast is not as of yet utilizing spectroscopic techniques, the essential 
principle—multiple-sensor, real-time weld pool monitoring—is very much relevant. Their research 
supports the necessity of multistreaming as a means of process control as well as detecting anomalies, 
consistent with Tecnomulipast’s IoT-capable arrangement. Chianese et al. (2022) examine the 
application of photodiodes for weld gap and penetration depth sensing of welding between copper 
and steel, especially for the welding of battery tabs. Their application of low-cost, high-frequency 
sensors could motivate cost-effective sensor integration by Tecnomulipast, most notably for real-time 
weld penetration sensing without the introduction of high-end vision systems. 
Earlier, Cai et al. (2019) had shown how high-speed imaging and machine learning could be used for 
predicting weld bead width. Their findings confirmed the value of temporal imaging and algorithmic 
comparison, as exemplified by Tecnomulipast’s approach of using photographic information to 
predict quality factors such as bead width and penetration. Practical deployment of predictive models 
from image information is one of the key innovations of the Tecnomulipast project. Ozkat et al. (2017) 
and Sokolov et al. (2020) offer insights from the viewpoint of physics-based, as well as hybrid 
modeling. Ozkat’s multi-physics decoupling addresses variability caused by gaps between parts, 
while Sokolov’s research on keyhole mapping using optical coherence tomography underpins closed-
loop control. Although such methods are complex and appropriate for higher-end manufacturing, they 
represent longer-term innovation pathways that Tecnomulipast could pursue as its system develops 
further and its digital infrastructure becomes established. 
These articles demonstrate the international trend toward machine learning- and IoT-driven smart 
manufacturing systems. They endorse the notion that integrating data-driven models, interpretable 
artificial intelligence, real-time sensor input, and visual monitoring can make laser welding processes 
more adaptable and efficient. For Tecnomulipast srl, they provide both motivation and backing. This 
company, a small enterprise implementing digital transformation through support from its region of 
origin (PIA - Regione of Apulia, Italy), is a demonstration that even SMEs can be front-runners in 
implementing intelligent, data-driven technologies for optimizing production. By aligning its 
initiatives with the techniques and tenets examined within this advanced study, Tecnomulipast is an 
example for other small businesses within its region wishing to adopt Industry 4.0 technologies. The 
intersection of machine learning, autonomous inspection, and digital networking is not only a 
powerful tool for quality improvement, but for the larger sustainability and competitiveness of small 
manufacturers within the changing global industrial context (Table 1). 
 
Table 1. Synthesis of the literature.  

Macro-theme Reference Key Contribution Relevance to Tecnomulipast 

Generalizable & Scalable 
ML for Welding 

Wang et al. 
(2025) 

Generalizable ML framework for 
intelligent welding in automotive contexts 

Supports the transfer of scalable ML models to SME-level 
environments like Tecnomulipast’s real-world setup 

Maculotti et al. 
(2024) 

Comparison of ML algorithms for laser 
welding optimization 

Helps choose the most efficient and interpretable 
algorithm given SME constraints and real production data 

Interpretable & Hybrid AI 
Models 

Ma et al. (2025) 
Interpretable Kolmogorov-Arnold Network 
with genetic optimization 

Offers a transparent model for parameter tuning, suitable 
for a resource-limited SME 
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Macro-theme Reference Key Contribution Relevance to Tecnomulipast 

Poornima et al. 
(2024) 

Hybrid DNN-HEVA model for weld 
quality prediction 

Shows the benefit of combining geometry-aware models 
with AI, useful in Tecnomulipast’s photo-based 
inspections 

 Image-Based Monitoring 
& Vision AI 

Din et al. (2024) 
Vision Transformer with feature 
aggregation for weld image classification 

Directly relevant to Tecnomulipast’s photographic system 
for monitoring welds in real time 

Cai et al. (2019) 
Prediction of weld bead width from high-
speed images using various ML algorithms 

Validates the image-based predictive approach used by 
Tecnomulipast 

Inline Quality Control & 
Process Monitoring 

Hartung et al. 
(2023) 

Geometry reconstruction using ML for 
automated weld quality control 

Useful for extending Tecnomulipast’s inspection system 
with automated defect detection 

Ying-chao et al. 
(2023) 

Real-time monitoring via emission spectra 
in laser wire welding 

Reinforces the importance of continuous monitoring, even 
if different sensing tech is used 

Chianese et al. 
(2022) 

Photodiode-based gap and penetration 
monitoring in dissimilar metal welding 

Suggests low-cost sensor strategies for penetration 
monitoring applicable to SMEs 

Process Control & Closed-
Loop Systems 

Sokolov et al. 
(2020) 

Optical coherence tomography for closed-
loop penetration control 

Presents a future direction for Tecnomulipast’s system 
evolution towards real-time adaptive control 

Ozkat et al. 
(2017) 

Multi-physics simulation accounting for 
part-to-part gap in laser welding 

Supports hybrid modeling to complement ML, useful for 
better understanding material-behavior interaction 

 

3. Data and variables  

The variables employed for training machine learning models for the prediction of production 
efficiency of a laser machine within a production firm consist of a mixture of process variables, 
environmental variables, and quality metrics. The product identifier (PRD2T) provides a distinct 
reference for each of the produced items, making it possible for them to be traced through the 
observations. Laser power (PL), pulse duration (DI), and pulse frequency (FI) determine the essential 
energy and temporal laser welding process specifications, which directly impact thermal input as well 
as welding stability. Beam diameter (DF) and focal position (PF) capture spatial accuracy as well as 
energy concentration on the target material, relevant for the stability of consistent weld penetration. 
The travel speed (VE) captures the speed of laser movement, impacting productivity as well as 
thermal diffusion. Trajectory and repeatability (TR) capture the mechanical accuracy of the machine, 
one of the most critical indicators of uniform weld paths as well as minimizing defects. The laser 
incident angle (AN) impacts energy absorption as well as weld geometry, of higher significance for 
reflective or complex materials. Gas flow (FG) and gas purity (PG) capture the weld pool shielding 
conditions, critical for preventing contamination as well as porosity. Ambient temperature (TE) 
captures context for thermal fluctuations that could affect stability of process. And finally, penetration 
depth (PE) as well as bead width (LC) are direct quality indicators of the weld as well as can be 
employed as target variables as well as efficiency as well as consistency proxies within supervised 
learning models that can predict the efficiency as well as uniformity of the laser machine (Table 2). 

Table 2. Description of Variables.  

 
Description 

Unit of measurement and range 

Acronym 

Product Unique identifier for each product produced. 
It is represented with a progressive number. 

PRD2T 

Laser power (W) Energy supplied by the laser to perform the 
welding. 

Expressed in Watts (W). Usually variable 
between 1500 W and 1800 W. 

PL 

Pulse duration (ms) Time during which the laser remains active for 
each pulse. 

Expressed in milliseconds (ms). Variable 
between 5 and 8 ms. 

DI 

Pulse frequency (Hz) 
Number of laser pulses per second. 

Expressed in Hertz (Hz). Typically variable 
between 2000 and 2300 Hz. 

FI 

Beam diameter (µm) 
Width of the laser beam at the welding point. 

Expressed in microns (µm). Typically between 
100 and 130 µm. 

DF 
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Focal position (mm) 
Focal distance from the material surface. 

Expressed in millimeters (mm). Varies between -
0.5 mm, 0 mm, +0.5 mm, 1 mm. 

PF 

Travel speed (mm/s) Speed with which the laser moves during the 
welding process. 

Expressed in mm/s. Varies between 10 and 13 
mm/s. 

VE 

Trajectory and 
repeatability 

Accuracy and repeatability of the laser 
movement system. 

Typical values: < ±0.1 mm, < ±0.15 mm, < ±0.2 
mm, < ±0.25 mm. 

TR 
Laser incidence 
angle (°) 

Angle formed by the laser beam from the 
material surface. 

Typical values: 75°, 80°, 85°, 90°. 
AN 

Gas flow 
Type of gas used to protect the welding pool 
and keep it pure. 

Expressed in l/min for flow 
FG 

Gas purity 
Type of gas used to protect the welding pool 
and keep it pure. 

% for purity. 
PG 

Ambient temperature 
(°C) 

Temperature of the environment in which the 
welding is performed. 

Variable between 25°C and 28°C. 
TE 

Penetration (mm) 
Depth of the welding in the material. 

Expressed in mm. Typically between 1.5 mm and 
3.5 mm. 

PE 

Bead width (µm) Width of the welding line generated by the 
laser. 

Expressed in microns (µm). Typically between 
200 µm and 500 µm. 

LC 

 

The information pertains to a company whose welding process is automated by a machine fitted with 
IoT as well as photographic inspection technologies. All variables have 1000 valid values with no 
missing values. Values seem normalized with z-score standardization, as evidenced by means near 
zero and standard deviations near one, making them ready for higher-level statistical analysis or 
machine learning applications. Both process parameters (laser power, pulse length, frequency, speed, 
beam width, focal position) as well as output characteristics (bead width, penetration) are the main 
variables. Their distributions have mild asymmetry and platykurtic behavior, with flatter distribution 
compared to a normal distribution. This is supported by consistently negative kurtosis values as well 
as by the Shapiro-Wilk test, whose p-values are lower than 0.001 for all variables, rejecting the 
normality hypothesis. The most relevant output variables, bead width (LC) and penetration (PE), have 
negative skewness, meaning that the data have heavier tails on the left side of the distribution and that 
welds most often have values higher than the mean, although by a minor amount. The machine would 
seem to have good operating stability, as interquartile ranges are thin, and median absolute deviations 
are low for all variables, meaning there is little dispersion. Since the non-normal distribution of the 
data, however, could make classical linear models insufficient for identifying underlying patterns, 
robust or non-parametric statistical analysis could be needed. Gas-related variables such as gas flow 
(FG) and gas purity (PG) have higher skewness and modes, perhaps as a consequence of batch 
variation, as well as of the application of different shielding strategies for different welding contexts. 
In summary, the data represent a technologically mature, well-maintained system, whose well-
regulated parameters, however, have usual variation typical of industrial automation processes (Table 
3). 

Table 3. Descriptive Statistics.  

 LC DI FI VE AN TE PL DF PF TR FG PG PE 

Valid 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 0.731 0.610 -1.607 0.283 -1.315 1.343 1.164 -0.839 1.145 1.096 -1.646 1.192 -1.326 

Median 0.277 0.011 -0.039 0.014 -0.010 -0.010 0.057 -0.024 0.278 0.190 -0.099 0.318 0.267 

Mean -
7.000×1

0-9 

1.000×1
0-9 

1.400×1
0-8 

3.000×1
0-9 

5.000×1
0-9 

-
2.100×1

0-8 

2.600×1
0-8 

6.000×1
0-9 

1.050×1
0-7 

7.800×1
0-8 

-
3.189×1

0-18 

3.900×1
0-8 

6.000×1
0-9 
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Std. 
Deviatio
n 

1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 

Coefficie
nt of 
variation 

-
1.429×1

0+8 

1.001×1
0+9 

7.146×1
0+7 

3.335×1
0+8 

2.001×1
0+8 

-
4.764×1

0+7 

3.848×1
0+7 

1.668×1
0+8 

9.529×1
0+6 

1.283×1
0+7 

-
3.138×1

0+17 

2.565×1
0+7 

1.668×1
0+8 

MAD 0.686 0.876 0.871 0.841 0.967 0.861 1.010 0.863 0.867 0.905 0.927 0.829 0.734 

MAD 
robust 

1.017 1.298 1.291 1.247 1.434 1.277 1.498 1.280 1.286 1.342 1.375 1.229 1.089 

IQR 2.068 1.751 1.758 1.683 1.934 1.699 2.008 1.728 2.169 2.112 1.855 1.883 1.995 

Variance 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 

Skewnes
s 

-0.380 0.003 0.076 0.011 0.019 -0.033 0.001 9.900×1
0-4 

-0.211 -0.148 0.001 -0.280 -0.353 

Std. 
Error of 
Skewnes
s 

0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 

Kurtosis -1.473 -1.221 -1.188 -1.170 -1.510 -1.198 -1.931 -1.222 -1.473 -1.651 -1.580 -1.471 -1.392 

Std. 
Error of 
Kurtosis 

0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 

Shapiro-
Wilk 

0.856 0.953 0.953 0.957 0.913 0.954 0.749 0.954 0.854 0.811 0.895 0.880 0.894 

P-value 
of 
Shapiro-
Wilk 

< .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 

Range 3.173 3.456 3.426 3.494 3.675 3.482 2.330 4.474 2.602 2.414 3.431 3.514 3.734 

Minimu
m 

-1.838 -1.717 -1.687 -1.739 -1.886 -1.755 -1.166 -2.257 -1.457 -1.318 -1.646 -2.322 -2.085 

Maximu
m 

1.335 1.739 1.739 1.755 1.789 1.727 1.164 2.216 1.145 1.096 1.786 1.192 1.649 

25th 
percentil
e 

-1.169 -0.876 -0.884 -0.850 -0.964 -0.825 -1.004 -0.875 -1.024 -1.017 -0.925 -0.936 -1.105 

50th 
percentil
e 

0.277 0.011 -0.039 0.014 -0.010 -0.010 0.057 -0.024 0.278 0.190 -0.099 0.318 0.267 

75th 
percentil
e 

0.899 0.875 0.874 0.832 0.970 0.874 1.004 0.853 1.145 1.096 0.930 0.947 0.889 

25th 
percentil
e 

-1.169 -0.876 -0.884 -0.850 -0.964 -0.825 -1.004 -0.875 -1.024 -1.017 -0.925 -0.936 -1.105 

50th 
percentil
e 

0.277 0.011 -0.039 0.014 -0.010 -0.010 0.057 -0.024 0.278 0.190 -0.099 0.318 0.267 

75th 
percentil
e 

0.899 0.875 0.874 0.832 0.970 0.874 1.004 0.853 1.145 1.096 0.930 0.947 0.889 

Sum -
7.000×1

0-6 

1.000×1
0-6 

1.400×1
0-5 

3.000×1
0-6 

5.000×1
0-6 

-
2.100×1

0-5 

2.600×1
0-5 

6.000×1
0-6 

1.050×1
0-4 

7.800×1
0-5 

-
1.665×1

0-15 

3.900×1
0-5 

6.000×1
0-6 

 

4. Machine Learning  

Assessing information on automatic welding within the framework of Industry 4.0 is a strategic action 
for a small-to-medium company such as Tecnomulipast srl, from Southern Italy operating within the 
food machinery production industry. IoT technology integration with real-time acquisition systems 
turns a standard production activity into an intelligent, trackable, and optimizable function. Data 
analysis from welding enables the company not only to track joint quality with accuracy, minimize 
process variation, predict anomalies, and enhance overall efficiency, but is critical for raising 
competitiveness within an industrialized, globalized world. Comparing between machine learning 
models such as Boosting, Decision Tree, K-Nearest Neighbors, Linear Regression, Neural Networks, 
Random Forest, Regularized Linear Regression, and Support Vector Machine is of prime relevance 
as each of the models differs as regards predictive capacity, interpretability, and adaptability to the 
dataset. Knowing the best-performing algorithm is not only a matter of selecting the best-performing 
solution, but the one that is stable, efficient, and scalable given available technical and infrastructural 
capabilities. Technically-scientifically, utilizing the following statistical indicators as evaluation 
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metrics such as MSE (Mean Squared Error), MSE (scaled), RMSE (Root Mean Squared Error), 
MAE/MAD (Mean Absolute Error / Median Absolute Deviation), MAPE (Mean Absolute Percentage 
Error), R² (Coefficient of Determination) is methodologically accurate, widely adopted within the 
industrial data science best practices, and well-accepted within the scientific literature. These metrics 
enable an integral analysis of model quality by capturing error size (MSE, RMSE), outlier resistance 
(MAE, MAD), relative error (MAPE), as well as the capacity of the model for variance explanation 
of the target factor (R²). Their joint utilization enables a balanced, objective, reproducible evaluation 
that is best practice within industrial-grade data science. 
We have estimated the following equation:  
 

𝐿𝐶 = 𝑓(𝑃𝐿, 𝐷𝐼, 𝐹𝐼, 𝐷𝐹, 𝑃𝐹, 𝑉𝐸, 𝑇𝑅, 𝐴𝑁, 𝐹𝐺, 𝑃𝐺, 𝑇𝐸, 𝑃𝐸) 

Facing the normalized performance measures of the various machine learning models used for the 
weld bead width (LC) prediction task, Random Forest is the most precision, stable, and 
generalization-capacity-rich algorithm. It consistently produces the best outcome for virtually all the 
evaluation metrics. In particular, it captures the lowest achievable values for MSE, MSE (scaled), 
RMSE, MAE/MAD, and MAPE—reflecting the smallest prediction error—while also capturing the 
highest value of R² (1.000) that guarantees perfect adaptability within the normalized framework. 
Boosting is likewise a highly performing algorithm, ranking second best by the majority of the metrics 
through an R² value of 0.806 as well as low error values for MSE (0.241), RMSE (0.174), and MAPE 
(0.116), reflecting high reliability as well as stability. Neural Networks exhibit competitive efficiency 
through an R² value of 0.758 coupled with relatively low values of MSE as well as MAPE, reflecting 
their suitability as an alternative. Support Vector Machines as well as Regularized Linear Regression 
prove mediocre efficiency, whereas K-Nearest Neighbors performs with the worst, through an R² 
value of 0.000 alongside the highest errors for all the metrics. The Decision Tree model performs 
better than KNN but not as efficiently as ensemble-based methods through its lower generalization 
capacity. To sum up, Random Forest is the best choice for the task through precision, stability, as 
well as generalization, whereas Boosting offers a strong alternative with equivalent reliability within 
predictive welding analytics (Table 4). 

Table 4. Machine learning analysis results with an indication of the performance of the algorithms. 

Metric Boosting Decision Tree KNN 
Linear 
Regression Neural Net 

Random 
Forest 

Regularized 
Linear SVM 

MSE 0.241 0.379 1.000 0.655 0.310 0.000 0.586 0.517 

MSE (scaled) 0.179 0.393 1.000 0.393 0.250 0.000 0.536 0.464 

RMSE 0.174 0.297 1.000 0.487 0.165 0.000 0.408 0.382 

MAE / MAD 0.051 0.000 1.000 0.759 0.228 0.088 0.684 0.620 

MAPE 0.116 0.000 1.000 0.312 0.165 0.005 0.803 0.115 

R² 0.806 0.645 0.000 0.516 0.758 1.000 0.452 0.581 

 
Selecting Random Forest as our best-performing model, we can analyze the feature importance values 
to see how much each of the input variables contributes toward predicting weld bead width (LC) most 
strongly. The table offers three indicators for each of the variables: Mean decrease in accuracy, Total 
increase in node purity, and Mean dropout loss. These all measure how much each of the variables 
contributes toward building the model’s predictability. By far the most powerful is clearly PE 
(penetration depth), with the highest mean decrease in accuracy (0.522), highest increase in node 
purity (94.680), and highest mean dropout loss (0.598). This is consistent with the expectation that 
weld penetration is closely correlated with bead width and is a very critical quality determinant of 
welding in the current scenario. Second is significantly PL (laser power) with a strong decrease in 
accuracy (0.369), a high node purity (68.918), and a very high dropout loss (0.399). Not unexpectedly, 
laser power directly controls the energy input during the welding process. Following are FG (gas 
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flow) and PG (gas purity) with values for all metrics rather near-identical. Both of the parameters are 
crucial for providing a clean welding environment and for preventing defects, so their influence is 
not surprising. AN (laser angle) and DF (beam diameter) are moderately important, indicating a 
secondary but still contributary role toward the quality of the weld. Least of all are DI (pulse duration), 
VE (travel speed), and FI (pulse frequency). Their very low values for all metrics point toward a 
minor influence on the output within the specific operating window of this dataset. Least of all is TE 
(ambient temperature), PF (focal position), and TR (trajectory repeatability). These variables are most 
likely kept relatively constant during operation, or perhaps have previously had their optimal values 
optimized, so their variability is minimized, and their statistical impact is low. In conclusion, the 
Random Forest model singles out the penetration depth, laser power, and gas parameters as the prime 
drivers of bead width of weld during the automated process of Tecnomulipast srl. These findings not 
only make sense from the welding physics point of view, but they also offer actionable targets for 
controlling the process, as well as for optimizing the process, within the context of Industry 4.0 
(Figure 1). 
 
Figure 1. Feature Importance Metrics of Random Forest Regression.   

 
The following is an additive feature attribution output for five test cases, as given by the Random 
Forest model for predicting weld bead width (LC). The values, presumably created by a SHAP or 
equivalent interpretability procedure, demonstrate the contribution of each attribute, relative to a set 
value (the "Base" column, constant at –0.045 for all cases). 
In both instances, the value predicted is much less than the base, varying between –1.226 and –1.390. 
This is a decrease from the base because of the cumulative adverse effects of some of the main 
features, specifically PE (penetration depth), PL (laser power), FG (gas flow), and PG (gas purity). 



9 
 

PE is consistently the greatest negative contributor in all cases, ranging from –0.38 to –0.384. This is 
consistent with what is observed in the feature importance as well: the greatest contribution is by 
penetration depth, significantly pulling the prediction down. 
PL is seen to have strong negative effect, from –0.287 to –0.296. This is consistent with its function 
of regulating power input—greater power can result in wider bead width, and such deviations from 
optimal power values would contribute negatively within these given test cases. 
FG and PG have strong to moderate negative effects, supporting the significance of gas parameters 
for weld quality. The steady values for all the cases (approximately between –0.17 and –0.20 for FG, 
and between –0.13 and –0.15 for PG) demonstrate stable, though considerable, impact on the 
estimated outcome. 
The other variables, such as DF (beam diameter) and AN (angle of incidence), have negative 
contributions across all instances, though less so. Their directional regularity assures constant though 
secondary impacts on the model's projections. 
In contrast, variables such as VE (speed of travel) and PF (position of focus) display slight positive 
or zero effects, occasionally helping raise the prediction by a slight amount. FI (pulse frequency), DI 
(pulse duration), TR (repeatability of trajectory), and TE (ambient temperature) have near-zero or 
low effects, consistent with their low values of feature importance. In conclusion, such findings 
uphold interpretability and internal consistency of the Random Forest model. The most salient 
features—penetration depth, laser power, and gas flow settings—exhibit the highest and most 
uniform effects on the predictions for varying test cases. This reflects the model’s capability for 
yielding trustworthy, understandable information for quality control of welding for applications such 
as real-time predictive systems within the context of Industry 4.0 (Figure 2). 
 
Figure 2. Predictions using Random Forest Regression.  

 

5. Network analysis  

After performing a machine learning analysis, it is logical, therefore, to apply network analysis with 
centrality metrics because machine learning models are good at predicting but do not necessarily 
capture the internal dynamics of interdependencies among variables. Network analysis offers a 
structural representation of the relationships, giving further insight into the interplay of variables with 
each other within the system. By examining centrality metrics like betweenness, closeness, strength, 
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and expected influence, one can determine where variables are central, where they are bridges, and 
where they are on the periphery. For example, PL (laser power) is ranked highest for all centrality 
metrics, meaning that it is the most powerful, influencing role within the network of variables. This 
is as expected given its probable significance within predictive models. DF (beam diameter) and PF 
(focal position) have significant betweenness, meaning they are connectors between variables, 
potentially affecting multiple paths even though they are not necessarily the most direct influencers. 
In contrast, for variables such as DI, FI, and TR, there are negative values for all metrics, suggesting 
they are not so much central and potentially have isolated effects on the system. Furthermore, network 
analysis offers the ability to corroborate the machine learning by comparing network metrics with 
importances from the model, as well as identifying redundant, weakly connected variables, 
facilitating reduction of dimensions and feature choice. Having the ability to see possible chains of 
influence among variables improves interpretability of intricate models, such as within industrial 
environments where behavior of the system is as critical as is predictive accuracy. In all, the 
combination of network analysis with centrality metrics following machine learning creates a fuller, 
system-level view that helps interpret models, streamline processes, as well as make informed choices 
on variable significance as well as role interplay (Figure 3). 
 
Figure 3. Network Analysis.  

 

6. Conclusions 

The paper showcases the real-world application value of IoT-enabled data acquisition systems 
coupled with machine learning methods for improving weld quality prediction for a small-to-
medium-sized manufacturing company. In a real-case study of Tecnomulipast srl based in Gravina in 
Puglia, supported by public funds through the PIA program, the research showcases how a digitalized 
production environment can make sophisticated predictive analytics available for laser welding. 
Among the machine learning algorithms applied, Random Forest was identified as the best-
performing algorithm, indicating the best prediction accuracy for all the considered performances 
(MSE, RMSE, MAE, MAPE, and R²). The chosen model not only produced low prediction errors, 
but for detailed interpretability, feature significance analysis as well as additive contribution methods 
could be employed. Penetration depth (PE), laser power (PL), and gas flow parameters (FG, PG) were 
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recognized as the main factors affecting weld bead width (LC), yielding actionable insights for 
process improvement as well as quality control. 
In addition, the application of network analysis based on centrality indicators provided a 
complementary view of interdependencies among variables. This methodology disclosed structural 
interconnections between parameters, corroborating machine learning evidence and allowing for 
better interpretability of models. Laser power and beam geometry turned out to be central variables 
within the topology of the system, indicating their decisive impact not only on output quality but on 
process dynamics as well. Altogether, the research affirms that a union of machine learning with 
network analysis yields predictive capabilities, as well as systemic insight. For SMEs, looking 
forward to adapting to Industry 4.0, this dual strategy addresses a scalable, transparent, and efficient 
framework for optimizing production through data. 
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