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Abstract

The problem of crossing Kaplan-Meier curves has not been solved in the medical re-

search literature to date. This paper integrates survival curve comparisons into decision

theory, providing a theoretical framework and a solution to the problem of crossing Kaplan-

Meier curves. The application of decision theory allows us to apply stochastic dominance

concepts and risk preference attributes to compare treatments even when standard Kaplan-

Meier curves cross. The paper shows that as additional risk preference attributes are

adopted, Kaplan-Meier curves can be ranked under weaker restrictions, namely with higher

orders of stochastic dominance. Consequently, even Kaplan-Meier curves that cross may be

ranked. The method we present allows us to extract all possible information from survival

functions; hence, superior treatments that cannot be identified using standard Kaplan-

Meier curves may become identifiable. Our methodology is applied to two examples of

published empirical medical studies. We show that treatments deemed non-comparable

because their Kaplan-Meier curves intersect can be compared using our method.
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1 Introduction

In their seminal paper, Kaplan and Meier (1958) provided what became known as the Kaplan-

Meier estimator or the Kaplan-Meier Curve (KMC). These curves are non-parametric estimators

of underlying theoretical survival functions (SFs), which, in turn, are simply statistical comple-

mentary cumulative distribution functions. Hence, the KMCs are estimators of such functions.

Over the years, Kaplan-Meier Curves (KMCs) have become the gold standard, used extensively

in countless applications in various medical (and other) fields to compare survival (or, more

generally, time-to-event) functions.

Here are a few very recent examples. Judge, D.P. et al. (2025) use KMCs (as well as hazard

functions within the context of a stratified Cox proportional hazards model) to study the efficacy

of Acoramidis (compared to placebo) on all-cause mortality and cardiovascular-related hospital-

ization for patients with Transthyretin Amyloid Cardiomyopathy. They showed improvements

in ACM and first CVH outcomes compared to the placebo. They report a divergence of the

KMCs after about three months (but, possibly, a crossing of KMCs at the earlier stage was not

mentioned). Ahn et al. (2025) compare the application of KMCs to the use of a Model for

End-Stage Liver Disease numerical scale in a study of transplant-free survival. Li et al. (2025)

used KMCs to compare 28-day mortality in individuals with sepsis in high and low hemoglobin,

albumin, lymphocyte, and platelet (HALP) score groups. They report that a high HALP score

decreases the 28-day, 90-day, and 360-day mortality (as well as in-hospital mortality) for pa-

tients with sepsis. However, they do not mention or discuss the problem of crossing KMCs that

seems to occur in their KMCs at the early stages. Dai J. et al. (2025) used KMCs to compare

overall and progression-free survival probabilities for stages B and C patients with intermediate

to advanced hepatocellular carcinoma (HCC) who underwent transarterial chemoembolization

(TACE) alone with patients who underwent a combination of TACE and ablation therapy. They

looked at overall and progression-free survival. They concluded that for stages B and C patients,

the overall survival probabilities were higher for those with combination therapy compared to

those with only TACE therapy. The same was true for progression-free survival in stage B

patients with the combination therapy, but this was not the case for stage C patients. Finally,

in Yang, L. et al. (2025), Kaplan-Meier curves were employed to compare survival probabilities

between patients with high and low TAP2 expression levels. Comparing KMCs for the two
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expression levels allows for better patient prognostic assessment.1

A common issue that arises when comparing complementary cumulative distribution func-

tions is that they often cross. But, in medical research, where these curves represent, for

example, different treatments’ survival functions, currently, the standard view is that crossing

curves cannot be ranked. Thus, generally, non-crossing complementary cumulative distribution

functions are a special case. It is, therefore, not surprising that researchers often find crossing

KMCs in medical studies. For example, Kristiansen (2012) reviewed all publications in five ma-

jor journals and found 175, about 47%, survival studies in which KMCs crossed (for example,

crossing KMCs were found in Dehbi et al. (2018), Huang and Chong (2022), Tikidzhieva and

Gentile and Magarotto et al. (2012)). Faced with this prevalent crossing KMCs problem, it

became clear that this issue must be addressed. However, the medical literature has thus far

not provided a solution to the problem of crossing KMCs. Indeed, Bouliotis and Billingham

(2011) state, “There is a need in the clinical community to clarify methods that are appropriate

when survival curves cross." They suggest that standard methods may not capture all aspects

of the underlying survival function, so something else might be missing when KMCs cross. For

example, they speculate that crossing curves might be related to differences in variances of the

underlying distributions.

Some studies attempted to solve the crossing-curves problem by focusing not only on sta-

tistical issues or the heights of the KMCs but also on other characteristics of the KMCs. For

example, Lin and Xu (2010) suggested a new survival function comparison method based on

the absolute difference of the area under the KMCs over the whole range of the curves (namely,

from the initial point to the endpoint). Similarly, Dormuth, Liu, et al. (2022) suggest that total

areas (not the absolute differences) under the KMCs over the whole range (again, from the initial

point to the endpoint, usually taken as the truncation point) should be used. Unfortunately (as

shown in this paper), neither method is capable of comparing crossing survival distributions.

The reason is that the comparison has to be “global,” not “local." By local, it means areas

up to a particular (single) point in time along the range of the distribution (in Lin Xu (2010)

1Recently, other methods of producing KMCs have been proposed. For example, Mamun et al. (2023) generate

KMCs using machine learning methods and then use them for survival prediction in heart failure patients. Locey

et al. (2024) provide the Rush Regression Workbench, which provides and automates a variety of commonly

used statistical tools in medical research often used, including KMCs (and hazard functions). Nath et al. (2023)

use an interactive web-based tool to obtain survival probabilities in brain cancer patients. Finally, Dag et al.

(2023) also provide a machine learning approach, which they refer to as holistic. Specifically, they show that the

prediction of lung cancer-related variables can be used to better explain lung cancer patients’ survivability rates.
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and Dormuth, Liu et al. (2022), this point is taken as the endpoint), whereas, global means

the areas up to each point along the range of the distribution. Thus, for example, just because

distribution A’s area or absolute difference of the area from the initial point to the endpoint is

higher than distribution ’s, it does not follow that distribution A is better. In fact, as it is

shown in the paper, comparing total areas under the KMCs from the initial to the endpoints is

equivalent to comparing the means of the survival distributions, hence ignoring the differences

in variances and all higher moments.

The main problem with studies applying the KMCs is that they are not cast within a

decision-making framework. However, to choose a treatment is to make a decision, and to make

decisions, one needs an objective function. By not casting the problem within a decision-making

framework, insights that decision theory can provide are lost and left unexploited. These insights

allow us to compare survival curves even if KMCs cross once or more.

The purpose of this paper is to cast the comparison of survival curves within a standard

decision-making framework and use that framework to address the crossing KMCs problem.

As an example, we apply the standard theory of decision under uncertainty, first developed

by von Neumann and Morgenstern (von Neumann and Morgenstern, (1944)). Within this

framework, common risk preference attributes and high-order stochastic dominance (SD) tools

are used to compare SFs (for a good survey and discussion of stochastic dominance, see Levy

(1992)). Specifically, higher-order SD tools enable us to extract information from KMCs that is

otherwise left unexploited. Risk preference attributes allow us to use this extracted information

to compare KMCs that are otherwise non-comparable. Such an approach is well-known in finance

and economics and can provide the theoretical foundation for comparing KMCs. Consequently,

in many cases, the crossing KMCs problem can be resolved. An intuitive way to view this

approach is that it “substitutes" risk preference attributes for properties of the underlying

SFs. Namely, as additional risk preference attributes are adopted, the restrictions required

to rank survival functions conclusively become weaker (so no intersections may no longer be

required). For example, when using “standard" KMCs (and given that - as is obvious - a later

event occurrence - say death - is better), the requirement that one survival function should

be everywhere higher than another is a necessary and sufficient condition for ranking the two

survival functions. However, assuming the existence of risk aversion makes the necessary and

sufficient condition for ranking two survival functions weaker, so they can be ranked even when
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they cross.

Of course, all decision models require and are based on objective functions, and each objec-

tive function, in turn, is defined by its properties. The paper focuses on risk preference attributes

because health-related decisions involve a great deal of uncertainty. The uncertainty is due to

diagnostic and treatment risks, co-morbidity risks, potential future morbidity risks and back-

ground economics, financial and other risks. It is, therefore, clear that risk preference attributes

play an important role in health-related decisions, such as treatment choices, as captured by

comparing KMCs. Hence, as Attema, l’Haridon et al. (2019) state, “it is widely recognized that

risk preferences are an important determinant of health-related decisions."2

This paper explores three possible risk preference attributes: risk aversion or discounting,

prudence and temperance (in addition to the trivial property that a longer survival time is better

than a shorter one). These properties are discussed in the next section. All three properties

have been well-studied and demonstrated in numerous empirical studies in medical and other

fields (e.g. finance, economics, political science, psychology and biology). The importance of

risk aversion in health-related decisions has long been recognized in medical research (see, for

example, Cykert, S., (2004), Klein and Stefanek (2007), Deakin, Alexander et al., (2009) and

Riddel and Hales (2018)). Prudence was shown to be a primary determinant of the optimal level

of prevention for health risks (see Courbage and Rey (2006), Felder and Mayrhofer (2014, 2017)

and Eeckhoudt and Gollier (2005)). It was also shown that optimal medical test and treatment

decisions are affected by prudence and temperance (see Felder and Mayrhofer (2014)). Conse-

quently, Pauker (2014) recommended that these attributes be considered in medical research

and decisions.

The paper shows that by using "high-order" risk preference attributes, well-known high-order

SD tools can be applied to compare "standard" KMCs even if they intersect.3 Specifically, a pro-

cedure that successively calculates "higher-order" KMCs whenever KMCs intersect is proposed.

This procedure is based on higher-order stochastic dominance, which, in turn, is applicable if

higher-order risk preference attributes are used.

These higher-order KMCs are obtained by calculating the areas under "lower order KMCs"

up to each point in time over the whole range of the distribution. Thus, for example, the height

2See Attemaa, l’Haridonb et al. (2019).
3Using stochastic dominance in medical decisions was first mentioned by Leshno and Levy (2004). However,

they did not provide real-life examples where SD (of any order) allows us to compare treatments in practice.

Moreover, their methodological discussion was limited to first and second-order stochastic dominance.
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of a KMC of order  = 2 3 4, at any point in time, represents the area under the KMC of order

−1 up to that point. Starting with "standard" KMCs, if, at any round, there is no intersection,
there is no need to proceed, and the heights of KMCs (of that round) can be compared using

existing methods.

On the other hand, if an intersection is encountered, the next-order KMCs are constructed,

and their heights are compared. These steps are repeated until no intersection is found or sto-

chastic dominance of order four is reached. If, after reaching fourth-order stochastic dominance,

intersections are still found, we conclude that (given available risk preference attributes and

hence admissible orders of stochastic dominance) it is impossible to rank the two treatments.

Stochastic dominance of orders higher than four cannot be used without further knowledge

of even higher order risk preference attributes (beyond temperance). Unfortunately, there is

neither clear intuition regarding their meaning nor literature demonstrating their importance.

At each of these steps, the move to higher-order KMCs is facilitated by adopting more risk

preference attributes, which allows us to apply stochastic dominance of a higher order. The

paper provides necessary and sufficient conditions for ranking the high-order KMCs at each

step.

Two examples based on empirical studies reported in the medical literature are provided to

demonstrate this procedure. The first example is based on Nichols A. C. et al. (2022). In this

example, first-order stochastic dominance is not satisfied, but second-order stochastic dominance

is satisfied. For this example, an application of our method shows that even though the KMCs

intersect, the preferred treatment can be determined if second-order stochastic dominance and

risk aversion are applied. In the second example, based on Arenal, A. et al. (2022), both

first-order and second-order stochastic dominance are not satisfied, but third-order stochastic

dominance is satisfied. In this case, it is shown that even though the first and second-order

KMCs intersect, the preferred treatment can be determined by applying third-order stochastic

dominance, risk aversion and prudence.

2 Expected Utility and the Choice of Treatments

Consider treatments  and  The treatments start at the same point in time, defined as zero.

Under both treatments, an event may occur after the treatment begins. The event could be a

biochemical recurrence, a clinical recurrence, death, etc. The time at which the event occurs is
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denoted by  Assume that  is a continuous random variable distributed over the closed interval

[0 ], whose probability distribution depends on the treatment given to a patient.4 Define the

density functions corresponding to treatments  and  as () and () respectively. For any

point in time, , define the survival functions5 under treatments  and  as 1() and 1()

respectively. To avoid confusion, note that subscript 1 reflects the fact that these SFs represent

the areas under the density functions; hence, they are viewed as “first-order areas.” The survival

functions give us the probability that the event will occur after time 

In their seminal contribution, Kaplan and Meier (1958) provided what became known as

the Kaplan-Meier estimator or the KMC. Essentially, Kaplan and Meier used discrete data to

estimate survival functions like 1() and 1() non-parametrically. Therefore, by their nature,

the KMCs are discrete approximations of 1() and 1()

Given two survival functions,6 to choose between treatments  and , what is required for

any decision problem is the decision maker’s objective function. In our case, the decision maker

is the patient.7 The most obvious and commonly used framework that provides an objective

function for choice under uncertainty is the expected utility model introduced by von Neumann

and Morgenstern (1944)). While some reservations have been raised over the years about using

this model (and several non-expected utility alternative models have been introduced), it has

been and still is the main workhorse for dealing with choice under uncertainty, theoretically and

empirically, including a wide range of medical fields. This paper also applies the expected utility

model.

Thus, assume that the patient chooses a treatment by comparing the expected utilities of

the outcomes, given the two distribution functions. Define the utility of outcomes () as ()8

4The sample space of the two underlying distributions may not be the same, but following the stochastic

dominance literature, we assume it is. So, for both treatments, the random variables are supported on the finite

interval[0 ] 0    +∞. For a sufficiently large , any reasonable possible upper bound for the two treatments
can be accommodated.

5The corresponding cumulative distribution functions are  () =
R 
0
() 0 ≤  ≤  and () =

R 
0
()

0 ≤  ≤  These CDFs give us the probability that the event will occur before time  Define the corresponding
complementary cumulative distribution functions (CCDFs) as 1() = 1 −  () and 1() = 1 − () These
are the probabilities that the event will occur after time  The functions ()1 and ()1 are what we refer to
as the survival functions. Finally, note that the means of  given the two distributions are given by  () =R 
0
() and () =

R 
0
()

6The survival curves themselves are determined by the underlying distribution functions, which are indepen-

dent of the patient’s preferences. It is the ranking of survival curves that depends on the patient’s preferences.

Therefore, for example, risk-averse and risk-neutral patients will rank the same survival curves, hence treatments,

differently.
7The question of whether it should be the patient’s or doctor’s objective function is discussed, for example,

in Makins (2023).
8Where () is continuous and differentiable of, at least, the fourth order.
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Then, define the expected utilities of  under treatments  and  as [()] and [()]

respectively. Since, in general, the survival functions of the two treatments differ, so do the

corresponding expected utilities. The patient, therefore, chooses a treatment by comparing

the expected utilities [()] and [()] The treatments’ expected utilities can be written

as [()] =
R 
0
() [1 − 1()] and [()] =

R 
0
() [1 − 1()]

9 Thus, a treatment’s

expected utility depends not only on the properties of its survival function but also on the

properties of the patient’s utility function. However, as is clear from the expected utilities’

definitions, the properties of a treatment’s survival function and the properties of the patient’s

utility function do not depend on each other.

Four common utility function properties have been observed and discussed in the theoretical

and empirical decision theory literature, as well as medical research. This paper will refer to

them as properties of orders one to four: P1-P4. Each of these properties implies a specific

preference characteristic and thus gives rise to a particular type of behaviour when making de-

cisions involving risk. The four properties are captured by the first four derivatives of the utility

function (higher-order derivatives have not been considered in the literature since it is unclear

what they represent). Denote these four derivatives as 0() 00() 000() and 0000(). The

signs of these derivatives capture and imply a specific characteristic of an individual’s prefer-

ences. Specifically, the signs of the second, third and fourth derivatives capture risk preference

attributes (the second-order derivative may also capture future-discounting attributes). These

four properties are now summarized below.

The first property (P1) is trivial; it says  must be an increasing function (0()  0).

In other words, a later event occurrence is always preferred to an earlier one. This property

simply says that "more time before the event occurs is better." If this property holds, the

utility function is said to satisfy the first-order property, P1. The second property (P2) is risk

aversion (00()  0). Risk aversion (with respect to the timing of the event occurrence) means

that patients attach value to certainty and are willing to “pay a risk-premium" to avoid risk.10

9[()] =
R 
0
() () =

R 
0
()  () =

R 
0
() [1 − 1()] and  [()] =

R 
0
() () =R 

0
() () =

R 
0
() [1− 1()]

10An alternative interpretation of this property (which also implies that 00()  0) is observationally equiv-
alent) is that patients apply a discount factor to later years. The alternative interpretation of the second-order

property is also intuitive and is related to “time-substitution” or “time discounting,” in this case, current years

versus future years. Generally, a year today is worth more than a year in the future. In the context of survival,

this idea becomes even more important since people often think in terms of “quality years,” and quality deterio-

rates over time; hence, later years are worth less than earlier ones. The discounting of future “rewards" underlies

most economic and finance theories and appears even in neuroscience and animal behaviour (see Glasziou, Simes
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Practically all of finance theory is based on the assumption that individuals are risk averse, and

so are most economic models that deal with choice under uncertainty. The medical literature

also recognizes the validity and importance of risk aversion (see, for example, Cykert, S., (2004),

Klein and Stefanek (2007), Deakin, Alexander et al., (2009) and Riddel and Hales (2018)). It

should be noted that all that matters is whether or not the patient is risk-averse, not the degree

of risk aversion.

It has been recognized that individuals tend to exhibit prudence. Prudence refers to the

sensitivity of an individual’s actions in the presence of risk, whereas risk aversion refers to an

individual’s dislike of risk. Thus, prudence implies that an individual will take precautionary or

preventive actions in the face of uncertainty. Prudence captures a “propensity to prepare and

forearm oneself when facing uncertainty" (Kimball (1990)). The economic, finance and medical

literature has noted and discussed its importance (Ebert and Wiesen (2011) and Crawford

(2022)).

A classic example is that intertemporal saving decisions suggest that an individual will have

precautionary savings. In the context of health, it means that an individual will act to ameliorate

health risks. If prudence is satisfied, the utility function is said to satisfy the third-order property,

P3 (prudence is satisfied if 000()  0).

Finally, temperance (P4) is another property of utility function that has been noted, ad-

dressed and used in economics and finance (for a finance example, see Colasante and Riccetti

(2020); for an economics example, see Deck and Schlesinger (2010)). Temperance is satisfied if

0000()  0 It means that an individual will reduce exposure to risky treatments if her indepen-

dent background risk (from other risky choices) increases the degree of moderation in accepting

risk. Several studies in various medical fields found that temperance plays an important role

in patients’ decisions regarding risky treatments while facing unrelated risks (see Felder and

Mayrhofer (2014)).

The sections below show that by using "high-order" risk preference attributes P2-P4, well-

known high-order SD tools can be applied to compare "standard" KMCs even if they intersect.

As is clear from the definition of the expected utility functions, the more utility function proper-

and Gelber, (1990), Berridge and Kringelbach, (2015) and Schultz (2015)). For example, it was even suggested

that the neurotransmitter serotonin might play an important role in modulating future discounting (Mobini,

Chiang, et al. (2000)). There is also extensive literature that tries to untangle the contribution of risk aversion

from the contribution of time substitution. We do not pursue this issue further in the paper. However, for our

purpose, it suffices to note that both can explain P2.
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ties we use, the less restrictive the survival functions can be. Alternatively, the more restrictive

the survival functions, the fewer the number of utility function properties we need to use. In

the standard Kaplan-Meier literature, no use is made of the utility function’s properties P2-P4.

Hence, the KMCs must indeed satisfy stringent conditions, i.e., no intersections are allowed.

3 First-order Stochastic Dominance and the Kaplan-

Meier Curve

To place the KMCwithin the framework of choice under uncertainty, we start with the first-order

stochastic dominance (SD1) concept. SD1 is defined as follows:

Definition 1: First-order Stochastic Dominance Treatment B exhibits SD1 over treat-

ment A if and only if 1() is higher than 1() for all  values, with strict inequality for

at least some  values.

Given Definition 1, the standard result is as follows:

Result 1: If later event times are preferred (P1 holds), then treatment  is preferred to treat-

ment  if and only Treatment B exhibits SD1 over treatment A.

A discussion, derivation, and proofs of Result 1 and Results 2-4 below are given by Rothschild

and Stiglitz (1970) and Levy (1992).

Figures 1a and 1b below are examples of survival functions where SD1 is satisfied and not

satisfied, respectively.

Figure 1a: SD1 is Satisfied. Figure 1b: SD1 is not satisfied
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It is useful to note that if treatment  exhibits SD1 over treatment , then it follows that

the expected value of  under treatment  is necessarily higher than the expected value of 

under treatment .

Result 1 is appealing because other than assuming that “a later event date is preferred,”

no knowledge of other aspects of utility functions is required; all that is required is information

about the SFs 1() and 1() at each point. However, it is important to emphasize that no

conclusions can be drawn if 1() is higher than 1() over some range but not for all  values.

In other words, this property must be global. This result stands in contrast with the standard

Cox regression hazard ratio. Whereas in the Cox regression model, the hazard ratio is constant

(by construction) - thus independent of time - here, for SD1 to hold, 1() needs to be higher

than 1() for all  Moreover, it is clear that if SD1 holds, any “height average” of 1() values

will always be higher than the height average of 1() values. Equivalently, if SD1 holds, any

“average hazard ratio” (an average of 1()1()) will be greater than 1, even though the

hazard ratio for each value of  is not constant.

In practice, of course, one never knows the true underlying SFs; one can only work with

the estimated . Hence, defining the  for treatments  and  as 
1 () and


1 () respectively, then Result 1 implies that when later event times are preferred, then

treatment  is preferred if and only if 
1 () is always (i.e., for all values of ) higher than


1 () with strict inequality for at least some  values.

As is evident from the discussion above, SD1 of treatment  only holds under a very restric-

tive condition. Namely,
1 ()must be higher than

1 () for all values of . This clear

ranking does not hold if, for example, for some values of , 
1 () is higher than 

1 (),

but for others, it is lower. Such cases can occur if the KMCs intersect once or more. Although

intersecting Kaplan-Meier curves are commonly found in the medical literature, there is still

no consensus on the best way to deal with intersecting KMCs. In the following, a procedure

is provided that addresses this problem by using higher-order properties of the utility function

(properties P2-P4) and higher-order stochastic dominance concepts.

4 Second-Order KMCs

This section demonstrates that by using a further, higher-order property of the utility function,

the severe restriction of SD1 can be relaxed, and the intersecting KMCs problem can then be

11



solved. Specifically, in addition to the obvious preference for a later event occurrence (P1),

assume that utility functions are characterized by P2, namely, risk aversion. The restrictive

SD1 - non-intersecting  and  curves - condition can now be relaxed with this additional

assumption. It is now possible to conclude that, under certain conditions, treatment  is

preferred to treatment  even if the  curve is not everywhere (for all ) higher than the 

curve (hence, if 
1 () is not always above 

1 ()). In other words, even if the KMCs

cross (once or more), treatment  may still be preferred to treatment .

Define SD2 as follows:

Definition 2: Second-order Stochastic Dominance Treatment B exhibits SD2 over treat-

ment A if and only if the area under 1() is (weakly) greater than the area under 1()

for all  (and strictly greater for at least some values of ).

Given Definition 2, the standard result is as follows:

Result 2: If a later event occurrence is better and, in addition, the utility function exhibits

risk-aversion (i.e., both P1 and P2 hold), treatment  is preferred to treatment  if and

only if Treatment  exhibits SD2 over treatment .

As Result 2 states, no local conclusions can be drawn, only global ones - the inequality in

Result 2 must hold for every  over the whole range of  Figures 2a and 2b show examples

where SD2 is and is not satisfied, respectively. In Figure 2a, the area between the two curves

before the intersection is greater than the area between the two curves after the intersection.

Therefore, Result 2 implies that SD2 is satisfied. The opposite is true in Figure 2b.

Figure 2a: SD2 is Satisfied Figure 2b: SD2 is Not Satisfied

Result 2 provides the basis for comparing treatments by calculating the areas under the

Kaplan-Meier Curves when those curves intersect (once or more). Hence, Result 2 tells us that

12



treatment  is preferred to treatment  if and only if the area under 
1 () is (weakly)

greater than the area under 
1 () for all values of  (and, strictly greater for at least some

 values). This result holds even if there are intersections.

The idea of calculating the areas under KMCs to compare treatments was introduced in

medical studies before (for example, see Lin and Xu (2010), Dormuth, Liu, et al. (2022)).

However, in these “restricted mean survival time” (RMST) studies, the areas under  and

 were calculated only for one specific value of ; the endpoint (usually, at the truncation

point), but not for every  as required by Result 2. So, for example, if the truncation was at

point  the RMST studies compared the areas under the () and () curves up

to point  but not for all values. Therefore, Result 2 implies that it cannot be determined which

treatment is better. What does such a comparison tell us? Since the difference in areas under

cumulative distributions over the entire range is equal to the difference in means (see Rothschild

and Stiglitz (1970)), the RMST studies simply tell us which distribution has a higher mean.

The fact that such a comparison is insufficient to compare treatments is not surprising since a

comparison of means ignores all higher moments of the distributions. For example, suppose the

means of the two distributions are the same. Then, it can be shown that the difference in the

total areas under the cumulative distributions (over the whole range) is simply the difference in

the variances.11 Therefore, it is clear that a (local) comparison of the areas under the 
1 ()

and 
1 () curves up to point  but not for all values below  ignores information on higher

orders moments, e.g., second moments.

The following procedure is applied to make Result 2 visually more intuitive, simpler to apply,

and easier to relate to standard KMCs. First, define the areas under 1() and 1() up to

the point  as 2() and 2(). In other words, the heights of 2() and 2() measure the

areas under the 1() and 1() curves (which themselves are areas under the density functions

- hence the subscript 2)12. Second, define the difference between the hights of 2() and 2()

as 2() = 2() −2() The 2() curve is referred to as the second-order difference curve.

Result 2 can now be stated in terms of the single difference curve 2() Specifically,

Result 2a: If a later event occurrence is better and, in addition, the utility function exhibits

11If we define the variances of  under the  and  disdributions as   () and  () then (using
integration by parts),   ()−  () =

2
R 
0
[
R 
0
{ ()−()}]

Therefore, SD2 of B over A implies that   () ≥  () However, the converse is not true.
122() ≡

R 
0
()  and 2() ≡

R 
0
() 
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risk-aversion (i.e., both P1 and P2 hold), treatment  is preferred to treatment  if and

only if 2() is higher than zero for all  (and strictly greater than zero for at least some

values of ).13

Result 2a allows us to compare treatments by simply comparing the height of the single

2() curve for each  rather than comparing the areas under the 1() and 1() curves

up to each  Therefore, to compare treatments whose Kaplan-Meier Curves intersect, first

define the areas under 
1 () and 

1 () up to point  as 
2 () and 

2 (),

respectively. The heights of 
2 () and 

2 () at a particular  now represent the area

under 
1 () and 

1 () up to that  
2 () and 

2 () can be viewed as

“second-order KMCs.” Next, for each  define the difference between the heights of 
2 ()

and 
2 () as 


2 () = 

2 ()−
2 () This curve is referred to as the second-

order Kaplan-Meier Difference Curve.

Result 2a can now be restated in terms of the height of the 
2 () curve as follows:

Result 2b: If a later event occurrence is better and, in addition, the utility function exhibits

risk-aversion (i.e., both P1 and P2 hold), treatment  is preferred to treatment  if and

only if 
2 () is greater than zero for all  (and, strictly higher than zero for at least

some values of ).

As was the case above, local comparisons cannot be made, only global ones.

Since estimation methods and tests for the significance of height differences for 
1 ()

and 
1 () already exist, presumably, similar estimation techniques and tests can also be

used for second-order KMCs or the 
2 () curve. The use of second-order KMCs or the

corresponding 
2 () curve addresses the crossing curves problem. It allows us to compare

treatments by exploiting the fact that (in addition to P1) the utility function satisfies 2

From Definitions 1 and 2, it is clear that SD1 imposes stronger restrictions than SD2. Specif-

ically, SD1 implies SD2, but the reverse is not true. Hence, Result 2 (or its variants) allows us

to compare treatments  and  under weaker restrictions; namely, it can be used even if Result

1 cannot be applied.

Finally, two points are worth noting. First, if the patient is not risk-averse, we cannot apply

Results 2, 2a and 2b. Hence, we are back to the standard Kaplan-Meier problem where crossing

13Note that when  =  the condition 2() ≥ 2() whish is the same as the condition 2() ≥ 0 implies
that () ≥  ().
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KMCs cannot be ranked. Second, all that matters is whether risk aversion exists, not its level.

5 Third-order KMCs

Now, what happens if the 
2 () and 

2 () intersect? Namely, if 
2 () is not

always positive. If intersections occur, the method discussed above can be used to relax further

the conditions the survival functions must satisfy. This can be done by assuming that individuals

also exhibit prudence (P3). With prudence, the requirement that 2() must be higher than

2() for all  can be weakened, thus allowing for their intersections.

Define third-order stochastic dominance (SD3) as follows:

Definition 3: Third-order Stochastic Dominance Treatment B exhibits SD3 over treat-

ment A if and only if the area under 2() is greater than the area under 2() for all 

values (and strictly greater for at least some ), and 2() = 2()−2() ≥ 014

Given Definition 3, the standard result is as follows:

Result 3: If a later event occurrence is better and, in addition, the utility function exhibits

risk-aversion and prudence (i.e., P1, P2 and P3 all hold), treatment  is preferred to

treatment , if and only if treatment B exhibits SD3 over treatment A

The distributional restrictions imposed by Result 3 are weaker than those in Result 2, which

allows us to compare the treatments even when 2() and 2() intersect (when 2() is not

always positive).

Again, to make the implication of Result 3 visually more intuitive and easier to apply to

KMCs, differences-in-area-curves can be used. Hence, first, define the areas under 2() and

2() as 3() and 3() respectively.
15. Next, define the difference between 3() and 3()

as 3() = 3() − 3() Result 3 can now be stated in terms of the hight-difference curve,

3(), rather than the areas under the 2() and 2() curves used in Result 3. Result 3 can

then be restated as follows,

14Remember that the condition 2() ≥ 0 implies that () ≥  (), i.e., the mean of  under treatment B
is higher than the mean under treatment A.
153() and 3() measure the areas under 2() and 2(), which, in turn, are areas under 1() and 1()

but 1() and 1() are areas under the density functions. Hence the subscript 3.
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Result 3a: If a later event occurrence is better and, in addition, the utility function exhibits

risk-aversion and prudence (i.e., P1, P2 and P3 all hold), treatment  is preferred to

treatment , if and only if 3() is greater than zero for all  (and strictly higher than

zero for at least some ) and 2() ≥ 0

Therefore, to compare treatments whose second-order Kaplan-Meier Curves intersect, first

define the areas under 
2 () and 

2 () as 
3 () and 

3 (), respectively.


3 () and 

3 () can be viewed as “third-order KMCs.” The heights of 
3 ()

and 
3 () now represents the areas under 

2 () and 
2 () respectively. Next,

define the difference of the heights of 
3 () and 

3 () as 

3 () = 

3 () −


3 () Result 3a can now be stated as follows:

Result 3b: If a later event occurrence is better and, in addition, the utility function exhibits

risk-aversion and prudence (i.e., P1, P2 and P3 all hold), treatment  is preferred to

treatment , if and only if 
3 () is greater than zero for all  (and strictly greater

for at least some ) and 
2 () ≥ 0

Definitions 3a and 2a clearly show that SD2 imposes stronger restrictions than SD3. Specif-

ically, SD2 implies SD3, but the converse is not true. Hence, Result 3b allows us to compare

treatments  and  under weaker restrictions than the ones in Result 2b; namely, it can be

used even if Result 2b cannot be used (even if the second-order KMCs intersect). Moreover, all

that matters is whether prudence exists, not its level. Now, what happens if the patient is not

prudent? Unfortunately, in such a case, we cannot apply Results 3, 3a and 3b.

In principle, if SD3 is not satisfied (if 3() and 3() intersect), the restrictions imposed

on the survival functions can be weakened even further if patients also exhibit temperance

(P4). The adoption of the temperance assumption allows us to compare the two treatments by

considering differences in the heights of “fourth-order KMCs” (defined similarly as the third-

order KMCs defined above) or the positivity of the fourth-order difference curve.16 Since we

were unable to find real medical data for which 
3 () is not greater than zero for all  but

the corresponding fourth-order difference curve is, this case is not pursued here.

16The use of fourth-order stochastic dominance is described as follows. Define the areas under 
3 ()

and 
3 () as 

4 () and 
4 (), and the corresponding difference as 


4 () = 

4 () −


4 (). Then, we have the following result:
Result 4b: If P1, P2, P3 and P4 all hold, then treatment  is preferred to treatment  if and only if


4 () is greater than zero for all  (and strictly higher for at least some ) and 

2 () ≥ 0
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Note that in all cases, high-order difference curves allow us to check for the positivity of

a single curve rather than compare areas under two curves. Consequently, existing statistical

testing methods (available for standard - 
1 () and 

1 () - curves) can be used to

compare high-order KMCs and check for the positivity of difference curves.

In summary, the following procedure is proposed. First, if 
1 () and 

1 () inter-

sect, obtain 
2 () and 

2 () by measuring the area under 
1 () and 

1 ()

up to each point in time. These curves are used to define the second-order difference curve


2 (). Then, check for the positivity of the 

2 () curve. If 
2 () is sometimes

smaller than zero, repeat the step above and obtain third-order KMCs by measuring the area

under the second-order KMCs up to each point in time for all . These are used to define the

third-order difference curve 
3 () If 

3 () is always positive (and 
2 () is positive),

the conclusion is that the corresponding treatment is preferred. If there still is an intersection,

repeat the steps above to compare fourth-order KMCs or the fourth-order difference curve. If

the fourth-order difference curve 
4 () is always positive (and 

2 () is positive), the

conclusion is that treatment B is preferred. If 
4 () is not always positive, the conclusion

is that ranking the two alternative treatments is impossible. As we go from first-order KMCs

to higher-order ones, additional attributes of risk preferences are used. The extra information

obtained from the underlying preference allows us to use higher-order SD to obtain all the

extractable information embedded in the KMCs.

The following section provides examples of this procedure using actual medical treatment

data.

6 Empirical Examples

This section applies our methodology to two examples of crossing KMCs in published medical

papers. Following our procedure, first, the differences in the areas under the two treatments’

KMCs (for all  values) are calculated. In other words, the differences between 
2 () and


2 () up to point  for all  (defined above as 


2 ()) are calculated. If this difference

is always positive, the conclusion is that SD2 is satisfied. Hence, if a later event occurrence

is preferred and the utility function exhibits risk aversion (when Properties P1 and P2 are

satisfied), treatment  is preferred to treatment . This case occurs in Example 1 below and

is shown in Figures 3a and 3b.
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If SD2 is not satisfied, the differences between 
3 () and 

3 () up to point  for

all  (defined above as 3()) are calculated. Again, if this difference is always positive for

all  (and 
2 () is positive), the conclusion is that SD3 is satisfied. Thus, if a later event

occurrence is better and, in addition, the utility function exhibits risk aversion and prudence

(when Properties P1, P2 and P3 are satisfied), treatment  is preferred to treatment . This

case occurs in Example 2 and is shown in Figures 4a, 4b and 4c below.

As the examples below demonstrate, even if the two KM curves intersect, it is still valuable

to check for higher-order stochastic dominance, which provides additional information about the

compared treatments. The additional information may allow us to discriminate between two

treatments that are not comparable when looking only at first-order KMCs.

6.1 Example 1: SD1 is Not Satisfied, SD2 is Satisfied

The first example is based on Nichols A. C. et al. (2022). The study compares the long-run out-

comes of radiotherapy (RT - with chemotherapy if N1-2 ) with those of transoral robotic surgery

plus neck dissection (TRND ),17 in the treatment of oropharyngeal squamous cell carcinoma.18

In the following, TRND is defined as treatment A and RT as treatment B. The correspond-

ing KMCs are shown in Figure 3a. As this figure shows, the KMCs cross so that SD1 is

not satisfied. Hence, following our procedure, first, the areas under the KMCs as defined by


2 () and 

2 () up to point  for all  These areas were then used to calculate the

differences between them as 
2 = 

2 () −
2 () Figures 3a and 3b show that

while SD1 is not satisfied, SD2 is.

17With or without adjuvant therapy.
18The Method: Authors randomly assigned patients with T1-T2, N0-2 (≤ 4 cm) OPSCC to radiotherapy

(RT) (with chemotherapy if N1-2) versus transoral robotic surgery plus neck dissection (TORS + ND) (with

or without adjuvant therapy). The primary endpoint was swallowing quality of life (QOL) at 1 year using the

MD Anderson Dysphagia Inventory. Secondary endpoints included adverse events, other QOL outcomes, overall

survival, and progression-free survival. All analyses were intention-to-treat.
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Figure 3a. KMCs. RT- Solid Line, TRND - Dashed

Line.
Figure 3b: 

2 

This result is demonstrated in Figure 3a since the area between the solid and dashed lines

where the solid line is higher than the dashed line dominates the area between the dashed and

solid line where the dashed line is higher than the solid line. It is also demonstrated in Figure 3b,

where the difference is positive (
2  0) for all  Hence, whereas the treatments could not

be ranked by looking at SD1, they can be ranked by using SD2 and assuming that (in addition

to P1) risk aversion is satisfied. In other words, the conclusion is that the RT treatment is

preferred to the TRND treatment.

6.2 Example 2: SD1 and SD2 Are Not Satisfied, SD3 is Satisfied

The third example is based on Arenal, A. et al. (2022). This study compares the efficacy

and safety of catheter ablation (CA) and antiarrhythmic drugs (AADs) as first-line therapy

in patients with ischemic cardiomyopathy and an implantable cardioverter-defibrillator (ICD).

Treatment ICD is defined as treatment A and CA as treatment B.

The corresponding KMCs are shown in Figure 4a. Again, as this figure shows, the KMCs

cross so that SD1 is not satisfied. Hence, following our procedure, the areas under the KMCs

(as defined by 
2 () and 

2 () up to point  for all ) are calculated. Then, the

differences between them, defined above as 
2  are calculated. Figure 4b shows the differ-

ences between 
2 () and 

2 () up to point  for all  As the figure shows, SD2 is

also not satisfied (but 
2 () is positive). Thus, the areas under 

2 () and 
2 ()

are calculated which gives us the 
3 () and 

3 () curves. The difference between


3 () and 

3 () curves, defined as 

3  is shown in Figure 4c. As this figure

shows, 
3  0 for all  (and Figure 4b shows that 

2 () is positive). Hence, whereas

the treatments could not be ranked by using SD1 or SD2, they can be ranked by using SD3 and
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assuming that (in addition to P1) risk aversion and prudence are satisfied. In other words, the

conclusion is that the CA treatment (treatment B) is preferred to the ICD treatment (treatment

A).

Figure 4a: CA & ICD, Dashed and Solid Lines Figure 4b: 
2 ()

Figure 4c: 
3 ()

7 Critical Discussion and Limitations

KMCs have been used extensively in countless applications in various medical fields to compare

survival functions. It has been recognized in the medical literature that KMCs frequently cross.

However, currently, no framework exists in the medical literature that allows us to use KMCs

when they cross.

This paper provides a solution to the problem of crossing KMCs. It does so by adopting

a standard decision-making framework. It is this framework that allows us to apply stochas-

tic dominance concepts and risk preference attributes to solve the crossing KMCs problem.

Furthermore, the solution this framework provides is simple, practical and easily applicable.

However, our approach has several shortcomings. First, like all theoretical models, the

strength of our model depends on the validity of its underlying assumptions, specifically, the
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applicability of the expected utility framework and the validity of the assumptions regarding

risk preference attributes. While the expected utility assumption may and has been challenged,

it is still the standard approach for problems of choice under uncertainty in a wide range of

fields. Similarly, the assumptions regarding risk preference attributes are widely accepted and

have been confirmed in empirical studies in many disciplines, including economics, finance,

psychology, biology, and even medicine. Therefore, the theoretical and empirical underpinnings

of our model are quite solid. Moreover, it is easy to elicit some risk preference information in a

doctor-patient setting by presenting patients with a simple questionnaire (for example, regarding

risk-aversion: do you prefer a treatment that gives you an extra 5 years for sure or one that

gives you an extra 2 or 8 years with equal probabilities, (ii) regarding prudence: will you take

precautionary or preventive actions in the face of medical risks?).

Second, our model cannot always guarantee a solution. The reason is that information on

risk preference attributes of orders higher than four does not exist. Consequently, once SD4 is

reached and an intersection still exists, it is impossible to go further. Third, if a specific risk

preference attribute does not hold for a particular patient (e.g., say, prudence), the particular

corresponding SD concept cannot be applied.

Finally, our paper does not provide explicit testing procedures. However, existing testing

techniques could presumably be used. The challenging global testing question is beyond the

scope of this paper and can be addressed in future research.

8 Conclusion

KMCs have been extensively used in the medical research. Yet, the problem of crossing KMCs

has not been solved. Indeed, it is clear that without a theoretical framework, this problem

is challenging, if not impossible, to solve. Thus, in the literature, whenever KMCs cross, a

descriptive evaluation, rather than a ranking, is usually provided. This paper integrates the

comparison of survival curves into decision theory, thus providing a theoretical framework for

comparing crossing KMCs. Framing the survival function comparison as a decision-theoretic

problem allows us to use risk preference attributes in conjunction with high-order stochastic

dominance tools to solve the problem of crossing KMCs. This paper provides a procedure

that uses successively higher-order KMCs in conjunction with higher-order risk preferences to

compare treatments whenever KMCs intersect. This process is possible because it uses otherwise
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unexploited higher-order properties of the underlying Kaplan-Meier Curves and utility functions.

Since our knowledge of risk preference attributes is limited (it does not exceed the fourth order),

our procedure cannot necessarily always guarantee a solution. We apply our methodology to

two examples of crossing KMCs in published medical papers and show that, in these examples,

treatments that otherwise could not be ranked can be ranked by our procedure.
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