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Abstract 

 

This study investigates the complex relationship between the performance of logistics and 
Environmental, Social, and Governance (ESG) performance drawing upon the multi-methodological 
framework of combining econometric with state-of-the-art machine learning approaches. Employing 
IV panel data regressions, viz. 2SLS and G2SLS, with data from a balanced panel of 163 countries 
covering the period from 2007 to 2023, the research thoroughly investigates how the performance of 
the Logistics Performance Index (LPI) is correlated with a variety of ESG indicators. To enrich the 
analysis, machine learning models—models based upon regression, viz. Random Forest, k-Nearest 
Neighbors, Support Vector Machines, Boosting Regression, Decision Tree Regression, and Linear 
Regressions, and clustering, viz. Density-Based, Neighborhood-Based, and Hierarchical clustering, 
Fuzzy c-Means, Model Based, and Random Forest—were applied to uncover unknown structures and 
predict the behaviour of LPI. Empirical evidence suggests that higher improvements in the 
performance of logistics are systematically correlated with nascent developments in all three 
dimensions of the environment (E), the social (S), and the governance (G). The evidence from 
econometrics suggests that higher LPI goes with environmental trade-offs such as higher emissions 
of greenhouse gases but cleaner air and usage of resources. On the S dimension, better performance 
in terms of logistics is correlated with better education performance and reducing child labour, but 
also demonstrates potential problems such as social imbalances. For G, better governance of logistics 
goes with better governance, voice and public participation, science productivity, and rule of law. 
Through both regression and cluster methods, each of the respective parts of ESG were analyzed in 
isolation, allowing to study in-depth how the infrastructure of logistics is interacting with 
sustainability research goals. Overall, the study emphasizes that while modernization is facilitated by 
the performance of the infrastructure of logistics, this must go hand in hand with policy intervention 
to make it socially inclusive, environmentally friendly, and institutionally robust. 

Keywords: Logistics Performance Index (LPI), Environmental Social and Governance (ESG) 
Indicators, Panel Data Analysis, Instrumental Variables (IV) Approach, Sustainable Economic 
Development. 
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In the globalized world of today, logistics systems' productivity and resilience are essential drivers of 
competitiveness at the national level as well as of economic development and sustainability. The 
empirical organization of supply chains, developments in technology and global trade intensification 
have brought the performance of logistics to the forefront of both economic policy and corporate 
decision-making. In parallel to these developments has been the rise of the Environmental, Social, 
and Governance (ESG) paradigm as the leading framework used to evaluate sustainable economic 
performance, transcending conventional financial measurements to consider broader societal and 
environmental consequences (Rodionova, Skhvediani, & Kudryavtseva, 2022; Tsang, Fan, & Feng, 
2023). In the midst of these twin evolutions, a recurring and relatively unexamined question sits at its 
core: 

• How do the interactions between the quality of logistics performance and each of the ESG 
pillars vary by country? 

 
In contrast to the expanding real-world applicability of both ESG and logistics globally, academic 
work connecting the two is relatively rare. Most research on the Logistics Performance Index (LPI) 
targets economic metrics like trade levels, industrial competitiveness, and infrastructure quality 
(Nenavani et al., 2024), whereas ESG scholarship is typically centered around firm-level 
sustainability, ethical investment practices, and policy at a high level (Lee, 2024). Consequently, our 
knowledge base is missing a systematic exploration of how logistics capabilities impact 
environmental sustainability, social fairness, and governance quality at the country level. That is a 
stark deficiency, given how essential sustainable logistics has become to attainment of the United 
Nations Sustainable Development Goals (SDGs) (Rodionova et al., 2022). This article has as its 
objective bridging that gap through a data-driven examination of how disaggregated ESG indicator 
variables correlate with logistics performance. In contrast to research using composite ESG indices, 
however, the paper takes a disaggregated framework and looks at how infrastructure and efficiency 
in operations independently impact environmental (E), social (S), and governance (G) dimensions 
(Tsang et al., 2023). The research question is simple but fundamental: 

• Does better logistics performance systematically have a positive impact on ESG results—
and if so by which mechanisms? 

 
In doing this, the research contributes to the growing nexus of sustainable development and logistics 
management and provides policy-relevant insights to policymakers, international development 
organizations, and global business executives. One of the fundamental strengths of the research is its 
multi-methodological design synthesizing advanced econometric modeling and machine learning 
(ML) methods. In addressing concerns of endogeneity, we employ instrumental variable (IV) panel 
regression models—namely, Two-Stage Least Squares (2SLS) and Generalized Two-Stage Least 
Squares (G2SLS)—on a balanced panel of 163 countries from 2007 to 2023. The models assist in 
ensuring causal robustness by controlling against omitted variable and reverse causality biases and 
firming up the validity of our results. 
Besides using conventional econometric methods, the research makes use of advanced machine 
learning (ML) methods—supervised including Random Forest, k-Nearest Neighbors, and Support 
Vector Machines and unsupervised including Density-Based, Fuzzy C-Means, Hierarchical, Model-
Based, and Neighborhood Clustering algorithms. These are used not only as robustness tests but also 
as tools to reveal challenging-to-detect nonlinear associations and unobserved dependencies missed 
by conventional econometric models. The utilization of ML to research on sustainability is on the rise 
and presents a solid complement to statistical inference by improving predictability and revealing 
unobserved patterns in high-dimension data (Binzaiman et al., 2024; Gupta, Sharma, & Gupta, 2021). 
This two-methodological design significantly enhances internal validity and the generalizability of 
the results to the external environment. Apart from this, the research occupies the nascent tradition of 
scholarship adopting a rigorously combined integration of ML and econometric techniques to the 
scholarship on ESG incidents, a strand of scholarship still relatively underdeveloped but increasingly 
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relevant (Ali & Zafar, 2024). In contrast to the conventional research loosely linking the performance 
of logistics to aggregate sustainability outcomes—basically measuring it by aggregate variables like 
carbon emissions or regulatory scores—is the precise decomposition of the ESG framework and 
identification of how each component of it contributes independently to the performance of logistics. 
More concretely, the study looks at how the Logistics Performance Index (LPI) interrelates with 
different environmental, social, and governance variables. Environmental concerns are addressed 
through levels of greenhouse gas emissions, levels of air pollution, and land use patterns. Social 
concerns are addressed by means of indicators on the levels of education, provision rates of public 
services, levels of income, and levels of child labor. Governance concerns are addressed by way of 
measurements of government effectiveness, rule of law, regulatory quality, and a country's scientific 
innovation capabilities. Breaking ESG down into its building blocks allows such a study to look 
deeper than a composite index and to better comprehend the nuances surrounding the means by which 
logistic systems might serve—or harm—sustainable development objectives. 
A close examination of the existing literature confirms that none of the previous studies has conducted 
such a comprehensive and methodologically advanced exploration of the intersection of ESG and 
logistics on such a vast temporal and spatial scale. Most academic studies on the topic are restricted 
to narrow case studies and fail to employ causal identification techniques or consider ESG as a 
homogeneous undifferentiated concept without considering the heterogeneity of its environmental, 
social, and governance features (Gupta et al., 2021; Binzaiman et al., 2024). The empirical data is in 
line with the multi-dimensioned nature of such interactions. Logistics performance improvements as 
reflected by the LPI are consistently associated with positive and negative environmental effects both 
in terms of contributing to industrial emissions on the one hand and improved resource efficiency and 
reduction of particular pollutants on the other hand. Socially, increased logistic performance is 
associated with improved educational levels and decrease in child labor but also some evidence on 
possible aggravation of existing gaps. In governance terms, improved logistic competence is 
associated with improved government effectiveness as well as voice and accountability and scientific 
productivity. Simultaneously, however, such consequences also add a note of caution: efficient 
logistics foster sustainable development but are open to causing environmental degradation or 
exacerbating socio-economic disadvantage if left without appropriate regulatory and institutional 
safeguarding. These data support the significance of policy fixes that are comprehensive to bring 
together logistic development to serve global ESG purposes and long-term United Nations 
Sustainable Development Goals vision. 
 
The paper is organized as follows. Section 2 reviews the existing literature, identifying the main 
conceptual frameworks and empirical findings to date. Section 3 presents the data sources, sample 
characteristics, and the econometric and machine learning methodologies employed. Sections 4, 5, 
and 6 are dedicated respectively to the analysis of the relationships between LPI and the 
Environmental, Social, and Governance components, detailing both the regression-based and 
clustering-based results. Section 7 concludes with a discussion of policy implications, limitations, 
and directions for future research. 
 
2. Literature Review 

The existing literature presents informed but incomplete insights into the interrelation between ESG 
outcomes and logistic performance tending to lack the level of systemic integration and granularity 
desired by this article. The research by Nenavani et al. (2024) and Lee (2024) has as its main objective 
assessing the financial impact of adopting ESG in the case of logistic firms but does not reveal its 
investigation to wider systemic interactions unfolding from country-wide metrics such as the 
Logistics Performance Index (LPI). While suggesting that the impact of ESG schemes is mediated by 
logistic performance and economic results, Park (2023) does fail to differentiate the ESG pillars and 
does not treat direct causality, a concern treated by this research. The issue of ESG challenges and 
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opportunities in the post-COVID-19 context is broached by Juvvala et al. (2025) and Tsang et al. 
(2023), albeit in a way failing to integrate results systematically to transportation efficiency metrics 
such as the LPI. In the same spirit, research by Fan et al. (2025) and Rodionova et al. (2022) analyzes 
ESG's impact on competitiveness and on stock performance but falls short of considering logistic 
infrastructure as country-wide driver of sustainability. Leogrande (2024) and Barykin et al. (2023) 
deal with smart and digitalized logistic as ESG enablers and participate in thematic add-ons short of 
adopting serious quantitative research practices like in the research presented here. The effect on firm 
performance of green logistic action is demonstrated by Kim et al. (2021) and Kim et al. (2024), and 
by Xie (2021), the latter focused on the dimension of ESG transparency but both are subject to micro 
perspectives. The use of technology is analyzed by Zhang et al. (2023), Bo (2024), and Moreira and 
Rodrigues (2023) but short of structural embedding of country-wide logistic performance in ESG 
effect. The research by Martto et al. (2023) and Dos Santos and Pereira (2022) generalizes ESG 
discourse to maritime and seaport logistic industries but fails to systematically analyze environmental, 
social, and governance dimensions separately vis-à-vis the LPI as it does in this article. 
Pham et al. (2022), andŠulentić et al. (2022) acknowledge transport and logistic firms to be influenced 
by ESG but reduce ESG to aggregate scores and fail to identify pillar-specific effects as identified 
here. Błaszczyk and Le Viet-Błaszczyk (2024), Lee and Lee (2022) discuss communication and 
perception dimensions of ESG in the logistic sector but fail to attain econometric robustness. Stan et 
al. (2023), Gündoğdu et al. (2023) discuss impact of ESG on supply chains but by a generalised 
application by qualitative methods and non-dynamic panel data methods or by using machine learning 
algorithms. Shakil et al. (2024), and Chien (2023) include governance variables like board diversity 
but fail to capture how the impact of logistic infrastructure performance on ESG is systematically 
captured. Kudryavtseva et al. (2022), Lee et al. (2023), Yang et al. (2024), and Rapdecho and 
Aunyawong (2024) associate ESG and operation efficiency and productivity in the supply chain but 
to firm-specific or industry-specific studies and to system levels in countries by using LPI. Altın et 
al. (2023) associate climate policy uncertainty and logistic stock returns and ESG scores but fail to 
include pillar disaggregation. Chiang (2024), Zeng et al. (2022) document sustainable optimisation 
of the logistic industry but fail to document how optimisation practices are associated with larger 
ESG systems in countries. Zheng and Wang (2025) calculate competitiveness on efficiency of the 
logistic sector but their work does not systematically rule out environmental and social spillovers 
identified here. Shen et al. (2024) discuss digitization and benefits to ESG and Borisova and Pechenko 
(2021) discuss sustainable infrastructure but both fail to utilize instrumental variable panel data 
methods or machine learning regressions. 
Research by Govindan et al. (2023) and Mutambik (2024) focuses on sustainability and governance 
in logistics companies but lacks generalizability at a country level. Yu et al. (2024) and Sun et al. 
(2024) design ESG assessment models but work primarily at conceptual or firm levels and lack the 
cross-country and long-dimensioned data included in this article. Kanno (2023) and Wu and Xie 
(2024) connect ESG to credit risk at the firm level but do not conceptualize the firm as a fundamental 
unit of analysis as they do so. Skhvediani et al. (2024) and Tian et al. (2025) acknowledge the role 
supply chain digitalization plays in improving ESG but do not systematically tie it to LPI 
measurements. Das (2024) and Burcă et al. (2024) emphasize the predictive ability of sustainability 
initiatives and ESG outcomes but fail to discuss drivers exclusive to the logistics sector at the country 
level. Kurniawan et al. (2024) and Niu et al. (2024) equate ESG with efficiency at the terminals and 
ports and get close to LPI issues but keep to a sectorial scope. Li and Wang (2024) and Fatimah et al. 
(2023) discuss procurement benefits and circular economy models but fail to consider logistics 
performance as a systemic driver. Together, this article is the first to combine both econometric and 
machine learning approaches to reveal LPI to be a first-order determinant of ESG outcomes and not 
a secondary measure and to do so across countries, filling gaps in existing research. 
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3. Data and Methodology 

One of the main methodological difficulties faced in the current research stems from the non-
existence of a continuous historical time series of the Logistics Performance Index (LPI). The 
available LPI data intermittently between the period of 2007-2023 pose a number of missing values 
by country and year and thereby complicate the creation of a full and balanced panel dataset adequate 
to perform rigorous econometric and machine learning analysis. In a bid to overcome this problem 
and maintain the consistency and integrity of the data's longitudinal form, a polynomial-regression-
based interpolation scheme was utilized. Polynomial fitting was used to fill in missing values on a 
country-wise basis to rebuild realistic historical traces of the LPI values and avoid risks of injecting 
spurious biases using simpler linear interpolation methods. The methodology is informed by existing 
research suggesting the benefits of using imputation as well as advanced interpolation methods in LPI 
research ranging from genetic algorithm-based weights to imputation methods using regression 
(Gürler et al., 2024). The second core analytic decision concerns ESG disaggregation. In contrast to 
keeping ESG as a combined or aggregate indicator, the research systematically breaks up the model 
into its three pillars—Environmental (E), Social (S), and Governance (G)—and studies the 
interrelation of LPI across each of these dimensions in turn. The pillar-wise design allows a finer and 
more detailed understanding of how the interactions between logistics performance and sustainability 
outcomes unfold than has been the case with prior research which tended to work with ESG as a 
uniform block. The research design is aligned with contemporary research underlining the different 
and diverging influence of a particular ESG dimension on firm and sector performance (Nenavani et 
al., 2024; Taskin et al., 2025). In keeping with the research question's adverseness to simplicity, the 
analytic design follows both conventional econometric and sophisticated ML approaches. The 
econometric analysis was conducted by using Instrumental Variables (IV) panel regressions 
comprising both Two-Stage Least Squares (2SLS) and Generalized Two-Stage Least Squares 
(G2SLS) models to rigorously contend with endogeneity issues and ascertain causal interpretation of 
the estimated coefficients. Complementarily to the above, machine learning methodologies were 
implemented in both the regression and clustering tasks—utilizing Random Forest, k-Nearest 
Neighbors, Support Vector Machines, Decision Tree Regression, Boosting Regression, and Lasso in 
the case of the former and Density-Based Clustering, Fuzzy c-Means, Model-Based Clustering, 
Neighborhood Clustering, Random Forest Clustering, and Hierarchical Clustering in the case of the 
latter. The interplay between the econometric and machine learning models facilitates both the 
verification of outcomes by means of different methodological perspectives and the determination of 
nonlinear and latent patterns likely to pass under the radar of conventional regression analysis. These 
combined methodological options respond to the requirements of data constraints but also intensify 
the robustness, exhaustiveness, and novelty of the research's empirical contribution to the extant 
literature on the topic of logistic performance and sustainable development. 

4. Environmental Sustainability and Logistics Efficiency: A Multi-Method Analysis Using IV 
Regressions, Predictive Algorithms, and Clustering 

This section examines the interplay between the Environmental (E) component of the ESG framework 
and the Logistics Performance Index (LPI) using a two-methodological framework involving 
Instrumental Variable (IV) panel models and machine learning (ML) models. IV models eliminate 
issues of endogeneity and enable causal inference of how environmental indicators such as PM2.5, 
nitrous oxide emissions, heat exposure levels, and agricultural land cover are determinative of 
logistics performance. This framework is a following of Wan et al. (2022), in which they emphasize 
controlling for environmental-economic interactions when measuring LPI, and particular emphasis 
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on the dimensions of green innovation, renewable energy, and global integration. ML models—such 
as used by Gholami et al. (2020) in environmental hazard predictions—are applied to best achieve 
predictive power and to compare the relative effect of environmental variables. The clustering 
methods following Wang et al. (2023), who used functional regression-based clustering of air 
pollution data, identify latent country profiles through shared environmental-logistics patterns and 
add richness to the ensuing analysis. 

4.1 Causal Estimation of Environmental Determinants of Logistics Performance within the 
ESG Framework 

This section investigates the impact of environmental and land-use variables on the Logistics 
Performance Index (LPI) across 163 countries from 2007 to 2023. Using fixed-effects two-stage least 
squares (TSLS) and generalized two-stage least squares (G2SLS) models, the analysis addresses 
endogeneity by employing a broad set of instrumental variables. Key factors examined include nitrous 
oxide emissions, PM2.5 pollution, extreme heat exposure, agricultural land share, and agricultural 
value added. The results reveal that environmental degradation and land use dynamics significantly 
influence logistics performance, underscoring the need to integrate environmental considerations into 
logistics development strategies aligned with ESG objectives. 

Specifically we have estimated the following model:  

𝑋௜௧ = 𝑍௜௧Π + υ୧୲ (First Stage) 

𝑌௜௧ = 𝑋௜௧β + µ୧୲ (Second Stage) 

 𝑌௜௧ = 𝐿𝑃𝐼௜௧   

 𝑋௜௧ = {NOE, PM25AE, HI35, ALPA, AFFVA}  

 𝑍௜௧ =
{ACFTC, PSMWS, PSMS, LEBT, FRT, PA65A, LRAT, SEP, GEET, CET, LFPRT, CODCDMPN, MRU5,  

 HB, POA, ISL20, GI, PHRNPL, AAGRPCI, IUI, GDPG, PSHWNP, RFMLFPR, SLRI, STJA, RLE, NM} 
 i = 163 
 t=[2007;2023] 

  

The results are indicated in the following Table 1. 

Table 1. Environmental Stressors and Logistics Performance: An IV Panel Data Analysis 

Dependent 
variable 

LPI 

Endogenous  
 

NOE PM25AE HI35 ALPA AFFVA 

Instruments ACFTC PSMWS PSMS LEBT FRT PA65A LRAT SEP GEET CET LFPRT CODCDMPN MRU5 
HB POA ISL20 GI PHRNPL AAGRPCI IUI GDPG PSHWNP RFMLFPR SLRI STJA RLE NM 

 
Observation using 2771 observations 

Times  17 
Countries 163 

 Fixed-effects TSLS G2SLS random effects 
Variable Coefficient Std. Error z-Statistic Coefficient Std. Error z-Statistic 

const 4.36011** 1.80629 2.414 4.30356** 1.81460 2.372 
NOE 0.00380304*** 0.00124891 3.045 0.00382670*** 0.00125502 3.049 

PM25AE -0.109926** 0.0434881 -2.528 -0.109655** 0.0436855 -2.510 
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HI35 0.00822227*** 0.00270937 3.035 0.00822599*** 0.00272194 3.022 
ALPA -0.00580407** 0.00242142 -2.397 -0.00570789** 0.00243231 -2.347 

AFFVA 0.0830939*** 0.0217233 3.825 0.0836790*** 0.0218238 3.834 
Statistics SSR = 1880.24 SSR = 2790.55 

sigma-hat = 0.849903 (df = 2603) sigma-hat = 1.00461 (df = 2765) 
R-squared = corr(y, yhat)^2 = 0.000173 R-squared = corr(y, yhat)^2 = 0.000175 

Included units = 163 Included units = 163 
Time-series length: min = 17, max = 17 Time-series length: min = 17, max = 17 
Wald chi-square(5) = 33.8617 [0.0000] Wald chi-square(5) = 34.0125 [0.0000] 

Null hypothesis: The groups have a common 
intercept 

sigma-hat(within)  = 0.84990329 

Test statistic: F(162, 2603) = 14978.8 [0.0000] sigma-hat(between) = 25.712297 
 

This research examines the determinants of the Logistics Performance Index (LPI) in 163 countries 
between 17 years using a panel data set of 2,771 observations. The scope focuses on the impact of 
environmental stressors—namely nitrous oxide emissions, PM2.5 air pollution, and exposure to 
extreme temperatures—alongside land-use variables like the agricultural land share and the value 
added by agriculture, forestry, and fishing on logistics performance. This research methodology is 
consistent with recent research highlights on the nexus between environmental quality and logistics 
systems with better LPI linked to increases in environmental costs like rising carbon emissions as 
against improvements in technological innovation and urbanization (Magazzino et al., 2021). The 
authors deal with concerns of endogeneity by using a solid methodology framework by applying 
fixed-effects two-stage least squares (TSLS) and generalized two-stage least squares (G2SLS) 
random effects models. These methods capture unobservables across countries as well as utilize a 
rich collection of external instruments. Among the instrumental variables used are living standards 
indicators (access to clean fuels, clean fuel use, managed sanitation services), demographic and health 
indicators (life expectancy, fertility rate, mortality rates), governance indicators (rule of law, strength 
of legal rights), educational indicators (school enrollment, adult and youth literacy), and economic 
indicators (GDP growth rate, poverty hadcount, and Gini index). The model framework takes the cue 
from recent empirical work combining spatial and panel econometric approaches to better capture 
LPI determinants heterogeneity as shown by Xiao et al. (2022), who utilized geographically weighted 
regression models to reveal spatial differences in drivers of logistics performance (Xiao et al., 2022). 
The selection and diversity of the choice of instruments seem to suffice. Most of the indicators are 
sufficient to plausibly influence environmental and agricultural variables but are less likely to directly 
impact logistics performance save through their mediated effect and thereby fulfill the exclusion 
restriction principle. That the range of the set of instruments is so extensive means concerns of 
possible overidentification are always real and call for a careful interpretation. This is aligned with 
research from recent case studies like Xuan et al. (2023), which emphasized the necessity to control 
endogeneity and heterogeneity in panel models when measuring the effect of determinants of logistics 
across different countries and through time (Xuan et al., 2023). 
The empirical outcomes are tractably consistent with both estimation methods and corroborate the 
robustness of the conclusions. All the five endogenous variables have statistically significant impacts 
on logistics performance, even though the global model fit as reflected by very low R-squared values 
seems to imply considerable unexplained variance. Of main conclusions to note are nitrous oxide 
emissions (NOE), which exhibit a positive and significant correlation with LPI. In both models, the 
estimated coefficient is around 0.0038 and is statistically significant at the 1% level. This finding 
seems to imply higher emissions are linked to improved logistics performance. While counterintuitive 
initially, it might be because of the fact that development of logistics—like the widening of the 
network of roads, warehouses, and supply chains—is closely associated with industrial activity also 
causing increased emissions. In developing economies particularly, fast expansion of the logistics 
sector typically co-exists with environmental degradation and may imply a trade-off best addressed 
by careful balancing by policymakers. Complementary mechanisms have been identified in the 
literature whereby the development of logistics is a mediating factor between increased economic 
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complexity and increased levels of pollution (Constăngioară & Florian, 2023), and higher scores on 
LPI are found empirically associated with higher carbon emissions, especially in the case of emerging 
and transitional economies (Karaduman et al., 2020). PM2.5 exposure to air air pollution has a 
negative and statistically significant impact on logistics performance. The coefficients around -0.1099 
and statistically significant at the 5% level imply the result is more in line with expectations. Poor air 
quality has the effect of lowering labor productivity, increase absenteeism on account of ill-health 
concerns, and cause disruptions to transport systems and thereby overall decrease logistic efficiency. 
This finding reinforces the policy relevance of environmental quality to both public health and 
economic infrastructure efficiency. In corroboration of this finding, recent research has established 
greenhouse gas emissions and other pollution indices significantly degrade logistic efficiency in 
Asian economies and highlight the case for climate-responsible logistics planning (Akram et al., 
2023). The heat index above thirty-five degrees Celsius (HI35) also has a positive and statistically 
significant correlation with logistic performance. The estimated coefficient of around 0.0082 and 
statistically significant at the 1% level is a somewhat unexpected result. One reason that comes to 
mind is that nations with high exposure to heat have optimized their logistic operations to these 
environments through investment in technology (e.g., climate-resilient infrastructure, night-time 
logistic operations). Another interpretation is that some hot climate nations like the nations of the 
Middle East have advanced logistic infrastructure as part of general economic diversification plans. 
In terms of land use, a larger percentage of agricultural land (ALPA) is negatively related to logistic 
performance. The estimated coefficient is approximately -0.0058 and is statistically significant at the 
5% level. This finding is as would be expected: countries with economies controlled by agriculture 
might have less advanced logistic networks with infrastructure focused more on local than on 
international or high value chains. 
Conversely, the economic value of the agricultural sector as captured by the value added by 
agriculture, forestry, and fishing (AFFVA) has a positive impact on the performance of the logistic 
sector. The coefficient (~0.0831) is large and highly significant at the 1% level. This indicates that 
commercialization of agriculture and it becoming a serious GDP contributory sector spurs 
investments in logistic infrastructure like cold stores, export logistic hubs, and rural transport 
networks. This hypothesis is supported by evidence: agricultural commercialization-led expansion of 
cold-chain logistics has been found to play a vital role in product preservation, waste reduction, and 
rural incomes and livelihoods, in particular through innovations like phase change materials in storage 
systems (Zhao et al., 2022). Similarly, agricultural logistic production models like predictive routing 
of perishables also demonstrate how investment in the logistic sector improves efficiency and 
profitability in the agri-food industry (Liang et al., 2024). High-end agricultural system modeling 
work like Brazil's soybean system also demonstrates how export-focused agricultural development 
drives advanced logistic capabilities like multimodal infrastructure and inter-stakeholder 
coordination (Filassi et al., 2022). Comparing the two models demonstrates a remarkable stability of 
results with virtually negligible differences in coefficients and z-statistics. The consistency of results 
across fixed and random effects specification implies that the core findings are unaffected by model 
selection. The Wald chi-square statistics are jointly significant at the 1% level in both models as a 
check on the joint significance of the regressors. Nonetheless, the extremely low R-squared levels 
(approximately 0.00017) imply that whereas the identified explanatory variables are statistically 
significant, they account for a virtually negligible share of the total variance in logistic performance. 
This result reflects the multifactorial nature of the development of logistics as influenced by a myriad 
of variables other than the environmental and land use variables used in this study. In summary, the 
research contributes to the insights on how environmental variables, land use, and the performance 
of the logistic sector interrelate. This demonstrates the important trade-offs in the interplay between 
economic development and environmental conservation and also calls for joint policies supporting 
logistic infrastructure and environmental protection concerns at the same time. Such nations should 
not overlook the environmental price paid by industrialization and also underestimate the role of 
commercialization through sustainable agriculture in promoting the advancement of logistics. 
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Causality. The fixed-effects two-stage least squares (TSLS) and generalized two-stage least squares 
(G2SLS) applications allow a causally robust interpretation of the correlation between environmental 
variables and logistics performance. Leveraging a dense set of instrumental variables that influence 
environmental and land-use patterns but plausibly exogenous to the domain of logistics performance, 
the analysis manages to evade common issues of endogeneity like omitted variable bias and reverse 
causality. The methodology is aligned with recent empirical work which has utilized the TSLS and 
G2SLS framework to separate causal effects in the presence of complicated interdependencies and 
confounders, particularly in studies of environmental and economic performance (Okanda et al., 
2025). Similarly, in environmental quality and green logistics as well, Li et al. (2021) demonstrated 
how two-stage estimation methods are influential in capturing delicate interactions between logistics 
performance and sustainability outcomes across a variety of economies (Li et al., 2021). 
Consequently, the positive effects of nitrous oxide emissions and agricultural value added and the 
negative effects of PM2.5 air pollution and agricultural share of land are causal effects and pure 
associations. The research is thus more policy-relevant because it means environmental quality and 
land management directly impact a country's ability to perform logistics. The low R-squared values 
do however reveal that even though remarkable influence is exerted by these variables on logistics 
performance, they capture only a fraction of the complicated determinants driving it. 

Impact of the results within the E-Environmental Component within the ESG model. Empirical 
evidence elucidates a two-side and multifaceted relationship between environmental consequences 
and the performance of logistics. While on the first side, improved LPI scores are typically associated 
with greenhouse emissions such as nitrous oxide evidencing the environmental impact of widespread 
transport, warehouse operation, and industrial production. This presents a time-tested trade-off in 
development-environment terms: more developed infrastructure of logistics produces a superior level 
of economic development but also accelerates environmental degradation if it is uncontrolled. More 
contemporary research has identified systems of logistics such as third-party and heavy goods-
associated systems as prominent producers of emissions unless practices of sustainability are 
implemented (Nawurunnage et al., 2023). Environmental degradation per se as well as air pollution 
(exposure to PM2.5) on the other hand negatively impinges on the efficiency and dependability of 
logistics. Pollution reduces productivity by labor, makes transport flows difficult and damages public 
health all of which impair the efficiency and dependability of logistics. Apart from environmental 
degradation per se, exposure to climate extremes such as hot days also underscores building climate-
resililent systems of logistics. Adaptive practices such as green chains of supply, energy-efficient 
services and products as well as eco-friendly infrastructure are necessary to render logistics operations 
climate-resilent to climate risks. All of the above solutions are now increasingly implemented by 
models of logistics worldwide ranging from electric fleets and renewable sources to tracking 
emissions by blockchain in the supply chain (Onukwulu et al., 2022). The relationship between land 
use and logistics also confirms the role of the environment. Land economies with a high share of 
agricultural land have weaker performance of logistics while economies commercialized with 
sustainable land management are capable of developing stronger infrastructure of logistics. This is a 
part of a general transition towards a sustainable phase change in the development of logistics 
whereby firms are increasingly viewing green logistics as a source of competitive power to avoid the 
costs of emissions and to enhance resilience as opposed to a constraint (Nagy & Szentesi, 2024). 
Overall, incorporating strong environmental concerns into planning logic of logistics is now a 
requirement and not a choice but necessary to become competitive in the long term. Aligning LPI 
developments to Environmental pillar of ESG requires proactive investment in green logistics, 
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regulatory transformation and sustainable innovation to ensure development of logistics complements 
and does not compromise global environmental goals. 

4.2 Environmental Determinants of Logistics Efficiency: Evidence from Machine Learning 
Analysis under ESG Standards 

This section explores the application of various machine learning regression algorithms to predict the 
Logistics Performance Index (LPI) based on environmental and land-use variables. Models such as 
Boosting Regression, Decision Tree Regression, k-Nearest Neighbours, Linear Regression, Random 
Forest, Lasso, and Support Vector Machine (SVM) are compared using standard performance metrics 
including MSE, RMSE, MAE, MAPE, and R². The analysis identifies Random Forest Regression as 
the most robust model, offering the best trade-off between accuracy and generalizability. Further, 
variable importance measures from Random Forest highlight the critical role of environmental factors 
in shaping logistics performance across countries and over time (Table 2). 

Table 2. Comparative Performance of Machine Learning Models in Predicting Logistics Performance 

Statistics Boosting 
Regression 

Decision Tree 
Regression 

k-Nearest Neighbours 
Regression 

Linear 
Regression 

Random Forest 
Regression 

Lasso Support Vector 
Machine 

MSE 668.052 435.315 596.462 603.118 464.679 606.449 842.876 

MSE(scaled) 1.333 1.03 0.955 1.472 0.922 1.452 1.556 

RMSE 25.847 20.864 24.423 24.558 21.556 24.626 29.032 

MAE / 
MAD 

13.713 8.824 8.57 14.267 10.264 14.032 9.458 

MAPE 229.26% 182.74% 150.97% 284.71% 181.05% 287.14% 24.52% 

R² 0.111 0.234 0.272 0.069 0.29 0.074 0.049 

 

 

The relative performance of different algorithms on performance metrics offers useful insights on the 
most suitable model to utilize in predicting the Logistics Performance Index (LPI). Of the models 
tested—Boosting Regression, Decision Tree Regression, k-Nearest Neighbours (k-NN) Regression, 
Linear Regression, Random Forest Regression, Lasso, and Support Vector Machine (SVM)—the 
most balanced and stable option proves to be Random Forest Regression (Sun et al., 2024; Thummala 
& Baskar, 2023). A closer look at the results reveals the maximum R² value lies with Random Forest 
at a value of 0.29. This means that although the overall explanatory power was relatively low, 
Random Forest accounts for a larger percentage of the variance in the dependent variable compared 
to the other models. The larger R² value implies a better ability of the model to identify the underlying 
data complexity and non-linearities inherent in the data common in large datasets generally and with 
global-scale datasets like the one used in measuring logistics performance (Jomthanachai et al., 2022). 
Considering error measurements, Random Forest has a very competitive Mean Squared Error (MSE) 
of 464.679 and keenly follows Decision Tree Regression at a slightly better value of 435.315. 
Random Forest speeds past Decision Trees by providing better model stability and protection against 
the risk of overfitting and thus a better generalizability of the prediction (Sun et al., 2024). The Root 
Mean Squared Error (RMSE) of Random Forest is 21.556 and demonstrates a low prediction error 
on average expressed in practical terms and proves the predictability prowess of the model. Although 
Decision Tree Regression and k-Nearest Neighbours report slightly lower Mean Absolute Error 
(MAE) values than Random Forest, their overall robustness is less. Despite having a lower MAE 
value, Decision Trees are prone to overfitting and are more so if deep trees are used and data is noisy 
(Thummala & Baskar, 2023). K-Nearest Neighbours perform exceptionally well on MAE and MAPE 
(Mean Absolute Percentage Error) but fall flat when data structure is sparse or when variables are ill-
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scaled. Besides, k-NN is less interpretable and scalable and challenges are posed in its applicability 
to larger scale logistics or policy contexts (Jomthanachai et al., 2022). 
The inconsistencies in Support Vector Machine (SVM) performance also serve to illustrate the 
relative stability of Random Forest Regression. Although SVM enjoys a remarkably low Mean 
Absolute Percentage Error (MAPE) of 24.52%, the performance appears inconsistent when compared 
to weak Mean Squared Error (MSE) and R² figures. Inconsistencies of this type are a common 
indicator of lack of stability in SVM models explained by unsuited scaling coefficients, ill selection 
of linearization or kernel functions, and insufficient parameter adjustment—issues also found in 
comparative ML studies such as Kocabaş et al. (2024), in which SVM had variable performance 
across tasks. Therefore, SVM is a risky option except in conjunction with excessive preprocessing 
and adjustment. Simpler linear models such as Linear Regression and Lasso consistently 
underperform on all the performance metrics evaluated. Their high MSE and Root Mean Squared 
Error (RMSE), in addition to low R² values, reveal a failure of interactions among governance, 
environmental, and economic variables and logistics performance to represent as anything else but 
non-linear interactions—a problem long established in broader comparative studies on using machine 
algorithms to perform regression (Al Bony et al., 2024). While understandable models such as linear 
models fail to capture required expressiveness in the given communication context, Boosting 
Regression, which typically excels base learners such as decision trees by learning refinement through 
multiple iterations and realignment of learners through boosting parameters, does not do any better 
here. While even optimized hyperparameters and large policy datasets are usually adequate in making 
the boost very powerful indeed, its less than optimal performance here may result from excessive 
fine-tuning with too little data or impact failure to capture non-linear interactions without additional 
fine-tuning. These problems are evocative of others found on other forums of assessment using 
machine learning where applying the boost backfires on the analyst when used on noisy and more 
unbalanced datasets (Hasanah, Soleh, & Sadik, 2024). By contrast to all this, however, we notice a 
more stable and solid performance by the Random Forest Regression on all of the main performance 
metrics. A good balancing of having low prediction error while balancing the requirement to stay 
interpretable makes it a strong model with none of its most important performance measures having 
a weak area. The design of the ensemble model makes it capable of catching non-linearity of 
interactions, linear or high-dimensioning data if required, and combat overfit by means of averagining 
out—it is perfectly placed to capture the Logistics Performance Index. These strengths as proven by 
recent empirical benchmarks (Al Bony et al., 2024; Kocabaş et al., 2024) also make it a better option 
when it comes to using predictive analytics in modeling logistics performance. Applying the Random 
Forest Regression we have the following results as showed in Table 3:  
 

Table 3. Variable Importance Metrics for Predicting Logistics Performance 
 

Variables Mean decrease in accuracy Total increase in node purity Mean dropout loss 

NOE 277.497 114.677.766 23.130 

PM2.5AE 224.074 107.476.889 21.434 

ALPA 294.265 98.796.892 23.223 

HI35 237.642 77.966.120 21.182 

AFFVA 16.990 30.634.277 17.586 

 
 
Applying the Random Forest process to the specified dataset unveiled pertinent information on the 
relative importance of explanatory variables to predict the Logistics Performance Index (LPI). The 
three importance metrics of Mean Decrease in Accuracy, Total Increase in Node Purity, and Mean 
Dropout Loss all recognize a core group of predictors key to determining the performance of both 
countries and times. The evidence shows agricultural land (ALPA) with a maximum Mean Decrease 
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in Accuracy of 294.265 and is hence the most predictive variable on prediction accuracy. Removing 
or permuting ALPA causes the most harm to the performance of the Random Forest model. ALPA 
also tops Total Increase in Node Purity at a value of 98,796,892. This indicates how ALPA makes 
decision nodes purer with each split in the forest and contributes to its key determination of 
distinguishing better and worse performing logistics (Figure 1). 
 
Figure 1. Random Forest Analysis of Environmental Drivers of Logistics Performance 

 
 
Nitrous oxide emissions (NOE) and PM2.5 air pollution exposure (PM2.5AE) also appear as vital 
predictors. NOE shows a Mean Decrease in Accuracy of 277.497 and a very high Total Increase in 
Node Purity (114,677,766), and it is arguably the second most influential variable following ALPA. 
PM2.5AE is close on its heels with a Mean Decrease in Accuracy of 224.074 and a comparable 
magnitude of increase in node purity. These results imply environmental degradation—the capture of 
which through air pollution and greenhouse gas emissions—contributes to influencing the outcomes 
of logistics significantly, possibly through its impact on the quality of infrastructure, productivity of 
labor, and general resilience of the economy. Recent research employing Random Forest models 
corroborates nitrous oxide emissions as a predictive force in environmental and agricultural modeling 
with their strong influence on a range of ecological and operationally focused outcomes (Samy et al., 
2024; Maier et al., 2022). The Heat Index above 35°C (HI35) also shows a considerable predictive 
importance with a Mean Decrease in Accuracy of 237.642 and a considerable node purity contribution 
(77,966,120). This finding indicates the expanding role of climate-exacerbated stress drivers on the 
functioning of logistic systems as a result of which extreme heat events condition more and more the 
efficiency and resilience of transport and supply chains. In contrast, value added by agriculture, 
forestry, and fisheries (AFFVA) has much less importance by all measurements. Its Mean Decrease 
in Accuracy (16.990), Total Increase in Node Purity (30,634,277), and higher Mean Dropout Loss 
combined serve to indicate that though a factor, the impact on the functioning of the logistic system 
is much weaker compared to environmental degradation and land cover patterns. The figures of Mean 
Dropout Loss also further back up the interpretation lent by the two aforementioned measurements. 
ALPA and NOE share the maximum dropout losses and so imply when permutated, the root mean 
squared error (RMSE) of the model increases much as a result of their crucial role in correct 
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predictions. PM2.5AE and HI35 also report high values of dropout losses and serve to emphasize 
how strong they are as drivers. These results are seconded by environmental prediction studies 
employing Random Forests to simulate PM2.5 responses to emission reductions and validating the 
model's sensitivity to air quality and drivers (Shang et al., 2023). AFFVA ranks low on this scale 
again as expected given its weak predictive power. Overall, the Random Forest result shows 
environmental and land use variables to be among the best predictors of logistics performance with 
secondary influence by sectoral GDP contributions. These results indicate eventual improvements in 
systems of logistics to also hinge on addressing environmental issues and adapting to climate change. 
 

4.3 Identifying Country Profiles: A Cluster Analysis of LPI and Environmental Indicators 

This section explores the clustering of countries based on environmental factors influencing the 
Logistics Performance Index (LPI) within the ESG framework. Using six different clustering 
algorithms—including Density-Based, Fuzzy C-Means, Hierarchical, Model-Based, Neighborhood, 
and Random Forest clustering—we assess model quality through key metrics such as Dunn Index, 
Silhouette score, Pearson’s gamma, and entropy. The goal is to identify homogeneous groups that 
reveal distinct patterns between environmental variables and logistics performance. Among the 
evaluated methods, Density-Based Clustering emerges as the most robust, offering well-separated, 
compact, and interpretable clusters that deepen understanding of the environmental dimension’s 
impact on LPI outcomes (Table 4).  

Table 4. Comparative Evaluation of Clustering Algorithms for Environmental Impacts on Logistics 
Performance 

Metric 
Density 
Based 

Fuzzy C-
Means Hierarchical 

Model 
Based Neighborhood 

Random 
Forest 

Maximum 
diameter 0.508 0.778 0.000 0.763 0.243 0.763 
Minimum 
separation 1.000 0.008 0.184 0.000 0.026 3.16×10⁻⁵ 
Pearson's 

γ 0.482 0.261 1.000 0.000 0.682 0.029 
Dunn 
index 1.000 0.009 0.247 0.001 0.035 0.000 

Entropy 0.000 0.709 0.266 0.940 0.941 0.695 
Calinski-
Harabasz 

index 0.099 0.060 0.161 0.000 1.000 0.000 

R² 0.000 0.280 0.547 0.241 1.000 0.207 

AIC 1.000 0.615 0.000 0.455 0.000 0.509 

BIC 1.000 0.594 0.000 0.432 0.000 0.493 

Silhouette 0.476 0.128 0.537 0.063 0.414 0.000 

 
The multiple evaluation on multiple normalizer scores offers a good overview of relative performance 
of varied clustering algorithms. We compared density based clustering, Fuzzy C-Means clustering, 
hierarchical clustering, model based clustering, neighborhood clustering, and random forest 
clustering on a set of key measurements like maximum diameter, minimum separation, Pearson’s 
gamma, Dunn Index, Entropy, Calinski-Harabasz Index, R², AIC, BIC, and Silhouette score. The best 
to choose depends on judicious evaluation of the interpretation and relative weight of each of the 
above metrics. High values of minimum separation, Pearson’s gamma, Dunn Index, Calinski-
Harabasz Index, R², and Silhouette are indicative of better performance on clustering quality while 
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low values of Entropy, AIC, and BIC are favorable as they represent larger cluster purity and are 
terms penalized against excessive model complexity. Comparing the scores against each other, the 
best choice is obvious because it possesses the best and consistently good performance on the most 
notable clustering quality scores. It normalizes best on minimum separation and Dunn Index scores 
as two of the most noted measurements of good-separated and close clusters. Most notably its best 
minimum separation score demonstrates it maximizes inter-cluster distance between nearest cluster 
points as much as possible and is a good attribute in good clustering to minimize inter-cluster 
overlaps. In addition, best Dunn Index demonstrates that density based clustering has good intra-
cluster distance to inter-cluster distance trade-off to produce both separated and close clusters. These 
strengths are also seen in modern empirical work where density based clustering (e.g., DBSCAN) has 
out-performed Fuzzy C-Means on real data with improved Silhouette Scores and better cluster 
separation (Auliani et al., 2024). Density-Based clustering also has good performance on model 
simplicity and cluster purity as indicated by its best-observed AIC and best-observed BIC values 
normalizing. Since both AIC and BIC are terms penalized against model complexity, low real values 
corresponding to high normal values indicate that density based clustering does not compromise on 
simplicity and risk overfitting but instead has good cluster separation. Value of Entropy normalizing 
to zero (best case) also validates the fact that clustering has very clean groups with little internal 
chaos. In clustering issues, a near-to-zero value of entropy is a positive indicator of good clustering 
and is a requirement when using clustering on real-life heterogeneous datasets. Fuzzy C-Means has 
flexibility to do soft clustering but optimizations in recent times were essential to overcome its 
drawback of dealing with overlapping and initialization sensitivity. More advanced models such as 
the ones with fractional order derivatives and regularization with entropy are found to outperform 
clustering on measures such as the Dunn and Silhouette indices and which also validate the argument 
of more adaptive algorithms in real-life scenarios in dealing with complex environments (Safouan et 
al., 2024). Likewise, intuitionistic fuzzy extensions have enhanced FCM's robustness to noise and 
ambiguity in data by maximising feature weightings and initialization schemes to yield better values 
of entropy and Silhouette (Wang et al., 2021). 
While Density Based Clustering fails to get the absolute best score on every metric, it is consistently 
good on the most important dimensions. While it may not have the maximum Pearson’s gamma, it 
has a decent and substantially better score than Model Based Clustering and Random Forest 
Clustering and a good correlation between data proximity structure and resulted clustering. The 
Silhouette score may also fall short compared to Hierarchical Clustering but is good and better than 
most methods and demonstrates internally cohesive and separated clusters supported by the fact that 
it confirms internally cohesive and separated structures by verifying it against a number of internal 
validity indices like Silhouette and Dunn Index (Syed, 2021). In considering options, Hierarchical 
Clustering has extremely good scores on Pearson’s gamma and Silhouette but is weak on other 
important dimensions like Minimum Separation, Dunn Index and simplicity measurements like AIC 
and BIC scores. While Hierarchical Clustering has good internal cohesion and correlation to data 
proximity, it fails on cluster separation robustness and has high on penalization metrics as a result 
and thus proves to be a weaker option overall against Density Based Clustering. This is consistent 
with evidence that validity indices—albeit good on their own in a single evaluation—do not 
necessarily map to genuinely good cluster structures when considering overall efficacy (Gagolewski 
et al., 2021). Neighborhood Clustering seems initially appealing with its best score on the Calinski-
Harabasz Index and R². A close look at it though shows it has very low Minimum Separation and 
Dunn Index scores as well as very high Entropy and internally appears to have weakly separated and 
impure clusters. While a high Calinski-Harabasz Index and R² are preferable, they do nothing to 
overcome inherent defects in clustering structure fundamental to the type when separation and purity 
of the clusters are lost. As noted by Modak (2023), newer clustering validity measurements born out 
of density estimation are better than conventional single-measure testing like Calinski-Harabasz or 
Silhouette if the aim is to evaluate genuine structural clarity in dense data settings (Modak, 2023). In 
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reality, low separation and excessive internal disorder may result in misleading or virtually unusable 
clusters whenever used in decision-making or pattern identification applications. 
Model-Based Clustering and Fuzzy C-Means perform worse across most of the metrics. Fuzzy C-
Means is acceptable on Entropy and Silhouette but severely underperform on Minimum Separation 
and Dunn Index, both pivotal in measuring cluster cohesion and separability. In addition to these two 
methods having weaker R² values and poor performance on model complexity measures, it indicates 
that they fit the data poorly or do so at the expense of excessive model complexity. These are amply 
documented in recent comparative research, whereby Fuzzy C-Means consistently underperformed 
in detecting structural variation in data and required considerable modification or hybridization to 
hold its own (Ghezelbash et al., 2025). In real-life clustering tasks, when scalability and 
interpretability are considerations, such performance deficits are intolerable. In terms of overall 
performance, Random Forest Clustering fairs the worst. It has very poor scores on Minimum 
Separation, Pearson’s gamma, Dunn Index, and Silhouette score as well as only fair scores on other 
metrics. Together with its high Entropy and poor cluster separation score, it shows that Random 
Forest Clustering generates poorly defined and internally disordered clusters—a defect also 
discovered by hybrid forecasting research needing to compensate for the technique’s shortcomings 
by using extra ensemble or even pre-processing methods (Zhang et al., 2024). This further excludes 
it as a serious contender as best algorithm in the comparison. Back to Density-Based Clustering, its 
obvious strength lies in obtaining a rare blend of well-separated, tight, pure, and simple groups. The 
ability to maintain uniform strength on multiple types of evaluation metrics as well as a balancing act 
among separation, cohesion, purity, and simplicity is undertaken elegantly by it. Such a varied and 
multi-dimensioned strength is exactly what is desired in clustering analysis, whereby excessive 
importance given to any single metric risks drawing incorrect conclusions about model quality. 
Further, it is amply documented in the literature as having the ability to detect arbitrarily shaped 
groups and robustness to noise and both of these increase its practical utility and extend its range of 
applicability to a wide range of datasets from dense and structured to noisy and complicated ones. 
Thus, by a detailed and unified inspection of all the given normalized measurements considering both 
theoretical expectation and practical reasoning, the optimal clustering algorithm here is Density-
Based Clustering. It beats all the others by not necessarily having the best value on each particular 
measurement but by having a superior overall balance best fulfilling clustering's fundamental 
objectives of creating separated, internally coherent, simple, and pure groups of data objects. 
Using Density Based Clustering we have the following results (Table 5):  
 

Table 5. Cluster Composition and Variability Metrics Using Density-Based Clustering on 
Environmental Determinants of LPI 

Cluster Noisepoints 1 2 3 

Size 8 2517 8 238 
Explained proportion within-cluster heterogeneity 0.000 0.940 2.795×10-4 0.060 
Within sum of squares 0.000 12160.403 3.617 776.706 
Silhouette score 0.000 0.382 0.791 0.523 

Note.  The Between Sum of Squares of the 3 cluster model is 3099.35 
Note.  The Total Sum of Squares of the 3 cluster model is 16040.08 

 
 
The clustering analysis produced three main clusters, with an additional group of noise points. The 
clusters show a highly unbalanced distribution: Cluster 1 includes 2517 observations, Cluster 2 only 
8 observations, and Cluster 3 has 238 observations. The model explains approximately 19.3% of the 
total variance, as indicated by the ratio between the Between Sum of Squares (3099.35) and the Total 
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Sum of Squares (16040.08), suggesting that the clustering captures only a moderate proportion of the 
overall variability. Cluster 1, which contains the majority of observations, shows variables close to 
the overall average, with all standardized means oscillating between approximately -0.3 and +0.3. 
The silhouette score for this cluster is 0.382, reflecting moderate internal cohesion and a less clear 
separation from other clusters (Figure 2). 
 

Figure 2. Environmental Clustering of Countries Based on LPI Determinants: Cluster Profiles and 
Variable Deviations. 

 

 
 
This cluster may be interpreted as representing the general or "baseline" population. Cluster 2, with 
its very small size (8 observations), has a very high silhouette rating of 0.791, showing good cohesion 
and distinction from the remaining groups. The means reveal positive NOE emissions (+0.423), very 
low PM2.5 exposure (-2.623), very restricted agricultural land (-2.766), and a high added value from 
agriculture, forestry, and fishing (+0.843). This implies Cluster 2 represents countries or regions with 
high agricultural productivity and clean air condition despite relatively high nitrous oxide emissions 
(Noviandy et al., 2024). Cluster 3 with 238 cases is typified by a high Heat Index 35 (+3.250), 
meaning high exposure to heat stress as well as positive NOE emission (+0.684) and PM2.5 exposure 
(+0.606) deviances. The value of the silhouette score is 0.523, showing good but unspectacular cluster 
separation. This cluster seems to represent countries or regions with both high heat exposure and 
increased air pollution exposure levels--a finding consistent with results of recent semi-supervised 
analyses of PM2.5 clustering and patterns in air pollution at the regional level (Zhu & Liu, 2024; 
Nakhjiri & Kakroodi, 2024). In terms of clustering quality, silhouette values range from 0.382 to 
0.791 across clusters and imply acceptable but imperfect partitioning of the data. The sum of squares 
within a cluster is very high for Cluster 1 (12160.403), suggesting internal fragmentation, while it is 
incredibly low in Cluster 2 (3.617), representing the tight clustering of this small group (Table 6). 
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Overall, the model is successful in identifying discrete groups at the extremes of data distribution but 
with most values falling into a large and heterogeneous middle group (Noviandy et al., 2024). 
 
 
Table 6. Cluster Mean Values for Environmental and Logistic Indicators 

 

 LPI NOE PM2.5AE HI35 ALPA AFFVA 

Cluster 0 -0.073 -1.314 -1.612 -0.328 -7.928 -0.504 

Cluster 1 -0.016 -0.062 -0.044 -0.305 0.037 0.011 

Cluster 2 -0.027 0.423 -2.623 -0.329 -2.766 0.843 

Cluster 3 0.169 0.684 0.606 3.250 -0.033 -0.125 

 

5. Exploring the Interaction Between Social Factors and LPI in an ESG Context 

This part examines the causality between the Logistics Performance Index (LPI) and the Social (S) 
pillar of the ESG framework in 163 nations from the period 2007 to 2023. Employing two-stage least 
squares (TSLS) and generalized two-stage least squares (G2SLS) techniques, the research looks at 
how important social variables like water and sanitation accessibility, education, population structure, 
income distribution and labor conditions influence the efficiency of logistics. Accounting for 
endogeneity by using a comprehensive set of instrumental variables, the outcomes show social 
development drivers to be important influencers of logistic performance and prove why socially 
inclusive approaches are required to boost supply chain systems everywhere. 

5.1 Analyzing the S-Social Component’s Impact on Logistics Performance 

This section explores the relationship between the Logistics Performance Index (LPI) and the Social 
(S) pillar of the ESG model. Using fixed-effects two-stage least squares (TSLS) and generalized two-
stage least squares (G2SLS) methods, the study investigates how social factors—such as access to 
basic services, education, income distribution, labor market conditions, and demographic structures—
impact logistics performance. The results reveal that improvements in social indicators can have both 
positive and negative effects on LPI, highlighting the intricate connections between human 
development, equity, and logistics efficiency within a sustainable growth framework. 

We have estimated the following model: 

𝑋௜௧ = 𝑍௜௧Π + υ୧୲ (First Stage) 

𝑌௜௧ = 𝑋௜௧β + µ୧୲ (Second Stage) 

 𝑌௜௧ = 𝐿𝑃𝐼௜௧  

 𝑋௜௧ = {PSMWS PSMS PA65A SEP CET POA ISL20}  

 𝑍௜௧ =
{IUI GDPG PSHWNP RFMLFPR SLRI STJA RLE NM CO2E NOE PM25AE GHGLUCF EILPE REC FFEC EU CDD  

HDD HI35 SPEI LST PD LWS ALPA FPI AFFVA MST AFWT TMPA ASFD ASNRD} 
 i = 163 
 t=[2007;2023]. 

 

Results are indicated in Table 7.  
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Table 7. Impact of Social Factors on Logistics Performance: Fixed-Effects TSLS and G2SLS 
Estimates 

Y LPI 
Endogenous PSMWS PSMS PA65A SEP CET POA ISL20 
Instruments IUI GDPG PSHWNP RFMLFPR SLRI STJA RLE NM CO2E NOE PM25AE 

GHGLUCF EILPE REC FFEC EU CDD HDD HI35 SPEI LST PD LWS ALPA FPI 
AFFVA MST AFWT TMPA ASFD ASNRD 

T 17 
N 163 

Observations 2771 
 Fixed-effects TSLS G2SLS random effects 
 coefficient std. error z coefficient std. error z 

Constant 14.2037*** 0.931617 15.25 14.2130*** 0.929932 15.28 
PSMWS -0.0127591* 0.00696445 -1.832 -0.0129694* 0.00695574 -1.865 
PSMS -

0.0485794*** 
0.0138711 -3.502 -

0.0486587*** 
0.0138471 -3.514 

PA65A -0.0468931** 0.0223795 -2.095 -0.0468441** 0.0223481 -2.096 
SEP -0.364282** 0.181080 -2.012 -0.363990** 0.180837 -2.013 
CET 1.69526*** 0.400538 4.232 1.69409*** 0.399966 4.236 
POA 0.0293510*** 0.00888111 3.305 0.0292621*** 0.00887040 3.299 
ISL20 -1.59629*** 0.370631 -4.307 -1.59533*** 0.370088 -4.311 

Statistics 
and Tests 

SSR = 1043.01 SSR = 2755.43 
sigma-hat = 0.633248 (df = 2601) sigma-hat = 0.998629 (df = 2763) 

R-squared = corr(y, yhat)^2 = 0.002318 R-squared = corr(y, yhat)^2 = 0.002340 
Included units = 163 Included units = 163 

Time-series length: min = 17, max = 17 Time-series length: min = 17, max = 17 
Wald chi-square(7) = 71.9868 [0.0000] Wald chi-square(7) = 72.3664 [0.0000] 

Null hypothesis: The groups have a 
common intercept 

sigma-hat(within)  = 0.63324843 

Test statistic: F(162, 2601) = 27100.4 
[0.0000] 

sigma-hat(between) = 26.654767 

 

This research examines the determinants of the Logistics Performance Index (LPI) of 163 countries 
over a period of 17 years using fixed-effects two-stage least squares (TSLS) and generalized two-
stage least squares (G2SLS) models with random effects. The framework includes a broad range of 
instruments capturing economic, demographic, governance, and environmental data. One key finding 
from the research has a direct bearing on the Social (S) component of the ESG framework. The 
endogenous variables — i.e., access to safely managed drinking water (PSMWS) and sanitation 
services (PSMS), elderly population percentage (PA65A), primary school enrollment (SEP), 
employment of children (CET), prevalence of overweight adults (POA), and income share held by 
the poorest 20% (ISL20) — all are dimensions of social development considered essential. The 
correlation unfolds as follows: More widespread provision of simple services like water and sanitation 
is somewhat counterintuitively negatively related to the variable of logistics performance. While 
statistically robust, however, the effect is small and implies high-performance social service provision 
may be related to more rigorous regulatory systems or greater operational costs marginally impacting 
the effectiveness of logistics. Demographic issues are also seen: a larger percentage of aging 
population and more enrollment in schools is negatively related to LPI. This may represent the effects 
of changing labor market fundamentals, whereby aging societies and higher education enrollment 
fewer youth in the workforce temporarily limit the labor available to the heavily labor-intensive 
industries like logistics. The opposite effect is identified in the case of the prevalence of child labor 
(CET), which has a strong positive effect on LPI — a worrying indicator. This indicates improving 
the performance of logistics in less developed economies may depend partly on exploitative 
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employment arrangements. This has a fundamental social sustainability issue at its core: efficiency 
gains at the expense of youth welfare and human rights are unacceptable if it goes against the core 
tenet under the Social pillar of ESG. Equally, the positive effect of overweight prevalence (POA) on 
the variable of logistics performance is likely a reflection of deeper patterns of economic prosperity 
and consumerism requiring more sophisticated systems of logistics. This also has social concerns 
related to modern lifestyles and unjust food systems. The negative correlation of income inequality 
(ISL20) and the variable of logistics performance is a fundamental finding. In economies in which 
the bottom 20% of the population possess less income, logistics systems look less efficient. More 
economic inequality contributes to fragmented markets, stagnant mobility, and lower human capital, 
all of which contribute to less smooth logistics operations. From an ESG-Social stance, this result 
confirms that more inclusive economic development bolsters better-performing logistics and supply 
chain systems. The extensive range of tools utilized — and range of indicators including internet 
penetration and rule of law, female labor force participation and governance — also highlight social 
and institutional environments as the determinants of the performance of logistics. More robust social 
structures, improved legal protections and more inclusive labor markets are not social goods alone 
but also efficiency enablers of global supply chain operations. In general, this examination makes it 
evident that social development underpins the performance of logistics. Education, services 
provision, equality of condition, labor quality and provision of health services all play important parts. 
Logistics infrastructures policies to enhance them must be strongly integrated with social investment 
plans to guarantee progress in the area of logistic infrastructures does not happen at the expense of 
the development of humanity but hand in hand with it and in full coherence with ESG-S objectives. 

Causality. The causal identification strategy employed—fixed-effects TSLS and G2SLS with a rich 
instrument set—permits a strong identification of the causal impact of social variables on the 
Logistics Performance Index (LPI). The coefficients imply the causal influence of variations in social 
development indicators on logistics performance and do not simply correlate with it. In particular, 
better access to safely managed water (PSMWS) and sanitation (PSMS), a larger elderly population 
percentage (PA65A), and increased school enrollment (SEP) are causally associated with a 
marginally declining LPI, possibly through augmented regulatory costs or labor force shortages. More 
troublingly, the causal positive effect of child labor (CET) on LPI illustrates how, in certain settings, 
improving the efficiency of logistics depends on unsustainable and ethically challenged forms of 
labor. The causal negative effect of income inequality (ISL20) on LPI also shows how more equal 
income distribution facilitates the efficiency of the logistics system. Significantly, the instrumental 
variables technique enhances the causal assertions by reducing endogeneity generated by reverse 
causality or missing variable bias. Nevertheless, low R² values signify how social variables have 
statistically significant causal impacts but account for a minimal share of overall variance in the 
performance of the logistics system and argue in favor of combining social interventions with more 
general economic and infrastructural reforms. 

Overall impact of the S-Social component within the ESG model. The evidence presents unequivocal 
empirical proof that the Social (S) pillar of the ESG framework has a causal and sizable yet 
multifaceted effect on the performance of logistics. Social improvements in indicators have a positive 
or negative impact on the Logistics Performance Index (LPI), highlighting the subtle tradeoff between 
operational efficiency and human development. The provision of fundamental services such as safely 
managed drinking water (PSMWS) and sanitation (PSMS), demographic transitions like population 
aging (PA65A), and increased enrollment in schools (SEP) are causally linked to declines of minor 
magnitude in the performance of logistics, probably indicative of increased regulatory costs or labor 
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shortage. The worrying causal positive effect of child labor (CET) on LPI also indicates the 
persistence of socially unsustainable patterns supporting the efficiency of logistics in some 
economies. The positive causal effect of overweight prevalence (POA) on LPI also shows stronger 
consumer-led logistic requirements, while income inequality (ISL20) has a negative effect on logistic 
efficiency and highlights the importance of equalized growth. Although the causal evidence is 
statistically strong because a rich list of instrumental variables was used, the low values of R² reveal 
a minimal share of variance explained by social variables. Summing up, the development of logistic 
performance has to be coordinated with socially sustainable development policies completely aligned 
with ESG-S principles.  

5.2 Machine Learning Estimation of Socio-Economic Impacts on Logistics Performance 

This section applies machine learning methods to estimate the relationship between socio-economic 
variables and the Logistics Performance Index (LPI). Several algorithms—including Boosting, 
Decision Trees, Random Forests, and Support Vector Machines—are evaluated based on normalized 
performance metrics. The K-Nearest Neighbors (KNN) algorithm emerges as the most accurate and 
robust model, achieving the lowest prediction errors and the highest explanatory power. Further 
analysis identifies key social predictors, such as school enrollment, overweight prevalence, and child 
labor incidence, highlighting the critical influence of human development factors on logistics 
performance. These results underline the complex interplay between social structures and logistic 
efficiency (Table 8). 

Table 8. Comparison of Machine Learning Algorithms for Predicting Logistics Performance Based 
on Socio-Economic Factors 

Metric Boosting 
Decision 

Tree 
K-Nearest 
Neighbors 

Linear 
Random 
Forest 

Regularized 
Linear 

SVM 

MSE 0.617 0.110 0.000 0.451 0.007 0.642 0.708 

MSE(scaled) 0.568 0.091 0.000 0.822 0.056 0.777 1.000 

RMSE 0.643 0.099 0.000 0.470 0.005 0.664 0.724 

MAE / MAD 0.776 0.140 0.000 0.727 0.277 0.857 0.316 

MAPE 0.763 0.172 0.000 1.000 0.290 0.955 0.000 

R² 0.211 0.793 1.000 0.092 0.950 0.103 0.000 
 
 

This cluster is seen to represent the overall or "baseline" population. Cluster 2, though having very 
small number of observations (8), also has a very high silhouette value of 0.791 as a testament to 
good clustering and separation between groups. The average values confirm positive NOE emissions 
(+0.423), very low PM2.5 exposure levels (-2.623), very low agricultural land usage (-2.766), and 
high value added from agriculture, forestry, and fishing (+0.843). This proves that Cluster 2 consists 
of countries or regions with high productivity in terms of agriculture and good air quality despite 
relatively high nitrous oxide emissions (Noviandy et al., 2024). Cluster 3 with 238 has a high Heat 
Index 35 (+3.250), indicating extreme exposure to hot air and heat stress, with associated positive 
departures of NOE emissions (+0.684) and PM2.5 exposure (+0.606). The silhouette value of 0.523 
indicates good but imperfect separation of the groups. This group appears to represent countries or 
regions with both high exposure to heat and air pollution levels as per conclusions drawn in recent 
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semi-supervised PM2.5 clustering and air pollution patterns by region by Zhu & Liu (2024) and by 
Nakhjiri & Kakroodi (2024). Within the quality of clustering, the silhouette values range from 0.382 
to 0.791 across groups and are representative of an acceptable but imperfect data partitioning. The 
within-cluster sum of squares is very high on Cluster 1 (12160.403), as a marker of data variability 
internally in the group and is very low on Cluster 2 (3.617), as an indication of the closeness of the 
small group. Generally, the model is capable of separating groups at the extremes of data distribution 
but a majority of the data fall into a very large heterogeneous core group (Noviandy et al., 2024). 
Using the K-Nearest Neighbors (KNN) algorithm to forecast the Logistic Performance Index (LPI) 
on the basis of socio-economic and demographic variables produces results both statistically robust 
and informative in terms of substance. Primary school enrollment (SEP) is the most significant 
predictor identified by feature importance assessment expressed as mean dropout loss (28.085), 
followed by adult overweight prevalence (POA, 26.403) and child labor (CET, 26.196). Other 
variables, such as access to safely managed sanitation services (PSMS), population percentage aged 
65 and above (PA65A), income share of the lowest 20% (ISL20), and percentage of population with 
access to safely managed drinking water services (PSMWS), are also contributory but to a lesser 
magnitude. These results imply educational level, labor and public health indicators are fundamental 
determinants of logistic capacities at the national level (Figure 3). 
 

 
Figure 3. KNN Feature Importance Analysis for Socio-Economic Predictors of Logistics Performance 
 

 
 
The additive feature attribute analysis of the test dataset better represents the effects of single 
predictors on the model's predictions. In all scenarios, the base prediction, the model's prediction 
when particularized feature effects are removed, is a fixed value of 10.241. Deviations from the 
baseline represent the subtle interactions among variables: School enrollment (SEP) has a consistent 
strong positive effect on LPI predictions everywhere, especially in cases 1 to 4. Contrariwise, access 
to drinking water services (PSMWS) consistently has a negative effect, especially in cases 2, 3, and 
4, and represents a mediated association with logistic performance by other infrastructural or 
governance variables. The negative effects of overweight prevalence (POA) and child labor (CET) 
also demonstrate the adverse effect of labor market distortions and healthcare on logistic efficiency. 
These inferences are consistent with recent studies using SHAP (Shapley AddExPlanations), which 
demonstrate the capacity of the technique to identify the marginal effect of predictors on models with 
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a high degree of complexity (Gebreyesus et al., 2023; Mohanty et al., 2024). Overall, the KNN model 
not only makes good LPI predictions but also allows better interpretation by quantifying the marginal 
effects of key socio-economic variables, in a manner analogous to the SHAP-based explanations used 
in the prediction of the attrition of employees and diagnostics in healthcare (Varkiani et al., 2025; 
Mohanty et al., 2024). These inferences demonstrate interdependencies between logistic output and 
human development indicators and represent the significance of social policy considerations in 
logistic performance maximization plans (Figure 4).  
 
Figure 4. Additive Feature Contributions to LPI Predictions Using K-Nearest Neighbors (KNN) 

 

5.3 Clustering to verify the relationship between LPI and the S-Social component of the ESG 
model  

This article examines the predictive correlation between the Logistics Performance Index (LPI) and 
a range of socio-economic and demographic variables using machine learning regression methods. 
Comparing different algorithms using normalised performance measurements highlights K-Nearest 
Neighbors (KNN) as the optimal technique to capture the underlying variance in logistics 
performance. Not only does KNN perform better in terms of predictive precision, but it also provides 
innovative insights into relative importance values of important social variables like education, 
health, and labor conditions. The investigation underscores how socio-economic development 
indicators play a pivotal role in determining logistics outcomes, thus supporting socially inclusive 
logistics approaches in the ESG framework (Table 9). 

Table 9. Normalized Performance Metrics for Clustering Algorithms: Predicting LPI with Socio-
Economic Variables 

Metric Density Based 
Fuzzy C-

Means 
Hierarchical 

Model 
Based 

Neighborhood-
Based 

Random 
Forest 

Maximum 
diameter 

1.000 0.072 0.063 0.967 0.061 0.081 

Minimum 
separation 

1.000 0.029 0.216 0.000 0.056 0.033 
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Pearson's γ 0.527 0.000 0.870 0.179 0.538 0.056 

Dunn index 1.000 0.043 0.314 0.000 0.081 0.043 

Entropy 0.000 0.752 0.340 1.000 0.899 0.693 

Calinski-Harabasz 
index 

1.000 0.001 0.002 0.002 0.004 0.001 

R² 0.000 0.351 0.642 0.627 1.000 0.494 

AIC 1.000 0.593 0.000 0.008 0.000 0.569 

BIC 1.000 0.593 0.000 0.008 0.000 0.569 

Silhouette 1.000 0.115 0.926 0.370 0.963 0.000 
 

Based on normalised performance measurements, Neighborhood-Based Clustering is the most 
suitable out of the methods considered. This is evident in better performance on a set of core clustering 
validity measurements. Notably, it has the best R² value with a higher percentage variance explained 
compared to other methods. Moreover, it has a high Silhouette score, reflecting good internal 
cohesion and good separation between groups—properties of paramount importance to measuring 
the quality of a clustering structure (Syed, 2022). In addition to that, its strategically low maximum 
diameter and acceptable minimum separation values further attest to Neighborhood-Based Clustering 
to effectively minimize within-cluster dispersion and maintain different groups separated. Though it 
fails to achieve the best AIC and BIC values to evaluate model simplicity and goodness of fit, its 
performance remains competitive considering the merit of structural clarity and interpretableness to 
clustering analysis (Syed, 2022). Density-Based Clustering approaches, for example, despite having 
best scores on maximum diameter and Dunn index scores, register poor Silhouette values and weaker 
R² values and demonstrate weaker model robustness in the respective setting of this type of 
application (Fu et al., 2022). Likewise, while targeted metrics have good performance by Random 
Forest Clustering, it does not outperform consistently on all dimensions. Although it has good 
performance on certain dimensions of the clustering problem, its stability and interpretableness are 
unstable on different datasets (Bicego & Escolano, 2021). Neighborhood-Based Clustering therefore 
has the best trade-off among the considered methods between separation and compactness and model 
explanatory power and stability. Overall performance also means it is best suited to applications 
requiring consistent group distinction as well as internal consistency to exist and best used in the 
setting of the current investigation. 
 
Table 10. Socio-Economic Characterization of Clusters Affecting Logistic Performance 

Cluster 1 2 3 4 5 6 7 8 9 10 

Size 564 244 218 434 68 409 76 352 237 169 

Explained 
proportion within-
cluster heterogeneity 

0.168 0.105 0.108 0.153 0.041 0.108 0.064 0.063 0.117 0.072 

Within sum of 
squares 

1.153 718.762 745.245 1.053 284.004 744.270 442.164 433.747 801.223 493.387 

Silhouette score 0.227 0.161 0.219 0.194 0.378 0.239 0.235 0.450 0.204 0.430 
Center LPI -

0.302 
-0.315 -0.324 -0.312 3.309 -0.299 -0.327 -0.277 -0.311 3.233 

Center PSMWS -
0.077 

0.164 2.259 -0.088 -0.042 -0.515 1.799 -0.673 -0.127 -0.632 

Center PSMS 0.668 0.183 0.741 -1.210 -2.134 -0.063 -2.193 0.633 0.090 0.207 

Center PA65A -
0.624 

-0.466 -0.165 -0.078 1.284 -0.121 1.423 -0.220 2.149 -0.252 
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Center SEP -
0.253 

-0.209 -0.691 -0.662 -1.185 0.883 -2.489 1.200 0.242 0.358 

Center CET -
0.495 

-0.520 -1.018 -0.478 -0.783 0.723 -1.620 1.748 0.028 0.556 

Center POA -
0.360 

1.542 -0.600 -0.400 -0.580 -0.505 -0.423 1.168 0.147 -0.217 

Center ISL20 -
0.545 

-0.474 -1.035 -0.416 -0.978 0.751 -1.560 1.603 0.114 0.685 

 
 
Applying Neighborhood-Based Clustering to the chosen socio-economic and demographic variables 
confirms a significant splitting of the dataset into ten groups with different profiles by logistic 
performance and corresponding indicators of human development. The silhouette values are mostly 
average but confirm acceptable cohesion among the groups, with cluster groups 8 and 10 sharing the 
highest internal consistency (0.450 and 0.430 respectively), suggesting consistency in relatively 
homogeneous patterns in the data (Yıldırım, 2023). The explained percentage of heterogeneity among 
the groups further confirms adequacy in the model, as in Cluster 5, the low percentage of 
heterogeneity (0.041) and a high cluster center LPI value (3.309) pick out a distinctive group with 
high logistic performance. Clusters 5 and 10 are indeed the most differentiated structural groups and 
show much higher Logistic Performance Index values compared to other groups with central values 
around negative LPIs (Kara, 2023). A look at the cluster centers picks out significant socio-economic 
contrasts. The groups found to have a higher LPI values are predominantly marked by improved 
coverage in terms of sanitation (high scores on PSMS), relatively higher proportions of elderly 
population (PA65A), improved coverage of safely managed drinking water (PSMWS), and more 
balanced income distribution (ISL20). The groups found to have low LPI centers (now classified as 
groups 3 and 7) are marked by negative performance in all of the above dimensions combined with 
increased prevalence of child labor (CET) and decreased enrolment in schools (SEP), suggesting 
structural weaknesses (Yıldırım, 2023). Surprisingly, Cluster 8 has a positive logistic profile even 
though it has low scores on water service indicators, implicating the hypothesis that education and 
income distribution may in this group make up deficits in infrastructure. These patterns amplify the 
importance of the inclusion of socio-economic dimensions in clustering methods in the case of 
logistics and infrastructure evaluation, as shown in previous examples of clustering in supply chain 
and logistic environments (Bicego & Escolano, 2021).Overall, the results demonstrate that logistic 
performance is closely intertwined with broader social determinants, including education access, 
labor market conditions, health outcomes, and basic service provision, confirming the multi-
dimensional nature of logistics capacity within national and regional contexts (Kara, 2023). 
Results are showed in table 11. 

Table 11. Cluster means. 

Cluster Means 

  LPI PSMWS PSMS PA65A SEP CET POA ISL20 

Cluster 1 -0.495 -0.545 -0.302 -0.624 -0.360 0.668 -0.077 -0.253 

Cluster 2 -0.520 -0.474 -0.315 -0.466 1.542 0.183 0.164 -0.209 

Cluster 3 -1.018 -1.035 -0.324 -0.165 -0.600 0.741 2.259 -0.691 

Cluster 4 -0.478 -0.416 -0.312 -0.078 -0.400 -1.210 -0.088 -0.662 

Cluster 5 -0.783 -0.978 3.309 1.284 -0.580 -2.134 -0.042 -1.185 



25 
 

Cluster 6 0.723 0.751 -0.299 -0.121 -0.505 -0.063 -0.515 0.883 

Cluster 7 -1.620 -1.560 -0.327 1.423 -0.423 -2.193 1.799 -2.489 

Cluster 8 1.748 1.603 -0.277 -0.220 1.168 0.633 -0.673 1.200 

Cluster 9 0.028 0.114 -0.311 2.149 0.147 0.090 -0.127 0.242 

Cluster 10 0.556 0.685 3.233 -0.252 -0.217 0.207 -0.632 0.358 

 

6. Governance and Logistics Performance: An Empirical Assessment within the ESG 
Framework 

The chapter examines the interconnection between governance quality and logistics performance in 
the ESG framework. By using fixed-effects two-stage least squares (TSLS), generalized two-stage 
least squares (G2SLS), machine learning models, and clustering methods on data from 163 countries 
between the period 2007-2023, the study documents how five key indicators of governance—
government effectiveness, regulatory quality, political stability, rule of law, and scientific 
innovation—affect the Logistics Performance Index (LPI). The findings highlight the importance of 
robust, transparent, and accountable institutions to underpin efficient logistics systems but also the 
multifaceted and dynamic character of governance impacts on global supply performance. 

6.1  The Role of Institutional Governance in Shaping Logistics Efficiency: An ESG 
Perspective 

This section analyzes the causal impact of governance quality on logistics performance within the 
ESG framework, using an instrumental variables (IV) panel data approach. Drawing on a balanced 
dataset of 163 countries from 2007 to 2023, and applying fixed-effects TSLS and G2SLS estimators, 
the study isolates the effects of key governance dimensions—such as government effectiveness, 
regulatory quality, voice and accountability, and rule of law—on the Logistics Performance Index 
(LPI). By addressing potential endogeneity and omitted variable bias, the analysis provides robust 
evidence that governance factors are not merely correlated with, but causally linked to, sustainable 
logistics performance under the ESG model. 

 

𝑋௜௧ = 𝑍௜௧Π + υ୧୲ (First Stage) 

𝑌௜௧ = 𝑋௜௧β + µ୧୲ (Second Stage) 

 

 𝑌௜௧ = 𝐿𝑃𝐼௜௧   

 𝑋௜௧ = {GEE RQE ESRPS VAE STJA PSAOV RLE}  

 𝑍௜௧ =
IUI CO2E NOE PM25AE GHGLUCF EILPE REC FFEC EU CDD HDD HI35 SPEI LST PD LWS ALPA  

FPI AFFVA MST AFWT TMPA ASFD ASNRD } 
 

 i = 163 
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 t=[2007;2023]. 
Results are synthetized in Table 12.  

Table 12. Causal Effects of Institutional Governance on the Logistics Performance Index (LPI) 

y LPI 
Endogenous GEE RQE ESRPS VAE STJA PSAOV RLE 
Instruments IUI CO2E NOE PM25AE GHGLUCF EILPE REC FFEC EU CDD HDD HI35 SPEI LST 

 PD LWS ALPA FPI AFFVA MST AFWT TMPA ASFD ASNRD 
T 17 
N 163 

Observations 2771 
 G2SLS random effects Fixed-effects TSLS 
 coefficient std. error z coefficient std. error z 

const 11.9114*** 0.588432 20.24 11.9297*** 0.593942 20.09 
GEE 0.0151558*** 0.00230164 6.585 0.0152008*** 0.00232277 6.544 
RQE -5.51554e-06** 2.38212e-06 -2.315 -5.52359e-06** 2.40369e-06 -2.298 
ESRPS -0.0354579*** 0.00975704 -3.634 -0.0357672  *** 0.00984858 -3.632 
VAE 0.543244*** 0.137306 3.956 0.546940 *** 0.138589 3.946 
STJA 0.0259654*** 0.00625200 4.153 0.0259979*** 0.00630913 4.121 
PSAOV 9.78199e-07** 4.06429e-07 2.407 9.77849e-07** 4.10115e-07 2.384 
RLE 0.282701** 0.110445 2.560 0.283452** 0.111451 2.543 
Statistics And 
Tests 

SSR = 2713.7 SSR = 1072.64 
 
 
 

sigma-hat = 0.991039 (df = 2763) sigma-hat = 0.64218 (df = 2601) 
 

R-squared = corr(y, yhat)^2 = 0.009367 R-squared = corr(y, yhat)^2 = 0.009321 
 

Included units = 163 Included units = 163 
 

Time-series length: min = 17, max = 17 Time-series length: min = 17, max = 17 
 

Wald chi-square(7) = 72.3551 [0.0000] Wald chi-square(7) = 71.0526 [0.0000] 
 

sigma-hat(within)  = 0.64218019 Null hypothesis: The groups have a common intercept 
 
 

sigma-hat(between) = 30.771231 Test statistic: F(162, 2601) = 26449.2 [0.0000] 
 

 
The results prove insightful and straightforwardly strong on the premier role of governance in 
supporting logistics performance. Government Effectiveness (GEE) has a direct and very powerful 
impact on Logistics Performance Index (LPI), both with a coefficient of around 0.0152 and a 
significance of the 1% level. This shows competent, transparent, and efficient governments support 
the development of logistic systems in better managing infrastructures, providing services, and 
putting in force policies—a correlation also found in research on governance and economic 
development across regions (Effiong, Udofia, & Garba, 2023; Pinjaman et al., 2025). Regulatory 
Quality (RQE), to our surprise, has a very low but negative and statistically significant impact. 
Although the impact size is low, the result may signify a case of excessive restraint by overly 
burdensome or ill-designed regulatory systems to exact unintended costs or frictions on logistic 
operations in environments with excessive bureaucracy or controls stifling innovation and flexibility 
(Sadriu & Balaj, 2024). The Economic and Social Rights Performance Score (ESRPS) is inversely 
associated with the performance of logistics. The result means a structural problem: in nations heavily 
concentrated on generous social protections, regulatory heaviness or resource redistributive 
mechanisms may unwittingly limit investments or operational efficiencies core to logistic networks. 
It highlights a thin line between social progress and logistic efficiency (Baciu, 2023). Voice and 
Accountability (VAE) has a strong and significant correlation with LPI and indicates nations with 
freer media, better civic engagement, and accountable government have better logistic performance 
because they have better visibility, are more responsive to the marketplace, and less corrupt (Rawat, 
2025). Science and Technical Journal Articles (STJA) grow LPI positively and show a role of 
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innovation, research power, and tech creation to advance efficient and modern logistic fields. Political 
Stability and Absence of Violence (PSAOV), though modeled using very small coefficients, has a 
positive and a statistically significant correlation with LPI and means stability brings safety and 
predictability to assure local and foreign supply chains and thus avert risks and operational 
interruption—an inference supported by research on the impact of political governance on the 
economy in different nations (Rawat, 2025). Finally, Rule of Law (RLE) shows a positive and 
tangible impact in supporting the argument that solid legal institutions, protection of property rights, 
and adherence to contracts are essential pillars to support good logistic networks (Sadriu & Balaj, 
2024). Statistically, the importance of the models is reflected in the Wald chi-square statistics as very 
high and confirm the joint appropriateness of the variables included. Although the R-squared values 
of approximately 0.0093 are low and express that variables of governance alone describe a relatively 
small percentage of the overall variance in logistic performance, their effect is statistically relevant 
and economically considerable. The use of a range of environmental indicators as a basis includes a 
range of indicators such as CO₂ emissions, exposure to PM2.5, consumption of energy, and climate 
variables, which adds richness to the model. While they are secondary to the objectives here but are 
relevant to any broader consideration of environmental issues and are remnants from our investigation 
of the environmental systemic shocks to the governance and the standards of logistics, their inclusion 
makes identification stronger by capturing risks on a higher level indirectly affecting governance and 
logistic environments. These results confirm good governance as a building block to the efficient 
logistic standards. Stable and efficient government, transparent and innovative as it is, will empower 
nations to build and maintain efficient logistic chains integral to competitiveness in a globalized 
economy. The results also alert, however, social and regulatory ambitions to be developed 
thoughtfully to avoid unwanted trade-offs with efficiency of operation. In the ESG framework, 
research supports that the Governance (G) pillar is not an ancillary variable but a direct determinant 
of infrastructure quality and efficiency of economy in logistics and sustainable development (Baciu, 
2023; Pinjaman et al., 2025). 
 
 
 
Causality. The results strongly confirm the causal association with the performance of logistics and 
the quality of governance in the ESG framework. The empirical approaches using an instrumental 
variables (IV) panel data methodology—fixed-effects two-stage least squares (TSLS) and generalized 
two-stage least squares (G2SLS) estimators—are used to address concerns on endogeneity problems 
such as reverse causation and specification of a relevant variable. The used econometric approaches 
are consistent with recent research on causal inference using IVs in data setups with a high level of 
data complexity (Cheng et al., 2023; Long et al., 2023). The robust coefficients on governance metrics 
such as Government Effectiveness (GEE), Voice and Accountability (VAE), and the Rule of Law 
(RLE) provide strong evidence to confirm the premise that improvements to governance institutions 
are linked to but do not merely correlate with improving logistics performance. The careful selection 
of the instrumental set of variables such as environmental and macro-structural drivers (e.g., CO₂ 
emissions and PM2.5 exposure and energy consumption), removes confounding exogenous variation 
in governance quality and thereby bolsters identification. The subject modelling selections are 
consistent with stronger and distributionally robust IV estimation methods now suggested in available 
literature (Qu & Kwon, 2024). This provides support to the overall finding that institutional 
efficiency, accountability, transparency, and stability are key drivers to efficiency in logistics in any 
confounding macroeconomic environments. Although the relatively low R-squared values indicate 
that governance contributes partially to variance in logistics outcomes, the strongly significance Wald 
chi-square statistics confirm the combined significance of the governance predictors. The study thus 
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presents robust causal evidence supporting the inclusion of governance reforms as a key prescription 
to leverage logistics systems under the ESG framework (Cheng et al., 2023; Long et al., 2023). 
 
Overall effects of G-Governance elements in the ESG framework on Logistic Performance Indicators. 
The evidence confirms the Governance (G) pillar of the ESG model as having a causal and pivotal 
impact on country differences in logics performance. Applying an instrumental variables (IV) panel 
data framework with fixed-effects TSLS and G2SLS estimators to avoid endogeneity issues, the 
research highlights the effect on governance quality independently. Results indicate higher 
government effectiveness, rule of law, and voice and accountability are significantly and positively 
related to improved logics outcomes, whereas excessively complicated regulatory environments and 
redistributive social policy options on occasion may bring in unnecessary inefficiencies. While 
governance on its own accounts for a relatively small percentage of the variance in logics 
performance, its effect exists and is both statistically and economically significant. These results are 
consistent with existing research on the importance of good governance practices improving both 
logics capacity and financial performance in logics firms and markets—particularly ESG-aware 
markets (Nenavani et al., 2024; Lee, 2024). In addition, they complement research evidence that ESG 
integration, and in particular good governance mechanisms to facilitate it, may represent a 
performance catalyst even in financial markets—highlighting the strategic importance of governance 
to investor confidence and sectoral returns (Rodionova et al., 2022). Overall, the research 
demonstrates transparent, stable, and efficient institutions as essential drivers to sustainable and 
competitive logics systems and confirms the centrality of the Governance pillar of the ESG model to 
public policy and infrastructure and also to private sector logics strategy and investor behavior (Lee, 
2024; Nenavani et al., 2024). 

. 

 

6.2 Machine Learning Regressions  LPI and G-Governance  

In a range of multiple regression algorithms including Boosting Regression, Decision Tree 
Regression, k-Nearest Neighbors Regression, Linear Regression, Random Forest Regression, and 
Support Vector Machine Regression, models were systematically compared against a range of 
statistical performance metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the coefficient of 
determination (R²). Of the models tested, the k-Nearest Neighbors (k-NN) Regression algorithm 
consistently outperformed its peers with the best values for MSE (215.583), RMSE (14.683), and 
MAE (5.779), and the relatively high R² as a result of 0.619. These combined to confirm k-NN 
Regression as having the best ability to minimize prediction error while also having the ability to 
maintain a high percentage of variance of the response variable. The same has been seen in uses of 
k-NN to predict solar radiation and cryptocurrency prices where it maintained competitive accuracy 
and stability (Troncoso et al., 2023; Jenifel et al., 2024). While the Support Vector Machine (SVM) 
model had an anomalous low MAPE (18.16%), its severely low R² value (0.024) highlights a serious 
lack of explanatory power and consequently makes it inadvisable to maintain robust predictive model 
suitability in the case. The result concurs with issues identified in other areas of research using SVM 
as its sensitivity to data distribution has resulted in unstable estimates despite low error values 
(Maheshwari et al., 2024). While Random Forest Regression had the best value of R² (0.628), it had 
marginally higher error values than k-NN and was subsequently unable to outrank it in terms of 
predictive ability. These trade-offs demonstrate typical practice using ensemble learning whereby 
reductions in variance might result in increases in small levels of bias (Jenifel et al., 2024). Combined, 
these results confirm k-Nearest Neighbors Regression to have the most optimal mixture of both 
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minimalism on both sides and optimally ensuring both correctness as well as generalizability. As 
such, it is hereby proposed as the best methodology to be adopted in predictive work in datasets of 
similar behaviour (Table 13). 

Table 13. Comparative Performance of Regression Algorithms for Predicting Logistics Performance 

  Boosting 
Regression  

Decision 
Tree 
Regression 

k-Nearest 
Neighbors  

Linear 
Regressions 

Random Forest 
Regression 

Support Vector 
Machine  

MSE 710.124 395.86 215.583 646.107 327.09 681.308 

MSE 
(scaled) 

1.198 0.759 0.425 1.488 0.415 1.689 

RMSE 26.648 19.896 14.683 25.419 18.086 26.102 

MAE / 
MAD 

13.847 6.537 5.779 14.92 8.665 7.702 

MAPE 212.44% 128.57% 133.26% 294.11% 145.91% 18.16% 

R² 0.16 0.384 0.619 0.065 0.628 0.024 

 

Within the proposed study, the k-Nearest Neighbors (k-NN) regression model was used to probe the 
impact of the "Governance" (G) component of the ESG framework on the Logistic Performance 
Indicator (LPI). The research used a range of governance-focused predictors to include Government 
Effectiveness Estimate (GEE), Regulatory Quality Estimate (RQE), Economic and Social Rights 
Performance Score (ESRPS), Voice and Accountability Estimate (VAE), Scientific and Technical 
Journal Articles (STJA), Political Stability and Absence of Violence Estimate (PSAOV), and Rule of 
Law Estimate (RLE). Feature importance was constructed using mean dropout loss metrics to reveal 
STJA (29.515) and VAE (28.538) as the most vital variables on the predictive capability of the model. 
This result implies the importance of elements associated with scientific output as well as with 
participatory governance as key drivers in the governance dimension on logistic system efficiency—
a finding concordant with recent research on the contributions to investment climates and institutional 
performance from innovation and democratic accountability (Sadriu & Balaj, 2024; Mukhtar, 2023). 
ESRPS (23.916) and RLE (20.574) also proved to have substantial importance to identify the 
instrumental role of leveled-up rights protection and legal pillars. This concurs with existing work 
pointing to the prediction power of legal-institutional variables in performance modeling in industries 
such as infrastructure and building (Peiman et al., 2023). GEE (20.056), RQE (17.422), and PSAOV 
(16.924), on the other hand, had comparatively low but non-zero impacts. These outcomes highlight 
the non-uniformity of the governance dimension whereby all governance indicators do not have equal 
impact on logistic performance. Specifically, the empirical data highlight the disparate influence of 
knowledge production and accountability mechanisms compared with more conventional governance 
metrics (Table 14). These add to a finer-grained comprehension of the "G" component’s 
operationalization of ESG-led logistic performance models and impart strategic insights into policy 
design and institution building to augment logistic system capability through governance reforms 
(Mukhtar, 2023; Sadriu & Balaj, 2024). 

Table 14. Governance Predictors and Their Influence on LPI: Mean Dropout Loss Analysis 

  
Mean dropout 
loss 

STJA 29.515 
VAE 28.538 
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ESRPS 23.916 
RLE 20.574 
GEE 20.056 
RQE 17.422 
PSAOV 16.924 
Note.  Mean dropout loss 
(defined as root mean 
squared error (RMSE)) is 
based on 50 permutations. 

 
Following the global feature importance analysis, additive explanation outputs were utilized to dissect 
the individual contributions of each governance-related predictor toward the Logistic Performance 
Indicator (LPI) across specific test cases within the k-Nearest Neighbors (k-NN) regression model 
framework. The base score (i.e., the predicted outcome without the influence of any predictors) 
remained constant at 10.678 across all instances, allowing for a direct comparison of feature impacts. 
The use of additive interpretability methods is increasingly recognized as essential for understanding 
the nuanced behavior of ML models, particularly in k-NN and SVM contexts (Boukrouh et al., 2024). 
Across all five cases analyzed, the Economic and Social Rights Performance Score (ESRPS) 
consistently exhibited the most substantial negative contributions, with reductions ranging from -
16.067 to -14.116. This indicates a strong inverse relationship between perceived human rights 
performance and logistic efficiency under the conditions observed—possibly reflecting a trade-off 
between social equity measures and operational productivity in constrained institutional 
environments. Simultaneously, the Voice and Accountability Estimate (VAE) demonstrated large 
positive contributions (ranging from approximately +7.964 to +9.862), reaffirming its pivotal role as 
a driver of logistic performance within the governance dimension. The findings support existing 
literature that links participatory governance with improved infrastructure and service delivery 
outcomes (Ilyas, 2024). Scientific and Technical Journal Articles (STJA) presented a more nuanced 
pattern, occasionally contributing positively (e.g., +0.773 in Case 3) or negatively (e.g., -5.932 in 
Case 5), suggesting a context-dependent influence, potentially moderated by other institutional or 
sector-specific factors not captured in the model. Such complex and dynamic relationships are often 
uncovered through interpretable ML frameworks in health and policy analytics, where variable 
interactions depend heavily on contextual moderators (Guo et al., 2025). Conversely, Government 
Effectiveness Estimate (GEE) and Regulatory Quality Estimate (RQE) exhibited minor, mostly near-
zero impacts on the predicted LPI values, with a notable exception in Case 5, where GEE contributed 
positively (+2.120) and RQE negatively (-1.209). This implies that governance efficacy and 
regulatory oversight may exert influence only under specific institutional or structural conditions 
(Boukrouh et al., 2024). Political Stability and Absence of Violence (PSAOV) and Rule of Law 
Estimate (RLE) consistently produced modest effects, albeit with variability in direction and 
magnitude, highlighting their secondary but non-trivial role. Overall, the additive explanations 
reinforce the existence of a differentiated structure within the Governance component of the ESG 
model, where participatory governance (captured through VAE) emerges as the primary positive 
driver, while human rights considerations (ESRPS) represent a critical constraint. This nuanced 
insight emphasizes the necessity of selective governance interventions, tailored not merely to improve 
aggregate institutional scores but to strategically enhance the most impactful subdimensions for 
logistic system optimization (Table 15).  
 
Table 15. Additive Feature Contributions to LPI Predictions Using k-NN Model (Governance 
Dimension) 

Additive Explanations for Predictions of Test Set Cases  

Case Predicted Base GEE RQE ESRPS VAE STJA PSAOV RLE 
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1 2.180 10.678 -0.686 -0.046 -16.907 9.827 -0.116 -0.529 -0.042 

2 2.370 10.678 0.019 -0.002 -16.008 9.862 -1.659 -0.550 0.029 

3 6.203 10.678 0.493 -0.006 -14.116 7.964 0.773 0.172 0.245 

4 2.370 10.678 -0.387 -0.015 -16.067 9.473 -0.832 -0.417 -0.062 

5 2.503 10.678 2.120 -1.209 -0.858 -1.044 -5.932 -0.239 -1.014 

Note.  Displayed values represent feature contributions to the predicted value without features (column 'Base') for the 
test set. 

 

6.3 Clustering Governance Profiles and Their Impact on Logistics Performance 

This section examines the relationship between governance quality and logistics performance through 
an advanced clustering analysis. Using a comprehensive dataset spanning 163 countries from 2007 
to 2023, multiple clustering algorithms—including Density-Based, Fuzzy C-Means, Hierarchical, 
Model-Based, Neighborhood, and Random Forest clustering—were compared across several internal 
and external validation metrics. Among these, Neighborhood Clustering demonstrated superior 
performance, achieving the highest R² and Calinski-Harabasz scores, alongside strong compactness 
and separation properties, reflecting the method’s effectiveness in identifying stable and interpretable 
clusters (Guo et al., 2025). The application of Neighborhood Clustering revealed ten distinct clusters 
characterized by varying governance and logistics performance profiles. Some clusters, particularly 
those with high government effectiveness, regulatory quality, and voice and accountability, were 
associated with better logistics outcomes—a pattern consistent with prior spatial and regional 
analyses emphasizing the link between governance infrastructure and logistics development in 
economically integrated zones (Tao et al., 2022). However, other clusters showed that strong 
governance indicators alone do not always guarantee superior logistics performance, suggesting the 
presence of additional mediating factors such as technological capacity, regional integration, or socio-
economic disparities. This observation reinforces the need for interpretability and contextual 
sensitivity in unsupervised learning applications to ensure that model outputs reflect real-world 
complexities and policy-relevant dynamics (Guo et al., 2025). Overall, the clustering analysis 
underscores the complex, multifaceted relationship between the Governance (G) pillar of ESG and 
the Logistics Performance Index (LPI), highlighting that institutional quality interacts with a broader 
set of structural and operational variables to shape outcomes (Table 16). 
 
Table 16. Comparative Evaluation of Clustering Algorithms for Governance and Logistics 
Performance Analysis 

Metric 
Density 
Based 

Fuzzy c-Means Hierarchical Model Based Neighborhood Random Forest 

Maximum 
diameter 

0.447 0.740 0.000 0.791 0.057 1.000 

Minimum 
separation 

0.997 0.126 0.981 0.061 0.149 0.000 

Pearson's γ 0.805 0.368 1.000 0.283 0.588 0.000 
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Dunn index 0.492 0.046 1.000 0.000 0.110 0.001 

Entropy 0.000 0.674 0.095 0.764 0.668 0.490 

Calinski-
Harabasz 
index 

0.179 0.248 0.221 0.159 1.000 0.000 

R² 0.130 0.425 0.392 0.297 1.000 0.000 

AIC 0.699 0.273 0.327 0.578 0.000 1.000 

BIC 0.672 0.258 0.333 0.578 0.000 1.000 

Silhouette 0.787 0.328 0.704 0.463 0.598 0.000 

 
The comparative assessment of clustering models was established using multiple internal and external 
validation indices, such as Maximum Diameter, Minimum Separation, Pearson’s γ, Dunn Index, 
Entropy, Calinski-Harabasz Index, R², AIC, BIC, and Silhouette Score. Each index highlights 
different clustering performance aspects and therefore provides a multi-aspect basis for model 
selection (Gagolewski et al., 2021). From the assessment, Neighborhood Clustering had better overall 
performance on most of the key indices. It had the best R² value (0.702), which shows the best 
explanatory strength compared to other models, and had an extraordinary Calinski-Harabasz Index 
(721.077), indicating exceptional cluster closeness and distinctiveness. In addition to that, 
Neighborhood Clustering had a good Silhouette Score (0.250), which indicates relatively cohesive 
clustering structure. The low values of AIC and BIC also reveal high model simplicity and fit and are 
a strong aspect conducive to its applicability in real-life scenarios requiring simplicity of models 
(Sarmas et al., 2024). Hierarchical Clustering also had competitive performance, but especially 
outshines on Pearson’s γ (0.618) and the Dunn Index (0.064), revealing good intra-cluster coherence 
and inter-cluster separation. Nonetheless, its relatively low R² and high values of information criteria 
in comparison to Neighborhood Clustering might confine it to a second option in scenarios requiring 
maximal predictive stability. The above finding aligns with other comparative research evincing the 
trade-offs associated with hierarchical approaches (Hossen & Auwul, 2020). In contrast to the above 
findings, algorithms like Random Forest Clustering and Model-Based Clustering had multiple 
shortcomings. Random Forest Clustering had the poorest Silhouette Score (-0.170) and relatively 
weak R² (0.267), which indicates less cohesive cluster formation and weaker explanatory power. 
Although Model-Based Clustering had relatively good performance on some indices, its negative 
Silhouette Score (-0.030) is a concern as it questions the clarity of cluster interpretation, a concern 
commonly espoused when model assumptions fail to match data structure (Gagolewski et al., 2021). 
Density-Based Clustering and Fuzzy c-Means Clustering had varied performance results. While a 
good Silhouette and Pearson’s γ were returned by the Density-Based Clustering model, it had a 
weaker R² and Calinski-Harabasz Index and thus less optimal cluster structures. Fuzzy c-Means 
Clustering, although having a relatively high Calinski-Harabasz Index, reflected poor cohesion 
(Silhouette Score = 0.120) and separation (Dunn Index = 0.004), revealing weaker clustering behavior 
(Sarmas et al., 2024). Overall, on a balanced comparison of cohesion, separation, model fit, and 
predictive power, Neighborhood Clustering proves to be the best fit algorithm best suited to start with 
the dataset. The fact that it has been found superior on more than one dimension validates its 
suitability, especially in applications requiring structural simplicity, model stability, and explanatory 
power (Hossen & Auwul, 2020; Sarmas et al., 2024). 
 
So applying Neighborhood Clustering we have the following results as showed in Table 17. 
 
Table 17. Governance and Logistics Performance: Cluster Characterization via Neighborhood 
Clustering 
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Cluster 1 2 3 4 5 6 7 8 9 10 

Size 27 347 236 375 20 9 85 491 385 796 

Explained 
proportion within-
cluster 
heterogeneity 

0.036 0.096 0.202 0.128 0.019 0.016 0.074 0.140 0.102 0.189 

Within sum of 
squares 

235.437 631.86
9 

1.332.93
9 

848.61
8 

128.76
5 

102.54
0 

488.69
3 

922.70
6 

675.29
4 

1.247.10
6 

Silhouette score 0.391 0.342 0.263 0.149 0.458 0.684 0.315 0.155 0.317 0.243 

Center LPI -0.052 -0.282 3.251 -0.311 -0.276 -0.277 -0.307 -0.302 -0.314 -0.312 

Center GEE -0.851 1.256 0.415 -0.128 0.923 0.398 0.011 0.711 -1.064 -0.534 

Center RQE -0.144 -0.127 0.237 -0.107 2.339 15.237 -0.125 -0.164 -0.051 -0.051 

Center ESRPS -0.480 1.169 0.657 0.159 0.830 -0.000 -0.178 0.543 -1.892 -0.185 

Center VAE -0.744 1.378 0.075 -1.335 0.794 -1.503 0.705 0.520 -0.639 -0.059 

Center STJA 0.732 -1.684 -0.117 0.986 -0.415 -0.697 -0.154 -0.205 0.482 0.207 

Center PSAOV -6.510 0.371 0.273 0.012 5.663 -0.853 0.190 0.045 -0.170 -0.126 

Center RLE -0.512 0.190 -0.117 -0.271 0.198 -0.236 4.396 -0.044 -0.246 -0.229 

Note.  The Between Sum of Squares of the 10 cluster model is 15546.03 

Note.  The Total Sum of Squares of the 10 cluster model is 22160 

 

 
The clustering analysis, which was used with the aim to investigate the association of governance 
indicators and the Logistic Performance Indicator (LPI), demonstrates a sophisticated and subtle form 
across ten different groups of observations. Each of the groups is identified not merely by size but 
also by distinctive governance and institutional profiles as indicated by the cluster centers (Yıldırım, 
2023). The most distinctive group is Cluster 3 with its very high LPI center (3.251) and positive 
centers of GEE (0.415), RQE (0.237), ESRPS (0.657), VAE (0.075), and PSAOV (0.273). The 
configuration indicates better improvements in different dimensions of governance—such as 
government effectiveness, regulatory quality, performance in terms of human rights, and stability in 
politics—are aligned with much superior logistic performance. The relatively high silhouette score 
of Cluster 3 (0.263) also confirms its internal consistency. These developments are in line with larger 
research evidence connecting governance quality with better logistic outcomes when governance is 
combined with technological and administrative advancement (Slezák, 2023). In contrast, most other 
groups (Clusters 1, 2, 4, 5, 6, 7, 8, 9, and 10) have negative LPI centers and thus depict inferior logistic 
performance. In all such groups, governance indicators are often both negative and extremely 
polarized. In Cluster 2, despite positive centers of GEE (1.256), ESRPS (1.169), and VAE (1.378), 
the LPI center is negative (-0.282). The inconsistency implies that even though indicators of 
governance are good-looking, other underlying variables such as quality of infrastructure or 
geographical location unexplained in the model may damp down logistic efficiency (Pehlivan et al., 
2024). Cluster 5 and Cluster 6 are of particular concern. Cluster 5 has the maximum RQE center 
(2.339) and a maximum PSAOV center (5.663), which demonstrates high regulatory quality and 
stability in politics. The corresponding LPI center is still negative (-0.276), which indicates a 
mismatch between governance improvement and logistic outcomes possibly caused by lag effects or 
sectoral inefficiencies. Cluster 6 has a small group (n=9) with a maximum silhouette score (0.684), 
which demonstrates very good internal constancy. Although the group has high stability in politics 
and relatively neutral profiles of governance indicators, its LPI center is negative (-0.277), showing 
that even under highly homogeneous circumstances logistic performance is poor. This result confirms 
that rule of law by itself is insufficient to guarantee logistic success but requires complementarity by 
economic or infrastructural variables (Yıldırım, 2023). Cluster 7 presents a remarkable pattern with 
a strongly positive RLE (4.396) but yet a negative LPI (-0.307), indicating the rule of law as vital but 
insufficient in itself to guarantee logistic success (Table 18). Generally, the clustering solution 
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documents that rule of law variables are vital but exert complicated and mediated effects on logistic 
performance. The finding emphasizes the necessity to pursue a multidimensional approach towards 
logistic success models by complementing rule of law reforms with focused investments in 
infrastructure, education, and a diversified economy (Pehlivan et al., 2024; Slezák, 2023). 
 
Table 18. Governance Profiles and Their Logistic Outcomes: Cluster Mean Comparisons 
 

Cluster Means 

  LPI GEE RQE ESRPS VAE STJA PSAOV RLE 

Cluster 1 -0.480 -0.851 -0.052 -6.510 -0.512 -0.144 0.732 -0.744 

Cluster 2 1.169 1.256 -0.282 0.371 0.190 -0.127 -1.684 1.378 

Cluster 3 0.657 0.415 3.251 0.273 -0.117 0.237 -0.117 0.075 

Cluster 4 0.159 -0.128 -0.311 0.012 -0.271 -0.107 0.986 -1.335 

Cluster 5 0.830 0.923 -0.276 5.663 0.198 2.339 -0.415 0.794 

Cluster 6 -1.098×10-7 0.398 -0.277 -0.853 -0.236 15.237 -0.697 -1.503 

Cluster 7 -0.178 0.011 -0.307 0.190 4.396 -0.125 -0.154 0.705 

Cluster 8 0.543 0.711 -0.302 0.045 -0.044 -0.164 -0.205 0.520 

Cluster 9 -1.892 -1.064 -0.314 -0.170 -0.246 -0.051 0.482 -0.639 

Cluster 10 -0.185 -0.534 -0.312 -0.126 -0.229 -0.051 0.207 -0.059 

 

The cluster means analysis presents differentiated governance and logistic performance profiles 
among the ten identified groups. The best mean LPI of Cluster 2 (1.169) is accompanied by strong 
positive governance indicators such as Government Effectiveness (GEE = 1.256) and Voice and 
Accountability (VAE = 1.378), even with as yet marginally negative Regulatory Quality (RQE = -
0.282). These are in line with previous work on the strong performance of groups with high civic 
engagement and high social capital as regards filling up logistic indices (Pehlivan et al., 2024). 
Similarly, Cluster 5 also presents a high LPI mean (0.830), supported by outstanding scores in 
Economic and Social Rights Performance (ESRPS = 5.663) and Regulatory Quality (RQE = 2.339) 
and shows the significance of improved protection of rights and better regulation as drivers to 
advanced logistic performance—akin to patterns seen in general policy and general supply chain 
clustering research (Yıldırım, 2023), (Figure 5). 
 
Figure 5. Distribution and Cluster-Wise Means of Governance and Logistics Performance 
Indicators (LPI) Across Ten Groups 
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While Cluster 3 has the best RQE (3.251), it has a marginally high increase in LPI (only 0.657), which 
validates the fact that the quality of regulation by itself, without concomitant increases in other 
dimensions of governance, does not holistically optimize logistic performance (Ulkhaq, 2023). 
Cluster 6 has the maximum divergence in Scientific and Technical Journal Articles (STJA = 15.237), 
but its LPI mean is near zero (almost), and it shows that scientific production as desirable may have 
to be accompanied by better governance to contribute meaningfully to logistic system improvements. 
Clusters 1, 9, and 10 are characterized by low means in LPI (-0.480, -1.892, and -0.185) and by overall 
poor governance indicators. In particular, Cluster 9 has the pessimistic profile with strongly negative 
values on all the variables GEE, RQE, ESRPS, VAE, and RLE and demonstrates the synergies of low 
governance to logistic low efficiency (Ulkhaq, 2023). Interestingly, Cluster 7 positions itself strongly 
positive on RLE (RLE = 4.396) but has a negative LPI mean (-0.178), and it shows that legal 
structures by themselves are insufficient to propel logistic performance because other dimensions of 
governance are missing. Finally, Cluster 8 is a comparatively balanced configuration with a relatively 
high LPI (0.543) and mean scores on all dimensions of governance and has a more integrated model 
of governance (Yıldırım, 2023). All of these combined outcomes verify the multifaceted character of 
logistic performance as a phenomenon in which discrete governance elements make a non-uniform 
contribution and require synergistic enhancement to make noticeable improvements (Pehlivan et al., 
2024), (Figure 6). 
 

Figure 6. Pairwise Relationships Among Governance and Logistics Indicators by Cluster 
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7. Policy Implications 

The implications of the results of this research are important to policymakers interested in linking 
logistics performance improvements to more general Environmental, Social, and Governance (ESG) 
goals. The results show how improvements in Logistics Performance Index (LPI) are interwoven with 
the core elements of the ESG framework. This finding indicates how goods and services traditionally 
associated with a sector or operations domain are a much more integral part of pursuing sustainable 
and fair development objectives (Sharawi et al., 2025). From a governance standpoint, the empirical 
results highlight the importance of good institutions capable of supporting regulatory quality as well 
as government effectiveness. Enhanced performance in logistics is positively related to better 
regulatory practices and governmental institutions, as evidenced by the striking correlation between 
LPI and Government Effectiveness (GEE) and Regulatory Quality Estimate (RQE) variables (Göçer 
et al., 2022). Policymakers are thus implored to pursue strengthening transparency, efficiency, and 
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accountability in public sector organizations and to recognize how such improvements are likely to 
have spillover effects on the efficiency of logistic networks as well as on overall national competitive 
power. Social considerations are addressed by the research in showing how greater efficiency in 
logistic networks contributes significantly to a better realization of broader social rights outcomes 
like Economic and Social Rights Performance Score (ESRPS). More efficient logistic networks are 
likely to promote greater accessibility to essential goods and services and to promote fairness in social 
development. National development policies are thus urged to address the role of logistic 
infrastructure as more than an economic imperative but as a social imperative. Logistics investments 
are to be planned with clear social objectives to ensure the benefits from improvements in efficiency 
in the supply chain are shared equitably across various social classes and among different regions. 
Environmental consequences also appear as essential from the research. While the LPI does not 
directly capture environmental outcomes as a measurable variable, decomposition of ESG elements 
by the research shows how the impact of efficiency improvements in the logistic networks has to be 
accompanied by proactive environmental regulation and incentive arrangements motivated by a 
reduction in the environmental footprint of logistic chains. Governments are thus urged to 
contemplate adopting convergence to green logistic standards and promoting green transport 
practices as well as providing incentives to adopt low-emission technologies in the logistic industries. 
Beyond borders, the interconnection of global supply chains necessitates global cooperation. The 
countries with high LPI scores promote trade both domestically and in a broader region. This 
emphasizes the functioning and efficiency of regional organizations and trade agreements in aligning 
the standards of logistics and sustainability policies (Sharawi et al., 2025). Policymakers thus need to 
pursue diplomatic efforts enshrining ESG issues in trade and transport agreements to avoid making 
efficiency in logistics a price paid at the expense of causing harm to the environment and social 
exclusion. Furthermore, the cluster analysis in this research exhibits heterogeneous patterns in 
countries' performance regarding both logistics and ESG outcomes to support research on the spatial 
heterogeneity of supply chain efficiency and governance performance (Yıldırım, 2023). 
This result highlights the necessity of differentiated policy responses. One-size-fits-all policies are 
unlikely to succeed with the differentenciing institutional, economic, and infrastructural 
circumstances across countries. Countries with low LPI scores and poor ESG indicators are best 
focused on core governance and infrastructure reforms, while countries in higher-performing groups 
might fine-tune their logistics ecosystems towards even higher levels of environmental and social 
sustainability (Lee, 2024). Further, the established causual dynamics connecting scientific output, as 
a proxy by the scientific and technical journal articles count (STJA), and logistics performance imply 
that policy on innovation has to accompany any policy on logistics. Governments need to promote 
research and development work focused on improving the features of logistics technologies, 
promoting the digitalization of the supply chains and the design of sustainable transport options. 
Government investment in advanced research and education on logistic issues will enhance LPI 
scores but also support the overall ESG agenda—an increasingly identified dynamic in recent 
research on ESG and logistics (Nenavani et al., 2024). The component of political stability as captured 
by the Political Stability and Absence of Violence/Terrorism (PSAOV) estimate also has a pertinent 
impact on the performance of logistics. Stable politics facilitates efficient and stable systems of 
logistics which in turn facilitate trade, economic progress, and social welfare. This shows that policy 
focused on improving political stability, dampening corruption and conflict are part and parcel of 
policy on logistics as well. In reality, transport and trade and also social and environmental affairs 
ministries have to collaborate much more cooperatively and across disciplines. Sectoral boundaries 
are likely to interfere with the type of across-the-board policymaking the results of this research call 
for. Cross-sectoral data analysis and evidence-supported assessment informed policy framework 
plans of action have to become the rule and not the exception. Lastly, also international development 
agencies and multilaterals and financial institutions should realign part of their investments in logistic 
infrastructures by tying ESG appraisal parameters to their evaluation methodology. Financing 
development has the power to become a potent driver in improving the performance of logistics and 
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reaching ESG targets as long as it is aligned to the required standards of sustainability (Rodionova et 
al., 2022). In summary, the findings of this research locate the role of logistics performance as a key 
lever of sustainable development. Policy design has to acknowledge the multifarious nature of the 
impact of logistics on governance quality, social entitlements, green sustainability, and economic 
dynamism. Policymaking in the future has to be holistic, strategic, and responsive to context to release 
the full power of logistics as a source of ESG-compatible development (Nenavani et al., 2024; Lee, 
2024). 
 
8. Conclusions  

This research undertakes a systemic examination of the multifaceted relationship between ESG 
outcomes and logistics performance and makes a valuable addition to the available research by 
combining econometric panel data methods with machine learning algorithms. Contrary to prior 
research and its tendency to typically discuss logistics and sustainability as two distinct areas or to 
limit itself to aggregate indices, this research breakingly examines the ESG dimensions separately 
and analyzes how infrastructures of logistics are interwoven with and influence each pillar in a large 
sample of countries during a long period. Empirical estimates derived from instrumental variable (IV) 
regressions demonstrate systematically how a higher Logistics Performance Index (LPI) is related to 
multiple aspects of sustainable development. In the environmental pillar area, better logistics 
performance exhibits a twofold character: in addition to promoting resource efficiency and mitigating 
certain types of pollution, it also correlates with higher levels of greenhouse gas emissions and thus 
with environmental dimensions as a consequence of infrastructure expansion and industry 
development. In the social pillar area, better logistics performance correlates with better education, 
less child labor, and wider accessibility to basic services but risks causing negative effects related to 
inequalities as well. In terms of governance, more robust logistics systems are found to support better 
institutional quality and more scientific productivity, more robust rule of law and more participative 
governance arrangements. The use of machine learning models, i.e., of Random Forest and k-Nearest 
Neighbors algorithms by applying them to regression and Neighborhood-Based and Density-Based 
clustering to unsupervised modeling, supports and confirms the results of the econometric models. 
These methodologies confirm both the predictive power of key ESG indicators but also reveal latent 
data structures and enhance the multifaceted interconnection between logistic capabilities and targets 
of sustainable development. The clustering analysis in particular identifies the presence of diverging 
country profiles where certain groups of countries achieve both better logistics performance and better 
ESG outcomes at the same time and others are caught in a vicious circle of low efficiency in logistics 
and weak sustainability indicators. Most importantly, the research indicates that while the 
development of logistics is a necessary condition to modernize the economy and integrate into the 
global economy, it does not necessarily translate into good ESG outcomes. Unless complemented by 
policies on environmental protection, social inclusion, and good governance, gains in the performance 
of logistics would risk making existing sustainability issues worse. The findings therefore highlight 
the imperatives of coordinated policy schemes to align investments in logistics with ESG priorities 
to guarantee that investments in improving infrastructures are used to increase economic efficiency 
as much as to bring about fair, resilient, and sustainable development. In conclusion, it underlines the 
importance of logistics systems as more than technical or economic enablers but as key drivers of 
larger sustainability pathways. Future studies will need to delve deeper into causal processes by which 
the interplay between logistics and ESG results occurs with possibly more detailed data by region or 
industry and further expanding the methodology to dynamic machine learning methods and causal 
inference models. Policymakers and inter-national organizations need to acknowledge that 
investment in sustainable logistic infrastructures is a strategic means towards fulfilling the United 
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Nations Sustainable Development Goals and enabling a shift towards a more sustainable and 
environmentally responsible global economy. 

 

9. Abbreviations  

Table 19. Abbreviations 

LPI Logistic Performance Index 

AAGRPCI Annualized average growth rate in per capita real survey mean consumption or 
income, total population (%) 

ACFTC Access to clean fuels and technologies for cooking (% of population) 

AFFVA Agriculture, forestry, and fishing, value added (% of GDP) 

AFWT  Annual freshwater withdrawals, total (% of internal resources) 

ALPA Agricultural land (% of land area) 

ASFD  Adjusted savings: net forest depletion (% of GNI) 

ASNRD Adjusted savings: natural resources depletion (% of GNI) 

CDD  Cooling Degree Days 

CET Children in employment, total (% of children ages 7–14) 

CO2E  CO2 emissions (metric tons per capita) 

CODCDMPN Cause of death, by communicable diseases and maternal, prenatal and nutrition 
conditions (% of total) 

EILPE  Energy intensity level of primary energy (MJ/$2017 PPP GDP) 

ESRPS Economic and Social Rights Performance Score 

EU  Energy use (kg of oil equivalent per capita) 

FFEC  Fossil fuel energy consumption (% of total) 

FPI  Food production index (2014–2016 = 100) 

FRT Fertility rate, total (births per woman) 

GDPG GDP growth (annual %) 

GEE Government Effectiveness: Estimate 

GEET Government expenditure on education, total (% of government expenditure) 

GHGLUCF  GHG net emissions/removals by LUCF (Mt of CO2 equivalent) 

GI Gini index 

HB Hospital beds (per 1,000 people) 

HDD  Heating Degree Days 

HI35 Heat Index 35 

ISL20 Income share held by lowest 20% 

IUI Individuals using the Internet (% of population) 

LEBT Life expectancy at birth, total (years) 

LFPRT Labor force participation rate, total (% of population ages 15–64) (modeled ILO 
estimate) 

LRAT Literacy rate, adult total (% of people ages 15 and above) 

LST  Land Surface Temperature 
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LWS  Level of water stress: freshwater withdrawal as a proportion of available 
freshwater resources 

MRU5 Mortality rate, under-5 (per 1,000 live births) 

MST  Mammal species, threatened 

NM Net migration 

NOE Nitrous oxide emissions (metric tons of CO2 equivalent per capita) 

PD  Population density (people per sq. km of land area) 

PHRNPL Poverty headcount ratio at national poverty lines (% of population) 

PM2.5AE PM2.5 air pollution, mean annual exposure (µg/m³) 

POA Prevalence of overweight (% of adults) 
PSAOV Political Stability and Absence of Violence/Terrorism: Estimate 
PSHWNP Proportion of seats held by women in national parliaments (%) 
PSMS People using safely managed sanitation services (% of population) 
PSMWS People using safely managed drinking water services (% of population) 
REC  Renewable energy consumption (% of total final energy consumption) 
RFMLFPR Ratio of female to male labor force participation rate (%) (modeled ILO estimate) 
RLE Rule of Law: Estimate 
RQE Regulatory Quality: Estimate 
SEP School enrollment, primary (% gross) 
SLRI Strength of legal rights index (0=weak to 12=strong) 
SPEI  Standardised Precipitation-Evapotranspiration Index 
STJA Scientific and technical journal articles 
TMPA  Terrestrial and marine protected areas (% of total territorial area) 
VAE Voice and Accountability: Estimate 
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Appendix A-Hyper Parameters of Regression Algorithms 

Support Vector Machine Hyperparameters  

Category Option Setting 

Data Split Preferences 

Holdout Test Data - Sample 20% of all data 

Training and Validation Data - Sample 
20% for 
validation data 

Training Parameters 

Weights Linear 

Degree (for polynomial kernel) 3 

Gamma parameter 1 

r parameter 0 

Tolerance of termination criterion 0.001 

Epsilon 0.01 

Scale features ✔ Enabled 

Set seed 1 

Costs of Constraints 
Violation 

Costs settings Optimized 

Max. violation cost 5 
 

Regularized Linear Regression Hyperparameters  

 

Holdout Test Data - Sample 20% of all data 
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Data Split 
Preferences 

Training and Validation Data - 
Sample 

20% for validation 
data 

Training Parameters 

Penalty Lasso 
Include intercept ✔ Enabled 

Scale features ✔ Enabled 
Set seed 1 

Lambda (λ) Settings 

Selection Optimized 
Fixed value (if selected) 1 (not selected) 
Largest λ within 1 SE of min ❌ Disabled 

 

Random Forest Regression  Hyper parameters  

Split 
Preferences 

Holdout Test Data - Sample 20% of all data 
Training and Validation Data - 
Sample 

20% for validation 
data 

Training 
Parameters 

Training data used per tree 50% 
Features per split Auto 
Scale features ✔ Enabled 
Set seed 1 

Number of 
Trees 

Tree selection Optimized 
Maximum number of trees 100 

 

Linear Regression Hyperparameters  

Category Option Setting 

Data Split 
Preferences 

Holdout Test Data - 
Sample 20% of all data 
Add generated 
indicator to data ❌ Disabled 

Test set indicator None (not selected) 

Training 
Parameters 

Include intercept ✔ Enabled 

Scale features ✔ Enabled 

Set seed 1 
 

 

K-Nearest Neighbors Regression Hyperparameters 

Category Option Setting 

Data Split Preferences 

Holdout Test Data - 
Sample 20% of all data 
Add generated 
indicator to data ❌ Disabled 

Test set indicator None (not selected) 

Training and 
Validation Data 

Validation Sample 20% for validation data 

K-fold ❌ Disabled 

Leave-one-out ❌ Disabled 
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Training Parameters 

Weights Rectangular 

Distance Euclidean 

Scale features ✔ Enabled 

Set seed 1 

Number of Nearest 
Neighbors 

Selection Method Optimized 
Max. nearest 
neighbors 10 
Fixed nearest 
neighbors ❌ Disabled 

 

Decision Tree Regression-Hyperparameters  

Category Option Setting 

Data Split 
Preferences 

Holdout Test Data - Sample 20% of all data 

Add generated indicator to data ❌ Disabled 

Test set indicator None (not selected) 
Training 
and 
Validation 
Data 

Validation Sample 20% for validation data 

K-fold ❌ Disabled 

Leave-one-out ❌ Disabled 

Training 
Parameters 

Min. observations for split 20 

Min. observations in terminal node 7 

Max. interaction depth 30 

Scale features ✔ Enabled 

Set seed 1 

Tree 
Complexity 

Penalty Type Optimized 

Max. complexity penalty 1 

Fixed complexity penalty ❌ Disabled (value: 0.01 grayed out) 
 

 

Boosting Regression Hyperparameters  

Category Option Setting 

Data Split 
Preferences 

Holdout Test Data - Sample 20% of all data 

Add generated indicator to data ❌ Disabled 

Test set indicator None (not selected) 
Training 
and 
Validation 
Data 

Validation Sample 20% for validation data 

K-fold cross-validation ❌ Disabled 

Training 
Parameters 

Shrinkage 0.1 

Interaction depth 1 

Minimum observations in node 10 

Training data used per tree 50% 

Loss function Gaussian 

Scale features ✔ Enabled 

Set seed 1 
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Number of 
Trees 

Tree selection Optimized 

Maximum number of trees 100 

Fixed number of trees 
❌ Disabled (value: 100 
grayed out) 

 

 

 

Appendix B-Hyper parameters of Clustering Algorithms  

Density Based Clustering hyper parameters 

 

Parameter Value Description 

Epsilon neighborhood 
size 

2 
Maximum distance to include points in a point's neighborhood 
(ε) 

Min. core points 5 Minimum number of points required to form a core point 

Distance Normal Type of distance used (likely Euclidean) 

Scale features Enabled Features are scaled (normalized or standardized) 

Set seed Disabled No seed set for result reproducibility 

 

Fuzzy C-Means Clustering hyper parameters 

Category Parameter Value Description 

Algorithmic 
Settings 

Max. iterations 25 
Maximum number of iterations allowed 
during optimization 

Fuzziness 
parameter 

2 
Degree of fuzziness in fuzzy clustering 
(e.g., Fuzzy C-Means) 

Scale features Enabled (✓) 
Features are scaled (standardized or 
normalized) 

Set seed Disabled (✗) No random seed set for reproducibility 

Cluster 
Determination 

Determination 
method 

Optimized 
according to BIC 

Number of clusters determined by 
Bayesian Information Criterion (BIC) 

Max. clusters 10 
Maximum number of clusters to consider 
in optimization 

Clusters (Fixed) 3 (disabled) Fixed cluster number is not used 

 

 

Hierarchical  Clustering hyper parameters 

Parameter Value Description 

Epsilon neighborhood 
size 

2 
Maximum distance to include points in a point's neighborhood 
(ε) 
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Parameter Value Description 

Min. core points 5 Minimum number of points required to form a core point 

Distance Normal Type of distance used (likely Euclidean) 

Scale features Enabled Features are scaled (normalized or standardized) 

Set seed Disabled No seed set for result reproducibility 

 

Model based Clustering hyper parameters 

Parameter  Value Description 

Center type  Means Type of cluster center used (centroids) 

Algorithm  Hartigan-Wong Algorithm variant used for clustering (K-Means method) 

Distance  Euclidean Distance metric used for clustering 

Max. iterations  25 Maximum number of iterations allowed 

Random sets  25 Number of random initializations for better clustering 

Scale features  Enabled (✓) Features are scaled (standardized or normalized) 

Set seed  Disabled (✗) No random seed set for reproducibility 

Cluster 
determination 

 
Optimized (BIC) 

Number of clusters determined using Bayesian Information 
Criterion (BIC) 

Max. clusters  10 Maximum number of clusters to evaluate 

Fixed clusters 
 Disabled (3 
shown) 

Fixed number of clusters not selected 

 

Neighbourhood Based 

 

Parameter Value Description 

Model Auto Automatically selects the best clustering model 

Max. iterations 25 Maximum number of iterations for model fitting 

Scale features Enabled (✓) Features are scaled (standardized or normalized) 

Set seed Disabled (✗) No seed set for reproducibility 

Cluster 
determination 

Optimized (BIC) 
Number of clusters selected based on Bayesian Information 
Criterion (BIC) 

Max. clusters 10 Maximum number of clusters to evaluate 

Fixed clusters 
Disabled (3 
shown) 

Fixed number of clusters not used 

 

Random Forest Clustering hyper parameters 

Parameter Value Description 

Model Auto Automatically selects the best clustering model 
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Parameter Value Description 

Max. iterations 25 Maximum number of iterations for model fitting 

Scale features Enabled (✓) Features are scaled (standardized or normalized) 

Set seed Disabled (✗) No seed set for reproducibility 

Cluster 
determination 

Optimized (BIC) 
Number of clusters selected based on Bayesian Information 
Criterion (BIC) 

Max. clusters 10 Maximum number of clusters to evaluate 

Fixed clusters 
Disabled (3 
shown) 

Fixed number of clusters not used 

 

Appendix C E-Enviromental Summary Statistics  

  LPI NOE PM2.5AE HI35 ALPA AFFVA 

Valid 2771 2771 2771 2771 2771 2771 

Missing 0 0 0 0 0 0 

Mode 100.000 -21.265 5.179 67.170 100.000 83.890 

Median 2.760 -21.265 4.830 67.170 72.900 83.890 

Mean 10.854 -21.265 5.177 67.169 65.608 83.909 

Std. Error of Mean 0.497 1.688 0.054 0.330 0.686 0.154 

95% CI Mean Upper 11.828 -17.955 5.283 67.817 66.954 84.211 

95% CI Mean Lower 9.880 -24.576 5.071 66.521 64.262 83.607 

Std. Deviation 26.155 88.873 2.852 17.387 36.134 8.104 

95% CI Std. Dev. Upper 26.862 91.277 2.929 17.857 37.111 8.324 

95% CI Std. Dev. Lower 25.484 86.593 2.779 16.941 35.207 7.897 

Coefficient of variation 2.410 -4.179 0.551 0.259 0.551 0.097 

MAD 0.380 0.000 1.250 0.000 27.100 0.000 

MAD robust 0.563 0.000 1.853 0.000 40.178 0.000 

IQR 0.940 26.786 2.210 0.000 64.900 0.000 

Variance 684.069 7.898.371 8.133 302.294 1.305.643 65.683 

95% CI Variance Upper 721.575 8.331.421 8.579 318.868 1.377.229 69.284 

95% CI Variance Lower 649.425 7.498.366 7.721 286.985 1.239.520 62.356 
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Skewness 2.986 -4.217 2.322 -1.261 -0.650 -3.304 

Std. Error of Skewness 0.047 0.047 0.047 0.047 0.047 0.047 

Kurtosis 6.984 26.820 7.759 3.475 -1.067 18.588 

Std. Error of Kurtosis 0.093 0.093 0.093 0.093 0.093 0.093 

Shapiro-Wilk 0.336 0.551 0.796 0.754 0.826 0.483 

P-value of Shapiro-Wilk < .001 < .001 < .001 < .001 < .001 < .001 

Range 99.810 1.044.803 23.950 100.000 99.800 77.688 

Minimum 0.190 -944.893 1.110 0.000 0.200 22.312 

Maximum 100.000 99.910 25.060 100.000 100.000 100.000 

25th percentile 2.460 -21.265 3.380 67.170 35.100 83.890 

50th percentile 2.760 -21.265 4.830 67.170 72.900 83.890 

75th percentile 3.400 5.521 5.590 67.170 100.000 83.890 

25th percentile 2.460 -21.265 3.380 67.170 35.100 83.890 

50th percentile 2.760 -21.265 4.830 67.170 72.900 83.890 

75th percentile 3.400 5.521 5.590 67.170 100.000 83.890 

Sum 30.076.280 -58.926.381 14.345.898 186.125.522 181.800.321 232.511.799 

 

Covariances  

  NOE PM2.5AE HI35 ALPA AFFVA LPI 
NOE 7.898.371 -26.637 -

119.086 
5.641 -36.715 -23.566 

PM2.5AE -26.637 8.133 -7.922 -22.657 -2.142 -3.410 

HI35 -119.086 -7.922 302.294 245.815 17.297 86.509 
ALPA 5.641 -22.657 245.815 1.305.643 88.102 209.274 
AFFVA -36.715 -2.142 17.297 88.102 65.683 11.491 
LPI -23.566 -3.410 86.509 209.274 11.491 684.069 
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Correlations  

  NOE PM2.5AE HI35 ALPA AFFVA LPI 
NOE 1.000 -0.105 -0.077 0.002 -0.051 -0.010 
PM2.5AE -0.105 1.000 -0.160 -0.220 -0.093 -0.046 

HI35 -0.077 -0.160 1.000 0.391 0.123 0.190 
ALPA 0.002 -0.220 0.391 1.000 0.301 0.221 
AFFVA -0.051 -0.093 0.123 0.301 1.000 0.054 
LPI -0.010 -0.046 0.190 0.221 0.054 1.000 
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Q-Q Plots  

 

Boxplots  
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Distribution plots  

 

 

Interval plots  

 

Dot plots  

 

 

 

 



59 
 

Appendix D S-Social Summary Statistics  

Descriptive Statistics 

  LPI PSMWS PSMS PA65A SEP CET POA ISL20 

Valid 2771 2771 2771 2771 2771 2771 2771 2771 

Missing 0 0 0 0 0 0 0 0 

Mode 100.000 2.500 70.660 7.346 -0.176 -0.115 21.092 -0.046 

Median 2.760 8.700 75.890 5.759 -0.175 -0.256 20.800 -0.089 

Mean 10.854 10.523 70.649 7.346 -0.176 -0.115 21.081 -0.046 

Std. Error 
of Mean 

0.497 0.188 0.368 0.102 0.018 0.019 0.218 0.019 

95% CI 
Mean Upper 

11.828 10.892 71.370 7.547 -0.141 -0.079 21.508 -0.010 

95% CI 
Mean Lower 

9.880 10.154 69.928 7.146 -0.212 -0.152 20.654 -0.083 

Std. 
Deviation 

26.155 9.899 19.355 5.380 0.950 0.983 11.467 0.978 

95% CI 
Std. Dev. 
Upper 

26.862 10.167 19.879 5.526 0.976 1.009 11.777 1.005 

95% CI 
Std. Dev. 
Lower 

25.484 9.645 18.859 5.242 0.925 0.958 11.173 0.953 

Coefficient 
of variation 

2.410 0.941 0.274 0.732 -5.389 -8.514 0.544 
-

21.161 

MAD 0.380 5.700 10.464 2.491 0.635 0.644 7.526 0.686 

MAD 
robust 

0.563 8.451 15.514 3.693 0.941 0.955 11.158 1.017 

IQR 0.940 9.400 23.747 5.737 1.279 1.352 14.860 1.381 

Variance 684.069 97.998 374.634 28.946 0.902 0.966 131.488 0.957 

95% CI 
Variance 
Upper 

721.575 103.371 395.175 30.533 0.952 1.019 138.698 1.010 

95% CI 
Variance 
Lower 

649.425 93.035 355.661 27.480 0.857 0.917 124.829 0.909 

Skewness 2.986 2.056 -1.021 1.417 -0.582 0.424 0.612 0.153 

Std. Error 
of Skewness 

0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 

Kurtosis 6.984 5.374 0.578 1.875 0.053 -0.490 0.238 -0.539 

Std. Error 
of Kurtosis 

0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 

Shapiro-
Wilk 

0.336 0.768 0.919 0.873 0.970 0.966 0.971 0.985 
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P-value of 
Shapiro-Wilk 

< .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 

Range 99.810 68.400 99.177 28.880 4.933 4.716 63.750 4.800 

Minimum 0.190 2.500 7.345 0.100 -3.313 -2.591 0.000 -2.548 

Maximum 100.000 70.900 106.522 28.980 1.620 2.125 63.750 2.252 

25th 
percentile 

2.460 2.500 60.459 3.688 -0.714 -0.823 12.531 -0.741 

50th 
percentile 

2.760 8.700 75.890 5.759 -0.175 -0.256 20.800 -0.089 

75th 
percentile 

3.400 11.900 84.206 9.425 0.566 0.529 27.391 0.640 

25th 
percentile 

2.460 2.500 60.459 3.688 -0.714 -0.823 12.531 -0.741 

50th 
percentile 

2.760 8.700 75.890 5.759 -0.175 -0.256 20.800 -0.089 

75th 
percentile 

3.400 11.900 84.206 9.425 0.566 0.529 27.391 0.640 

Sum 30.076.280 29.159.833 195.768.244 20.356.604 
-

488.409 
-

319.845 
58.416.354 

-
128.115 

ᵃ The mode is computed assuming that variables are discreet. 

 

 

Correlation plot.  
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Box Plots 
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Q-Q PLOTS. 

 

Scatter plots  
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Covariances 

  LPI PSMWS PSMS PA65A SEP CET POA ISL20 

LPI 684.069 -39.318 -71.754 8.334 -0.339 1.931 -28.347 2.105 

PSMWS -39.318 97.998 0.399 4.457 -3.922 -4.956 -18.778 -4.947 

PSMS -71.754 0.399 374.634 -24.405 7.209 4.557 49.932 4.168 

PA65A 8.334 4.457 -24.405 28.946 -0.350 -0.248 0.497 -0.241 

SEP -0.339 -3.922 7.209 -0.350 0.902 0.725 2.395 0.652 

CET 1.931 -4.956 4.557 -0.248 0.725 0.966 2.941 0.899 

POA -28.347 -18.778 49.932 0.497 2.395 2.941 131.488 2.807 

ISL20 2.105 -4.947 4.168 -0.241 0.652 0.899 2.807 0.957 

 

Correlations. 
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  LPI PSMWS PSMS PA65A SEP CET POA ISL20 

LPI 1.000 -0.152 -0.142 0.059 -0.014 0.075 -0.095 0.082 

PSMWS -0.152 1.000 0.002 0.084 -0.417 -0.509 -0.165 -0.511 

PSMS -0.142 0.002 1.000 -0.234 0.392 0.240 0.225 0.220 

PA65A 0.059 0.084 -0.234 1.000 -0.069 -0.047 0.008 -0.046 

SEP -0.014 -0.417 0.392 -0.069 1.000 0.776 0.220 0.702 

CET 0.075 -0.509 0.240 -0.047 0.776 1.000 0.261 0.935 

POA -0.095 -0.165 0.225 0.008 0.220 0.261 1.000 0.250 

ISL20 0.082 -0.511 0.220 -0.046 0.702 0.935 0.250 1.000 

 

 

Appendix E G-Governance Summary Statistics  

Descriptive Statistics  

  LPI GEE RQE ESRPS VAE STJA PSAOV RLE 

Valid 2771 2771 2771 2771 2771 2771 2771 2771 

Missing 0 0 0 0 0 0 0 0 

Mode 100.000 45.761 16.506.420 67.641 -0.137 25.367 912.876 0.543 

Median 2.760 45.761 8.307.000 67.641 -0.137 26.437 912.876 0.422 

Mean 10.854 45.766 16.506.423 67.641 -0.137 25.367 918.963 0.543 

Std. Error of Mean 0.497 0.562 1.410.965 0.469 0.018 0.171 3.626.689 0.011 

95% CI Mean Upper 11.828 46.868 19.273.072 68.562 -0.101 25.702 8.030.249 0.564 

95% CI Mean Lower 9.880 44.665 13.739.773 66.721 -0.174 25.032 -6.192.324 0.521 

Std. Deviation 26.155 29.572 74.273.596 24.706 0.970 8.989 190.909.935 0.578 

95% CI Std. Dev. Upper 26.862 30.372 76.282.556 25.374 0.997 9.232 196.073.687 0.594 

95% CI Std. Dev. Lower 25.484 28.814 72.368.406 24.072 0.945 8.758 186.012.907 0.563 

Coefficient of variation 2.410 0.646 4.500 0.365 -7.064 0.354 207.745 1.065 

MAD 0.380 26.861 8.199.420 15.044 0.756 5.062 13.807.876 0.139 

MAD robust 0.563 39.825 12.156.460 22.305 1.121 7.504 20.471.557 0.207 
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IQR 0.940 53.576 16.340.420 27.922 1.505 11.438 26.629.000 0.289 

Variance 684.069 874.520 5.517×10+9 610.394 0.942 80.803 3.645×10+10 0.334 

95% CI Variance Upper 721.575 922.468 5.819×10+9 643.861 0.993 85.233 3.844×10+10 0.353 

95% CI Variance Lower 649.425 830.231 5.237×10+9 579.481 0.894 76.711 3.460×10+10 0.318 

Skewness 2.986 0.077 13.755 -0.715 -0.015 -0.688 -2.333 3.636 

Std. Error of Skewness 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 

Kurtosis 6.984 -1.196 221.461 -0.002 -0.881 0.577 45.528 16.473 

Std. Error of Kurtosis 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 

Shapiro-Wilk 0.336 0.944 0.141 0.894 0.977 0.957 0.478 0.609 

P-value of Shapiro-Wilk < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001 

Range 99.810 99.783 1.427×10+6 94.525 4.034 49.571 3.740×10+6 4.964 

Minimum 0.190 0.217 1.000 5.475 -2.259 -5.258 -2.290×10+6 0.018 

Maximum 100.000 100.000 1.427×10+6 100.000 1.775 44.313 1.449×10+6 4.982 

25th percentile 2.460 18.005 166.000 61.593 -0.909 19.500 -17.033.000 0.254 

50th percentile 2.760 45.761 8.307.000 67.641 -0.137 26.437 912.876 0.422 

75th percentile 3.400 71.581 16.506.420 89.516 0.596 30.938 9.596.000 0.543 

25th percentile 2.460 18.005 166.000 61.593 -0.909 19.500 -17.033.000 0.254 

50th percentile 2.760 45.761 8.307.000 67.641 -0.137 26.437 912.876 0.422 

75th percentile 3.400 71.581 16.506.420 89.516 0.596 30.938 9.596.000 0.543 

Sum 30.076.280 126.817.792 4.574×10+7 187.434.549 -
380.677 

70.291.471 2.546×10+6 1.504.306 

ᵃ The mode is computed assuming that variables are discreet. 
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