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Abstract

We consider a model in which outcomes are bundles of alternatives, each
of size at most a fixed (but arbitrary) number. Each agent’s type is a strict
preference over individual alternatives, which is then lexicographically ex-
tended to induce a strict preference over outcomes. A social choice function
assigns an outcome to each type profile of agents. A social choice function
is said to be locally strategy-proof if no agent can benefit by misreporting her
type to another type that the designer considers plausible. The main depar-
ture from existing literature lies in the asymmetry of type misreports, which
is captured using a directed graph that encodes the designer’s beliefs about
feasible misreports. An environment is said to satisfy Directed-Local-Global
Equivalence (DLGE) property if every locally strategy-proof social choice
function defined on it is, in fact, (globally) strategy-proof. In this paper, we

*The authors would like to thank the audience of BGSE Workshop, University of Bonn for their
helpful comments. Ujjwal Kumar acknowledges that his work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - GZ 2047/1, Projekt-ID 390685813.
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provide a complete characterization of DLGE environments via a property
we refer to as Property Strong DL. Additionally, we derive necessary and suf-
ficient conditions for DLGE under several specific notions of locality, such
as adjacent, k-push-up, k-push-down, and k1-push-up ∪ k2-push-down (some of
which were studied in Altuntaş et al. (2023)) both in the setting where out-
comes are individual alternatives and where any subset of alternatives may
constitute a feasible outcome. Our analysis also extends to single-peaked
domains as well. The main result in Cho and Park (2023) and several main
results in Altuntaş et al. (2023) follow as corollaries of our framework.

JEL CLASSIFICATION: D71

KEYWORDS: Local strategy-proofness, (global) strategy-proofness, directed-
local-global-equivalence, lexicographic preference extension function.
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1. INTRODUCTION

The concept of strategy-proofness in social choice theory stipulates that no agent

should be able to benefit by misrepresenting her preferences. In contrast, local

strategy-proofness imposes a weaker, yet meaningful, requirement: agents cannot

benefit from certain deviations that are of particular relevance to the designer.

Understanding the structure of strategy-proof social choice functions remains a

fundamental and challenging question in the literature. This difficulty is espe-

cially pronounced when the domain of admissible preferences lacks restrictive

structural properties—such as being unrestricted, single-peaked, single-dipped,

or single-crossing. In such general domains, characterizing strategy-proof rules

becomes a formidable task. This raises a natural question: can one identify more

tractable conditions or methods for verifying strategy-proofness? Local strategy-

proofness offers a promising direction in this regard. The principal objective

of this paper is to explore the connection between (global) strategy-proofness

and its local counterpart, thereby shedding light on the extent to which local

conditions can serve as proxies for global strategy-proofness.

The motivation for studying local strategy-proofness is well-established in the

literature (Carroll, 2012; Sato, 2013; Kumar et al., 2021; Mishra et al., 2016).

As noted earlier, a central motivation lies in the fact that verifying strategy-

proofness of a social choice rule can be considerably simplified if the designer

knows that it suffices to check for certain specific deviations or misreports, as

prescribed by local strategy-proofness. Moreover, the concept of local strategy-

proofness captures the behavior of behavioral agents—agents who may refrain

from misreporting in certain situations due to intrinsic costs associated with lying,

such as ethical or moral considerations. In such settings, even if a misreport could

yield a more preferred outcome, the agent may not find it acceptable. Hence,
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the designer only needs to ensure robustness against the subset of deviations

that remain feasible for these agents. This behavioral interpretation further

underscores the practical relevance of local strategy-proofness.

We consider a model with a single agent (without loss of generality) and a

finite set A of m alternatives, where m ≥ 2. The agent’s type is represented

by a strict preference (ranking) P over the elements of A. The collection of all

admissible strict preferences is denoted by the domain D.

The set of possible outcomes is given by Ã ⊆ 2A, that is, outcomes are subsets

of alternatives. Each preference P ∈ D is associated with a unique and consistent

strict preference P̃ over Ã, via a preference extension function η : D → D̃, where

η(P) := P̃ and D̃ is the set of all strict preferences over Ã.

For any strict preference P (or P̃), we denote its weak counterpart by R

(respectively, R̃).

An environment E is defined as a tuple ⟨A,D, Ã, η, G⟩, where A is the set of

alternatives, D is the domain of admissible strict preferences over A, Ã ⊆ 2A

is the set of outcomes, η : D → D̃ is a preference extension function mapping

preferences over A to preferences over Ã, and G is a (fixed but arbitrary) directed

graph whose nodes are the elements of D. The graph G encodes the set of

misreports that are of concern to the designer. Specifically, the presence of a

directed edge (P, P′) ∈ E(G) indicates that the designer wishes to guard against

the agent misreporting her true preference P as P′.

In this paper, we restrict attention to outcomes consisting of at most κ alter-

natives and assume that preferences over sets are extended via the lexicographic

extension.1,2

1Formally, Ã = {S ⊆ A | |S| ≤ κ} for some fixed κ ∈ {1, . . . , m}.
2A preference P̃ on Ã is said to be a lexicographic extension of a preference P on A if for

any two sets S, S′ ∈ Ã, we have SP̃S′ if and only if there exists k such that rj(S, P) = rj(S′, P)
for all j ≤ k, and either |S′| = k or rk+1(S, P) P rk+1(S′, P). Here, rj(S, P) denotes the j-th most
preferred alternative in S according to P.
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A social choice function (SCF) f maps each preference P ∈ D to an outcome

in Ã, i.e., f : D → Ã. The function f is said to be strategy-proof on a pair of

preferences (P, P′) ∈ D2 if the agent does not strictly benefit by misreporting her

true preference P as P′, that is,

f (P)R̃ f (P′) where R̃ is the weak preference induced by η(P).

The function f is locally strategy-proof (with respect to G) if it is strategy-proof

on every pair (P, P′) ∈ E(G), where E(G) denotes the set of directed edges in the

graph G. In contrast, f is said to be (globally) strategy-proof if it is strategy-proof

on every pair (P, P′) ∈ D2.

An environment E is said to satisfy directed-local-global equivalence (DLGE) if

every social choice function that is locally strategy-proof (with respect to G) is

also globally strategy-proof.3

The notion of manipulability is inherently asymmetric and is best understood

as an ordered relation. There exists no compelling technological or psychological

rationale to justify the assumption that the feasibility of a manipulation from a

preference type P to another type P′ is equivalent to that of a manipulation from

P′ to P. Consequently, it is more natural to model such concerns using a directed

graph, which captures the directional asymmetry of potential manipulations.

We pose a fundamental question: Which environments satisfy directed-local-global

equivalence (DLGE)? In this paper, we provide a complete characterization of

such environments.

For two disjoint outcomes S, S′ ∈ Ã and a preference P ∈ D, we write SPS′ if

S is strictly preferred to S′ according to the lexicographic extension of P—that

is, there exists an element s ∈ S such that sPs′ for all s′ ∈ S′. We introduce a
3The converse holds trivially by definition.
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structural condition on the graph G of the environment, termed Property Strong

DL (abbreviated as Property SDL). This condition imposes a requirement on the

existence of certain types of directed paths within G. Formally, the graph G is

said to satisfy Property SDL if, for all pairs of preferences P, P′ ∈ D and for all

S ∈ Ã, there exists a directed path π = (P = P1, P2, . . . , Pt = P′) in G such that

the following condition holds: for every alternative b ∈ A \ S with SPb, there do

not exist (not necessarily distinct) elements s, s′ ∈ S and indices 1 < q < r ≤ t

such that

{s, s′}Pb, bPq{s, s′}, and {s, s′}Prb.

Theorem 3.1 establishes that an environment satisfies directed-local-global

equivalence (DLGE) if and only if it satisfies Property SDL. In the special case

where the outcome set consists solely of singleton alternatives, Property SDL

simplifies to a weaker condition, which we refer to as Property DL. This yields

Corollary 4.1, which shows that Property DL fully characterizes all DLGE envi-

ronments in the singleton-outcome setting.

As an immediate consequence, we recover the main result of Kumar et al.

(2021), which states that in environments with singleton outcomes and undirected

graphs, Property DL characterizes local-global equivalence (LGE) environments.4

Consider the setting where the set of outcomes is the collection of all non-

empty subsets of A, i.e., Ã = 2A \ {∅}, and preferences over outcomes are given

by the lexicographic extension of preferences over A. We define an environment

as adjacent if the edge set of the graph G satisfies the condition that (P, P′) ∈ E(G)

if and only if P′ can be obtained from P by swapping two consecutively ranked

alternatives—i.e., P and P′ differ only by a single adjacent transposition.5

4Kumar et al. (2021) refer to this as Property L, since they restrict attention to undirected
graphs.

5Note that in an adjacent environment, if (P, P′) ∈ E(G), then (P′, P) ∈ E(G) as well. Hence,
the graph G may naturally be viewed as undirected.
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In Proposition 4.4, we show that the adjacent environment satisfies DLGE

when the domain is unrestricted, that is, when every strict preference ordering

over A is admissible. However, we further demonstrate that DLGE fails in the

adjacent environment when the domain is restricted to single-peaked preferences

and the upper bound κ on the number of alternatives in an outcome satisfies

κ ≥ 2.6 The special case where κ = 1—that is, outcomes are singleton sets—has

been extensively studied in the literature. It has been shown (see Carroll (2012)

and Sato (2013)) that, under this restriction, the adjacent environment does satisfy

DLGE.

We next turn to the analysis of k-push-down and k-push-up environments. A

preference P′ ∈ D is said to be obtained from another preference P ∈ D via a

push-down (respectively, push-up) operation if exactly one alternative is moved

to the last (respectively, first) position in P′, while the relative ordering of all

other alternatives remains unchanged between P and P′. An environment is

called a k-push-down (respectively, k-push-up) environment if (P, P′) ∈ E(G) if

and only if P′ can be obtained from P through a sequence of at most k push-down

(respectively, push-up) operations.7

We show that a k-push-down (respectively, k-push-up) environment satis-

fies DLGE if and only if k ≥ m − 1, where m is the number of alternatives.

Furthermore, we establish a more general result: a k1-push-up ∪ k2-push-down

environment satisfies DLGE if and only if k1 + k2 ≥ m − 1. As the name sug-

gests, such an environment includes an edge between two preferences if one

can be obtained from the other through either a sequence of at most k1 push-up

operations or a sequence of at most k2 push-down operations.

6The single-peaked domain consists of all preferences that are single-peaked with respect to a
fixed linear order over the alternatives. See Moulin (1980) for a formal definition.

7That is, there exists a sequence (P = P1, P2, . . . , Pl = P′) of preferences with l ≤ k, such
that for each i ∈ {2, . . . , l}, Pi is obtained from Pi−1 via a push-down (respectively, push-up)
operation.
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In the special case where outcomes are singleton sets (i.e., Ã = A) and the

domain is unrestricted, we further show that:

• A k-push-down environment satisfies DLGE if and only if k ≥ m − 1;

• A k-push-up environment satisfies DLGE if and only if k ≥ min{2, m − 1};

• A k1-push-up ∪ k2-push-down environment satisfies DLGE if and only if

k1, k2 ≥ 1.

1.1 RELATED LITERATURE

Kumar et al. (2021) investigate environments in which each outcome is a sin-

gleton set. Focusing on settings with undirected graphs, they provide a com-

plete characterization of environments satisfying local-global equivalence (LGE).

Altuntaş et al. (2023) extend the analysis to more general settings where the set

of outcomes consists of all non-empty subsets of A, preferences are extended

lexicographically, and the domain is unrestricted. They show that the adja-

cent environment satisfies DLGE. Additionally, they examine k-push-down and

k-push-up environments, proving that a k-push-down (respectively, k-push-up)

environment satisfies DLGE if and only if k ≥ m − 1. Their results are derived

through separate and specific arguments for each case.

By contrast, in this paper we provide a unified and more general characteriza-

tion (Theorem 3.1), from which these results follow as natural corollaries. It is

also worth emphasizing that our proof technique is conceptually and technically

distinct from that employed by Altuntaş et al. (2023).

Recently, Cho and Park (2023) study environments in which outcomes are

singleton sets and the preference domain satisfies |D| ≥ 3 (implying m ≥ 3).

The main result of their paper establishes that Property DL characterizes all

DLGE environments in this setting. We obtain the same characterization as
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a consequence of our more general framework—specifically, as Corollary 4.1

derived from Theorem 3.1. In addition, Cho and Park (2023) show that a k-push-

down environment satisfies DLGE if and only if k ≥ m − 1, and that a k-push-up

environment satisfies DLGE if and only if k ≥ 2. These results correspond

to Proposition 4.1 and Proposition 4.2, respectively, in the present paper. The

contributions of the two papers are independent. In particular, the techniques

employed in proving these results differ substantially in both approach and

construction.

Carroll (2012) establishes that the adjacent environment satisfies DLGE for a

variety of domains, including the unrestricted domain, the single-peaked domain,

and successive single-crossing domains. Sato (2013) subsequently generalizes

this result by providing a sufficient condition for DLGE in adjacent environments.

All of these results are encompassed as special cases of Corollary 4.1 in this paper,

which follows from our more general characterization of DLGE environments.

2. THE MODEL

Let A denote a finite set of alternatives with |A| = m ≥ 2. We assume without

loss of generality that there is a single voter, which is a standard practice for the

type of analysis we do in this paper.

A type of the agent is identified by a strict preference over A. The set of all

possible strict preferences is denoted by P . A domain D is a subset of the set of

all preferences P .

Let Ã be the set of outcomes consisting of bundles (of alternatives) whose

size is less than or equal to κ, for some κ ∈ {1, . . . , m}, that is, there exists

κ ∈ {1, . . . , m} such that Ã = {S ⊆ A such that |S| ≤ κ}. Each preference P in

D induces a unique preference η(P) on Ã. Whenever it is clear from the context,

for simplicity, we often denote η(P) by P̃. Let D̃ = {η(P) : P ∈ D} be the set of
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all induced preferences over Ã.

An environment is denoted by ⟨A,D, G, Ã, η⟩, where G = ⟨D, E(G)⟩ is a di-

rected graph on D with the set of directed edges E(G) ⊆ D ×D and η : D → D̃

is the preference extension function. A Social Choice Function (SCF) on D is a

map f : D → Ã.

Definition 2.1. Consider an environment ⟨A,D, G, Ã, η⟩. An SCF f : D → Ã

is locally manipulable at P if there exists P′ ∈ D with (P, P′) ∈ E such that

f (P′)P̃ f (P).8 The SCF f is locally strategy-proof if it is not locally manipulable

at any P ∈ D.

Definition 2.2. An SCF f : D → Ã is manipulable at P if there exists P′ ∈ D

such that f (P′)P̃ f (P). The SCF f is strategy-proof if it is not manipulable at any

P ∈ D.

A strategy-proof SCF is clearly locally strategy-proof. We investigate the

structure of environments where the converse also holds.

Definition 2.3. The environment ⟨A,D, G, Ã, η⟩ satisfies directed-local-global

equivalence (DLGE) if every locally strategy-proof SCF f : D → Ã is strategy-

proof.

REMARK 2.1. Note that if an environment ⟨A,D, G, Ã, η⟩ satisfies DLGE, then

the environment ⟨A,D, G′, Ã, η⟩ also satisfies DLGE where E(G) ⊆ E(G′).

3. THE MAIN RESULT

Let 1 ≤ κ ≤ m. We consider outcomes that are bundles/subsets (of size ≤ κ)

of alternatives in A, i.e., Ã = {S ⊆ A : S ̸= ∅ and |S| ≤ κ}, and the preference

extension η is lexicographic. We denote the top-ranked alternative in a subset

8Recall that P̃ is the shorthand notation for η(P).
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of alternatives S according to a preference P by τP(S). Formally, for any P ∈ P

and S ⊆ A, define τP(S) = x if x ∈ S and xPy for every y ∈ S \ {x}. We now

formally define the lexicographic extension. For subsets S, S′ ∈ Ã and preference

P ∈ P , we have SP̃S′ if and only if one of the following two holds:

(i) S′ ⊊ S,

(ii) τP(S \ S′)PτP(S′ \ S).

In the following, we present a necessary and sufficient condition on ⟨A,D, G⟩

so that the environment ⟨A,D, G, Ã, η⟩ satisfies DLGE.

Notice that for any P ∈ P , P̃ is a unique extension and is a strict preference

over the bundles in Ã.9 So, it is justified to assume that agents submit only their

preferences over A. Hence, the notion of localness is decided on the basis of

these preferences only. In this framework, we ask a natural question: what are all

⟨A,D, G⟩ such that the environment ⟨A,D, G, Ã, η⟩ satisfies DLGE. We provide

this answer in our next theorem where we characterize ⟨A,D, G⟩ such that the

environment ⟨A,D, G, Ã, η⟩ satisfies DLGE. For this purpose, we introduce the

notion of Strong-Directed Lower Contour Set no-restoration property (Property

SDL).

For a preference P, and two disjoint bundles S and S′, we write SPS′ if there

is some alternative in S which is preferred to all the alternatives in S′ according to

P, that is, SPS′ if there exists s ∈ S such that sPs′ for all s′ ∈ S′.10 Also, for any

bundle S ⊆ A and a preference P ∈ P , define L(S, P) = {x ∈ A \ S : SPx}.

Let G = ⟨D, E⟩. For P, P′ ∈ D, a path from P to P′ is defined as π =

(P1, . . . , Pt), consisting of a sequence of distinct vertices in D satisfying the

property that P1 = P, Pt = P′ and (Pk, Pk+1) ∈ E for all k = 1, . . . t − 1.11

9Recall that by P̃ we denote η(P).
10We denote a bundle containing only one alternative by writing a instead of writing {a}.
11In other words, repetitions of vertices in a path are ruled out and also each pair of consecutive

vertices form a directed edge.
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Let Π(P, P′) denote the set of all paths from P to P′ in G. For any path π =

(P1, . . . , Ps, Ps+1, . . . , Pt), we let π|[Ps,Pt] denote the sub-path (Ps, Ps+1, . . . , Pt).

We say G is connected if for every pair of vertices P, P′ in G, there exists a path

from P to P′ i.e. Π(P, P′) ̸= ∅ for all (P, P′) ∈ D ×D.12

Definition 3.1. Let G be a graph on D. For any P, P′ ∈ D, S ∈ Ã and b ∈ L(S, P),

a path π = (P = P1, . . . , Pk = P′) from P to P′ satisfies {S, b}-restoration if there

exist integers q and r with 1 < q < r ≤ k and s, s′ ∈ S (not necessarily distinct)

such that {s, s′}P1b, bPq{s, s′}, and {s, s′}Prb.

REMARK 3.1. It is worth mentioning that there exist multiple ways to define

the notion of {S, b}-restoration for a set of alternatives S and an alternative

b ∈ A \ S with SPb. However, it is important to emphasize that the definition of

{S, b}-restoration provided in Definition 3.1 is the only formulation that yields

the desired characterization result presented in Theorem 3.1. This highlights that

our result is not a routine extension of the main theorem in Kumar et al. (2021),

but rather relies on a carefully constructed framework tailored to our setting.

Definition 3.2. We say that a graph G on D satisfies Strong-Directed Lower

Contour Set no-restoration property (Property SDL) if for all P, P′ ∈ D and for

all S ∈ Ã, there exists a path π from P to P′ such that for all b ∈ L(S, P), the path

π does not satisfy {S, b}-restoration.

It should be noted that the choice of the path π depends on the preferences

P, P′ and the set S, but does not depend on the alternative b. In particular, the

same path π will have no {S, b}-restoration for all b ∈ L(S, P).

REMARK 3.2. It is worth noting that Property SDL is a significant strengthening

of Property DL. This is because a path having no-restoration (with respect

12Since we are considering directed edges, a path from P to P′ might not necessarily be a path
from P′ to P.

12



to every pair of alternatives) can have {S, b}-restoration for some bundle S.

For example, let A = {a, b, c} and consider the path π = (P1, P2, P3) where

P1 = abc, P2 = bac and P3 = cba.13 Clearly, the path π has no restoration with

respect to any pair of alternatives. However, π has an {S, b}-restoration for

S = {a, c}.

Two preferences P and P′ are completely opposite if, for all a, b ∈ A, we have

aPb if and only if bP′a.

REMARK 3.3. Consider a domain D = {P, P′} where P and P′ are completely

opposite preferences and suppose that the outcomes are singleton (η is the

identity function). Then, the necessary and sufficient condition for ⟨A,D, G, Ã, η⟩

to satisfy DLGE is E(G) ̸= ∅. In other words, presence of at least one directed

edge is both necessary and sufficient for the environment to be DLGE. It follows

from the fact that in this situation, an SCF is manipulable from P to P′ if and

only if it is manipulable from P′ to P. Therefore, in this section, whenever we

deal with singleton outcomes, we assume that D ̸= {P, P′}, where P and P′ are

completely opposite preferences.

Theorem 3.1. An environment ⟨A,D, G, Ã, η⟩ satisfies DLGE if and only if G satisfies

Property SDL.

The proof of this theorem is relegated to Appendix A.1. The proof of the

necessity part is a highly non-trivial generalization and that of the sufficiency

part is completely new as compared to the corresponding parts of the proof of

Theorem 1 in Kumar et al. (2021). The logic in the proof (for both necessity and

sufficiency) of Theorem 1 in Kumar et al. (2021) crucially requires undirected

graphs and in particular, it fails for directed graphs. Apart from generalizing the

proofs for directed graphs, we allow for bundles as outcomes as well. It is worth

13By the preference P1 = abc, we mean that a is strictly preferred to b according to the
preference P1 and b is strictly preferred to c according to the preference P1.
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emphasizing that the proof of Theorem 3.1 is both conceptually and technically

different from the proof of Theorem 1 in Kumar et al. (2021).

4. APPLICATIONS

4.1 THE CASE OF SINGLETON OUTCOMES

In this subsection, we consider the situation where Ã = A (and hence η(P) = P

for all P ∈ D), and consequently, we denote an environment by ⟨A,D, G⟩. We

provide a necessary and sufficient condition on the directed graph G so that the

environment ⟨A,D, G⟩ satisfies directed-local-global equivalence (DLGE). We

define the reduced version of Property SDL when outcomes are singletons.

Definition 4.1. Let G be a graph on D and let a, b ∈ A. A path π = (P1, P2, . . . , Pt)

in G satisfies no {a, b}-restoration if the relative ranking of a and b is reversed 14 at

most once along π i.e. there do not exist integers q, r and s with 1 ≤ q < r < s ≤ t

such that either (i) aPqb, bPra and aPsb or (ii) bPqa, aPrb and bPsa.15

For any P ∈ D and a ∈ A, the lower contour set of a at P is the set of

alternatives strictly worse than a according to P, i.e. L(a, P) = {b ∈ A : aPb}.

Definition 4.2. The environment ⟨A,D, G⟩ satisfies the Directed-Lower Contour

Set no-restoration property (Property DL) if, for all P, P′ ∈ D and a ∈ A, there

exists a path π ∈ Π(P, P′) such that for all b ∈ L(a, P), the path π in G satisfies

no {a, b}-restoration.

We obtain the following result as a corollary of Theorem 3.1. The same result

is proved independently in Cho and Park (2023) (see Theorem 1) when |D| ≥ 3.
14A pair of alternatives a, b are reversed in the pair of preferences P and P′ if they are ranked

differently in P and P′.
15It is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring

to an ordered pair (a, b). Thus {a, b}-restoration and {b, a}-restoration are the same in our
definition. We use expressions such as “the path has no {a, b}-restoration” and “the path has no
restoration for the pair {a, b}” interchangeably.
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Corollary 4.1. An environment satisfies DLGE if and only if it satisfies Property DL.

4.1.1 k-PUSH-DOWN STRATEGY-PROOFNESS

We introduce the k-push-down environment for the unrestricted domain. We first

define the notion of ‘push-down’. We say a preference P′ is obtained from P by a

push-down (and thereby forms a directed edge in the push-down environment

E down), if an alternative is moved to the last rank from P to P′ while keeping the

relative ranking of all other alternatives unchanged. Formally, for P, P′ ∈ P , we

say that (P, P′) ∈ E down if there exists x ∈ A such that

(i) aP′x for all a ∈ A \ {x}, and

(ii) for all a, b ∈ A \ {x}, aPb if and only if aP′b.

A k-push-down environment E k-down is defined as the one where (P, P′) is a

(directed) edge if and only if P′ can be obtained from P by applying the push-

down action at most k times. Formally, for k ≥ 1, (P, P′) ∈ E k-down if and only if

there exists l ∈ {1, . . . , k} and a sequence of preferences (P1, . . . , Pl+1) in P such

that

(i) P1 = P,

(ii) Pl+1 = P′, and

(iii) (Pj, Pj+1) ∈ E down for each j ∈ {1, . . . , l}.

It is worth noting that the graph G = ⟨P , E k-down⟩ can be obtained from

the graph G = ⟨P , E down⟩ by adding edges from any preference P to another

preference P′ if there exists a path from P to P′ of length (number of edges) at

most k.
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The following proposition provides a necessary and sufficient condition for

DLGE for k-push-down strategy-proofness. Cho and Park (2023) (Proposition 4)

prove this result independently.

Proposition 4.1. The environment ⟨A,P , G⟩, where G = ⟨P , E k-down⟩, satisfies

DLGE if and only if k ≥ m − 1.

The proof of this proposition is relegated to Appendix A.2.

4.1.2 k-PUSH-UP STRATEGY-PROOFNESS

As the name sounds, k-push-up environment is symmetrically opposite of the

k-push-down environment. As for the k-push-down environment, we define

this environment for the unrestricted domain. Let us first define the ‘push-up’

environment Eup. For two preferences P and P′, we say that (P, P′) ∈ Eup if P′

can be obtained from P by pushing up one alternative to the first rank while

keeping the relative ranking of all other alternatives unchanged. Formally, for

P, P′ ∈ P , we say that (P, P′) ∈ Eup if there exists x ∈ A such that

(i) xP′a for all a ∈ A \ {x}, and

(ii) for all a, b ∈ A \ {x}, aPb if and only if aP′b.

The E k-up environment is obtained by putting a directed edge from P to P′ if

and only if P′ can be obtained from P by applying the push-up action at most

k times. Formally, (P, P′) ∈ E k-up if there exist l ∈ {1, . . . , k} and a sequence of

preferences (P1, . . . , Pl+1) in P such that

(i) P1 = P,

(ii) Pl+1 = P′, and

(iii) (Pj, Pj+1) ∈ Eup for each j ∈ {1, . . . , l}.
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As we have remarked for the k-push-down case, the graph G = ⟨P , E k-up⟩ can

be obtained from the graph G = ⟨P , Eup⟩ by adding edges from any preferences

P to another preference P′ if there exists a path from P to P′ of length at most k.

Proposition 4.2. The environment ⟨A,P , G⟩, where G = ⟨P , E k-up⟩, satisfies DLGE

if and only if k ≥ min{2, m − 1}.

The proof of this proposition is relegated to Appendix A.3.

4.1.3 PUSH-DOWN OR PUSH-UP STRATEGY-PROOFNESS

Similar to k-push-down (or push-up) environments, we consider the unrestricted

domain for the ‘Push-down or push-up’ environment. As the name sounds,

there is a directed edge from P to P′ in this environment if and only if P′ can

be obtained from P either by pushing up one alternative to the first rank or by

pushing down one alternative to the last rank, while keeping the relative ranking

of all other alternatives unchanged, that is, when (P, P′) ∈ Eup ∪ E down.

Proposition 4.3. The environment ⟨A,P , G⟩, where G = ⟨P , Eup ∪ E down⟩, satisfies

DLGE.

The proof of this proposition is relegated to Appendix A.4.

It may be noted that unlike the k-push-down (or, push-up) environments,

the Eup ∪ E down environment is defined without any reference to a parameter k.

We fill this apparent gap in the next remark. Let us define the E k1-up ∪ E k2-down

environment where (P, P′) is an edge if and only P′ can be obtained from P

either by applying the push-up action at most k1 times or by push-down action

at most k2 times.

REMARK 4.1. Take (P, P′) ∈ Eup ∪ E down. Then, (P, P′) ∈ Eup or (P, P′) ∈ E down.

If (P, P′) ∈ Eup (or, (P, P′) ∈ E down), then by definition (P, P′) ∈ E k1-up for any
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k1 ≥ 1 (respectively, (P, P′) ∈ E k2-down for any k2 ≥ 1). Hence, (P, P′) ∈ E k1-up ∪

E k2-down for every k1, k2 ≥ 1. By Remark 2.1 and Proposition 4.3, it follows that

the environment ⟨A,P , G⟩, where G = ⟨P , E k1-up ∪ E k2-down⟩, satisfies DLGE for

every k1, k2 ≥ 1.

4.2 THE CASE OF ARBITRARY BUNDLE OUTCOMES AND LEXICOGRAPHIC EX-

TENSION

Throughout this subsection, we consider the situation where every non-empty

subset of alternatives can be an outcome, that is, Ã = {S ⊆ A : S ̸= ∅} (or in

other words, κ = m) and the preference extension η is lexicographic. We provide

four applications of Theorem 3.1. The first three results can be found in Altuntaş

et al. (2023) as well; however our proofs are different.

We begin with making an observation.

OBSERVATION 4.1. Consider an environment ⟨A,D, G, Ã, η⟩ that satisfies DLGE.

Then, the tuple ⟨A,D, G⟩, viewed as an environment as defined in Section 4.1, also

satisfies DLGE. This is because an SCF f : D → A can also be viewed as an SCF

f̃ : D → Ã where f̃ (P) = f (P) for every P ∈ D, and hence, f is (locally) strategy-

proof if and only if f̃ is (locally) strategy-proof.

4.2.1 ADJACENT STRATEGY-PROOFNESS

For any P ∈ P and a ∈ A, let us define the rank of a at P, denoted by r(a, P), as

|{x ∈ A : xPa}|+ 1. In other words, r(a, P) = k if and only if |{x ∈ A : xPa}| =

k − 1.

Let G = ⟨P , E adj⟩ where (P, P′) ∈ E adj if there exist distinct x, y ∈ A such that

(i) r(x, P) + 1 = r(x, P′),

(ii) r(y, P)− 1 = r(y, P′), and
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(iii) r(z, P) = r(z, P′) for each z ∈ A \ {x, y}.

Proposition 4.4. (Altuntaş et al. (2023)) The environment ⟨A,P , G, Ã, η⟩, where

G = ⟨P , E adj⟩, satisfies DLGE.

The proof of this proposition is relegated to Appendix A.5.

In what follows, we prove a negative result and show that adjacent environ-

ments no longer satisfy DLGE if we consider single-peaked domains instead of

the unrestricted domain. Let m ≥ 3 and assume that A = {a1, . . . , am}. Fix any

linear order ≺ over A given by a1 ≺ a2 ≺ a3 ≺ · · · ≺ am. Let S be the set of all

single-peaked preferences, called the single-peaked domain, with respect to the

linear order ≺.16

Proposition 4.5. The environment ⟨A,S , G, Ã, η⟩, where G = ⟨S , E adj⟩, does not

satisfy DLGE.

Proof. Let S be the set of all single-peaked preferences with respect to a linear

order a1 ≺ a2 ≺ a3 ≺ . . . ≺ am. Consider the preference P ∈ S such that

r(a1, P) = 1 and any other preference P′ ∈ S such that r(a3, P′) = 1. Notice

that every path from P to P′ must have {Z, a2}-restoration where Z = {a1, a3}.17

Also, note that a2 ∈ L(Z, P). Therefore, G violates Property SDL. Hence, by

Theorem 3.1 it follows that ⟨A,S , G, Ã, η⟩ does not satisfy DLGE.

■

4.2.2 k-PUSH-DOWN STRATEGY-PROOFNESS

Proposition 4.6. (Altuntaş et al. (2023)) The environment ⟨A,P , G, Ã, η⟩, where

G = ⟨P , E k-down⟩, satisfies DLGE if and only if k ≥ m − 1.
16See Moulin (1980) for a formal definition of single-peaked preferences.
17The fact that there exists a path from any preference P ∈ S to any other preference P′ ∈ S is

proven in Carroll (2012) and Sato (2013).
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Proof. If part: As observed in Altuntaş et al. (2023), if k ≥ m − 1, then (P, P′) ∈

E k-down for every P, P′ ∈ P . Therefore, ⟨A,P , G, Ã, η⟩ satisfies DLGE trivially.

Only if part: Suppose k ≤ m − 2. By Proposition 4.1, the environment

⟨A,P , G⟩ does not satisfy DLGE. Therefore by Observation 4.1, the environment

⟨A,P , G, Ã, η⟩ does not satisfy DLGE.

■

4.2.3 k-PUSH-UP STRATEGY-PROOFNESS

Proposition 4.7. (Altuntaş et al. (2023)) The environment ⟨A,P , G, Ã, η⟩, where

G = ⟨P , E k-up⟩, satisfies DLGE if and only if k ≥ m − 1.

The proof of this proposition is relegated to Appendix A.6.

4.2.4 k1-PUSH-UP OR k2-PUSH-DOWN STRATEGY PROOFNESS

Let G = ⟨P , E k1-up ∪ E k2-down⟩ as defined in Subsubsection 4.1.3. In this sub-

subsection, we characterize values of k1 and k2 such that the environment

⟨A,P , G, Ã, η⟩ satisfies DLGE.

Proposition 4.8. The environment ⟨A,P , G, Ã, η⟩, where G = ⟨P , E k1-up ∪E k2-down⟩,

satisfies DLGE if and only if k1 + k2 ≥ m − 1.

The proof of this proposition is relegated to Appendix A.7.

Recall the environment (as defined in Subsubsection 4.1.3) ⟨A,P , G⟩ where

G = ⟨P , Eup ∪ E down⟩. We have shown in Proposition 4.3 that ⟨A,P , G⟩ satisfies

DLGE. However, we now state a corollary of Proposition 4.8 which shows that

for m ≥ 4, the environment ⟨A,P , G, Ã, η⟩, where G = ⟨P , Eup ∪ E down⟩ does

not satisfy DLGE. This clarifies that η plays a crucial role for an environment to

satisfy DLGE.
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Corollary 4.2. Let G = ⟨P , Eup ∪E down⟩. For m ≥ 4, the environment ⟨A,P , G, Ã, η⟩

does not satisfy DLGE. For m = 3 and m = 2, the environment ⟨A,P , G, Ã, η⟩ satisfies

DLGE.

A. APPENDIX

A.1 PROOF OF THEOREM 3.1

Proof. Sufficiency: Suppose G = ⟨D, E⟩ satisfies Property SDL but ⟨A,D, G,

Ã, η⟩ fails DLGE. There exists a locally strategy-proof SCF f : D → Ã that is

not strategy-proof. Therefore, there exists P0, P1 ∈ D such that f (P1)P̃0 f (P0).

Without loss of generality assume that P1 ∈ D is such that f (P1) is the P̃0-

maximal outcome in the set of outcomes that is an image under f at some

preference, i.e., f (P1) = max
P̃0

{S ∈ Ã : f (P) = S for some P ∈ D}.18 Let

f (P1) = S1.

Since G satisfies Property SDL, we conclude that there exists a path π ≡

(P̂1 = P0, P̂2, . . . , P̂t = P1) in G such that for all z ∈ L(S1, P0), the path π has no

{S1, z}-restoration.

Consider the path η(π) ≡ (η(P̂1), η(P̂2), . . . , η(P̂t)). Notice that η(π) is a

path (in G̃) from η(P̂1) to η(P̂t).

Searching the path π backwards from P̂t to P̂1, let P̂s be the first vertex such

that f (P̂s) = S2 ̸= S1 i.e. f (P̂k) = S1 for all s < k ≤ t. Note that P̂s always exists

since f (P̂t) ̸= f (P̂1) and P̂s ̸= P̂t.

Claim A.1. S2η(P̂s)S1 and S2η(P1)S1.

Proof: Consider P̂s and P̂s+1. Since (P̂s, P̂s+1) ∈ E and f (P̂s) = S2 ̸= S1 =

f (P̂s+1), local strategy-proofness implies S2η(P̂s)S1. Finally, we show that
18Recall that P̃0 = η(P0). We use the notation P̃ and η(P) interchangeably for P ∈ D. Also,

we use the notation P̃1 (instead of P̃1) to denote η(P1).
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S2η(P1)S1. Suppose, contrary to the claim, we have S1η(P1)S2. Due to the

without loss of generality assumption on P1 and the fact that f (P̂s) = S2, it

must be the case that S1η(P0)S2. Therefore, we have S1η(P0)S2, S2η(P̂s)S1 and

S1η(P1)S2. Moreover, since η is a lexicographic preference extension it follows

that neither S1 ⊆ S2 nor S2 ⊆ S1 holds. Let τP̂s(S2 \ S1) = z, τP0(S1 \ S2) = x

and τP1(S1 \ S2) = y.19. Since S1η(P0)S2, it follows that xP0z because η is a

lexicographic preference extension. Hence, z ∈ L(S1, P0). This, together with

the facts that η is a lexicographic preference extension, S1η(P0)S2, S2η(P̂s)S1

and S1η(P1)S2, it must be the case that {x, y}P0z, zP̂s{x, y}, and {x, y}P1z. This

implies that the path π satisfies {S1, z}-restoration where z ∈ L(S1, P0). This

leads to a contradiction to our assumption that π contains no {S1, z}-restoration

for any z ∈ L(S1, P0). Therefore, S2η(P1)S1. This completes the proof of the

claim. □

For notational consistency, let us rename the preference P̂s as P2. We return

to the proof of sufficiency. Consider P1 and P2. Note that f (P1) = S1 and

f (P2) = S2. Since S2η(P2)S1 and f (P2) = S2, it follows that {S ∈ Ã : f (P) =

S for some P ∈ D such that f (P)P̃S1} ̸= ∅. Without loss of generality assume

that P2 ∈ D is such that S2 is the P̃1-maximal outcome in the set of outcomes

that is an image under f at some preference P such that S1 lies below f (P) at P̃,

i.e., S2 = max
P̃1

{S ∈ Ã : f (P) = S for some P ∈ D such that f (P)P̃S1}.

It follows from the Property SDL that there exists a path π̄ = (P̄1 = P1, . . . ,

P̄l = P2) in G having no {S2, z}-restoration for all z ∈ L(S2, P1). Once again,

searching the path π̄ backwards from P̄l to P̄1, we can identify the first vertex P̄s̄

such that f (P̄s̄) = S3 ̸= S2.

Claim A.2. S3η(P̄s̄)S2, S3η(P2)S2 and S2η(P̄s̄)S1.

Proof: Using similar arguments in Claim A.1, it follows that S3η(P̄s̄)S2 and
19x and y might not be distinct.
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S3η(P2)S2.

Finally, we show that S2η(P̄s̄)S1. Suppose, contrary to the claim, we have

S1η(P̄s̄)S2. By Claim A.1, we have S2η(P1)S1 and S2η(P2)S1. Therefore, we

have S2η(P1)S1, S1η(P̄s̄)S2 and S2η(P2)S1. Moreover, since η is a lexicographic

preference extension it follows that neither S1 ⊆ S2 nor S2 ⊆ S1 holds. Let

τP̄s̄(S1 \ S2) = z, τP1(S2 \ S1) = x and τP2(S2 \ S1) = y.20. Since S2η(P1)S1,

it follows that xP1z because η is a lexicographic preference extension. Hence,

z ∈ L(S2, P1). This, together with the facts that η is a lexicographic preference

extension, S2η(P1)S1, S1η(P̄s̄)S2 and S2η(P2)S1, it must be the case that {x,

y}P1z, zP̄s̄{x, y}, and {x, y}P2z. This implies that the path π̄ satisfies {S2, z}-

restoration where z ∈ L(S2, P1). This leads to a contradiction to our assumption

that π̄ contains no {S2, z}-restoration for any z ∈ L(S2, P1). Therefore, S2η(P̄s̄)S1.

This completes the proof of the claim. □

Therefore, S3η(P̄s̄)S2η(P̄s̄)S1 and S3η(P2)S2η(P2)S1. Hence, S3, S2 and S1 are

all distinct outcomes.

For notational consistency, let us rename the preference P̄s̄ as P3. As previ-

ously argued, we can assume without loss of generality that S3 = max
P̃2

{S ∈

Ã : f (P) = S for some P ∈ D such that f (P)P̃S2P̃S1}. Notice that {S ∈ Ã :

f (P) = S for some P ∈ D such that f (P)P̃S2P̃S1} ̸= ∅ because S3P̃3S2P̃3S1 and

f (P3) = S3. Therefore, we have three distinct outcomes S1, S2, S3 ∈ Ã and a pair

of distinct preferences P2, P3 ∈ D such that:

(i) f (P2) = S2,

(ii) f (P3) = S3,

(iii) S3P̃2S2P̃2S1,

(iv) S3P̃3S2P̃3S1, and
20As we note in the proof of Claim A.1, x and y might not be distinct.
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(v) S3 = max
P̃2

{S ∈ Ã : f (P) = S for some P ∈ D such that f (P)P̃S2P̃S1}.

Repeating these arguments and making repeated use of arguments in Claim

A.2, along with the fact that Ã is finite (say |Ã| = n), we conclude that there exist

distinct outcomes S1, . . . , Sn ∈ Ã and a pair of distinct preferences Pn−1, Pn ∈ D

such that:

(i) f (Pn−1) = Sn−1,

(ii) f (Pn) = Sn,

(iii) SnP̃n−1Sn−1P̃n−1Sj for every j ∈ {1, . . . , n − 2}, and

(iv) SnP̃nSn−1P̃nSj for every j ∈ {1, . . . , n − 2}.

Since |Ã| = n, Sn is the first-ranked outcome in P̃n because SnP̃nSn−1P̃nSj for

every j ∈ {1, . . . , n − 2}.

Note that Sn = max
P̃n−1

{S ∈ Ã : f (P) = S for some P ∈ D such that f (P)P̃Sn−1P̃Sjfor everyj ∈

{1, . . . , n − 2}} because SnP̃n−1Sn−1P̃n−1Sj for every j ∈ {1, . . . , n − 2} and

f (Pn) = Sn. The earlier arguments in Claim A.2 can be applied to the pair of

distinct preferences Pn−1, Pn to infer the existence of an outcome Sn+1 with the

property Sn+1P̃nSn. However this is impossible since Sn is first-ranked in Pn. We

have reached a contradiction. Hence, ⟨A,D, G, Ã, η⟩ must satisfy DLGE.

Necessity: Let ⟨A,D, G, Ã, η⟩ be an environment satisfying DLGE. We show that

G satisfies Property SDL. First, we begin with a claim.

Claim A.3. G is connected.

Proof: We need to show Π(P, P′) ̸= ∅ for all (P, P′) ∈ D ×D. We consider

two cases:

Case (i): Let P, P′ ∈ D such that there exist S, S′ ∈ Ã with SP̃S′ and SP̃′S′. We

show that Π(P, P′) ̸= ∅.
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Assume for contradiction that Π(P, P′) = ∅. Define an SCF f : D → Ã as

follows:

(i) f (P) = S′,

(ii) f (P̂) = S′ if Π(P, P̂) ̸= ∅, and

(iii) f (P̂) = max
η(P̂)

({S, S′}) otherwise, where max
η(P̂)

({S, S′}) = S if Sη(P̂)S′ and

max
η(P̂)

({S, S′}) = S′ if S′η(P̂)S.

Since Π(P, P′) = ∅ and Sη(P′)S′, by definition f (P′) = S. Also, since Sη(P)S′,

S = f (P′)η(P) f (P) = S′ which establishes that f is not strategy-proof. Now

we show that f is locally strategy-proof which will lead to a contradiction to

the assumption that ⟨A,D, G, Ã, η⟩ satisfies DLGE, thereby establishing that

Π(P, P′) ̸= ∅.

Pick any two preferences P̂, P̃ ∈ D and without loss of generality assume that

(P̂, P̃) ∈ E . We need to show that either f (P̂) = f (P̃) or f (P̂)η(P̂) f (P̃). If P̂ = P,

then by definition f (P̂) = f (P̃) = S′. If P̂ ̸= P is such that Π(P, P̂) ̸= ∅. Let

π = (P1, . . . , Pt) ∈ Π(P, P̂). Then by definition f (P̂) = S′. Since (P̂, P̃) ∈ E ,

construct a new path π̄ = (P1, . . . , Pt, P̃) ∈ Π(P, P̃). Consequently, by the

definition of f , we conclude that f (P̃) = S′ = f (P̂). Finally, if P̂ ̸= P is such

that Π(P, P̂) = ∅. Then by the definition of f , we have f (P̂) = max
η(P̂)

({S, S′}).

This, together with the fact that f (P̃) ∈ {S, S′}, implies either f (P̂) = f (P̃) or

f (P̂)η(P̂) f (P̃). Hence, f is locally strategy-proof.

Case (ii): Let P, P′ ∈ D such that Case (i) does not hold. Then, it must be

the case that the outcomes are singletons (that is, k = 1). Also, P and P′ must

be completely opposite preferences. Therefore, by Remark 3.3 it follows that

D ̸= {P, P′}. Hence, there exists a preference P̄ ∈ D \ {P, P′}. Notice that neither

P and P̄ nor P̄ and P′ are completely opposite preferences. This, together with
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the fact that outcomes are singletons (that is, k = 1), by Case (i), Π(P, P̄) ̸= ∅

and Π(P̄, P′) ̸= ∅. This implies that Π(P, P′) ̸= ∅.

Therefore, we establish that Π(P, P′) ̸= ∅ for all (P, P′) ∈ D ×D. Hence G is

connected. □

We define a class of SCFs that we will employ repeatedly in the proof.

Definition A.1. Fix an environment ⟨A,D, G, Ã, η⟩. Let S ∈ Ã, a pair of prefer-

ences P̂, P0 ∈ D such that L(S, P̂) ∩ L(S, P0) ̸= ∅ and let B be a non-empty set

with B ⊆ L(S, P̂) ∩ L(S, P0). An SCF f : D → Ã is monotonic with respect to the

ordered tuple (S, B, P̂, P0) if

(i) f (P) = S if there is a path π ∈ Π(P, P̂) such that for all (not necessarily

distinct) s, s′ ∈ S and for all b ∈ B with {s, s′}P̂b and {s, s′}P0b, {s, s′}P̄b

for all P̄ ∈ π, and

(ii) f (P) = max
η(P)

(W) otherwise, where W = {{b}∪S \ {s, s′} | (not necessarily distinct) s,

s′ ∈ S, b ∈ B with {s, s′}P̂b and {s, s′}P0b}.21

Note that f (P̂) = S. The next lemma shows that SCF f of Definition A.1 is

locally strategy-proof.

Lemma A.1. Suppose f : D → Ã is monotonic with respect to (S, B, P̂, P0). Then f is

locally strategy-proof.22

Proof: Pick an arbitrary pair P, P′ ∈ D and without loss of generality assume

that (P, P′) ∈ E . We show either f (P) = f (P′), or f (P)η(P) f (P′) establishing

local strategy-proofness.

Let DS = {P̄ ∈ D : f (P̄) = S} denote the set of preferences which are

associated to S at SCF f . There are four cases to consider.
21Note that if |S| = l, then for each w ∈ W, l − 1 ≤ |w| ≤ l. Hence, W ⊆ Ã.
22In the Definition A.1, if we use Π(P̂, P) instead of Π(P, P̂), then the monotonic SCF is not

necessarily locally strategy-proof. More specifically, the arguments in Case 4 of the proof does
not always hold.
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Case 1: P, P′ ∈ DS. Then f (P) = f (P′) = S.

Case 2: P, P′ /∈ DS. Then f (P) = max
η(P)

(W) and f (P′) = max
η(P′)

(W). Hence, either

f (P) = f (P′) or f (P)η(P) f (P′) and f (P′)η(P′) f (P) must hold.

Case 3: P ∈ DS and P′ /∈ DS. Thus, f (P) = S ̸= S′ = max
η(P′)

(W) = f (P′). Since

P ∈ DS, there exists a path π = (P1, . . . , Pt) ∈ Π(P, P̂) such that for all (not

necessarily distinct) s, s′ ∈ S and for all b ∈ B with {s, s′}P̂b and {s, s′}P0b,

{s, s′}Plb for all 1 ≤ l ≤ t (recall Definition A.1). Since η is a lexicographic

preference extension and P1 = P, we have Sη(P)S′. Therefore, f (P)η(P) f (P′).

Case 4: P /∈ DS and P′ ∈ DS. Thus, f (P′) = S ̸= S̄ = max
η(P)

(W) = f (P). Since

P′ ∈ DS, there exists a path π = (P1, . . . , Pt) ∈ Π(P′, P̂) such that for all (not

necessarily distinct) s, s′ ∈ S and for all b ∈ B with {s, s′}P̂b and {s, s′}P0b,

{s, s′}Plb for all 1 ≤ l ≤ t. Next, suppose Sη(P)S̄. Since S̄ = max
η(P)

(W), it follows

that for all (not necessarily distinct) s, s′ ∈ S and for all b ∈ B with {s, s′}P̂b

and {s, s′}P0b, {s, s′}Pb. Observe that P must be distinct from the vertices in

the path π; otherwise we would contradict the hypothesis that P /∈ DS. Since

(P, P′) ∈ E , we now have a new path π̄ = (P, P1, . . . , Pt) ∈ Π(P, P̂) such that

for all (not necessarily distinct) s, s′ ∈ S and for all b ∈ B with {s, s′}P̂b and

{s, s′}P0b, {s, s′}P̄b for all P̄ ∈ π̄. Consequently, Definition A.1 implies f (P) = S.

This contradicts our initial assumption that f (P) = S̄. Therefore, S̄η(P)S.

This completes the proof of the lemma. □

Now, we show that G satisfies Property SDL. Assume for contradiction that

G violates Property SDL i.e. there exist P0, P1 ∈ D and S ∈ Ã such that every

path of Π(P0, P1) has an {S, x}-restoration for some x ∈ L(S, P0). In view of

Claim A.3, this statement cannot hold vacuously.

Let Γ be the set of alternatives in L(S, P0) that appear in some restoration with
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S on some path of Π(P0, P1):

Γ =
{

x ∈ L(S, P0) : there exists π ∈ Π(P0, P1) with {S, x}-restoration
}

.

Then, the hypothesis for the contradiction can be restated as follows: each

path of Π(P0, P1) has an {S, x}-restoration for some x ∈ Γ.

For a specific path π ∈ Π(P0, P1), let Γπ
1 denote the set of alternatives in

L(S, P0) that appear in some restoration with S on the path π, i.e.

Γπ
1 = {x ∈ L(S, P0) : π has {S, x}-restoration}.

Let Γ1 ⊆ [Γ ∩ L(S, P1)] be the set of alternatives such that for every path

π = (P̂1, . . . , P̂t) ∈ Π(P0, P1), there exists (not necessarily distinct) s, s′ ∈ S,

x ∈ Γ1 and 1 < r < t with {s, s′}P0x, xP̂r{s, s′} and {s, s′}P1x. Notice that here

π has an {S, x}-restoration with an additional constraint that {s, s′}P1x must

also hold. Therefore, either Γ1 ̸= ∅ or Γ1 = ∅ must hold. We show that each of

the two possible cases Γ1 ̸= ∅ and Γ1 = ∅ leads to a contradiction.

Case A: Γ1 ̸= ∅.

Let f : D → Ã be the SCF which is monotonic with respect to (S, Γ1, P1, P0).

Note that f is well-defined since ∅ ̸= Γ1 ⊆ L(S, P1) ∩ L(S, P0). According to

Lemma A.1, f is locally strategy-proof. We show that f is not strategy-proof.

According to Definition A.1, f (P1) = S. Pick an arbitrary path π = (P̂1,

. . . , P̂t) ∈ Π(P0, P1). By the hypothesis for contradiction, there exists (not

necessarily distinct) s, s′ ∈ S, x ∈ Γ1 and 1 < r < t with {s, s′}P0x, xP̂r{s,

s′} and {s, s′}P1x. Since π was chosen arbitrarily, Definition A.1 implies that

f (P0) = max
η(P0)

(W), where W = {{b} ∪ S \ {s, s′} | (not necessarily distinct) s,

s′ ∈ S, b ∈ B with {s, s′}P1b and {s, s′}P0b}. Notice that for each w ∈ W,
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Sη(P0)w. Therefore, Sη(P0) f (P0). Hence, f is not strategy-proof and we have a

contradiction to the assumption that ⟨A,D, G, Ã, η⟩ satisfies DLGE.

This argument establishes that Case A cannot occur.

Case B: Γ1 = ∅. Therefore, there exists a path π1 = (P̂1, . . . , P̂t) ∈ Π(P0, P1)

such that for all x ∈ Γπ1

1 and all (not necessarily distinct) s, s′ ∈ S with {s, s′}P0x,

xP̂q{s, s′}, {s, s′}P̂rx for some integers 1 ≤ q < r ≤ t, xP1{s, s′}.23 Define V =

{v ∈ {1, . . . , t − 1} : there exists x ∈ Γπ1

1 , (not necessarily distinct) s, s′ ∈ S,

integers 1 ≤ q < v with {s, s′}P̂1x, xP̂q{s, s′} and {s, s′}P̂vx}. Note that V ̸= ∅

because the path π1 has {S, x}-restoration for some x ∈ Γπ1

1 . Let P2 = P̂max V .

Note that P2 ̸= P0. By the definition of P2, it follows that for all x ∈ Γπ1

1 , all (not

necessarily distinct) s, s′ ∈ S with {s, s′}P̂1y, yP̂q{s, s′} and {s, s′}P̂ry for some

1 ≤ q < r ≤ max V, yP̄{s, s′} for all P̄ ∈ π1|[P2,P1]\{P2}.

Let Z be the (non-empty) subset of alternatives in Γπ1

1 such that

(i) for all z ∈ Z, there exists (not necessarily distinct) s, s′ ∈ S, integer 1 ≤ q <

max V with {s, s′}P̂1z, zP̂q{s, s′} and {s, s′}P2z,

(ii) for all y ∈ Γπ1

1 \Z (if Z ̸= Γπ1

1 ), all (not necessarily distinct) s, s′ ∈ S with {s,

s′}P̂1y, yP̂q{s, s′} and {s, s′}P̂ry for some 1 ≤ q < r < max V, yP2{s, s′}.

For any two preferences P, P′ ∈ D, define

L(S, P, P′) = {x ∈ L(S, P) ∩ L(S, P′) : there exists (not necessarily distinct) s,

s′ ∈ S with {s, s′}Px and {s, s′}P′x}.

Claim A.4. Γ ∩ L(S, P0, P1) is a strict subset of Γ ∩ L(S, P0, P2).

Proof: It follows from the definition of Z that if Γ ∩ L(S, P0, P1) ⊆ Γ ∩ L(S, P0,

P2), then Γ ∩ L(S, P0, P1) must be a strict subset of Γ ∩ L(S, P0, P2). Suppose it is

23Note that the path π1 has {S, x}-restoration only for all x ∈ Γπ1

1
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not the case that Γ ∩ L(S, P0, P1) ⊆ Γ ∩ L(S, P0, P2) i.e. there exists x ∈ Γ ∩ L(S,

P0, P1) and (not necessarily distinct) s, s′ ∈ S such that {s, s′}P0x, {s, s′}P1x and

xP2{s, s′}. This implies that the path π1 has {S, x}-restoration such that {s,

s′}P0x, xP2{s, s′} and {s, s′}P1x. Hence, x ∈ Γ1. This contradicts the hypothesis

Γ1 = ∅. □

Claim A.5. For every π̂ ∈ Π(P0, P2), there exists x ∈ Γ such that π̂ has {S, x}-

restoration.

Proof: Suppose there exists π̂ ∈ Π(P0, P2) and π̂ has no {S, x}-restoration for

any x ∈ Γ. Clearly P2 is a vertex common to both π̂ and π1|[P2,P1]. Starting from

P1, proceed along the pseudo path which is the reverse of π1|[P2,P1].
24 Let P∗

be the first vertex in this reverse pseudo path which also belongs to π̂. From

our earlier remark, such a vertex must exist (it could be P2). Now combine

the sequences of vertices π̂|[P0,P∗] and π1|[P∗,P1] to form the vertex sequence π̄.

By construction, π̄ contains no repetition of vertices so that it is a path and

π̄ ∈ Π(P0, P1).

For convenience, let π̄ = (P̄1, . . . , P̄k, . . . , P̄t) where P̄k = P∗, π̂|[P0,P∗] = (P̄1,

. . . , P̄k) and π1|[P∗,P1] = (P̄k, . . . , P̄t). Since π̄ ∈ Π(P0, P1), the hypothesis for the

contradiction of the necessity part of Theorem 3.1 implies Γπ̄
1 ̸= ∅. Therefore,

there exists b ∈ Γ such that π̄ has {S, b}-restoration. Since π̂ has no {S, b}-

restoration and by the definition of Z and P2, it follows that there exists (not

necessarily distinct) s, s′ ∈ S such that {s, s′}P̄1b, bP̄k{s, s′} and {s, s′}P̄tb. Now

refer back to the path π1. Since {s, s′}P0b, bP∗{s, s′} and {s, s′}P1b, the path π1

has {S, b}-restoration and hence, b ∈ Γ1. This contradicts the hypothesis Γ1 = ∅.

□
24For a path π = (P1, . . . , Pt), we say that (Pt, . . . , P1) is the pseudo path which is the reverse

of π. We use the word “pseudo” here because (Pt, . . . , P1) might not be a path as we are in the
directed graph setting.
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We can now replace P1 by P2 in our earlier arguments and define Γ2 in the

same way as we defined Γ1. Once again, there are two possibilities, Γ2 ̸= ∅

and Γ2 = ∅. The former case leads to an immediate contradiction using the

arguments in Case A. In the latter case, we can apply Claims A.4 and A.5 to

infer the existence of P3 such that (i) Γ ∩ L(S, P0, P2) is a strict subset of Γ ∩ L(S,

P0, P3), and (ii) every path π ∈ Π(P0, P3) has {S, x}-restoration for some x ∈ Γ.

Repeating the argument, it follows that the only way to avoid a contradiction

via Case A is to find an infinite sequence of vertices P1, P2, . . . Pn, . . . such that

[Γ ∩ L(S, P0, P1)] ⊂ [Γ ∩ L(S, P0, P2)] ⊂ · · · ⊂ [Γ ∩ L(S, P0, Pn)] · · · . 25

However this is impossible in view of the finiteness of G. Thus Case B cannot

occur either and the proof is complete. ■

A.2 PROOF OF PROPOSITION 4.1

Proof. If part: As observed in Altuntaş et al. (2023), if k ≥ m − 1, then (P,

P′) ∈ E k-down for every P, P′ ∈ P . Therefore, ⟨A,P , G⟩ satisfies DLGE trivially.

Only if part: Suppose k ≤ m − 2. Since k ≥ 1, it follows that m ≥ 3. We

show that ⟨A,P , G⟩ does not satisfy Property DL, thereby using Corollary 4.1

we conclude that ⟨A,P , G⟩ does not satisfy DLGE.

Let P, P′ ∈ P and x, y ∈ A be such that xPyPz and yP′xP′z for every z ∈

A \ {x, y}. We show that every path from P to P′ has an {x, z}-restoration for

some z ∈ L(x, P) which would establish that ⟨A,P , G⟩ does not satisfy Property

DL. Pick any path π = (P1 = P, . . . , Pt = P′) from P to P′. Notice that t ≥ 3

because of the facts that k ≤ m − 2 and π is a path from P to P′. Since xPy,yP′x

and k ≤ m − 2, there must exist r ∈ {2, . . . , t − 1} and z ∈ A \ {x, y} such

25Each of the subset relations is strict.
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that zPrx. Therefore, xP1z, zPrx and xPtz which implies that π has an {x, z}-

restoration. Since π is an arbitrary path from P to P′, it follows that ⟨A,P , G⟩

does not satisfy Property DL. This completes the proof of the only if part of the

proposition. ■

A.3 PROOF OF PROPOSITION 4.2

Proof. First we consider the case where m = 2. Hence, min{2, m − 1} = 1.

Since m = 2, it must be the case that P = {P, P′} where P and P′ are opposite

preferences and both (P, P′), (P′, P) ∈ Eup. Therefore, by Remark 3.3, it follows

that ⟨A,P , G⟩ satisfies DLGE if and only if k ≥ 1.

Next, we consider the case where m ≥ 3. Therefore, min{2, m − 1} = 2. We

show that ⟨A,P , G⟩ satisfies DLGE if and only if k ≥ 2.

Only if part: Suppose k = 1, then we show that ⟨A,P , G⟩ does not satisfy

Property DL, thereby using Corollary 4.1 we conclude that ⟨A,P , G⟩ does not

satisfy DLGE.

Let P, P′ ∈ P and x, y, z ∈ A be such that xPaPyPz and xP′aP′zP′y for every

a ∈ A \ {x, y, z}. We show that every path from P to P′ has an {x, z}-restoration

which would establish that G does not satisfy Property DL. Pick any path

π = (P1 = P, . . . , Pt = P′) from P to P′. Notice that t ≥ 3 because of the facts

that k = 1 and π is a path from P to P′. Since yPz, zP′y and k = 1, there must

exist r ∈ {2, . . . , t − 1} such that zPrx. Therefore, xP1z, zPrx and xPtz which

implies that π has an {x, z}-restoration. Since π is an arbitrary path from P to P′,

it follows that ⟨A,P , G⟩ does not satisfy Property DL. This completes the proof

of the only if part of the proposition.

If part: Let k ≥ 2. It is enough to consider the case k = 2 and show that ⟨A,

P , G⟩ satisfies Property DL, then using Corollary 4.1 we conclude that ⟨A,D, G⟩
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satisfies DLGE.26

We use the following notations in the proof. For any P̂ ∈ P and a ∈ A, let

P̂a ∈ P be such that aP̂az for all z ∈ A \ {a} and xP̂y if and only if xP̂ay for

every x, y ∈ A \ {a}. Thus, P̂a is obtained from P̂ by moving a to the top and

keeping the relative ordering of all other alternatives unchanged. Notice that

if P̂ ̸= P̂a, then (P̂, P̂a) ∈ E2-up. Also, for any P̂ ∈ P and a, b ∈ A, let P̂a
b ∈ P

be such that aP̂a
b bP̂a

b z for all z ∈ A \ {a, b} and xP̂y if and only if xP̂a
b y for every

x, y ∈ A \ {a, b}. Notice that if P̂ ̸= P̂a
b , then (P̂, P̂a

b ) ∈ E2-up.

Now, we show that ⟨A,P , G⟩ satisfies Property DL. Pick any P, P′ ∈ P

and any a ∈ A. Let B = {x ∈ A | aP′x} ≡ {b1, . . . , bl} and C = {x ∈ A |

xP′a} ≡ {c1, . . . , cm−l−1} be such that c1P′ . . . P′cm−l−1P′aP′b1 . . . P′bl. We now

construct a path π from P to P′ such that for all b ∈ L(a, P), the path π satisfies

no {a, b}- restoration. We proceed in two steps described below where we first

arrange alternatives in B (according to P′) and then we arrange alternatives in C

(according to P′):

Step 1: Suppose B ̸= ∅. Starting from P, first we arrange bi for every i ∈ {1,

. . . , l} according to the preference P′. Define the path πB = (P0 = P, P1, . . . , Pl)

where Pi = Pi−1a
bl−i+1

for each i ∈ {1, . . . , l}.27 Thereafter, proceed to Step 2.

If B = ∅, then define the path πB = ∅. Thereafter, go to Step 2 and start from

Pl = P as C ̸= ∅28.

Step 2: Suppose C ̸= ∅. Starting from Pl, we now arrange ci for every i ∈ {1,

. . . , m − l − 1} according to the preference P′. Define the path πC = (P̄0 = Pl,

26It is enough to consider the case k = 2 because of the Remark 2.1 and the fact that E2-up ⊆
E k-up for any k ≥ 3.

27Note that P0 might be the same as P1. In this case, consider the path πB = (P0 = P1 = P, P2,
. . . , Pl).

28C ̸= ∅ because both C = ∅ and B = ∅ cannot hold.
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P̄1 . . . , P̄m−l−1) where P̄i = P̄i−1cm−l−i for each i ∈ {1, . . . , m − l − 1}.29 Note that

P̄m−l−1 = P′.

If C = ∅, then it must be the case that l = m − 1 and Pl = P′. Define the path

πC = ∅.

Now, we combine the two paths obtained in Step 1 and Step 2. Define the

path π = (πB, πC) ≡ (P0 = P, P1, . . . , Pl = P̄0, P̄1 . . . , P̄m−l−1 = P′). Note that

π is a path from P to P′ such that for all b ∈ L(a, P), the path π satisfies no {a, b}-

restoration. This is because for any b ∈ L(a, P), aP̂b for every P̂ in the path πB

and the fact that the relative ranking between a and b changes at most once

along the path πC. Since P, P′, a was chosen arbitrarily, it follows that ⟨A,P , G⟩

satisfies Property DL.

■

A.4 PROOF OF PROPOSITION 4.3

Proof. First, we define some notations that we will use in the proof. For any

P̂ ∈ P and a ∈ A, let P̂a ∈ P be such that zP̂aa for all z ∈ A \ {a} and xP̂ay if and

only if xP̂y for every x, y ∈ A \ {a}. Notice that if P̂ ̸= P̂a, then (P̂, P̂a) ∈ E down.

Similarly, for any P̂ ∈ P and a ∈ A, we have (P̂, P̂a) ∈ Eup if P̂ ̸= P̂a.30

Now we proceed to the proof. We show that ⟨A,P , G⟩ satisfies Property DL,

then using Corollary 4.1 we conclude that ⟨A,P , G⟩ satisfies DLGE. Pick any

P, P′ ∈ P and any a ∈ A. Let B = {x ∈ A | aP′x} = {b1, . . . , bl} and C = {x ∈

A | xP′a} = {c1, . . . , cm−l−1} be such that c1P′ . . . P′cm−l−1P′aP′b1 . . . P′bl. We

now construct a path π from P to P′ such that for all b ∈ L(a, P), the path π

satisfies no {a, b}- restoration. We proceed in two steps:

29Note that P̄0 might be the same as P̄1. In this case, consider the path πC = (P̄0 = P̄1 = Pl ,
P̄2 . . . , P̄m−l−1).

30Recall the definition of P̂a, defined in the proof (if part) of Proposition 4.2.
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Step 1: Suppose B ̸= ∅. Starting from P, first we arrange bi for every i ∈ {1,

. . . , l} according to the preference P′. Define the path πB = (P0 = P, P1, . . . , Pl)

where Pi = Pi−1
bi for each i ∈ {1, . . . , l}.31 Thereafter, proceed to Step 2.

If B = ∅, then define the path πB = ∅. Thereafter, go to Step 2 and start from

Pl = P as C ̸= ∅32.

Step 2: Suppose C ̸= ∅. Starting from Pl, we now arrange ci for every i ∈ {1,

. . . , m − l − 1} according to the preference P′. Define the path πC = (P̄0 = Pl,

P̄1 . . . , P̄m−l−1) where P̄i = P̄i−1cm−l−i for each i ∈ {1, . . . , m − l − 1}.33 Note that

P̄m−l−1 = P′.

If C = ∅, then it must be the case that l = m − 1 and Pl = P′. Define the path

πC = ∅.

Now, we combine the two paths obtained in Step 1 and Step 2. Define the

path π = (πB, πC) ≡ (P0 = P, P1, . . . , Pl = P̄0, P̄1 . . . , P̄m−l−1 = P′). Note that

π is a path from P to P′ such that for all b ∈ L(a, P), the path π satisfies no {a, b}-

restoration. This is because for any b ∈ L(a, P), aP̂b for every P̂ in the path πB

and the fact that the relative ranking between a and b changes at most once

along the path πC. Since P, P′, a was chosen arbitrarily, it follows that ⟨A,P , G⟩

satisfies Property DL. ■

A.5 PROOF OF PROPOSITION 4.4

Proof. We show that G satisfies Property SDL, then using Theorem 3.1 we con-

clude that ⟨A,P , G, Ã, η⟩ satisfies DLGE. Given any P ∈ P and a ∈ A, let

31Note that P0 might be the same as P1. In this case, consider the path πB = (P0 = P1 = P, P2,
. . . , Pl).

32C ̸= ∅ because both C = ∅ and B = ∅ cannot hold.
33Note that P̄0 might be the same as P̄1. In this case, consider the path πC = (P̄0 = P̄1 = Pl ,

P̄2 . . . , P̄m−l−1).
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P(a,l) ∈ P be such that r(a, P(a,l)) = l and xPy if and only if xP(a,l)y for every

x, y ∈ A \ {a} where l ∈ {1, . . . , m}.

Pick any P, P′ ∈ P and without loss of generality assume that A = {a1, . . . ,

am} with a1P′a2P′ . . . P′am. Now we construct a specific path from P to P′. We

proceed in the following steps:

Step 1: Suppose r(a1, P) = k > 1, then define the path π1 = (P̂11 , . . . , P̂1k) where

P̂11 = P and P̂1l = P̂(a1,k−(l−1))
1l−1

for each l ∈ {2, . . . , k}. Verbally speaking, the

path π1 is constructed by only improving the rank of a1 by 1 at each consecutive

vertices, starting from P̂11 and ending at the preference (P̂1k) where a1 is the top

ranked alternative.

If r(a1, P) = 1, then define the path π1 = ∅. Thereafter, go to the next step

and start with P̂1k = P.

Step 2: Suppose r(a2, P̂1k) = r > 2, then define the path π2 = (P̂21 , . . . , P̂2r−1)

where P̂21 = P̂1k and P̂2l = P̂(a2,r−(l−1))
2l−1

for each l ∈ {2, . . . , r − 1}. Verbally

speaking, the path π2 is constructed by only improving the rank of a2 by 1 at

each consecutive vertices, starting from P̂1k and ending at the preference (P̂2r−1)

where a2 is the second ranked alternative.

If r(a2, P̂1k) = 2, then define the path π2 = ∅. Thereafter, go to the next step

and start with P̂2r−1 = P̂1k .

Step 3: Suppose r(a3, P̂2r−1) = q > 3, then define the path π3 = (P̂31 , . . . , P̂3q−2)

where P̂31 = P̂2r−1 and P̂3l = P̂(a3,q−(l−1))
3l−1

for each l ∈ {2, . . . , q − 2}. Verbally

speaking, the path π3 is constructed by only improving the rank of a3 by 1 at

each consecutive vertices, starting from P̂2r−1 and ending at the preference (P̂3q−2)

where a3 is the third ranked alternative.

If r(a3, P̂2r−1) = 3, then define the path π3 = ∅. Thereafter, go to the next step

and start with P̂3q−2 = P̂2r−1 .

Similarly, we proceed till m − 1 steps and get hold of the paths π1, . . . , πm−1.
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Notice that at the end of Step m − 1, the final preference of the path πm−1 is the

preference P′.

Now define the path π = (π1, . . . , πm−1). Let π = (P1, . . . , Pt). Observe that

π is a path from P to P′. Also, for any non-empty subset S ⊆ A, the path π

does not satisfy {S, b}-restoration for all b ∈ L(S, P). This is because for any

non-empty subset S ⊆ A and any b ∈ L(S, P), if {s, s′}Pib and bPj{s, s′} for

some i, j ∈ {1, . . . , t} with i < j and some s, s′ ∈ S, then by the construction of

the path π, it follows that bPq{s, s′} for every q ∈ {j + 1, . . . , t}. Therefore, the

path π does not satisfy {S, b}-restoration.

Since P, P′ ∈ P was chosen arbitrarily, it follows that G satisfies Property SDL.

Using Theorem 3.1 we conclude that ⟨A,P , G, Ã, η⟩ satisfies DLGE.

■

A.6 PROOF OF PROPOSITION 4.7

Proof. If part: As observed in Altuntaş et al. (2023), if k ≥ m − 1, then (P, P′) ∈

E k-up for every P, P′ ∈ P . Therefore, ⟨A,P , G, Ã, η⟩ satisfies DLGE trivially.

Only if part: Suppose k ≤ m − 2. We show that G does not satisfy Property

SDL, thereby using Theorem 3.1 we conclude that ⟨A,P , G, Ã, η⟩ does not satisfy

DLGE.

Since 1 ≤ k ≤ m− 2, it must be the case that m ≥ 3. Let P, P′ ∈ P and x, y ∈ A

be such that zPxPy and zP′yP′x for every z ∈ A \ {x, y}. Let S = A \ {x, y}.

Note that S ̸= ∅ and y ∈ L(S, P). We show that every path from P to P′ has

an {S, y}-restoration, thereby establishing that G does not satisfy Property SDL.

Pick any path π = (P1 = P, . . . , Pt = P′) from P to P′. Notice that t ≥ 3 because

of the facts that k ≤ m − 2 and π is a path from P to P′. Since xPy,yP′x and

k ≤ m− 2, there must exist r ∈ {2, . . . , t− 1} and z ∈ S such that yPrz. Therefore,
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zP1y, yPrz and zPty which implies that π has an {S, y}-restoration. Since π is an

arbitrary path from P to P′, it follows that G does not satisfy Property SDL. This

completes the proof of the only if part of the proposition. ■

A.7 PROOF OF PROPOSITION 4.8

Proof. If part: First, we define some notations that we will be using in the proof.

For any P, P̂ ∈ P and B ⊆ A with 1 ≤ |B| ≤ m − 1, let P̂BP ∈ P be such that

(i) aP̂BP b if and only if aPb for every a, b ∈ B,

(ii) xP̂BP y if and only if xP̂y for every x, y ∈ A \ B, and

(iii) bP̂BP x for each b ∈ B and each x ∈ A \ B.

Note that if |B| = k1 where 1 ≤ k1 ≤ m − 1, then (P̂, P̂BP) ∈ E k1-up.

Similarly, For any P, P̂ ∈ P and C ⊆ A with 1 ≤ |C| ≤ m − 1, let P̂CP ∈ P be

such that

(i) aP̂CP b if and only if aPb for every a, b ∈ C,

(ii) xP̂CP y if and only if xP̂y for every x, y ∈ A \ C, and

(iii) xP̂CP c for every c ∈ C and x ∈ A \ C.

Note that if |C| = k2 where 1 ≤ k2 ≤ m − 1, then (P̂, P̂CP) ∈ E k2-down.

Now we prove the if part of the proposition. Let k1 + k2 ≥ m − 1. It is enough

to consider k1 and k2 such that k1 + k2 = m− 1 and show that G satisfies Property

SDL, then using Theorem 3.1 we conclude that ⟨A,P , G, Ã, η⟩ satisfies DLGE.34

34It is enough to consider k1 and k2 such that k1 + k2 = m− 1 because of the Remark 2.1 and the
fact that for any k∗1 + k∗2 > m − 1, there exists k1, k2 with k1 + k2 = m − 1 and E k1-up ∪ E k2-down ⊆
E k∗1-up ∪ E k∗2-down.
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Pick any P, P′ ∈ P and without loss of generality assume that A = {a1, . . . ,

am} with a1P′a2P′ . . . P′am. We construct a specific path from P to P′ as described

below:

Let π = (P1 = P, P2, P3) where P2 = PBP′ and P3 = P2
CP′

such that B = {a1,

. . . , ak1} and C = {ak1+2, . . . , am}. Notice that by contruction, P3 = P′ and π is a

path in G. For any S ⊆ A, the path π does not satisfy {S, b}-restoration for all

b ∈ L(S, P). This is because for any b ∈ L(S, P), if {s, s′}P1b and bP2{s, s′} for

some s, s′ ∈ S, then by the construction of the path π, it follows that bP3{s, s′}.

Hence, the path π does not satisfy {S, b}-restoration for all b ∈ L(S, P).

Since P, P′ ∈ P was chosen arbitrarily, it follows that G satisfies Property SDL.

This completes the proof of if part of the proposition.

Only if part: Suppose k1 + k2 ≤ m − 2. We show that G does not satisfy

Property SDL, thereby using Theorem 3.1 we conclude that ⟨A,P , G, Ã, η⟩ does

not satisfy DLGE.

Since k1 ≥ 1, k2 ≥ 1 and k1 + k2 ≤ m − 2., it must be the case that m ≥ 4. Let

P, P′ ∈ P and x, y ∈ A be such that

(i) r(x, P) = k1 + 1,

(ii) r(y, P) = k1 + 2,

(iii) r(x, P′) = k1 + 2,

(iv) r(y, P′) = k1 + 1, and

(v) r(z, P) = r(z, P′) for each z ∈ A \ {x, y}.

Let S = {a ∈ A : r(a, P) ≤ k1 + 1}. Notice that by the construction of the set

S, it follows that for every z ∈ L(S, P), it must be the case that sPz for each s ∈ S.

Also, notice that by the choice of P′, it follows that for every z ∈ L(S, P) \ {y}, it

must be the case that sP′z for each s ∈ S. We show that every path from P to P′
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has an {S, z}-restoration for some z ∈ L(S, P), thereby establishing that G does

not satisfy Property SDL. Pick any path π = (P1 = P, . . . , Pt = P′) from P to P′.

Let α = min{i ∈ {1, . . . , t} : r(y, Pi) ̸= k1 + 2}. Since π is a path from P to P′ and

r(y, P′) ̸= k1 + 2, the set {i ∈ {1, . . . , t} : r(y, Pi) ̸= k1 + 2} is non-empty and α

always exists. Notice that α ≥ 2 because r(y, P1 = P) = k1 + 2. We distinguish

two cases:

Case 1: Suppose r(y, Pα) > k1 + 2. Then it must be the case that (Pα−1,

Pα) ∈ E k1-up and there exists z ∈ L(S, P) \ {y} such that r(z, Pα) ≤ k1. This

implies that there exists s ∈ S such that zPαs. Also, sP1z and sPtz. Therefore, the

path π satisfies (S, z)-restoration where z ∈ L(S, P). This completes the proof for

the first case.

Case 2: Suppose r(y, Pα) < k1 + 2. Then it must be the case that (Pα−1,

Pα) ∈ E k2-down and there exists s ∈ S such that r(s, Pα) ≥ m− k2 + 1. This implies

that there exists z ∈ L(S, P) \ {y} such that zPαs. Also, sP1z and sPtz. Therefore,

the path π satisfies (S, z)-restoration where z ∈ L(S, P). This completes the proof

for the second case.

Since π is an arbitrary path from P to P′, it follows that G does not satisfy

Property SDL. This completes the proof of the only if part of the proposition. ■
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