
MPRA
Munich Personal RePEc Archive

Extreme weather events, home damage,
and the eroding locus of control

Nguyen, Ha and Mitrou, Francis

The Kids Research Institute Australia, The University of Western
Australia

April 2025

Online at https://mpra.ub.uni-muenchen.de/124610/
MPRA Paper No. 124610, posted 29 Apr 2025 15:08 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/124610/


 
 

Extreme weather events, home damage, and the eroding locus of control 

Ha Trong Nguyen*, †  Francis Mitrou† 

 

The catastrophic consequences of natural disasters on social and economic systems are 
extensively documented, yet their influence on individuals' sense of control over their life 
outcomes remains unexplored. This study pioneers an investigation into the causal effects of 
natural disaster-related home damage on the locus of control. Utilizing Australian longitudinal 
data, we implement an individual fixed effects instrumental variables approach leveraging 
time-varying, exogenous exposure to local cyclones to address confounding factors. Our 
findings provide robust evidence that natural disaster-induced home damage statistically 
significantly and substantially diminishes individuals’ perception of control, particularly for 
those at the lower end of the locus of control distribution. This effect is disproportionately 
pronounced among older individuals, renters, and those from lower-income households. This 
newfound understanding offers opportunities for developing targeted interventions and support 
mechanisms to enhance resilience and assist these vulnerable populations following natural 
disasters. 
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1. Introduction 

Natural disasters have demonstrably profound social and economic consequences on a global 

scale (Dell et al. 2014; Carleton & Hsiang 2016). As concerns over the increasing frequency 

and intensity of natural disasters escalate, research examining their psychological impacts has 

gained significant momentum (Currie & Rossin-Slater 2013; Nguyen & Mitrou 2024a). 

However, a critical gap exists in our understanding of how natural disasters influence 

individuals' Locus of Control (LoC). Locus of control, defined as the belief in one's ability to 

influence life outcomes (Rotter 1966), has been shown to be associated with various socio-

economic outcomes (Almlund et al. 2011; Heckman & Kautz 2012) and may play a crucial 

role in shaping coping mechanisms and resilience. Investigating how natural disasters impact 

individuals' perception of control over their lives is vital for developing effective disaster 

preparedness and recovery strategies, especially as we enter an era of climatic uncertainty with 

forecasts of increased climate-induced extreme weather events. 

This study aims to address this gap by being the first to investigate the causal effects of natural 

disaster-induced home damage on locus of control. In doing so, it intersects with two main 

lines of research. The first, and highly established, line focuses on the social and economic 

impacts of natural disasters (Dell et al. 2014; Carleton & Hsiang 2016; Botzen et al. 2019). 

Within this research area, our study closely aligns with the growing body of work evaluating 

the effects of natural disasters on various psychological aspects, including risk preferences 

(Cameron & Shah 2015; Hanaoka et al. 2018; Bourdeau-Brien & Kryzanowski 2020), religious 

beliefs (Belloc et al. 2016; Bentzen 2019), mental health (Currie & Rossin-Slater 2013; 

Baryshnikova & Pham 2019), and life satisfaction (Gunby & Coupé 2023; Nguyen & Mitrou 
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2024a).1 However, no study has yet explored the impacts of natural disasters on LoC, which 

constitutes the specific focus of this research. 

This study also aligns with a burgeoning body of literature investigating the relationship 

between LoC and various life outcomes. Prior empirical research demonstrates that individuals 

with an internal LoC, who believe their outcomes are contingent on their own actions, exhibit 

superior results in areas such as labour market success, finances, health, and education. For 

instance, individuals with an internal LoC tend to have higher wages (Cobb-Clark 2015), 

engage in more intensive job searches when unemployed (Caliendo et al. 2015), adopt healthier 

behaviours (Cobb-Clark et al. 2014; Kesavayuth et al. 2020), save more money (Cobb-Clark 

et al. 2016), purchase greater insurance coverage (Antwi-Boasiako 2017; Bonsang & Costa-

Font 2022), hold more risky assets (Salamanca et al. 2020), and invest more in education 

(Coleman & DeLeire 2003; Caliendo et al. 2022) compared to those with an external LoC. 

Additionally, research suggests that individuals with a stronger internal LoC exhibit greater 

coping abilities in the face of negative events, such as job losses, health shocks, local crimes 

or natural disasters (Buddelmeyer & Powdthavee 2016; Schurer 2017; Etilé et al. 2021; 

Churchill & Smyth 2022; Güzel et al. 2024). 

It is important to note that, consistent with established theoretical models and earlier empirical 

evidence (Rotter 1966; Borghans et al. 2008; Heckman & Kautz 2012; Cobb-Clark & Schurer 

2013), these prior studies largely treat LoC as a fixed and exogenous variable within the 

analysed timeframe (see Nguyen et al. (2024b) for a recent review). However, recent studies 

utilizing panel data have shown that LoC can be influenced by certain life events, including 

changes in employment status or health (Elkins et al. 2017; Preuss & Hennecke 2018; 

 
1 This study extends the body of research utilizing the same dataset as three prior studies, which investigate the 
effects of cyclones on residential responses (Nguyen & Mitrou 2024b), life satisfaction (Nguyen & Mitrou 2024a), 
and the demand for health insurance (Nguyen & Mitrou 2025). However, none of these studies have examined 
the impact of weather-related home damage on LoC, a focus uniquely addressed in the present paper.  
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Marsaudon 2022; Clark & Zhu 2024; Nguyen et al. 2024b). This present study uniquely 

contributes to this field by investigating whether exposure to natural disasters causally 

influences individuals' LoC. 

To quantify the causal effects of natural disaster-induced home damage on individuals' LoC, 

this study leverages longitudinal data from the Household, Income and Labour Dynamics in 

Australia (HILDA) survey, which contains a self-reported measure of natural disaster-related 

home damage and person-level LoC. We address the potential endogeneity of self-reported 

natural disaster-related home damage by employing an individual fixed effects instrumental 

variables (FE-IV) approach. This approach exploits within-individual time variation in 

exogenous exposure to local cyclones as an instrument for natural disaster-related home 

damage. We apply this FE-IV model to explore the heterogeneous effects of home damage 

across the distribution of LoC, in addition to the average effect. 

The study yields three main sets of findings. First, we observe a statistically significant negative 

impact of weather-related home damage on internal LoC, meaning natural disaster-induced 

home damage significantly diminishes individuals’ sense of control over their life outcomes. 

This effect is only evident in the quantile FE-IV regressions, where individuals near or below 

the median of the LoC distribution experience the most pronounced decline following natural 

disaster-related home damage. Moreover, the negative impact is strongest for those at the 

lowest end of the LoC distribution, where weather-related home damage reduces their LoC by 

0.28 standard deviations. 

Second, our analysis reveals significant heterogeneity in the impact of weather-related home 

damage on LoC across selected sociodemographic groups. This heterogeneity varies along the 

LoC distribution, with a general trend indicating a more pronounced negative effect for older 

individuals, renters, and those residing in poorer households. 
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Third, our findings demonstrate robustness to a battery of sampling and specification tests. 

Furthermore, the study underscores the importance of addressing the endogeneity of self-

reported natural disaster-related home damage when estimating its impact on LoC. 

Additionally, and importantly, our results highlight the value of examining the effects of natural 

disaster exposure beyond the mean of the LoC distribution. Focusing solely on the average 

impact would risk overlooking the severe consequences of natural disasters on individuals' 

LoC, particularly for those at the lower end of the LoC distribution. 

The remainder of this paper is organized as follows. Section 2 provides a detailed description 

of the primary data source used in the analysis. Section 3 details the econometric models 

employed to quantify the causal impact of weather-related home damage on individuals' LoC. 

Section 4 presents the key empirical results of the study. Section 5 documents the findings from 

various sensitivity tests conducted to assess the robustness of the results. Section 6 explores 

the potential heterogeneity in the impacts of weather-related home damage on LoC across 

different subgroups. Finally, Section 7 concludes the paper by summarizing the main findings 

and discussing their implications. 

2. Data and sample 

2.1. Data 

Our primary data source is the Household, Income and Labour Dynamics in Australia (HILDA) 

survey. This nationally representative survey tracks individuals from private households over 

time, offering comprehensive individual and household-level data, including residential 

information, health outcomes, and labour market experiences (Summerfield et al. 2024). A key 

advantage of HILDA is its ability to follow individuals who relocate, thus preserving the 

sample's representativeness. This feature allows us to employ an individual fixed effects model 

to robustly examine the impact of natural disaster exposure on locus of control. We use the 

most recent release 23 of HILDA survey, covering the period from 2001 to 2023. 
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2.2. Natural disaster exposure measure 

Individuals are classified as directly impacted by a natural disaster if they report that their 

residence sustained damage or destruction due to a weather-related disaster, such as a flood, 

bushfire, or cyclone, within the preceding 12 months. This categorization is based on responses 

to a survey question asking, “Did any of these events occur to you in the past 12 months?” 

specifically prompting, “A weather-related disaster (e.g., flood, bushfire, cyclone) damaged or 

destroyed your home”.  

Australian research has frequently used this variable as a proxy for direct exposure to natural 

disasters, examining its effects on mental health (Baryshnikova & Pham 2019), economic 

outcomes (Johar et al. 2022), life satisfaction (Gunby & Coupé 2023; Nguyen & Mitrou 

2024a), and residential responses (Nguyen & Mitrou 2024b). This measure is available only 

from Wave 9 onwards (Summerfield et al. 2024). Consistent with previous Australian studies, 

this study employs the self-reported home damage indicator in the main analysis to capture the 

effects of direct exposure to natural disasters. This measure is distinct from an indirect exposure 

indicator, which classifies individuals as affected based on their residence in a disaster-

impacted area, recognizing that not all residents in such areas are directly affected by the 

disaster (Johar et al. 2022). In subsequent sections, we further examine the effects of indirect 

exposure to a prevalent type of natural disaster—cyclones—which are also referenced in the 

survey prompt as a climatic factor associated with home damage and serve as our instrumental 

variable.  

2.3. Locus of control measure 

The locus of control measure in the HILDA survey is constructed from respondents’ responses 

to seven statements. These statements are: (1) “I have little control over the things that happen 

to me”, (2) “There is really no way I can solve some of the problems I have”, (3) “There is little 

I can do to change many of the important things in my life”, (4) “I often feel helpless in dealing 
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with the problems of life”, (5) “Sometimes I feel that I’m being pushed around in life”, (6) 

“What happens to me in the future mostly depends on me”, and (7) “I can do just about anything 

I really set my mind to do”. 

The first five statements (1-5) measure external control, while the last two (6-7) refer to internal 

control. For each statement, respondents indicate their level of agreement or disagreement on 

a scale from 1 (“Strongly disagree”) to 7 (“Strongly agree”). Appendix Figure A1 illustrates 

the distribution of responses for each statement, revealing a strong left skew for the five 

statements measuring external control and a right skew for the two statements assessing internal 

control. To ensure consistency of responses across all seven statements, the responses to the 

first five statements are reverse-coded so that a higher score indicates a greater sense of control. 

Following prior Australian research using the same HILDA data (Cobb-Clark & Schurer 2013; 

Buddelmeyer & Powdthavee 2016; Elkins et al. 2017; Nguyen et al. 2024b), a summary score 

is constructed by aggregating the reverse-coded scores from the first five statements with the 

scores from the last two statements. Thus, the summary score of LoC ranges from 7 to 49, with 

a higher score indicating a greater sense of personal control over life outcomes, and vice-versa. 

Furthermore, to facilitate interpretation of the results, this LoC summary score is standardized 

to have a mean of zero and a standard deviation of one (Nguyen et al. 2024b).2 A higher score 

on this standardized LoC measure still indicates a greater sense of control over life. In the 

current release 23 of HILDA, the LoC measure is only available in Waves 3, 4, 7, 11, 15, 19 

and 23. 

2.4. Sample 

 
2 Because we will use different samples throughout this paper, for comparability purposes, the summary score of 
LoC is standardized using all valid LoC summary scores of all individuals observed in Release 23 of HILDA. The 
unstandardized sample mean is 37.82, with a raw standard deviation of 8.05. This approach may result in means 
or standard deviations of the standardized scores that are not exactly zero or one, respectively, for certain samples, 
including the main sample. 
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The unit of analysis in this paper is the individual, as both the LoC and natural disaster exposure 

measures are recorded at the individual level. We restrict the sample to survey waves that 

include both LoC and natural disaster exposure measures. Consequently, our sample 

encompasses four HILDA waves: 11, 15, 19 and 23. Additionally, we require individuals to be 

observed at least twice within the study period, as our primary empirical model relies on 

individual fixed effects. By combining these restrictions, the final sample size consists of 

53,778 individual-year observations from 16,687 unique individuals,3 each observed for up to 

nine years. During this period, LoC data were collected in 2011, 2015, 2019, and 2023, 

allowing for an examination of the impact of weather-related home damage on LoC. 

3. Empirical model 

We employ the following econometric model to investigate the effects of weather-related home 

damage on locus of control 𝑌 of individual 𝑖 at time 𝑡: 

𝑌௜௧ ൌ 𝛼ଵ ൅ 𝛽ଵ𝐷௜௧ ൅ 𝑋௜௧𝛾ଵ ൅ 𝛿௜  ൅ 𝜀ଵ௜௧   (1) 

where 𝐷௜௧ is a binary variable capturing whether the individual’s home was damaged or 

destroyed by a weather-related event. 𝑋௜௧ is a set of time-variant explanatory variables. 𝛿௜ 

captures individual time-invariant unobservable factors and 𝜀ଵ௜௧ denotes the usual idiosyncratic 

term. 𝛼ଵ,𝛽ଵ and 𝛾ଵ are parameters to be estimated.  

In equation (1), 𝛽ଵ is the parameter of interest, which captures the effect of home damage on 

the individual’s locus of control. While the above individual fixed effects (FE) regression 

model (1) controls for individual time-invariant unobserved characteristics, such as genetic 

 
3 These individuals come from 15,478 unique households, with an average of approximately 1.7 members per 
household included in the same survey wave during the study period. The small household size, along with the 
fact that HILDA does not identify the household head—who is typically considered the principal income earner 
in household surveys (Summerfield et al. 2024)—precludes a rigorous analysis of potential differential impacts 
based on individuals' roles within their households. Similarly, we do not explore potential inter-correlation in LoC 
among household members due to the absence of a suitable identification strategy to address the endogeneity of 
each household member’s LoC. 
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factors or residential preferences, it cannot deal with issues associated with reverse causality, 

unobservable time-variant factors correlating with both LoC and home damage, and 

measurement errors (Wooldridge 2010). Specifically, it is unclear whether self-reported home 

damage changes the individual’s LoC or individuals with a different sense of control have 

differential tendency to report weather-related home damage. There is also a concern that there 

are some individual unobservable time-variant factors, such as health shocks, correlate with 

both LoC and home damage at the same time. Moreover, while the respondent was asked to 

report any home damage, the magnitude of such a damage, if any, is not reported. These factors, 

in isolation or combination, can lead to bias in the FE estimates (Wooldridge 2010; Nguyen et 

al. 2024a). 

As such, the estimate of 𝛽 from equation (1) may not capture the true causal impact of home 

damage on one’s locus of control. We employ the following auxiliary equation in an 

instrumental variables (IV) approach to investigate whether the individual 𝑖 reports any 

weather-related home damage: 

𝐷௜௧ ൌ 𝛼ଶ ൅ 𝜎𝑍௜௧ ൅ 𝑋௜௧𝛾ଶ ൅ 𝛿௜ ൅ 𝜀ଶ௜௧       (2) 

where 𝑍௜௧ is an instrumental variable, 𝜀ଶ௜௧ is an error term, and 𝛼ଶ,𝜎 and 𝛾ଶ are vectors of 

parameters to be estimated. 𝑋௜௧ and 𝛿௜ are defined as in Equation (1).  

Motivated by prior studies that have successfully used climatic events as instruments for 

potentially endogenous treatment variables in various contexts (Belasen & Polachek 2008; 

Imberman et al. 2012; Baker & Bloom 2013; Barrot & Sauvagnat 2016; Dessaint & Matray 

2017; Bernile et al. 2023),4 we employ a weather-related variable as an instrument for the 

weather-related home damage variable. Specifically, we utilize a time-varying variable 

 
4 For instance, natural disasters have been used in previous research to instrument for temporary shocks to local 
labour markets (Belasen & Polachek 2008), school displacement (Imberman et al. 2012), uncertainty (Baker & 
Bloom 2013), suppliers’ output (Barrot & Sauvagnat 2016), risk perception (Dessaint & Matray 2017), and local 
demand shocks (Bernile et al. 2023). 
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indicating whether an individual was affected by a cyclone in the preceding year as an 

instrument to identify the home damage equation (2). 

This variable is considered a suitable instrument for six main reasons. First, previous Australian 

research by Nguyen and Mitrou (2024b), demonstrates that cyclones, particularly those of 

greater severity and closer proximity to homes, substantially increase self-reported weather-

related home damage. Second, the suitability of this cyclone exposure-based instrument is 

supported by our data, as cyclones are explicitly cited as an example of a natural disaster 

causing home damage in the relevant questionnaire prompt. Third, the instrument is 

theoretically grounded: plausibly exogenous cyclone exposure may lead to home damage 

directly, preceding any potential effects on an individual’s LoC. This likely sequence of impact 

strengthens the validity of our instrumental variable strategy, which assumes that the 

instrument affects individuals’ LoC primarily through the channel of home damage.  

Fourth, this instrument varies over time for the same individuals, facilitating its application in 

individual fixed-effects models, which effectively control for both time-invariant and time-

variant individual unobservable factors. Fifth, similar instruments have been employed in 

previous Australian studies to investigate the causal impact of weather-related home damage 

on mental health (Baryshnikova & Pham 2019) or life satisfaction (Nguyen & Mitrou 2024a).5 

Sixth, we will empirically assess the strength of this instrument by additionally controlling for 

several time-varying variables, including income and health, which may also be affected by 

cyclone exposure. Specifically, as noted above, our identification strategy relies on the key 

 
5 Particularly, Baryshnikova and Pham (2019) utilize a variable representing the occurrence of natural disasters 
within an individual’s state or territory of residence during a given year as an instrument for weather-related home 
damage. In contrast, our instrument, which closely aligns with that employed by Nguyen and Mitrou (2024a), 
offers two key improvements over the approach of Baryshnikova and Pham (2019). First, our instrument is derived 
from exogenously measured meteorological factors, whereas their instrument relies on natural disaster measures 
influenced by human behaviours, potentially introducing bias into disaster estimates (Dell et al. 2014; Carleton & 
Hsiang 2016; Botzen et al. 2019). Second, our data and empirical model enable a more geographically granular 
instrument: ours is constructed at the postcode level (with over 3,000 postcodes in Australia), whereas theirs is 
based on the state level, encompassing only eight states and territories. 
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assumption that cyclone exposure influences individuals’ LoC primarily through home 

damage. While this assumption is highly plausible for the reasons previously outlined, it is 

unlikely to be formally or conclusively tested. To address potential concerns regarding time-

varying unobserved factors that may also be affected by cyclone exposure—particularly those 

likely to be influenced more immediately by the same event than LoC—it is prudent to control 

for as many relevant variables as possible (Wooldridge 2010). 

Following the methodology outlined by Nguyen and Mitrou (2024b, 2025), we determine an 

individual's exposure to cyclones within a given year by considering both the distance to the 

cyclone's eye and its category. This is achieved by linking the HILDA data to a publicly 

available historical cyclone database from the Australian Bureau of Meteorology (BOM). We 

connect these datasets by aligning the cyclone path and timing from the historical cyclone 

database with the individual's residential postcode centroid and interview date from HILDA. 

We utilize the restricted-access version of the HILDA dataset, which requires a specialized 

application process and includes postcode-level data, offering the highest level of geographical 

granularity available (Summerfield et al. 2024). 

In the baseline regressions, we adopt a single cyclone exposure measure indicating whether the 

individual’s residential postcode was affected by any cyclone within a 100 km radius of the 

cyclone's eye in the year prior to the survey, using this as a cyclone exposure-based instrument. 

This approach is selected to maximize the number of individuals identified as affected by such 

cyclones and to establish a strong instrument, ensuring the reliability of our analysis. Appendix 

Table A1, which presents variable descriptions and summary statistics, shows that 760 

individuals, accounting for approximately 1.4% of the sample, were affected by a cyclone 

within 100 km of their residential postcode centroid. This number of affected individuals is 

sufficient to capture the impact of cyclones on weather-related home damage (Wooldridge 
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2010). In robustness checks, we will employ alternative instruments constructed using the 

individual’s exposure to cyclones with varying levels of severity. 

We include a parsimonious number of individual and household-level time-variant variables in 

𝑋௜௧. These variables encompass the individual’s age (and its square), marital status, education, 

the number of household members, and major city residency. To address potential temporal 

differences in outcomes, we separately control for survey year and quarter dummies. Moreover, 

we account for regional differences by including state/territory dummies in both equations. 

Additionally, we control for variations in local socio-economic environments that may 

influence individual behaviors by incorporating regional unemployment rates and the relative 

socio-economic disadvantage index (SEIFA). 

Utilizing multiple observations per individual, we employ an individual fixed-effects (FE) 

regression methodology in both equations. This analytical approach effectively mitigates 

concerns regarding individual heterogeneity, encompassing factors such as residential location 

preferences. The inclusion of individual fixed effects is imperative to account for unobservable 

time-invariant characteristics, a critical consideration given empirical evidence indicating that 

regions prone to natural disasters often exhibit greater levels of socioeconomic disadvantage 

(Dell et al. 2014; Botzen et al. 2019).  

We employ an Ordinary Least Squares (OLS) method to estimate the individual fixed-effects 

equation (1) and conduct a two-stage least squares (2SLS) regression method for the fixed-

effects instrumental variable (FE-IV) model. Since both the outcome and treatment variables 

are measured at the individual level, modelling the impact of home damage on LoC at this level 

is appropriate. Furthermore, we cluster robust standard errors at the individual level to account 

for potential serial correlation issues (Cameron & Miller 2015). 
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The estimates of 𝛽ଵ from these empirical models capture the treatment effects of weather-

related home damage on LoC at the mean. Departing from regression at the mean, our study 

explores quantile treatment effects, enabling an examination of how the treatment effect varies 

across different points of the LoC distribution (Koenker & Bassett 1978; Firpo et al. 2009). By 

analysing treatment effects at various quantiles, we gain insights into the differential impact of 

weather-related home damage on individuals, thereby informing the development of more 

targeted and efficacious policy interventions. 

To estimate the quantile regression equation (1), we employ an unconditional quantile 

regression (UQR) method proposed by Firpo et al. (2009). This selection is preferred over the 

conditional quantile regression method developed by Koenker and Bassett (1978) as it provides 

a means to recover the marginal impact of explanatory variables on the unconditional quantile 

of 𝑌 without necessitating the rank-preserving condition (Firpo 2007; Firpo et al. 2009). 

Furthermore, to estimate the quantile IV regression equations (1) and (2), we utilize a recently 

developed quantile regression for panel data (QRPD) method by Powell (2020, 2022), which 

employs a Generalized Method of Moments (GMM) estimator to estimate treatment effects 

along the distribution of the outcome variable. Powell's method (2022) aligns with our research 

aims, as it accommodates both individual fixed effects and instrumental variable methods 

within a quantile fixed-effects instrumental variable (FE-IV) framework. 

4. Results 

4.1. Descriptive results 

Table 1 unveils stark differences in key characteristics between individuals who reported 

weather-related home damage and those who did not. Specifically, 957 individuals, comprising 

1.78% of the main analytic sample, reported experiencing weather-related home damage and 
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constitute the “treated” group.6 This sample size is sufficient to assess the potential impact of 

home damage on LoC. Compared to individuals who did not report weather-related home 

damage (the “control” group), treated individuals tend to be younger, less educated, and more 

likely to be born in Australia. They also face greater socio-economic challenges, residing in 

areas with lower socio-economic advantage. Notably, individuals who experienced home 

damage are significantly more likely to have been within 100 km of any cyclone's eye. This 

pattern aligns with the global trend that disadvantaged individuals and locations are more likely 

to encounter higher natural disaster risk (Dell et al. 2014; Botzen et al. 2019), highlighting the 

importance of accounting for individual fixed effects when analysing the impacts of natural 

disasters. 

Furthermore, Table 1 reveals a noticeable disparity in LoC between the groups. Treated 

individuals report a significantly lower sense of control compared to their unaffected 

counterparts. This disparity is visually evident in Figure 1 – Panel A, which illustrates the 

distribution of LoC levels, where treated individuals are overrepresented at the lower end of 

the distribution. Similarly, Panel B of Figure 1, which depicts changes in individuals’ LoC 

relative to the previous wave, shows that treated individuals are overrepresented at the negative 

end of the LoC change distribution, suggesting a decline in their perceived control.7 However, 

as discussed in Section 3, this difference may not stem solely from weather-related home 

damage but rather reflect pre-existing factors influencing both home damage and LoC. The 

subsequent analysis directly addresses this critical issue. 

 
6 Among these 957 affected individuals, fewer than 70 reported multiple instances of home damage over the study 
period, with nearly all experiencing two occurrences. The limited number of individuals with multiple instances 
of home damage is insufficient for a robust separate analysis. 
7 Figure 1 displays the distribution of LoC for both the treated and control groups, demonstrating substantial 
variations in this outcome. These variations enable an examination of the differential impacts of home damage on 
individuals at different points of the LoC distribution. Moreover, Panel B of Figure 1, together with the substantial 
within-individual standard deviations in LoC reported in Appendix Table A1, confirms sufficient temporal 
variation in this measure to support the use of an individual FE regression model. It is important to note that, for 
demonstration purposes, we have intentionally used raw summary scores of LoC in this figure. 
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4.2. Regression results 

Table 2 presents estimates of the home damage variable derived from four regression models 

at the mean: a pooled regression without controlling for individual fixed effects (reported in 

Column 1), an individual FE model (Column 2), an IV model without controlling for individual 

fixed effects (Columns 3 and 4), and an individual FE-IV model (Columns 5 and 6). The pooled 

regression results (Column 1) reveal a negative and statistically significant (at the 1% level) 

association between home damage and LoC. This negative correlation suggests that individuals 

whose homes were damaged or destroyed by a weather-related disaster report a lower sense of 

control over their lives. In contrast, the estimate of home damage obtained from the individual 

FE estimator, reported in Column 2 of Table 2, is not statistically significant, suggesting no 

discernible association between home damage and LoC in this specification. 

The estimates from the two IV regression models at the mean unveil two notable findings. First, 

the estimates of the cyclone exposure variable from the first-stage regressions, reported in 

Columns 3 and 5, are positive and highly statistically significant at the 1% level. This suggests 

that individuals affected by any cyclone within 100 km of its eye are more likely to report 

weather-related home damage.8 For instance, consistent with the findings by Nguyen and 

Mitrou (2024b), the estimate from the first stage of the FE-IV regression indicates that 

individuals affected by such a cyclone are about 10 percentage points more likely to report 

home damage (Column 5). Importantly, the first-stage F-statistic, reported at the bottom of 

Columns 3 and 5 in Table 2, surpasses 230 in both IV regressions, robustly rejecting the null 

hypothesis of a weak instrument (Stock & Yogo 2005). Second, the IV estimates of home 

damage are negative and statistically insignificant, regardless of whether individual fixed 

 
8 This estimated effect of cyclone exposure on home damage is highly statistically significant and substantial, 
accounting for about 12% of the sample mean (1.8%) of individuals reporting weather-related home damage. 
However, the estimate remains well below 100%, suggesting that not all individuals affected by a cyclone reported 
home damage. This could be due to the cyclone not being severe enough or because their homes were resilient to 
such an event. Additionally, as noted in the survey question prompt, other weather-related events, such as floods 
or bushfires, may have contributed to the reported home damage. 
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effects are accounted for. Therefore, the estimate derived from our preferred FE-IV model 

indicates a statistically insignificant treatment effect of weather-induced home damage on LoC 

at the mean of the LoC contribution. 

As with the regressions at the mean presented in Table 2, Figure 2 similarly reports graphical 

estimates of the home damage variable across nine deciles from four quantile regression 

models: a pooled model without controlling for individual fixed effects (Panel A), an individual 

FE model (also in Panel A), an IV model without controlling for individual fixed effects (Panel 

B), and an individual FE-IV model (Panel B).9 

The pooled quantile regression estimates (Panel A) are negative and statistically significant at 

the 1% level for quantiles at or below the 60th quantile. Moreover, these estimates are more 

pronounced at the lower end of the distribution. These results suggest that weather-related 

home damage is negatively associated with the LoC for individuals having a weaker sense of 

control, with the negative relationship being more pronounced for those at the lower end of the 

distribution. However, the quantile FE estimates, also reported in Panel A, show no statistically 

significant association between home damage and LoC, as all estimates are statistically 

insignificant across the entire distribution of LoC. 

Panel B in Figure 2 presents the quantile IV regression results. The quantile IV estimates are 

consistently negative and statistically significant at the 1% level across all nine deciles of the 

LoC distribution. However, the magnitude of the effect varies. The estimates are relatively 

small at the upper end of the distribution (70th, 80th and 90th quantiles) but begin to increase 

 
9 In our analysis, we employ the qregpd command developed by Powell (2022) in STATA MP Version 18 to 
conduct estimations using a quantile instrumental variable model, regardless of whether individual fixed effects 
are accounted for. The qregpd command utilizes a GMM estimator, as described by Wooldridge (2010) and Powell 
(2022), for estimating these equations. It is important to note that while qregpd incorporates the instrument, it 
does not provide any test statistic for evaluating the strength of the instrument. 
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in absolute value from the 60th quantile, reaching a maximum negative impact at the 10th 

quantile. 

The quantile FE-IV estimates, also reported in Panel B of Figure 2, exhibit a slightly different 

pattern compared to the quantile IV estimates, particularly for individuals at the median of the 

distribution. Similar to the quantile IV estimates, the FE-IV estimates are consistently negative 

and statistically significant at the 1% level across all nine deciles of the LoC distribution, except 

at the median, where the estimate is statistically significant at the 10% level and smallest in 

absolute magnitude. Furthermore, the quantile FE-IV estimates are relatively small at the upper 

end of the distribution (70th and 90th quantiles) but increase in absolute value from the 60th 

quantile, reaching their maximum negative impact at the 10th quantile. Numerically, weather-

related home damage reduces the LoC of individuals at the upper end of the distribution (70th 

and 90th quantiles) by only 0.08 standard deviations (SD). In contrast, it diminishes the LoC 

of individuals at the 10th quantile by 0.28 SD, which is more than three times the effect 

observed for those at the higher end of the distribution (≈-0.28/-0.08). 

In summary, our preferred quantile FE-IV regression results demonstrate that weather-related 

home damage significantly reduces individuals' LoC. Furthermore, individuals at the lower end 

of the LoC distribution experience the most pronounced decline in their LoC following 

weather-related home damage. 

5. Robustness checks and additional results 

5.1. Robustness checks 

We assess the robustness of our findings through a series of specification tests. We first 

examine the robustness of our findings by employing alternative methods for constructing 

aggregate LoC scores. In the baseline analysis, we follow standard practice in the literature by 

computing the summary LoC score as the simple sum of individual responses to the seven 

survey questions (Cobb-Clark & Schurer 2013; Elkins et al. 2017; Nguyen et al. 2024b). This 
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approach assumes a linear relationship between the individual measures and overall LoC. In 

this section, we consider two alternative aggregation methods. The first computes the LoC 

score by summing the squared values of individual responses, while the second derives the 

score by taking the maximum response across the seven categories.  

The results, presented in Panels B1 and B2 of Appendix Table A3, indicate that our main 

finding—a statistically insignificant effect of home damage on LoC at the mean—remains 

robust under these alternative aggregation methods.10 Additionally, the FE-IV quantile 

regression results in Panel B1, while differing slightly in magnitude from the baseline 

regression results (re-reported in Panel A), suggest that each response category captures a 

distinct aspect of LoC. Nevertheless, they confirm our primary conclusion that the negative 

impact of home damage is more pronounced at the lower end of the LoC distribution. 

We next investigate the sensitivity of our findings using different instruments. Specifically, we 

separately employ two alternative instruments, each constructed from a different cyclone 

exposure measure derived from the baseline instrument. The two cyclone exposure-based 

instruments are: exposure to any cyclone within 40 km of its eye, and exposure to a category 5 

cyclone within 100 km of its eye.11 The results from these sensitivity tests are presented in 

Panels C1 and C2, respectively, and reveal two notable findings. 

First, utilizing exposure to more severe cyclones, as measured by closer proximity to the home 

or higher category, enhances the strength of the instrument, as indicated by a higher reported 

F statistic compared to the baseline. This finding is consistent with the previous Australian 

study by Nguyen and Mitrou (2024b), which observes that the impact of cyclone exposure on 

 
10 As with the original LoC measure, we standardize these two alternative measures. However, we refrain from 
conducting a quantile FE-IV regression for the second measure due to insufficient variation (i.e., the raw scores 
range only from 1 to 7), which limits the feasibility of a robust quantile analysis. 
11 We refrain from utilizing other cyclone exposures as instruments due to their limited capacity to induce home 
damage or the relatively small number of individuals affected by such cyclones during the study period, thus 
rendering them weak instruments. 
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home damage increases with the cyclone category and decreases with the distance from the 

cyclone eye. 

Second, using exposure to more severe cyclones as an instrument tends to amplify the estimated 

effects of weather-related home damage, both in terms of statistical significance and 

magnitude. For example, compared to the baseline estimate at the mean reported in Panel A, 

Column 1, employing exposure to a cyclone within 40 km as an instrument yields an estimated 

effect of home damage that is approximately three times larger in absolute magnitude (i.e., ≈-

0.48/-0.16) and statistically significant at the 10% level (Panel C1 - Column 1). Furthermore, 

this approach results in a more pronounced estimated effect of weather-related home damage 

at the two lowest deciles of the LoC distribution (Panels C1 and C2 - Columns 2 and 3). The 

stronger estimated impacts associated with exposure to more severe cyclones align with the 

expectation that such cyclones cause greater home damage (BOM 2024), thereby exerting a 

more substantial influence on LoC, particularly among individuals at the lower end of the LoC 

distribution.  

We next exclude certain time-variant variables, such as education, marital status, household 

size, and whether the individual lived in a major city, which may be concurrently affected by 

the cyclone exposure-based instrument, from the regression. The results, presented in Panel 1 

of Appendix Table A3, indicate that weather-related home damage now has a significantly 

stronger impact on LoC, particularly for individuals at the median or lower quantiles of the 

distribution, than previously observed in the baseline regressions. For example, for individuals 

at the 10th quantile, weather-related home damage now reduces their LoC by 0.55 SD, which 

is about 2 times greater than the baseline estimate of 0.28 SD. However, consistent with the 

baseline results, this robustness check confirms that individuals at the lowest quantiles of the 

LoC distribution exhibit the most significant reduction in their LoC. 
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Conversely, we separately and additionally control for each of several time-variant variables 

that may be concurrently correlated with natural disaster-related home damage in the regression 

(Baryshnikova & Pham 2019; Johar et al. 2022). Specifically, we first control individually for 

each of four income-related variables: equivalised household disposable income, individual 

regular market income, non-wage irregular income, and Australian Government non-income 

support payments.12 The results of these analyses are reported in Panels D2 to D5 of Appendix 

Table A3. These findings indicate that the inclusion of these income-related controls does not 

alter our main result regarding the disproportionately pronounced diminishing effect of 

weather-related home damage on individuals at the lower end of the LoC distribution. Notably, 

the inclusion of the first three income-related variables yields an even more pronounced 

estimated effect for individuals at or below the median of the LoC distribution (see Panels D2 

to D4). The robustness of our main finding to the inclusion of these controls is consistent with 

the statistically insignificant association between weather-related home damage and financial 

outcomes reported by Johar et al. (2022). 

Similarly, including general health, as measured by the Short Form (SF)-36 general health 

summary score, as a control in the regression slightly decreases the absolute magnitude of the 

estimates across nearly all points of the LoC distribution (i.e., the estimates become less 

negative, as shown in Panel D6). However, this adjustment reaffirms the key finding that the 

impact of home damage is more pronounced among individuals at the lower end of the LoC 

distribution. Overall, these robustness checks address the concern that unobservable, time-

variant individual factors may be correlated with both LoC and home damage, thereby further 

supporting the validity of our key assumption that cyclone exposure affects LoC primarily 

through the home damage channel. 

 
12 All income-related variables are reported by financial year, denominated in thousands of dollars, and adjusted 
for inflation using the Consumer Price Index (CPI), with 2010 as the base year. 
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5.2. Profiling the compliers 

This study employs an IV approach to examine the causal impact, meaning the IV estimates in 

this paper measure the local average treatment effect (LATE) of weather-related home damage 

on an individual’s LoC (Imbens & Angrist 1994). Specifically, the LATE applies to individuals 

whose homes were damaged due to cyclone exposure. Understanding the characteristics of 

compliers is therefore valuable. To investigate this, we apply the method proposed by Marbach 

& Hangartner (2020) to compare the characteristics of compliers and noncompliers.13 Figure 3 

presents the variable means for the full estimation sample, as well as the sample shares and 

variable means for compliers, never-takers, and always-takers across five selected socio-

demographic variables. Approximately 11% of individuals in our estimation sample are 

compliers, 87% are always-takers, and 2% are never-takers. Compared to always-takers and 

never-takers, compliers tend to come from higher socio-economic backgrounds, as evidenced 

by their greater likelihood of being older, having higher qualifications, and residing in owned 

homes or higher-income households. 

The findings from our IV approach, while primarily applicable to individuals who explicitly 

reported home damage due to cyclone exposure, have potentially significant implications given 

the global prevalence of cyclones and the increasing risks associated with their escalating 

intensity (Emanuel 2005; Webster et al. 2005; Hsiang & Jina 2014).14 Furthermore, our 

findings contribute novel evidence on the broader impact of cyclones, particularly their role in 

 
13 As detailed in Section 6, for time-variant variables (excluding individual age), subgroup identification is based 
on their first appearance in the sample. This approach mitigates concerns that cyclone exposure may influence 
these variables. 
14 Similar to other Australian and international studies examining the causal impacts of cyclone exposure (Currie 
& Rossin-Slater 2013; Franklin & Labonne 2019; Groen et al. 2020; Deryugina & Marx 2021; Nguyen & Mitrou 
2025), this study identifies cyclone exposure based on maximum wind speed. While this approach aligns with 
data availability constraints, it does not distinguish the effects of cyclones from those of co-occurring hazards, 
such as torrential rain, flooding, and storm surges. This limitation arises because, although this study utilizes the 
most detailed geographic identifier available in HILDA, the dataset lacks the spatial precision required for a 
rigorous evaluation of other natural disasters. Conducting such an analysis would necessitate more granular spatial 
data, such as geocoded household locations. Consequently, a comprehensive assessment of the distinct impacts 
of these hazards remains a direction for future research. 
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diminishing individuals’ sense of control over their life outcomes (Carleton & Hsiang 2016; 

Botzen et al. 2019; Young & Hsiang 2024). This insight is particularly significant, as most 

prior studies have treated LoC as a fixed trait, while an expanding body of evidence highlights 

the role of internal LoC in fostering positive socio-economic outcomes (Nguyen et al. 2024b). 

5.3. Additional results 

This subsection provides additional results on the impacts of cyclone exposure on individuals’ 

LoC. Following the methodology outlined by Nguyen and Mitrou (2025), we investigate the 

effects of cyclone exposure by incorporating a variable describing the individual’s exposure to 

local cyclones as an additional explanatory variable in an individual fixed effects model similar 

to Equation (1). Specifically, we use this cyclone exposure variable in place of the weather-

related home damage variable in Equation (1), while other explanatory variables remain the 

same as previously described in Section 3. For brevity and demonstration purposes, we 

separately employ one of four cyclone exposure measures, each identified by (i) the distance 

from the individual’s residing postcode centroid to the cyclone eye (i.e., 40 km or 100 km) and 

(ii) the cyclone category (i.e., any category and category 5 only). Similar to the analysis of 

weather-related home damage, we employ an individual fixed effects regression model to 

explore the effects of cyclone exposure on LoC both at the mean and along the distribution of 

LoC. This section utilizes a larger sample than previously used, as we only need to restrict the 

sample to HILDA survey waves with valid LoC measures (recall that previously we restricted 

the sample to survey waves with both home damage and LoC measures available). 

The results from this experiment, presented in Appendix Table A4, show limited evidence that 

exposure to cyclones substantially influences individuals’ LoC. This holds for both regressions 

at the mean and across the LoC distribution, as the estimated effects of cyclone exposure 
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measures, while negative in most cases, are not statistically significant.15 However, one notable 

exception is observed: exposure to a cyclone within 40 km of its eye significantly reduces LoC 

for individuals at the 80th quantile of the LoC distribution by 0.16 SD, with statistical 

significance at the 5% level (Panel A, Column 8).  

The widespread statistically insignificant impact of cyclone exposure, compared with the 

widespread statistically significant impact of weather-related home damage, suggests that 

while LoC is resilient to cyclone exposure, only cyclones that damage or destroy homes 

diminish individuals' perception of control over their life outcomes. Moreover, as discussed 

above, the absence of a statistically significant effect of "indirect" cyclone exposure, in contrast 

to the highly significant impact identified using the quantile FE-IV estimator, may be attributed 

to the instrumental variable approach capturing only the effect among treated individuals—

those who reported home damage due to cyclone exposure (Imbens & Angrist 1994). In this 

regard, our findings are consistent with Nguyen and Mitrou (2024a), who demonstrated that 

weather-related home damage has a greater negative impact on life satisfaction than cyclone 

exposure alone. 

6. Heterogeneity 

To explore potential channels through which home damage affects LoC and to identify 

vulnerable sub-populations, we employ a quantile FE-IV regression model16 to estimate the 

 
15 As demonstrated in robustness section 5.1, to address the concern regarding the potential confounding effects 
of other time-variant variables that may be concurrently correlated with both cyclone exposure and LoC, we have 
conducted additional experiments by separately controlling for individual income and health variables in the 
individual FE regression model. The unreported results show minimal sensitivity in our findings. Furthermore, as 
presented in heterogeneity section 6, we have conducted separate FE regressions for two income subgroups (lower 
income vs. higher income households, defined relative to the median) to explore the potential mediating or 
exaggerating role of income on LoC. However, our data do not provide evidence to support such a role, as the 
estimates for both subgroups are mostly statistically insignificant. 
16 We conducted a similar heterogeneous analysis of the impact of home damage on the mean locus of control by 
applying the FE-IV model to various subgroups, as described below. Consistent with the population estimates 
from the FE-IV regression at the mean, all subgroup estimates of home damage are negative and statistically 
insignificant (see Appendix Table A5 – Column 1). Moreover, the results in Appendix Table A5 confirm the 
empirical strength of the instrument, as the F-statistic from the first-stage regression exceeds 70 in all cases. 
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effects of home damage separately for two distinct groups defined by four individual or 

household characteristics. These characteristics include gender (male vs. female), age group 

(young vs. old, categorized relative to the median population age), homeownership status 

(renters vs. homeowners) and income group (lower income vs. higher income households, 

defined relative to the median). These characteristics were selected based on prior studies 

suggesting that changes in LoC in response to major life events may vary by gender or age 

(Cobb-Clark & Schurer 2013; Elkins et al. 2017; Nguyen et al. 2024b) and that the differential 

impact and coping strategies related to natural disasters depend on preexisting financial 

resources (Hsiang & Narita 2012; Dell et al. 2014; Botzen et al. 2019; Ferreira 2024).17 To 

mitigate concerns regarding the influence of weather-related home damage on sub-population 

classification, individuals are categorized based on the values of time-variant variables 

(excluding age) observed at their first appearance in the sample. 

Figure 4 presents the heterogeneous results across four panels, with each panel displaying 

subgroup estimates based on one of the characteristics described above. Panel A of Figure 4 

presents subgroup estimates by gender, revealing minimal gender differences in the impact of 

weather-related home damage on LoC. Consistent with the pooled regression results, the 

estimated effects are more pronounced for individuals at the lower end of the LoC distribution. 

However, these effects do not differ noticeably between males and females at any point along 

the LoC distribution. 

Panel B of Figure 4 represents subgroup estimates by age, indicating that natural disaster-

induced home damage disproportionately reduces LoC of older individuals compared to 

younger ones. Specifically, the estimated effects of home damage are more negative or 

statistically significant for older individuals across all deciles, except at the 20th quantile, 

 
17 We do not conduct a heterogeneous analysis based on other characteristics due to the lack of a strong theoretical 
or empirical rationale or insufficient statistical power resulting from a small sample size or a weak instrument. 
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where the estimates are similar between the two groups, and at the 90th quantile, where the 

effect is more negative for the younger group. The difference between the two age groups is 

statistically significant, at least at the 5% level, across the 10th, 30th, 40th, 60th and 70th 

quantiles, as evidenced by non-overlapping 95% confidence intervals. Moreover, consistent 

with the results for the entire population, subgroup estimates also reveal that home damage has 

a more pronounced impact on individuals positioned at the lower end of the spectrum, 

particularly among older individuals. 

Subgroup estimates by homeownership status, reported in Panel C, suggest that weather-related 

home damage disproportionately reduces LoC of renters. Specifically, with the exception of 

the 30th quantile, where homeowners are more negatively affected, the estimated effects of 

home damage are more negative and statistically significant for renters at the 20th, 40th, 50th, 

60th, 70th, and 90th quantiles. Moreover, the difference between homeownership groups is 

statistically significant at the 5% level for all quantiles except the 20th and 70th. However, no 

discernible differences are observed between homeowners and renters at the remaining 

quantiles (i.e., 10th and 80th), as the estimates for both groups are largely similar. 

Panel D of Figure 4 illustrates a notable disparity in the impact of home damage on LoC across 

income groups, with this effect varying along the LoC distribution. Specifically, the estimated 

effects of home damage are more negative and statistically significant for lower-income 

individuals across the six lowest deciles, except at the 30th quantile, where the estimates are 

similar between the two groups. Moreover, the difference between income groups is 

statistically significant at the 5% level for the 10th, 40th, and 70th quantiles, as indicated by 

non-overlapping 95% confidence intervals. By contrast, home damage has a more negative and 

statistically significant effect on individuals from higher-income households in the top three 

deciles, with the difference reaching statistical significance at the 90th quantile. However, 

consistent with the pooled regression results, subgroup estimates confirm that home damage 
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has a more pronounced impact on individuals at the lower end of the LoC spectrum, regardless 

of income group. 

Overall, the heterogeneous analysis highlights substantial differences in the impact of weather-

related home damage on LoC across various socio-demographic groups, while finding no 

significant gender heterogeneity. While the extent of this heterogeneity varies along the LoC 

distribution, a key finding is that certain individuals—older adults, renters, and those from 

lower-income households—experience more pronounced negative effects. These groups are 

typically more financially disadvantaged, as suggested by their demographic characteristics. 

Moreover, the mean LoC figures by subpopulation reported in Appendix Table A5 indicate 

that these individuals also have lower LoC scores than their counterparts, suggesting they are 

not only economically disadvantaged but also more psychologically vulnerable. 

These subgroup differences, combined with our main finding that the most severe impact of 

weather-related home damage on LoC occurs among individuals at the lower end of the internal 

LoC distribution, suggest that economically and psychologically vulnerable groups are 

disproportionately affected. In this regard, our findings align with the broader literature, which 

shows that disadvantaged individuals typically suffer greater adverse consequences from 

natural disasters (Dell et al. 2014; Carleton & Hsiang 2016). Collectively, these results 

highlight the need for targeted support policies to enhance resilience and provide assistance to 

these vulnerable populations. 

7. Conclusion 

This study represents the first investigation into the causal impacts of natural disaster-driven 

home damage on individuals’ locus of control. Utilizing longitudinal data from the Household, 

Income and Labour Dynamics in Australia survey, we implemented an individual fixed effects 

instrumental variables (FE-IV) approach. This method leverages time-varying, exogenous 

exposure to local cyclones to effectively address the endogeneity of self-reported weather-
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related home damage. This study unveils new and robust evidence that natural disaster-induced 

home damage substantially reduces individuals' sense of control over their life outcomes. 

However, this significant impact is only observed in the quantile FE-IV regressions, where 

individuals near or below the median of the LoC distribution experience the most pronounced 

negative impact of weather-related home damage. Notably, those at the lowest end of the 

distribution exhibit the greatest decline, with weather-related home damage reducing their LoC 

by 0.28 standard deviations. 

Our heterogeneous analysis further reveals substantial differential impacts of weather-related 

home damage on LoC across various socio-demographic groups. The extent of this 

heterogeneity varies along the LoC distribution, with a general trend indicating more 

pronounced impacts for older individuals, renters, and those from lower-income households. 

The results presented in this study have significant methodological and policy implications. 

Methodologically, our findings highlight the importance of adequately addressing the 

endogeneity of self-reported natural disaster-related home damage when quantifying its 

impacts on locus of control. Specifically, we address this endogeneity by leveraging time-

varying, exogenous exposure to local cyclones in our FE-IV approach. This study also 

demonstrates the benefits of examining the effects of natural disaster exposure beyond the 

mean of the LoC distribution. Specifically, our results show that focusing solely on the mean 

impact would inadvertently fail to detect the severe consequences of natural disaster exposure 

on individuals’ LoC and miss crucial insights into the differential impacts across different 

points of the distribution. 

Our novel finding of the negative and substantial impacts of weather-related home damage on 

internal LoC indicates that LoC can be altered under specific conditions. This new evidence on 

the malleability of LoC is particularly important, as most prior studies globally have treated 

LoC as a fixed trait. From a policy perspective, this insight provides valuable guidance for the 
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development of effective policies and interventions aimed at supporting affected populations, 

particularly those who are economically disadvantaged and more psychologically vulnerable 

at baseline, as demonstrated in this paper to be disproportionately impacted by natural disasters. 

Such policies are critical, especially considering the well-established role of internal LoC in 

promoting positive socio-economic outcomes and the growing frequency of extreme weather 

events. 

This study provides robust and novel evidence on the causal impact of weather-related home 

damage on locus of control. However, several limitations must be acknowledged, which also 

present opportunities for future research. First, the constraints of the available data and 

identification strategy prevent a robust analysis of the effects of other natural disasters, such as 

floods or storm surges. Future research utilizing alternative datasets or methodologies could 

expand the pool of compliers in an instrumental variable approach and deepen our 

understanding of how these events influence locus of control. Second, examining the broader 

impact of cyclones on other life outcomes—using the identification strategy applied in this 

study—would offer deeper insights into the social and economic consequences of natural 

disasters. Such research could inform the development of more effective policies aimed at 

mitigating the adverse effects of extreme weather events.   
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Table 1: Sample means of key variables by weather-related home damage status  
With home 

damage 
Without home 

damage 
With - Without 

(1) - (2) 

  (1) (2) (3) 
Age (years) 45.727 47.046 -1.319** 
Male 0.481 0.464 0.017 
ESB immigrant 0.076 0.095 -0.019** 
NESB immigrant 0.086 0.113 -0.027*** 
Married/De facto (a) 0.675 0.658 0.017 

Separated/divorced/widowed (a) 0.131 0.133 -0.002 

Year 12 (a) 0.139 0.149 -0.010 

Vocational or Training qualification (a) 0.433 0.391 0.041*** 

Bachelor or higher (a) 0.163 0.220 -0.057*** 

Household size 2.835 2.821 0.014 
Major city (a) 5.044 4.903 0.142*** 

Local area unemployment rate (%) 4.925 5.549 -0.624*** 
Local area SEIFA index 0.471 0.624 -0.153*** 
Exposure to any cyclone within 100 km (a) 0.096 0.013 0.083*** 

Locus of control (standardized) -0.123 0.031 -0.154*** 
Observations 957 52,821   

Notes: Figures are sample means. The 'treated group' consists of individuals with self-reported weather-related 
home damage in the past year, while the 'control group' includes those with no reported damage. (a) indicates a 
binary variable. Tests are performed on the significance of the difference between the sample mean for treated 
and control groups. The symbol *denotes significance at the 10% level, ** at the 5% level, and *** at the 1% 
level. 
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Table 2: Estimates of weather-related home damage on locus of control at the mean 
Specification: Pooled FE IV FE-IV 

First 
stage 

Second 
stage 

First 
stage 

Second 
stage 

  (1) (2) (3) (4) (5) (6) 
Home damage -0.15*** -0.01 

 
-0.66 

 
-0.16  

[0.04] [0.03] 
 

[0.42] 
 

[0.36] 
Age -0.01*** -0.01*** -0.01 -0.01*** -0.59*** -0.01***  

[0.00] [0.00] [0.02] [0.00] [0.08] [0.00] 
Age squared 0.00** 0.00** -0.00 0.00** 0.00*** 0.00**  

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
Male 0.03*** 

 
0.12 0.03*** 

  
 

[0.01] 
 

[0.12] [0.01] 
  

Born overseas in ESB country (a) 0.05** 
 

-0.35* 0.05** 
  

[0.02] 
 

[0.19] [0.02] 
  

Born overseas in NESB country (a) -0.20*** 
 

-0.14 -0.20*** 
  

[0.02] 
 

[0.18] [0.02] 
  

Married (b) 0.22*** 0.05*** 0.30 0.22*** 0.97*** 0.05***  
[0.02] [0.02] [0.19] [0.02] [0.37] [0.02] 

Separated (b) 0.04 -0.01 0.25 0.04 0.47 -0.01  
[0.03] [0.03] [0.25] [0.03] [0.57] [0.03] 

Year 12 (c) 0.10*** 0.06** -0.20 0.09*** -0.33 0.06**  
[0.02] [0.03] [0.21] [0.02] [0.46] [0.03] 

Vocational or training qualification (c) 0.13*** 0.08** 0.14 0.13*** -0.49 0.08** 

[0.02] [0.03] [0.17] [0.02] [0.62] [0.03] 
Bachelor degree or higher (c) 0.21*** 0.07** -0.19 0.21*** -0.31 0.07** 

[0.02] [0.03] [0.19] [0.02] [0.64] [0.03] 
Household size -0.02*** -0.03*** -0.04 -0.02*** -0.01 -0.03***  

[0.00] [0.00] [0.05] [0.00] [0.08] [0.00] 
Local area unemployment rate 0.00 -0.00 0.14 0.00 0.16 -0.00  

[0.01] [0.01] [0.10] [0.01] [0.11] [0.01] 
Local area SEIFA index 0.04*** 0.00 -0.05** 0.04*** -0.03 0.00  

[0.00] [0.00] [0.02] [0.00] [0.06] [0.00] 
Major city -0.06*** -0.04* -0.65*** -0.07*** -0.96** -0.04*  

[0.01] [0.02] [0.15] [0.02] [0.39] [0.02] 
Exposure to any cyclone within 100 km 

  
10.44*** 

 
9.98*** 

 
  

[1.29] 
 

[1.32] 
 

Observations 53,778 
Number of unique individuals 16,687 
Mean of dep. variable 0.03 
F test statistic     384.83   236.21   

Notes: “Pooled” (“FE”) results are from the regression (1) without (with) controlling for individual FEs. “IV” 
(“FE-IV”) results from instrumental variable regressions (i.e., equations (1) and (2)) without (with) controlling 
for individual FEs. “F test statistic” denotes the F statistic for the strength of the excluded instrument in the first 
stage regression. (a), (b) and (c) indicates “Australia born”, “Single” and “Under year 12 qualification” as the 
comparison group, respectively. Other explanatory variables include local area socio-economic variables, 
state/territory dummies, wave dummies, and survey quarter dummies. Robust standard errors clustered at the 
individual level in parentheses. Results from the first stage regressions are multiplied by 100 for aesthetic 
purposes. The symbol * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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Figure 1: Histogram of locus of control by weather-related home damage status 

 
Notes: The “treated” group consists of individuals with self-reported weather-related home damage in the past 
year, while the “control” group includes those without home damage. Sample size: 53,778 observations in the final 
sample.
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Figure 2: Estimates of weather-related home damage on locus of control along the distribution - Results from various estimators 

Notes: Results (estimates and their corresponding 95% confidence intervals) reported in each quantile and panel are from a separate regression. “Pooled OLS” and “Fixed 
Effect” estimators refer to the quintile regression Equation (1) without and with controlling for individual fixed effects, respectively. “Instrumental Variables” and “Fixed Effect 
Instrumental Variables” estimators refer to the quantile regression of Equations (1) and (2) without and with controlling for individual fixed effects, respectively. Instrument: 
Exposure to any cyclone within 100 km. Other explanatory variables include age (and its square), marital status, education, household size, urban, local area socio-economic 
variables, state/territory dummies, wave dummies, and survey quarter dummies. Gender and migration status variables are also included in pooled OLS and IV regressions. 
Standard errors in parentheses are obtained from bootstrapping (200 iterations) for Panel A and adjusted for clustering at individual level in Panel B. Results are reported in 
Appendix Table A2. 
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Figure 3: Descriptive statistics for the complier and noncomplier subpopulations 

 
Notes: This figure reports descriptive statistics (mean and 95% bootstrap confidence intervals, from 1000 replications) 
for the complier and noncomplier subpopulations, using an estimator developed by Marbach & Hangartner (2020). 
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Figure 4: Heterogenous impacts of weather-related home damage on locus of control along the distribution 

 
Notes: Results (estimates and their corresponding 95% confidence intervals) reported in each subgroup and quantile are from a separate quantile FE-IV regression. Instrument: 
Exposure to any cyclone within 100 km. Other explanatory variables include age (and its square), marital status, education, household size, state/territory dummies, year 
dummies, and survey quarter dummies. Detailed regression results are reported in Appendix Table A5.



40 
 

Online Appendix 

for refereeing purposes and to be published online 



41 
 

Appendix Table A1: Variable description and summary statistics 
Variable Description Mean Min Max Standard deviations 

          Overall Between Within 
Age The respondent's age at the survey time (years) 47.023 15.00 100.00 18.49 18.58 4.02 

Male Dummy variable: = 1 if the individual is male and zero otherwise 0.464 0.00 1.00 0.50 0.50 0.00 

Born overseas in ESB country Dummy variable: = 1 if the individual was born overseas in an English-Speaking 
Background (ESB) country and zero otherwise 

0.095 0.00 1.00 0.29 0.29 0.00 

Born overseas in NESB country Dummy variable: = 1 if the individual was born overseas in a Non-English-Speaking 
Background (NESB) country and zero otherwise 

0.112 0.00 1.00 0.32 0.32 0.00 

Married/De facto Dummy variable: = 1 if the individual is married or in de factor relationship at the survey 
time and zero otherwise 

0.659 0.00 1.00 0.47 0.43 0.22 

Separated/divorced/widowed Dummy variable: = 1 if the individual is separated/divorced/widowed at the survey time 
and zero otherwise 

0.133 0.00 1.00 0.34 0.31 0.14 

Year 12 Dummy: = 1 if the individual completes Year 12 and zero otherwise 0.149 0.00 1.00 0.36 0.32 0.16 

Vocational or training qualification Dummy: = 1 if the individual has a vocational or training qualification and zero 
otherwise 

0.392 0.00 1.00 0.49 0.46 0.14 

Bachelor degree or higher Dummy: = 1 if the individual has a bachelor degree or higher and zero otherwise 0.219 0.00 1.00 0.41 0.39 0.13 

Household size Number of household members 2.821 1.00 13.00 1.43 1.24 0.74 

Local area unemployment rate Yearly unemployment rate at the individual's residing local government area (%) 4.905 2.70 7.90 1.06 0.58 0.91 

Local area SEIFA decile Socio-Economic Indexes for Areas (SEIFA) decile at the individual's residing local 
government area 

5.538 1.00 10.00 2.85 2.63 1.13 

Major city Dummy variable: = 1 if the individual lives in a major city and zero otherwise 0.621 0.00 1.00 0.49 0.46 0.17 

Exposure to any cyclone within 100 
km 

Dummy variable: = 1 if an individual's residential postcode was within 100 km of any 
cyclone eye last year and zero otherwise 

0.014 0.00 1.00 0.12 0.08 0.09 

Locus of control Summary scores from responses to seven questions asking about the individual's locus of 
control, standardized, with a higher score indicating a greater sense of control over life 
outcomes  

0.028 -3.82 1.42 1.01 0.84 0.57 

Home damage Dummy variable: = 1 if home destroyed or damaged due to a weather-related disaster last 
year and zero otherwise 

0.018 0.00 1.00 0.13 0.08 0.11 

Notes: Statistics are calculated from the baseline sample of 53,778 individual-wave observations from 16,687 unique individuals. 
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Appendix Table A2: Estimates of weather-related home damage on locus of control along the distribution - Results from various estimators  
Q10th Q20th Q30th Q40th Q50th Q60th Q70th Q80th Q90th 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Panel A: Pooled OLS regression model (Observations: 53,778, Individuals: 16,687) 
Home damage -0.23*** -0.21*** -0.25*** -0.15*** -0.14*** -0.08** -0.06 -0.09** -0.04 

 [0.06] [0.06] [0.06] [0.05] [0.05] [0.04] [0.04] [0.04] [0.03] 
Panel B: Fixed effects regression model (Observations: 53,778, Individuals: 16,687) 
Home damage -0.00 0.02 -0.03 -0.02 -0.01 0.01 0.03 0.01 -0.01 

 [0.06] [0.06] [0.06] [0.05] [0.04] [0.04] [0.03] [0.04] [0.03] 
Panel C: Instrumental variable regression model (Observations: 53,778, Individuals: 16,687) 
Home damage -0.31*** -0.17*** -0.21*** -0.21*** -0.16*** -0.08*** -0.06*** -0.05*** -0.06*** 

 [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] 
Panel D: Fixed effects Instrumental variable regression model (Observations: 53,778, Individuals: 16,687) 
Home damage -0.28*** -0.15*** -0.23*** -0.23*** -0.03* -0.11*** -0.08*** -0.11*** -0.08*** 

  [0.03] [0.01] [0.03] [0.00] [0.02] [0.02] [0.01] [0.03] [0.02] 

Notes: Results reported in each column and panel are from a separate regression. “Pooled OLS” and “Fixed Effect” estimators refer to the quintile regression Equation (1) 
without and with controlling for individual fixed effects, respectively. “Instrumental Variables” and “Fixed Effect Instrumental Variables” estimators refer to the quantile 
regression of Equations (1) and (2) without and with controlling for individual fixed effects, respectively. Instrument: Exposure to any cyclone within 100 km. “Observations” 
and “Individuals” refer to “Number of observations” and “Number of unique individuals”, respectively. Other explanatory variables include age (and its square), marital status, 
education, household size, urban, local area socio-economic variables, state/territory dummies, wave dummies, and survey quarter dummies. Gender and migration status 
variables are also included in pooled OLS and IV regressions. Standard errors in parentheses are obtained from bootstrapping (200 iterations) for Panel A and B and adjusted 
for clustering at individual level in Panel C and D. The symbol * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Appendix Table A3: Robustness checks 
FE-IV regression at: Mean Q10th Q20th Q30th Q40th Q50th Q60th Q70th Q80th Q90th 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Panel A: Baseline (Observations: 53,778; Individuals: 16,687; Mean: 0.03; F statistic: 236.21) 

Home damage -0.16 -0.28*** -0.15*** -0.23*** -0.23*** -0.03* -0.11*** -0.08*** -0.11*** -0.08*** 
 

[0.36] [0.03] [0.01] [0.03] [0.00] [0.02] [0.02] [0.01] [0.03] [0.02] 

Panel B1: Different LoC construction: the sum of squared measures from each category (Observations: 53,778; Individuals: 16,687; Mean: 0.02; F statistic: 236.21) 

Home damage -0.10 -0.19*** -0.16*** -0.19*** -0.21*** -0.03 -0.08*** -0.09*** -0.12*** -0.06*** 
 

[0.35] [0.01] [0.01] [0.00] [0.01] [0.05] [0.01] [0.01] [0.03] [0.01] 

Panel B2: Different LoC construction: the max score across the seven categories (Observations: 53,778; Individuals: 16,687; Mean: 0.00; F statistic: 236.21) 

Home damage -0.22   
        

 
[0.39]   

        

Panel C1: Different instrument: any cyclone within 40 km (Observations: 53,778; Individuals: 16,687; Mean: 0.03; F statistic: 411.31) 

Home damage -0.48* -0.32*** -0.16*** -0.20*** -0.22*** -0.30*** -0.10*** -0.08*** -0.08*** -0.09*** 
 

[0.26] [0.05] [0.00] [0.00] [0.00] [0.08] [0.01] [0.03] [0.01] [0.03] 

Panel C2: Different instrument: any category 5 cyclone within 100 km (Observations: 53,778; Individuals: 16,687; Mean: 0.03; F statistic: 326.61) 

Home damage -0.37 -0.29*** -0.16*** -0.21*** -0.24*** -0.09*** -0.09*** -0.04*** -0.08*** -0.05*** 
 

[0.33] [0.01] [0.00] [0.01] [0.02] [0.01] [0.00] [0.01] [0.01] [0.01] 

Panel D1: Excluding some time variant variables (Observations: 53,778; Individuals: 16,687; Mean: 0.03; F statistic: 237.26) 

Home damage -0.12 -0.55*** -0.28*** -0.65*** -0.53*** -0.38*** -0.32*** -0.09*** -0.06 -0.19*** 
 

[0.36] [0.07] [0.09] [0.11] [0.02] [0.05] [0.06] [0.02] [0.05] [0.02] 

Panel D2: Including equivalised household disposable income (Observations: 53,544; Individuals: 16,629; Mean: 0.03; F statistic: 235.49) 

Home damage -0.19 -0.32*** -0.33*** -0.29*** -0.32** -0.19*** -0.12*** -0.17*** -0.16** -0.07*** 
 

[0.36] [0.02] [0.12] [0.03] [0.14] [0.02] [0.02] [0.04] [0.07] [0.01] 

Panel D3: Including individual regular market income (Observations: 53,544; Individuals: 16,629; Mean: 0.03; F statistic: 235.39) 

Home damage -0.18 -0.50*** -0.19*** -0.30*** -0.26*** -0.21*** -0.07*** -0.06*** -0.09*** -0.07*** 
 

[0.36] [0.06] [0.01] [0.03] [0.01] [0.02] [0.00] [0.01] [0.01] [0.01] 

Panel D4: Including individual non-wage irregular income (Observations: 53,431; Individuals: 16,610; Mean: 0.03; F statistic: 236.25) 

Home damage -0.18 -0.53*** -0.19*** -0.25*** -0.34*** -0.16*** -0.14*** -0.11*** -0.13*** -0.08*** 
 

[0.36] [0.13] [0.02] [0.02] [0.07] [0.00] [0.03] [0.03] [0.04] [0.02] 
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FE-IV regression at: Mean Q10th Q20th Q30th Q40th Q50th Q60th Q70th Q80th Q90th 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Panel D5: Including individual Australian Government non-income support payments (Observations: 53,499; Individuals: 16,624; Mean: 0.03; F statistic: 236.32) 

Home damage -0.15 -0.28*** -0.19*** -0.28*** -0.19*** -0.17*** -0.14*** -0.11*** -0.10*** -0.06*** 
 

[0.36] [0.03] [0.01] [0.06] [0.01] [0.02] [0.01] [0.01] [0.01] [0.00] 

Panel D6: Including general health summary (Observations: 53,285; Individuals: 16,595; Mean: 0.03; F statistic: 236.50) 

Home damage -0.23 -0.17*** -0.12*** -0.15*** -0.12*** -0.12*** -0.06*** -0.09*** -0.15** -0.04*** 

  [0.35] [0.01] [0.01] [0.00] [0.02] [0.04] [0.01] [0.03] [0.07] [0.00] 

Notes: Estimates for each column and panel is from a separate FE-IV regression. Unless stated otherwise, the instrument is exposure to any cyclone within 100 km. “F statistic” 
denotes the F statistic for the strength of the excluded instrument in the first stage regression from a two-stage least squares (2SLS) regression at the mean. Unless indicated 
otherwise, other variables include age (and its square), marital status, education, household size, state/territory dummies, year dummies, and survey quarter dummies. Robust 
standard errors clustered at the individual level in parentheses. The symbol * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Appendix Table A4: Impact of cyclone exposures on locus of control at the mean and along the distribution 
FE regression at: Mean Q10th Q20th Q30th Q40th Q50th Q60th Q70th Q80th Q90th 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Panel A: Exposure to any cyclone within 40 km (Observations: 94,422; Individuals: 27,699; % affected: 0.36)   
Cyclone exposure -0.04 -0.04 -0.04 -0.08 -0.06 -0.07 -0.00 -0.06 -0.16** -0.01  

[0.04] [0.08] [0.08] [0.08] [0.08] [0.08] [0.07] [0.07] [0.07] [0.04] 
Panel B: Exposure to any category 5 cyclone within 40 km (Observations: 94,422; Individuals: 27,699; % affected: 0.10)   
Cyclone exposure -0.05 -0.05 -0.03 -0.16 -0.13 -0.14 -0.06 0.01 -0.10 0.04  

[0.08] [0.18] [0.18] [0.15] [0.13] [0.14] [0.11] [0.10] [0.14] [0.07] 
Panel C: Exposure to any cyclone within 100 km (Observations: 94,422; Individuals: 27,699; % affected: 1.11)   
Cyclone exposure 0.00 -0.01 0.04 -0.01 -0.01 -0.05 0.00 0.02 -0.04 0.00  

[0.03] [0.06] [0.06] [0.05] [0.05] [0.05] [0.04] [0.04] [0.05] [0.03] 
Panel D: Exposure to any category 5 cyclone within 100 km (Observations: 94,422; Individuals: 27,699; % affected: 0.34)   
Cyclone exposure -0.04 -0.17 -0.03 -0.04 -0.02 -0.07 -0.02 0.04 -0.09 -0.02 
  [0.05] [0.11] [0.10] [0.09] [0.08] [0.08] [0.06] [0.06] [0.08] [0.04] 

Notes: Estimates for each column and panel is from a separate individual FE regression. Sample: 79,796 observations from 25,683 unique persons. Other variables include age 
(and its square), marital status, education, household size, state/territory dummies, year dummies, and survey quarter dummies. Robust standard errors clustered at the individual 
level in parentheses. The symbol * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Appendix Table A5: Heterogenous impact of weather-related home damage on locus of control at the mean and along the distribution 
FE-IV regression at: Mean Q10th Q20th Q30th Q40th Q50th Q60th Q70th Q80th Q90th 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Panel A1: Females (Observations: 28,827; Individuals: 8,855; Mean: -0.01, F test statistic: 114.13) 

Home damage -0.06 -0.46*** -0.14*** -0.17*** -0.18*** -0.17*** -0.10*** -0.04 -0.08** -0.03  
[0.53] [0.11] [0.01] [0.03] [0.01] [0.04] [0.00] [0.05] [0.03] [0.02] 

Panel A2: Males (Observations: 24,951; Individuals: 7,832; Mean: 0.04, F test statistic: 123.07) 
Home damage -0.25 -0.29*** -0.17*** -0.18*** -0.19*** -0.14*** -0.07*** -0.10*** -0.12*** -0.06***  

[0.48] [0.03] [0.06] [0.01] [0.01] [0.01] [0.02] [0.02] [0.03] [0.02] 
Panel B1: Young (Observations: 26,621; Individuals: 9,266; Mean: 0.07, F test statistic: 73.13) 

Home damage -0.13 -0.20*** -0.18*** -0.06 -0.04*** -0.16** -0.06*** 0.09*** -0.11*** -0.14***  
[0.61] [0.02] [0.03] [0.05] [0.01] [0.08] [0.01] [0.01] [0.03] [0.04] 

Panel B2: Old (Observations: 24,874; Individuals: 7,797; Mean: -0.01, F test statistic: 137.37) 
Home damage -0.12 -0.36*** -0.13*** -0.23*** -0.24*** -0.39*** -0.16*** -0.01 -0.22** 0.09***  

[0.50] [0.05] [0.01] [0.02] [0.01] [0.08] [0.02] [0.03] [0.09] [0.02] 
Panel C1: Renters (Observations: 16,614; Individuals: 5,375; Mean: -0.10, F test statistic: 70.42) 

Home damage -0.18 -0.20*** -0.33*** -0.02 -0.20*** -0.20*** -0.23*** -0.24** -0.01 -0.12***  
[0.62] [0.02] [0.12] [0.03] [0.01] [0.04] [0.02] [0.10] [0.02] [0.01] 

Panel C2: Homeowners (Observations: 37,164; Individuals: 11,312; Mean: 0.08, F test statistic: 167.98) 

Home damage -0.19 -0.27*** -0.13*** -0.23*** -0.09** -0.03** -0.07** -0.07*** 0.07 0.06**  
[0.44] [0.02] [0.01] [0.02] [0.04] [0.01] [0.03] [0.01] [0.05] [0.02] 

Panel D1: Poorer household (Observations: 27,050; Individuals: 8,511; Mean: -0.12, F test statistic: 121.84) 

Home damage -0.25 -0.31*** -0.18*** -0.18*** -0.34*** -0.24*** -0.14*** -0.02** -0.04 0.02**  
[0.52] [0.02] [0.06] [0.02] [0.03] [0.03] [0.01] [0.01] [0.03] [0.01] 

Panel D2: Richer household (Observations: 26,728; Individuals: 8,176; Mean: 0.18, F test statistic: 113.77) 

Home damage -0.08 -0.18*** -0.03 -0.18*** -0.15*** -0.09*** -0.06 -0.08*** -0.13*** -0.08*** 
  [0.47] [0.01] [0.03] [0.01] [0.01] [0.01] [0.04] [0.01] [0.04] [0.01] 

Notes: Estimates for each column and panel is from a separate FE-IV regression. Instrument: Exposure to any cyclone within 100 km. Other explanatory variables include age 
(and its square), marital status, education, household size, urban, local area socio-economic variables, state/territory dummies, wave dummies, and survey quarter dummies. 
“Observations”, “Individuals”, “Mean”, and “F test statistic” refer to “Number of observations”, “Number of unique individuals”, “Mean of locus of control for individuals in 
the subgroup”, and “F statistic for the strength of the excluded instrument in the first stage regression at the mean”, respectively. Robust standard errors clustered at the individual 
level in parentheses. The symbol * denotes significance at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Appendix Figure A1: Histogram of responses for each locus of control statement  

Notes: This figure presents the distribution of responses for each locus of control statement, as indicated in the title 
of each subfigure. Respondents rate their level of agreement or disagreement with each statement on a scale from 1 
(“Strongly disagree”) to 7 (“Strongly agree”). Sample size: 53,778 observations in the final sample. 


